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A concurrent system of synchronous communicating agents is assem-
bled from simpler sequential agents by parallel composition and hiding.
For example, hide a1 , ... al in ( p1 & p2 } } } & pn) describes the system of
communicating agents p1 , ... pn in which the communication events
a1 , ... al are hidden. Consider descriptions of two systems p and q of syn-
chronously communicating finite state agents. Assume that one wants to
check whether ptq for one of the commonly used equivalence t. We
show that this question is PSPACE hard for all equivalences that lie
between strong bisimulation and trace equivalences. For some equivalen-
ces exponential lower and upper bounds are proven. We also show that
this problem is NP hard and co-NP hard even for a class of very simple
finite agents. ] 1997 Academic Press

1. INTRODUCTION

1.1 Equivalences

There is a variety of semantics for concurrency that reflects the alternatives:
linear time vs branching time, interleaving vs causality. Here we consider only inter-
leaving semantics. In such a setting concurrent systems are described by labeled
transition systems [Plo] or in a more classical terminology by automata (maybe
with infinite number of states). Usually a behavior equivalence t (an implementa-
tion preorder P) is introduced on labeled transition systems. The question whether
system p behaves like (implements) system q is mathematically reformulated as a
question whether ptq ( pPq). In the literature on concurrency many such equiv-
alences were proposed (see [RvG]). For example, in classical automata theory, two
automata are equivalent iff they accept the same language. This equivalence is
sometimes called language equivalence. Weak trace equivalence is an equivalence on
labeled transition systems that is even coarser than language equivalence. Two
labeled transition systems are (weak) trace equivalent if the automata obtained
from them by marking all states as accepting states are language equivalent. Weak
trace equivalence is considered as the coarsest behavior equivalence of interest.
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Language and weak trace equivalences completely ignore branching. For exam-
ple, they identify the automata described by expressions a(b+c) and ab+ac, which
are considered as different in most theories of concurrency. Informally, their dif-
ference is justified as follows: the first automaton after performing a can choose
between b and c ; on the other hand, the second automaton after performing a is
unable to choose; only one of actions b, c is available in the state it has reached.

Another extreme equivalence is (strong) bisimulation equivalence. It catches very
subtle differences between labeled transition systems on the basis of their branching
structure. It has a very appealing mathematical theory and is accepted as the finest
behavior equivalence of interest for concurrency (it is often argued that strongly
bisimilar labeled transition systems are indistinguishable for all reasonable notions
of observations).

Many equivalences on labeled transition systems were studied in the literature.
Failure equivalence [BHR], acceptance equivalence [He], weak bisimulation
equivalence [Mi], and observational congruence [Mi] are only a few among many
well investigated equivalences [RvG]. There is no consensus what is the best equiv-
alence or what criteria it should satisfy. But it seems that there exists a consensus
that a good equivalence should lie between trace and bisimulation equivalences.
This consensus is supported by

Empirical Fact. All equivalences studied in the literature lie between bisimula-
tion and trace equivalences.1

1.2. Complexity of Checking Equivalences between Finite Agents.

Kanellakis and Smolka examined in [KS] the computational complexity of
checking different equivalences between finite state automata. The classical result of
Meyer and Stockmeyer [MeS] states that the complexity of checking language
equivalence is PSPACE complete. It is shown in [KS] that trace equivalence,
failure equivalence, and a number of other equivalences are PSPACE complete.

However, polynomial algorithms for checking bisimulation equivalence, weak
bisimulation equivalence, and observational congruence were given in [KS]. Paige
and Tarjan [PT] gave a very efficient algorithm for checking bisimulation equiv-
alence; its complexity is m+n log m, where n is a number of transitions and m is
number of states. In [GV] and [Bl] polynomial algorithms are given for checking
branching bisimulation equivalence and readiness equivalence. It is proved in
[ABGS] that the bisimulation equivalence problem is PTIME complete.

1.3. State Explosion

Concurrent CCS-like languages, in addition to sequential combinators like
prefixing, choice, and iteration use two new fundamental combinators: parallel

112 ALEXANDER RABINOVICH
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composition (&) and hiding. Roughly speaking, parallel composition describes com-
munication between components of a system and hiding describes what com-
munication events will become invisible and what will remain observable.

Complex systems are assembled from simple agents by applying parallel com-
position and hiding. The role of these operations is prominent for nets of com-
municating agents. For example, hide a1 , ... al in ( p1 & p2 } } } & pn) describes the
network of synchronous communicating agents p1 , ... pn in which the communica-
tion events a1 , ...al are hidden.

From the complexity point of view, parallel composition is different from other
operations: the size of automata p & q is of the order | p|_|q|. Therefore, if ni is the
size of pi then the size of system p1 & p2 } } } & pk is n1_n2_ } } } _nk and it is
exponential in the size n1+n2 } } } +nk+k of its description. This fact is known as
state explosion.

Given descriptions hide a1 , ... al in ( p1 & p2 } } } & pn) and hide b1 , ... bm in
(q1 & q2 } } } & qk) of two synchronously communicating systems p and q. Assume
that one wants to check whether ptq for one of the commonly used equivalences.
A straightforward algorithm will construct automata p and q and then will check
their t-equivalence. Since the sizes of p and q are exponential in the sizes of their
description, the complexity of this algorithm is at least EXPTIME. Can the descrip-
tions of p, q in terms of their components pi , qj be used in order to obtain an
efficient algorithm? Groote and Moller [GM] considered the problem of checking
bisimulation equivalence between two systems p= p1 & p2 } } } & pn and q=
q1 & q2 } } } & qn of finite automata. They developed a method that avoids the state
explosion problem. It works only in the case when there is no communication
between the components of the systems. Their algorithm is polynomial and works
not only for strong bisimulation equivalence, but also for other equivalences which
satisfy a certain set of axioms.

1.4. Our Contribution

We investigate the complexity of checking equivalences between networks of
communicating finite agents.

Such a network p can be described as hide a1 , ... al in ( p1 & p2 } } } & pn) where pi

are finite state automata and ai are communication events. Here not only com-
munications between components of a system are allowed, but also some com-
munication events can be hiding (to become invisible { moves).

Given two networks p and q and an equivalence t on automata. We show that
the problem whether ptq is: (1) PSPACE-hard for all equivalences which lie
between strong bisimulation and trace equivalence; (2) it is NP hard and co-NP
hard for all equivalences which lie between strong bisimulation and trace equiva-
lences even in the case when pi , qj are acyclic automata; (3) for language and
trace equivalences the problem is EXPSPACE-complete and we provide DSPACE
(0(cn�log n)) lower bound and DSPACE(O(d n)) upper bound.

It is clear that a lower bound for checking an equivalence t is also a lower
bound for checking any implementation preorder that generates t.

113EQUIVALENCE OF CONCURRENT SYSTEMS
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FIG. 1. Summary of our complexity results

Note that the algorithm that first constructs p and q and then checks whether
they are bisimulation equivalent using the Paige and Tarjan algorithm, has
EXPTIME complexity and gives us an upper bound for checking bisimulation. Our
results are summarized in Fig. 1.

We use parallel composition and hiding a� la Hoare. However, the results stated
above are valid for Milner parallel composition and restriction. They also remain
valid in any language which is able to describe net operations succinctly.

The rest of this paper is organized as follows: Section 2 provides basic definitions.
In Section 3 lower bounds are proved for a net over acyclic automata. In Section
4 PSPACE hardness of checking any reasonable equivalence for nets of automata
is given. In Section 5 we show EXPSPACE completeness of verifying trace equiv-
alence. Section 6 gives a conclusion and further results.

The main results of the paper were announced in [Ra].

2. BASIC DEFINITIONS

Section 2.1 introduces labeled transition systems. In Section 2.2 trace and strong
bisimulation equivalences are defined. The former is considered as the coarsest
equivalence and the latter as the most discriminating equivalence for interest of
interleaving semantics for concurrency. In Section 2.3 synchronization and hiding
operations on labeled transition systems are defined. Section 2.4 introduces net
expressions��a language for description of nets.

2.1. Labeled Transition Systems

Definition. A Labeled Transition System (LTS) consists of:

v Set of states Q.

v Initial state q0 # Q.

v Communication alphabet A and a special invisible action { ({ � A).

v Transition Relation: � a subset of Q_[A _ [{]]_Q.

An action is either a communication or {. We use q w�a q$ as a notation for a
transition from state q via action a to state q$; we say that a labeled transition
system T is finite if it has a finite set of states, a finite alphabet and a finite transi-
tion relation. We say that T is acyclic if it does not contain a cyclic path (a path
of the from q1 w�a1 q2 w�a2 } } } ww�ak&1 qk w�ak q1).

114 ALEXANDER RABINOVICH
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Remarks (Contrasting the above definition with classical automata theory). (1)
The alphabet is implicitly presented in the automata theory. Usually it is extracted
from the transition diagram that defines an automaton. The role of the alphabet in
concurrency is much more important. The appearance of a in the alphabet of T, but
not as a label of a transition of T implies that a will be blocked in any system that
runs in parallel with T. (2) In our definition, unlike in the definition of automaton,
the set of accepting states was not mentioned. Implicitly, all states are accepting
states. It is a technical decision that simplifies our presentation.

2.2. Trace and Strong Bisimulation Equivalences

A finite alternating sequence q0 , a1 , q1 , a1 , ..., an , qn } } } of states of LTS T and
actions of T is an execution sequence of T if q0 is the initial state of T and
qi&1 w�ai qi are transitions of T.

A trace of T is the sequence of communications that is obtained from an execu-
tion sequence by deleting the states of T and { actions. We use the notation
trace(T ) for the sets of traces of labeled transition system T.

Definition 2. Labeled transition systems T and T1 over the same alphabet are
trace equivalent (notation Tttrace T1) if trace(T )=trace(T1).

The notion of strong bisimulation was introduced by Park [Pa] and plays a very
important role in concurrency [Mi].

Definition 3 (Strong Bisimulation [Pa]). Let T 1=(Q1, q1
0 , A, �1) and T 2=

(Q2, q0
2, A, �2) be labeled transition systems over the same alphabet. A relation

R between the states of T 1 and T 2 is called a (strong) bisimulation if

v q1
0Rq2

0 .

v Whenever qRp and q w�: 1 q$, then p w�: 2 p$, for some p$ for which q$Rp$.

v Whenever qRp and p w�: 2 p$, then q w�: 1 q$, for some q$ for which q$Rp$.

(Here : # A _ [{])

Definition 4. Labeled transition systems T and T1 are (strong) bisimulation
equivalent (notation Ttbis T1) if there exists a (strong) bisimulation relation
between their states.

We say that an equivalence t1 refines an equivalence t2 (notations t1�t2)
if T 1

t1 T 2 implies T 1
t2 T 2. We say that t lies between t1 and t2 if

t1�t�t2 .

2.3. Operations on Labeled Transition Systems

We define here synchronization (parallel composition) and hiding operations a� la
Hoare [Ho] which are more convenient for our purposes. Yet, all results given in
this paper are valid if Milner's parallel composition and restriction are used or if
one uses combinators from other CCS-like languages that are able to express net
operations.
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Synchronization (infix notations��&). The synchronization T of two labeled
transition systems T 1=(Q1, q1

0 , A1, �1) and T 2=(Q2, q2
0 , A2, �2) is defined as

follows:

v States: Q=Q1_Q2 .

v The initial state is (q1
0 , q2

0).

v Communication alphabet A=A1 _ A2.

v Transitions are given by the following inference rules:

1. if a is a communication not in A1 & A2 then

q1 w�a 1 q2

(q1 , q) w�a (q2 , q)

q1 w�a 2 q2

(q, q1) w�a (q, q2)

2. {-transitions

q1 w�{ 1 q2

(q1 , q) w�{ (q2 , q)

q1 w�{ 2 q2

(q, q1) w�{ (q, q2)

3. if a is a communication in A1 & A2

q1 w�a 1 q$1 q2 w�a 2 q$2
(q1 , q2) w�a (q$1 , q$2)

Hiding. hide a in T 1 is the labeled transition system defined as follows:

v States: the same as the states of T 1.

v Communication alphabet: A=A1&[a].

v The initial state is the initial state of T 1.

v Transitions are defined by the following inference rules:

1. if a$ is a communication in A and a${a then

q1 w�a$
1 q2

q1 w�a$ q2

2. { transitions:

q1 a w�a 1 q2

q1 w�{ q2

q1 w�{ q2

q1 w�{ q2

Let A=[a1 , a2 , ..., an] be a set of actions. We use notation hide A in T for hide a1

in (hide a2 in } } } (hide an in T )...). Since hide a in (hide b in T))=hide b in (hide
a in T )) this is a well defined notation. Note also that synchronization is com-
mutative and associative, hence p1 & p2 } } } & pn is well defined.

2.4. Net Expressions

A system of concurrently communicating agents is assembled from simple
systems by parallel composition and hiding. Below, net expressions are introduced;
they describe systems of concurrently communicating agents.

116 ALEXANDER RABINOVICH



File: DISTIL 266107 . By:DS . Date:08:12:97 . Time:09:35 LOP8M. V8.B. Page 01:01
Codes: 2901 Signs: 1781 . Length: 52 pic 10 pts, 222 mm

Let [CT] be a set of constant indexed by labeled transition systems.
The set of net expressions is defined by:

EXP :=CT |EXP & EXP| hide a1 } } } an in EXP.

Semantics � � assigns to any net expression a labeled transition system. It is defined
inductively in a standard way:

v �CT�=T

v �E1 & E2�=�E1� & �E2�

v �hide a1 } } } an in EXP�=hide a1 } } } an in �EXP�.

We use notation �E� trace for the set of traces of the labeled transition system �E�;
we say that expressions are bisimilar (trace equivalent) if their transition systems
are bisimilar (trace equivalent). The size of the net expressions is defined induc-
tively:

v size(CT)=number of transitions +number of states + the size of the alphabet
of T.

v size(E1 & E2)=size(E1)+size(E2)+1.

v size(hide a1 } } } an in EXP)=size(EXP)+n.

A normal form net expression is an expression of the form hide a1 } } } an in
(CT1

& CT2
& } } } & CTm).

One can easily show

Fact 1. There exists an algorithm that for every net expression E finds a normal
form net expression E$ such that E is bisimulation equivalent to E$ and the size of E
is equal to the size of E$.

Proof. This fact follows from the commutativity of & and the following two
laws:

1. hide a in Ttbis hide b in T $, where b does not appear in the alphabet of a
labeled transition system T and T $ is obtained from T by renaming all occurrences
of a to b.

2. (hide a in T1) & T2 tbis hide a in (T1 & T2), provided a is not in the alphabet
of T2 . K

3. LOWER BOUNDS FOR NETS OVER ACYCLIC SYSTEMS

Let p1 } } } pn , q1 } } } qm be finite labeled transition systems and t be an equiv-
alence that lies between strong bisimulation and trace equivalences.

Theorem 2. The problem whether hide a1 , ... ak in ( p1 & p2 } } } pn)thide b1 , ... bm

in (q1 & q2 } } } qr) is NP hard and co-NP hard, even in the case when pi and qj are
acyclic transition systems.
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Proof. We will show here only co-NP hardness. The proof for NP-hardness is
similar. We provide a reduction from the tautology problem. The tautology
problem is defined as follows. There is a finite set [x1 , x2 , ... xn] of propositional
variables. A literal is either a variable or its negation. A formula A is in 3-Dis-
junctive Normal Form if it is of the form � i ci , where each ci is a conjunction of
three literals ci=�3

j=1 li, j . The problem whether \x1 } } } xn A is true is known as
3-DNF tautology problem, and it is co-NP complete.

We are going to construct an expression that simulates this formula. It will have
the form: X1 & } } } & Xn & C1 & C2 } } } & Ck & D.

The labeled transition system Xi will ``simulate'' variable xi ; Ci will simulate con-
junct ci and D will simulate a disjunction of conjuncts.

We will use structured alphabet��labels are of the form (ch, v) .
Rather than giving formal definitions we provide a generic example of the con-

struction.
Assume that x1 occurs positively in c1 and c3 and negatively in c4 . Then X1 is

the LTS in Fig. 2. Assume that c3 is x1 7 x2 7 cx4 ; C3 will be as in Fig. 3.
Disjunction is simulated by D in Fig. 4.
Let us sketch some ideas underlying constructions of X1 , C3 , and D.
Xj is a tree with two branches. The upper (lower) branch corresponds to the

choice of value True (False) for xj . For every clause ci in which xj occurs, Xj sends
the value contributed by xj to this clause along port mj, i ; if xj occurs positively
(negatively) in Ci then Xj contains action (mj, i , T) ((mj, i , F) ) on its upper
branch and action (mj, i , F) ((mj, i , T) ) on its lower branch.

Ci reads the values contributed by the variables to ci . If all variables occuring in
ci contribute value True then Ci outputs (di , T) , otherwise it outputs (di , F) .
Recall that in general, ci contains three occurrences of distinct variables xl , xm , xr

(l<m<r). The transition diagram for Ci is obtained from the transition diagram
for C3 in Fig. 2 by replacing index 3 by i and replacing indexes 1, 2, and 4 by l, m,
and r.

D reads the values contributed by all ci . If at least one clause contributes True,
then D outputs (Result, T) , otherwise it outputs (Result, F).

FIG. 2. X1 is over alphabet [m1, 1 , m1, 3 , m1, 4]_[T, F ].
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FIG. 3. C3 is over alphabet [m1, 3 , m2, 3 , m4, 3 , d3]_[T, F ].

Let M be the alphabet of X1 & } } } & Xn & C1 & C2 } } } & Ck & D and B is defined as
M&[(Result, T) , (Result, F)]. Consider the labeled transition system Sys=hide
B in X1 & } } } & Xn & C1 & C2 } } } & Ck & D. Its description is polynomial in the size of
simulated formula \x1 } } } xn . (c1 6 c2 6 } } } 6 ck). It is easy to observe that:

1. Sys is an acyclic labeled transition system.

2. All its maximal paths have the same length l that is equal to the number of
occurrences of variables +k+1=4k+1.

3. The last action in any maximal path of Sys is either (Result, T) or
(Result, F).

4. All last actions in the maximal paths are (Result, T) iff the formula is a
tautology; in this case the Sys is bisimulation equivalent to the system {l(Result, T)
(see Fig. 5). Hence, if the formula is a tautology, then Syst{l(Result, T) for any
equivalence t which is coarser than bisimulation equivalence.

FIG. 4. D is over alphabet [d1 , d2 , ... dk , Result]_[T, F ].
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FIG. 5. {l(Result, T) and TRUE are over alphabet [Result]_[T, F]

5. Sys has a maximal path with the last action labeled by (Result, F) iff the
formula is not a tautology; in this case Sys is not trace equivalent to {l(Result, T) .
Hence, if the formula is not a tautology, then Syst% {l(Result, T) for any equiv-
alence t that refines trace equivalence.

6. From 4 and 5, it follows that for any equivalence t between trace and bisimu-
lation equivalences Syst{l(Result, T) iff the original formula is tautology. K

Remarks. Hiding is not essential for co-NP hardness; one can compare systems
X1 & } } } & Xn & C1 & C2 } } } & Ck & D with X1 & } } } & Xn & C1 & C2 } } } & Ck & D &
TRUE, were TRUE is the LTS over the alphabet [(Result, T) , (Result, F)] given
in Fig. 5. They are equivalent iff the simulated formula is a tautology.

4. PSPACE LOWER BOUND

Let p1 } } } pn , q1 } } } qr be finite labeled transition systems and t be an equivalence
which lies between strong bisimulation and trace equivalences.

Theorem 3. The problem whether hide a1 , ... an in ( p1 & p2 } } } & pk) is t-equiv-
alent to hide b1 , ... bm in (q1 & q2 } } } & qr) is PSPACE-hard.

Proof. We will do a generic reduction from a polynomial space bounded Turing
machine. For each deterministic Turing machine M that is space bounded by a
polynomial pol(n) we give a polynomial algorithm that takes as an input a string
x and produces two expressions in in the form hide a1 , ... an in ( p1 & p2 } } } & pk)
which are equivalent iff M accepts x.

These expressions are obtained from an expression SIM which simulates the
behavior of M on x. Hence, the central idea is to construct a short description of
a system SIM which simulates the behavior of M on x.

Now we are going to describe SIM. Without loss of generality we can assume
that M is a deterministic Turing machine with only one accepting state and one
rejecting state; if a word is accepted (rejected), then M stops in the accepting (rejec-
ting) state; M has a move on any tape symbol from any state, except the accepting
and rejecting states (there is no move from these two states).

In our proof, for x of length n the SIM will have a form:

CONTROLn & CELL1 & CELL2 & } } } & CELLpol(n) .

CELLi represents the contents of ith tape cell in the computation of M on x. Cells
are communicating with control; there is no direct communication between cells.

Let Q, T be the sets of states and tape symbols of M. CELLi is defined as follows:

States. T _ (Q_T ) _ [wait].
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Initial state. The initial state for CELLi depends on i and it is

v (q0 , a1), where q0 is the initial state of M and a1 is the first symbol of string
x for CELL1 .

v The ith letter of x for 1<i�|x|.

v Blank symbols for i>|x|.

Alphabet. ([i]_Q_T ) _ ([i� ]_(Q _ T )).

Transition relation. It is defined as follows:

v From state (q, a) it can move to state wait via the communication (i, q, a) .

v From state a it can move to state (q, a) via the communication (i� , q) .

v From state wait it can move to state a via the communication (i� , a) .

Intuitively, if the head of M is over cell i then CELLi transmits to CONTROLn

the message (i, q, a) which describes where, over what symbol and in what state
is M. When CELLi receives a message (i� , q) (or (i� , a) ), the message indicates that
M is in state q and puts the head over ith cell (or M writes a in this cell).

Let r be the number of M commands. CONTROLn is defined as follows:

States. START, Accept, Reject, FINAL, [0, 1]_[1, ..., pol(n)]_[1, ..., r].

Initial state. START.

Alphabet. [1, ... pol(n)]_Q_T _ ([1, ...pol(n)]_(Q _ T )) _ [accept, reject];
i.e., the alphabet is the union of the alphabets of the CELLi (i=1, ... pol(n)) and
two new actions accept and reject.

Transitions. CONTROLn has 3_p(n) transition for every command of M and
a number of transitions between START, Accept, Reject, and FINAL. Below the
transition relation is described:

v If qa � q$b left is k th command of M then for every i there are transitions:

1. From START to (0, i, k) via the communication (i, q, a).

2. From (0, i, k) to (1, i, k) via the communication (i� , b) .

3. From (1, i, k) to START via the communication (i&1, q$).

v The case when the head is moving to the right is defined similarly. Just
replace i&1 by i+1.

v If q is the accepting (the rejecting) state of M then for every tape symbol
a, and every i there is a transition from START to Accept (to Reject)
labeled by (i, q, a).

v From Accept to FINAL there is a transition labeled by accept.

v From Reject to FINAL there is a transition labeled by reject.

Remark. From the first clause in the definition of the transition relation of
CONTROLn one can see that the kth command of M is simulated by three transi-
tions. CONTROLn moves from state START to the state (0, i, k) in which it
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remembers that the head is over the ith cell and it simulates the kth command.
Then it moves to the state (1, i, k) and changes the contents of the ith cell to b.
Finally, it returns to the state START and puts the head with the M's state q$ over
cell i&1.

Let us explain in what sense the system SIM defined as CONTROLn &
CELL1 & CELL2 & } } } & CELLpol(n) simulates the behavior of the Turing machine
M on input x.

An instantaneous description (id ) of M for an input of length n is a sequence
(q, , i, a1 , ... apol(n)). Here, q is a state of M, a1 , ... apol(n) are tape symbols that
represent the current contents of the first pol(n) tape cells and i is the location of
the head. Recall that the space complexity of M is bounded by pol, therefore,
1<i<pol(n).

To the above instantaneous description corresponds the state:

(START, a1 , ...ai&1, (q, ai), ai+1 , ..., apol(n)) of SIM.

Recall that M is deterministic and for every non-final state q and for every tape
symbol a there is a unique command of M of the form qa � q$bD, where q$ is a
state of M, b is a tape symbol and D # [left, right] is the direction of a move.

Let id=(q, i, a1 , ...apol(n)) be an instantaneous description. Assume that q is not
a final state and that qai � q$bleft is kth command of M. Then in one step M can
move from id to the instantaneous description id $=(q$, i&1, a1 , ..., ai&1 , b,
ai+1 , ..., apol(n)). This step of M will be simulated by the following three transitions
of SIM:

1. From state (START, a1 , ... ai&1, (q, ai), ai+1 , ..., apol(n)) to state ( (0, i, k),
a1 , ... ai&1 , wait, , ai+1 , ..., apol(n)) via the communication (i, q, ai).

2. From state ( (0, i, k), a1 , ...ai&1, wait, ai+1, ..., apol(n)) to state ( (1, i, k),
a1 , ... ai&1 , b, ai+1, ..., apol(n)) via the communication (i� , b).

3. From state ( (1, i, k), a1 , ... ai&1 , b, ai+1 , ..., apol(n)) to state (START,
a1 , ... ai&2 , (q$, ai&1), b, ai+1 , ..., apol(n)) via the communication (i&1, q$).

The case when the head moves to the right is simulated in a similar way.
Recall that M has no move from the final states that are the accepting and the

rejecting states of M.
SIM has the following transitions for the final states of M:

1. From state (START, a1 , ... ai&1, (q, ai), ai+1 , ..., apol(n)) it moves to state
(Accept, a1 , ... ai&1, wait, ai+1 , ..., apol(n)) via the communication (i, , q, a) if q is
the accepting state of M.

2. From state (START, a1 , ... ai&1, (q, ai), ai+1 , ..., apol(n)) it moves to state
(Reject, a1 , ... ai&1 , wait, ai+1 , ..., apol(n)) via the communication (i, , q, a) if q is
the rejecting state of M.

3. From state (Accept, ...) it moves to state (FINAL, ...) via the com-
munication accept.

4. From state (Reject, ...) it moves to state (FINAL, ...) via the communica-
tion reject.
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It is easy to see that we have provided above all the transitions of SIM that are
reachable from its initial state. Recall that M is deterministic and it always reaches
the rejecting or the accepting state. Hence, from the above description of simulation
of M by SIM it follows that the reachable part of SIM is a path. Moreover, if M
makes s moves on the input x the length of this path is 3_s+2 and the last action
of the path is accept (reject) iff M accepts (rejects) x.

This is summarized by

Observation 1. 1. SIM is a path; its last action is labeled either by accept or
by reject and no other action is labeled by accept or reject.

2. The last action of SIM is labeled by accept iff M accepts x.

3. The last action of SIM is labeled by reject iff M rejects x.

Now, let ACCEPT be the automaton over the alphabet [accept, reject] with two
states and only one transition from the initial state to the second state; this trans-
ition is labeled by accept.

From Observation 1 follows

Observation 2. For any equivalence t between trace and bisimulation equiv-
alences

(CONTROLn & CELL1 & CELL2 & } } } & CELLpol(n) & ACCEPT )

t(CONTROLn & CELL1 & CELL2 & } } } & CELLpol(n))

if and only if M accepts x.

The reader can easily check that the size of CELLi is independent of n, that the
size of CONTROLn is O( pol(n)), and that our reduction is polynomial. K

Remarks (Some strengthenings of Theorem 3). 1. Let T=<Q, q0 , A, �) be a
labeled transition system. Let Q$ be the subset of Q reachable from the initial state
q0 and let �$ be the restriction of � on Q$. Let Reach(T ) be the labeled transition
system (Q$, q0 , A, �$). We say that an equivalence t is reasonable if (A) t

refines trace equivalence and (B) TtReach(T) for any T. Our proof shows that
Theorem 3 holds for any reasonable equivalence.

2. A slight modification of the reduction used in our proof shows that the
problem whether hide a1 , ... ak in ( p1 & p2 } } } pn)tq is PSPACE hard for any equiv-
alence between trace and bisimulation equivalences.

Indeed, let LOOP be the labeled transition system over the alphabet [accept,
reject] with only one state s and with the only one transition s w�{ s. Let CON-
TROL$n be obtained from CONTROLn by deleting the transition between the states
Accept and FINAL and adding {-transition Accept w�{ Accept. Let lab be the
alphabet of CONTROLn , except for the actions accept and reject.

The PSPACE lower bound follows from the observation that

hide lab in (CONTROL$n & CELL1 & CELL2 & } } } & CELLpol(n))tLOOP

if and only if M accepts x.
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3. Our proof of Theorem 3 also shows that the problem whether p1 & p2 } } } & pk

is t-equivalent to q1 & q2 } } } & qr is PSPACE-hard for any equivalence t between
trace and bisimulation equivalences. Indeed, just note that hiding is not used in
Observation 2.

4. We say that an equivalence t has {-abstraction property if c{ptcp for
every action c and every labeled transition system p. In particular, {pt{lp for every
l>0.

All equivalences studied in the literature that ignore some of the internal
behavior have the above {-abstraction property. Among such equivalences is obser-
vational congruence [Mi] and all equivalences that take into account either fair-
ness or divergence.

A slight modification of the reduction used in our proof shows

Corollary 4. For any p and any equivalence t that has {-abstraction property
and lies between trace and bisimulation equivalences, the problem whether hide
a1 , ... an in ( p1 & p2 } } } & pk) is t-equivalent to {p is PSPACE hard.

Proof. Indeed, let p$ be such that p$ and p are not t-equivalent. Let CON-
TROL$n be obtained from CONTROLn by (1) deleting the transition accept between
the states Accept and FINAL and adding a { transition from the state Accept to p;
(2) deleting the transition reject between the states Reject and FINAL and adding
a { transition from the state Reject to p$.

The PSPACE lower bound follows from {-abstraction property and from the
observation that hide lab in (CONTROL$n & CELL1 & CELL2 & } } } & CELLpol(n)) is
bisimulation equivalent to {lp (respectively, {lp$) for some l>0 iff M accepts
(respectively, rejects) x. K

A weaker version of Corollary 4 was noted in [SHRS].
By a generalization of the proof of Corollary 4 one can also show

Corollary 5. For any p and any equivalence t between trace and bisimula-
tion equivalences that has {-abstraction property and is a congruence with respect to
the plus operation of CCS the problem whether hide a1 , ... an in ( p1 & p2 } } } & pk) is
t-equivalent to p is PSPACE hard.

Remark (PSPACE lower bound for CCS parallel composition and restric-
tion). In Milner's Calculus of Communicating Systems [Mi], every communica-
tion action c has the complement action c� . An action c may synchronize only with
its complement action and in this case the invisible action { is produced.

A CCS expression ( p1 | p2 } } } pk)"[a1 , ... al] describes a network of communicat-
ing agents p1 , ..., pk in which the communication actions a1 , ... al and their com-
plements are hidden. Here, | is CCS parallel composition operator and "[a1 , ... al]
is CCS restriction operator.

Below we describe what modification should be made in the proof of Theorem 3
in order to show that

124 ALEXANDER RABINOVICH



File: DISTIL 266115 . By:DS . Date:08:12:97 . Time:09:35 LOP8M. V8.B. Page 01:01
Codes: 3441 Signs: 2495 . Length: 52 pic 10 pts, 222 mm

The problem whether ( p1 | p2 } } } | pk)"[a1 , ... al] is t-equivalent to
(q1 | q2 } } } | qr)"[b1 , ... bm] is PSPACE-hard for any equivalence t

between trace and bisimulation equivalences.

Let CELLi and CONTROLn be defined as in the proof of Theorem 3. Let lab be
the alphabet of CONTROLn , except for the actions accept and reject. Let CON-
TROL$n be obtained from CONTROLn by renaming every communication in lab by
its complement communication (we do not rename the actions accept and reject).
Let SIM$ be (CONTROL$n | CELL1 | ... | CELLpol(n))

Note that the reachable part of SIM$"lab is a path in which the last action is
labeled by accept or reject and all other actions are labeled by {.

Moreover, the last action is labeled by accept if and only if M accepts x. There-
fore, for any equivalence t between trace and bisimulation equivalences
(SIM$"lab)tSIM$"(lab _ [reject]) if and only if M accepts x.

This completes the proof.

5. EXPSPACE COMPLETENESS OF TRACE EQUIVALENCE

Theorem 6. The problem whether hide a1 , ... ak in ( p1 & p2 } } } pn) is trace equiv-
alent to hide b1 , ... bm in (q1 & q2 } } } qr) is EXPSPACE-complete.

Proof. Meyer and Stockmeyer [MeS] have shown the EXPSPACE complete-
ness of deciding whether the language of a regular expression with squaring over
alphabet 7 is equal to 7*.

We will provide a polynomial time reduction from the above problem to the
problem of trace equivalence of net expressions. Our proof gives DSPACE(cn�log n)
lower bound. The upper bound of DSPACE(O(d n)) is obtained in a manner similar
to the proof of Theorem 13.14 in [HU].

Regular expressions with squaring may use the usual operations union, con-
catenation and Kleene's star as well as squaring operation R2=RR.

Notations. We use the notation Lan(R) for the language defined by an expres-
sion R. For a language L we denote by Prefix(L) the language which contains all
the prefixes of the strings in L.

Theorem 7 [MeS]. Let 7 be an alphabet of size >1. There is a constant c>1
such that no deterministic Turing machine with space bound cn can check whether the
language of a regular expression with squaring over alphabet 7 is equal to 7*.

Let 7 be an alphabet and s, e be two actions not in 7. For any regular expres-
sion with squaring R over 7, we will construct a net expression Rs, e such that the
following properties are satisfied:

Properties of the construction. 1. size(Rs, e)=O(size(R)).

2. �Rs, e� traces=Prefix((7* sLan(R) e)*).

Hence Lan(R)=7* iff �Rs, e�=traces �C7*�, where C7* is the transition diagram
in Fig. 6.
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FIG. 6. C�* .

FIG. 7. Atomic(a, s, e).

FIG. 8. SUM(s, e, s1 , e1 , s2 , e2).

FIG. 9. ITER(s, e, s1 , e1).
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FIG. 10. SQUARE(s, e, s1 , e1)

Theorem 6 will follow from Meyer�Stockmeyer's EXPSPACE-completeness
theorem, Fact 1 (see Section 2.4) and the above properties. In the remainder of the
section we provide a construction which satisfies properties 1 and 2. The construc-
tion is defined inductively by the the structure of regular expressions with squaring

1. as, e ] Atomic(a, s, e), where Atomic(a, s, e) denotes the labeled transition
system pictured in Fig. 7.

2. (R1 _ R2)s, e ] hide s1 , e1 , s2 , e2 in (SUM & (R1)s1, e1
& (R2)s2, e2

), where
s1 , e1 , s2 , e2 are fresh actions and SUM denotes the labeled transition system in
Fig. 8.

3. (R1; R2)s, e ] =hide i in ((R1)s, i & (R2) i, e), where s1 , i and e1 are fresh
action.

4. (R*)s, e ] hide s1 , e1 in (ITER & Rs1, e1
), where s1 and e1 are fresh action

names and ITER is the transition diagram in Fig. 9.

5. (R2)s, e ] =hide s1 , e1 in (SQUARE &Rs1, e1
), where s1 and e1 are fresh

action names and SQUARE is the transition diagram in Fig. 10.

The reader can easily check that our construction satisfies the properties stated
above. And this completes the proof of Theorem 6. K

Our proof of Theorem 6 also shows

Corollary 8. The problem whether hide a1 , ... ak in ( p1 & p2 } } } pn) is trace
equivalent to q is EXPSPACE-complete.

Let l1 and l2 be the lengths of the binary descriptions of R and of the normal
form of Rs, e respectively. Since the size of Rs, e is O(size(R)) and Rs, e has at most
O(size(R)) fresh actions it follows that l2=O(l1 log l1). Hence, by Theorem 7, it
follows:

Corollary 9. There is a constant c>1 such that no deterministic Turing
machine with space bound cn�log n can check whether hide a1 , ... ak in ( p1 & p2 } } } pn)
is trace equivalent to q.

6. CONCLUSION AND FURTHER RESULTS

We demonstrated that the problem of equivalence of synchronously communicat-
ing systems of finite agents is PSPACE-hard for any equivalence between bisimula-
tion and trace equivalences. As it was mentioned in the Introduction, in order to
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check bisimulation equivalence between p=hide a1 , ... al in ( p1 & p2 } } } & pn) and
q=hide b1 , ... bm in (q1 & q2 } } } & qk), one can first construct p and q and then apply
the algorithm given by Paige and Tarjan [PT]. This procedure requires exponen-
tial time. Our conjecture is:

Conjecture. EXPTIME-lower bound can be proved for all equivalences between
bisimulation and trace equivalences.

Larry Stockmeyer [Sto] proved EXPTIME lower bound for checking bisimula-
tion and weak bisimulation equivalences.

We proved EXPSPACE-completeness for the problem of checking trace equiv-
alence between synchronous systems of finite agents. Let us mention other
equivalences for which we can prove the EXPSPACE lower bound. Bisimulation
equivalence was originally defined as the limit of the sequence t0 , t1 , ...tk } } } of
successively finer equivalences (see [Mi] p. 224). We can show that for every fixed
k checking tk equivalence between systems of synchronously communicating
agents is EXPSPACE-hard. Language equivalence is defined on automata like in
classical automata theory.2 Synchronization and hiding can be defined in a natural
way on the automata. The proof of EXPSPACE-completeness for language equiv-
alence is very similar to the proof for trace equivalence.

The results of the paper hold not only for parallel composition and hiding a� la
Hoare that were considered here, but also for CCS parallel composition and restric-
tion [Mi] and for other languages in which net operations can be described suc-
cinctly. Indeed, in our proofs of lower bounds we used expressions of the form hide
a1 } } } an in ( p1 , ... pk) with the property that every communication action c occurs
in at most two among p1 , ..., pk . Any expression E that appears in the proofs of our
theorems can be translated in a polynomial time to a bisimulation equivalent
expression E$ of the form (q1 | ...qk)"[b1 , ... bl], where | and " are CCS parallel
composition and restriction operators. Moreover, the size of E$ is linear in the size
of E. (We provided such a translation for the expressions that appear in the proof
of Theorem 3; see the last remark in Section 4. Appropriate translations for
Theorems 2 and 4 are even simpler.) Hence, all our theorems hold for CCS parallel
composition and restriction.

In this paper we considered only interleaving semantics and ignored partial order
or ``true'' concurrency semantics. In [Ja] the complexity of equivalence of 1-safe
labeled Petri nets under a variety of true concurrency equivalences was investigated.
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