

1. Linear order.

- 1. Linear order.
- 2. Presburger arithmetic: (Natural with +)

- 1. Linear order.
- 2. Presburger arithmetic: (Natural with +)
- 3. Real Arithmetic (Reals +, \times , <)

- 1. Linear order.
- 2. Presburger arithmetic: (Natural with +)
- 3. Real Arithmetic (Reals +, ×, <)
- 4. Elementary Geometry

- 1. Linear order.
- 2. Presburger arithmetic: (Natural with +)
- 3. Real Arithmetic (Reals +, ×, <)
- 4. Elementary Geometry
- 5. Linear orders with monadic predicates.

- 1. Linear order. $O(2^n)$
- 2. Presburger arithmetic: (Natural with +)
- 3. Real Arithmetic (Reals +, ×, <)
- 4. Elementary Geometry
- 5. Linear orders with monadic predicates.

- 1. Linear order. $O(2^n)$
- 2. Presburger arithmetic: (Natural with +) $O(2^{2^n})$
- 3. Real Arithmetic (Reals +, ×, <)
- 4. Elementary Geometry
- 5. Linear orders with monadic predicates.

- 1. Linear order. $O(2^n)$
- 2. Presburger arithmetic: (Natural with +) $O(2^{2^n})$
- 3. Real Arithmetic (Reals +, \times , <) $O(2^{2^n})$
- 4. Elementary Geometry
- 5. Linear orders with monadic predicates.

- 1. Linear order. $O(2^n)$
- 2. Presburger arithmetic: (Natural with +) $O(2^{2^n})$
- 3. Real Arithmetic (Reals +, \times , <) $O(2^{2^n})$
- 4. Elementary Geometry
- 5. Linear orders with monadic predicates. tower of 2: 2^{2^2} ... heights n

Validity problem over finite

structures

Input: a formula φ **Question:** Is φ true over all finite structures?

Validity problem over finite

structures

Input: a formula φ **Question:** Is φ true over all finite structures?

Theorem(Trakhtenbrot) There is no procedure for checking validity over finite structures.

Validity problem over finite

structures

Input: a formula φ **Question:** Is φ true over all finite structures?

Theorem(Trakhtenbrot) There is no procedure for checking validity over finite structures.

The theory of finite structures is very different from the theory of arbitrary structures

Hilbert Calculus

Axioms^a

- $\mathbf{Ax1} \ A \to (B \to A)$
- **Ax2** $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- **Ax3** $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$
- Ax4 $(\forall x A(x)) \rightarrow A\{t/x\}$, where t is a term.
- **Ax5** $(\forall x(A \rightarrow B)) \rightarrow (A \rightarrow \forall xB)$, where x is not free in A.

Inference Rules

MP Derive *B* from *A* and $A \rightarrow B$.

Gen Derive $\forall xA$ from A.

^aWe do not distinguish between formulas with the same skeleton

Theorem (Completeness) $\Gamma \models_{valid} A$ iff $\Gamma \vdash_{HC} A$.

Theorem (Completeness) $\Gamma \models_{valid} A$ iff $\Gamma \vdash_{HC} A$.

Theorem (Completeness - Satisfiability version) Γ is consistent iff Γ holds in a structure.

Theorem (Completeness - Satisfiability version) If Γ is consistent, then Γ is satisfiable (holds in a structure for FO).

Theorem (Completeness - Satisfiability version) If Γ is consistent, then Γ is satisfiable (holds in a structure for FO).

Propositional Calculus

Theorem (Completeness - Satisfiability version) If Γ is consistent, then Γ is satisfiable (holds in a structure for FO).

Propositional Calculus Theorem Every consistent set of formulas is a subset of a maximal consistent set of formulas. Theorem Every maximal consistent set of formulas is satisfiable.

Theorem (Completeness - Satisfiability version) If Γ is consistent, then Γ is satisfiable (holds in a structure for FO).

Propositional Calculus Theorem Every consistent set of formulas is a subset of a maximal consistent set of formulas. Theorem Every maximal consistent set of formulas is satisfiable.

Predicate Calculus

Theorem (Completeness - Satisfiability version) If Γ is consistent, then Γ is satisfiable (holds in a structure for FO).

Propositional Calculus

Theorem Every consistent set of formulas is a subset of a maximal consistent set of formulas. Theorem Every maximal consistent set of formulas is satisfiable.

Predicate Calculus

Theorem Every consistent set of formulas is a subset of a Complete Henkin consistent set of formulas. Theorem Every Complete Henkin consistent set of formulas holds (in a Herbrand Structure).

Definition Γ is Σ complete if for every sentence φ in the signature Σ , either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$).

Definition Γ is Σ complete if for every sentence φ in the signature Σ , either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$). **Theorem** If Γ is consistent then there is $\Gamma' \supseteq \Gamma$ such that Γ' is consistent and Σ complete.

Definition Γ is Σ complete if for every sentence φ in the signature Σ , either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$). **Theorem** If Γ is consistent then there is $\Gamma' \supseteq \Gamma$ such that Γ' is consistent and Σ complete.

Proof Define a sequence of set of formulas Γ_n as follows:

Definition Γ is Σ complete if for every sentence φ in the signature Σ , either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$). **Theorem** If Γ is consistent then there is $\Gamma' \supseteq \Gamma$ such that Γ' is consistent and Σ complete. **Proof** Define a sequence of set of formulas Γ_n as follows:

Take an enumeration A_1, \ldots, A_n, \ldots of all Σ sentences.

Definition Γ is Σ complete if for every sentence φ in the signature Σ , either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$). **Theorem** If Γ is consistent then there is $\Gamma' \supseteq \Gamma$ such that Γ' is consistent and Σ complete.

Proof Define a sequence of set of formulas Γ_n as follows: Take an enumeration A_1, \ldots, A_n, \ldots of all Σ sentences.

$$\Gamma_0 = \Gamma$$

 $\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{A_{n+1}\} & \text{if } \Gamma_n \cup \{A_{n+1}\} \text{ is consistent;} \\ \Gamma_n \cup \{\neg A_{n+1}\} & \text{otherwise.} \end{cases}$

Definition Γ is Σ complete if for every sentence φ in the signature Σ , either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$). **Theorem** If Γ is consistent then there is $\Gamma' \supseteq \Gamma$ such that Γ' is consistent and Σ complete.

Proof Define a sequence of set of formulas Γ_n as follows: Take an enumeration A_1, \ldots, A_n, \ldots of all Σ sentences.

$$\Gamma_0 = \Gamma$$

 $\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{A_{n+1}\} & \text{if } \Gamma_n \cup \{A_{n+1}\} \text{ is consistent;} \\ \Gamma_n \cup \{\neg A_{n+1}\} & \text{otherwise.} \end{cases}$

Show that Γ_n is consistent by induction on n.

Definition Γ is Σ complete if for every sentence φ in the signature Σ , either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$). **Theorem** If Γ is consistent then there is $\Gamma' \supseteq \Gamma$ such that Γ' is consistent and Σ complete.

Proof Define a sequence of set of formulas Γ_n as follows: Take an enumeration A_1, \ldots, A_n, \ldots of all Σ sentences.

$$\Gamma_0 = \Gamma$$

 $\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{A_{n+1}\} & \text{if } \Gamma_n \cup \{A_{n+1}\} \text{ is consistent;} \\ \Gamma_n \cup \{\neg A_{n+1}\} & \text{otherwise.} \end{cases}$

Show that Γ_n is consistent by induction on n.

Show that $\cup_n \Gamma_n$ is a consistent and Σ -complete.

Definition Γ has Henkin property for Σ if for every sentence $\psi \in \Gamma$ of the form $\neg \forall x \varphi$ in the signature Σ there is a constant c such that $\neg \varphi \{c/x\} \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$).

Definition Γ has Henkin property for Σ if for every sentence $\psi \in \Gamma$ of the form $\neg \forall x \varphi$ in the signature Σ there is a constant c such that $\neg \varphi \{c/x\} \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$).

Theorem If Γ is consistent then there is a consistent Γ' such that $\Gamma \subseteq \Gamma'$ and Γ' has Henkin property for Σ .

Definition Γ has Henkin property for Σ if for every sentence $\psi \in \Gamma$ of the form $\neg \forall x \varphi$ in the signature Σ there is a constant c such that $\neg \varphi \{c/x\} \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$).

Theorem If Γ is consistent then there is a consistent Γ' such that $\Gamma \subseteq \Gamma'$ and Γ' has Henkin property for Σ .

Proof Show

Definition Γ has Henkin property for Σ if for every sentence $\psi \in \Gamma$ of the form $\neg \forall x \varphi$ in the signature Σ there is a constant c such that $\neg \varphi \{c/x\} \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$).

Theorem If Γ is consistent then there is a consistent Γ' such that $\Gamma \subseteq \Gamma'$ and Γ' has Henkin property for Σ .

Proof Show

Lemma If Γ is consistent and $\neg \forall x \varphi \in \Gamma$ and c is a new constant then $\Gamma \cup \neg \varphi\{c/x\}$ is consistent.

Definition Γ has Henkin property for Σ if for every sentence $\psi \in \Gamma$ of the form $\neg \forall x \varphi$ in the signature Σ there is a constant c such that $\neg \varphi \{c/x\} \in \Gamma$ (sign. of $\Gamma \supseteq \Sigma$).

Theorem If Γ is consistent then there is a consistent Γ' such that $\Gamma \subseteq \Gamma'$ and Γ' has Henkin property for Σ .

Proof Show

Lemma If Γ is consistent and $\neg \forall x \varphi \in \Gamma$ and c is a new constant then $\Gamma \cup \neg \varphi\{c/x\}$ is consistent.

Apply Lemma to all Σ -sentences of the form $\neg \forall x \varphi$ in Γ

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

1. $\Gamma \subseteq \Gamma'$

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

- 1. $\Gamma \subseteq \Gamma'$
- 2. Γ' is consistent

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

- 1. $\Gamma \subseteq \Gamma'$
- 2. Γ' is consistent
- 3. Γ' is Σ' complete and has Henkin property for Σ' .

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

- **1.** Γ ⊆ Γ′
- 2. Γ' is consistent
- 3. Γ' is Σ' complete and has Henkin property for Σ' .

Proof Apply iteratively two previous Theorems.

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

- **1.** Γ ⊆ Γ′
- 2. Γ' is consistent
- 3. Γ' is Σ' complete and has Henkin property for Σ' .

Proof Apply iteratively two previous Theorems.

 $\Gamma_0 = \Gamma$ Σ_n is the signature of Γ_n

 Δ_n is a Σ_n -complete set that contains Γ_n

 $\Gamma_{n+1} =$ has Henkin property for Σ_n and contains Δ_n

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

- **1.** Γ ⊆ Γ′
- 2. Γ' is consistent
- 3. Γ' is Σ' complete and has Henkin property for Σ' .

Proof Apply iteratively two previous Theorems.

 $\Gamma_0 = \Gamma$ Σ_n is the signature of Γ_n

 Δ_n is a Σ_n -complete set that contains Γ_n

 $\Gamma_{n+1} =$ has Henkin property for Σ_n and contains Δ_n $\Gamma' = \cup \Gamma_n = \cup \Delta_n$ and $\Sigma' = \cup \Sigma_n$

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

- **1.** Γ ⊆ Γ′
- 2. Γ' is consistent
- 3. Γ' is Σ' complete and has Henkin property for Σ' .

Proof Apply iteratively two previous Theorems.

 $\Gamma_0 = \Gamma$ Σ_n is the signature of Γ_n

 Δ_n is a Σ_n -complete set that contains Γ_n

 $\Gamma_{n+1} =$ has Henkin property for Σ_n and contains Δ_n $\Gamma' = \cup \Gamma_n = \cup \Delta_n$ and $\Sigma' = \cup \Sigma_n$

Theorem If Γ is consistent then there is Σ' and a set Γ' of formulas in the signature Σ' such that

- **1.** Γ ⊆ Γ′
- 2. Γ' is consistent
- 3. Γ' is Σ' complete and has Henkin property for Σ' .

Proof Apply iteratively two previous Theorems.

 $\Gamma_0 = \Gamma$ Σ_n is the signature of Γ_n

 Δ_n is a Σ_n -complete set that contains Γ_n

 $\Gamma_{n+1} =$ has Henkin property for Σ_n and contains Δ_n $\Gamma' = \cup \Gamma_n = \cup \Delta_n$ and $\Sigma' = \cup \Sigma_n$

Complete Henkin Sets of sentences

are satisfiable

Theorem If Γ is a consistent set of sentences in Σ and Γ is Σ -complete and has Henkin property for Σ then Γ holds (is satisfiable) in a Herbrand structure for Σ .

Complete Henkin Sets of sentences

are satisfiable

Theorem If Γ is a consistent set of sentences in Σ and Γ is Σ -complete and has Henkin property for Σ then Γ holds (is satisfiable) in a Herbrand structure for Σ .

Proof Let *M* be a Herbrand structure for Σ with

$$R^M(t_1,\ldots,t_k)$$
 iff $R(t_1,\ldots,t_k) \in \Gamma$

Complete Henkin Sets of sentences

are satisfiable

Theorem If Γ is a consistent set of sentences in Σ and Γ is Σ -complete and has Henkin property for Σ then Γ holds (is satisfiable) in a Herbrand structure for Σ .

Proof Let M be a Herbrand structure for Σ with

$$R^M(t_1,\ldots,t_k)$$
 iff $R(t_1,\ldots,t_k) \in \Gamma$

By structural induction on sentences show that

$$\varphi\in\Gamma\;\mathrm{iff}\;[|\varphi|]^M=true$$