
Information and Computation 184 (2003) 147–159

www.elsevier.com/locate/ic

Counting on CTL∗: on the expressive power of monadic path logic

Faron Mollera,∗ and Alexander Rabinovichb

aDepartment of Computer Science, University of Wales Swansea, Singleton Park, Sketty, Swansea SA2 8PP, UK
bSchool of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Received 29 June 2001; revised 20 September 2002

Abstract

Monadic second-order logic (MSOL) provides a general framework for expressing properties of reactive sys-
tems as modelled by trees. Monadic path logic (MPL) is obtained by restricting second-order quantification to paths
reflecting computation sequences. In this paper we show that the expressive power of MPL over trees coincides
with the usual branching time logic CTL∗ embellished with a simple form of counting. As a corollary, we derive
an earlier result that CTL∗ coincides with the bisimulation-invariant properties of MPL. In order to prove the main
result, we first prove a new Composition Theorem for trees.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Various temporal logics have been proposed for reasoning about so-called “reactive” systems, com-
puter hardware or software systems which exhibit (potentially) non-terminating and nondeterministic
behaviour. Such a system is typically represented by the sequences of computation states through which
it may evolve, where we associate with each state the set of atomic propositions which are true in that
state, along with the possible next state transitions to which it may evolve. Thus its behaviour is denoted
by a rooted tree, with the initial state of the system represented by the root of the tree.

Various equivalences have also been proposed between such systems, depicting when two systems
should be deemed the same. Given such an equivalence, it is desirable that the temporal logic being
employed does not distinguish between two equivalent behaviours: a temporal property which holds of
a particular system should hold for all equivalent systems. This is often but not always the case with
popular temporal logics. For example, monadic second-order logic (MSOL) fails this criterion: it is

∗ Corresponding author. Fax: +44-1792-295-708.
E-mail address:F.G.Moller@swansea.ac.uk (F. Moller).

0890-5401/03/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0890-5401(03)00104-4

148 F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159

simple to express properties even within first-order logic (FOL) which distinguish between behaviours
which are equivalent with respect to any reasonable notion. However, this does not preclude MSOL
from being considered the “mother of all temporal logics” and being employed as the base language
for verification tools such as MONA [1] which have been successfully used in practical verification
exercises. This deficiency also affects monadic path logic (MPL) which is MSOL in which set quantifi-
cation is restricted to paths. The importance of MPL in the study of temporal logics is evidenced by the
observation made by John Burgess that the decidability problems for various branching-time logics are
redicible to the decidability problem for MPL.

It is often easy to establish the relative expressive strengths of various temporal logics, as encodings
from one to another are often straightforward. However, it is necessary to study and understand these rela-
tionships more fully in order to guide the choice as to which are appropriate for given applications. For ex-
ample, it is straightforward to encode propositional modal logic in FOL, but van Benthem [2] goes
further and shows that propositional modal logic coincides with the class of FOL properties which do not
distinguish between bisimulation equivalent behaviours. One interpretation of this result is that, if you are
interested in bisimulation-preserving properties, then propositional modal logic may be preferred over
FOL. A related result due to Janin and Walukiewicz [18] shows that the propositionalµ-calculus coincides
with the bisimulation invariant properties expressible in MSOL. Also, in [22] we show that the branching
time logic CTL∗ [3,5] coincides with the bisimulation invariant properties expressible in MPL.

In this paper, we re-examine this last result from a different perspective and consider what facility
must be added to CTL∗ to attain the expressive strength of MPL. The answer turns out to be elegant:
a simple notion of counting added to CTL∗ gives it precisely the same expressive power as MPL. This
result seems natural, as bisimilarity ignores multiplicities: one particular future behaviour is indistin-
guishable from several equivalent future behaviours. Already in [25] Walukiewicz noted the role that
such a counting mechanism played in studying the expressive power of temporal logics, specifically
MSOL. However, it is by no means a priori clear that this is the full extent to which MPL differs from
its bisimulation-invariant fragment.

In the remainder of this introduction, we provide the relevant definitions for trees and logics. In the
next section we present standard results about characterising equivalences using Ehrenfeucht–Fraissé
games, and in the following section we present and prove the main technical result of the paper, a Com-
position Theorem for trees. After that, we apply our Composition Theorem to the problem of showing
our expressivity result.

1.1. Computation trees

A tree t with root εt consists of a partially-ordered set ofnodes S in which the ancestors of any
given nodes ∈ S constitute a well-founded total order with minimal elementεt . Such a tree represents
a computation, as defined as a sequence of transitions between states; a node in the tree corresponds to
a state in a computation, and its ancestors{s′ ∈ S : s′ < s} correspond to the states passed through in
the computation leading up to the state (corresponding to node)s, starting from the initial state (corre-
sponding to node)εt . We denote the (immediate) successor relation by→, so thats → s′ if and only
if s < s′ and there is nos′′ with s < s′′ < s′. (If s < s′ then the well-foundedness condition ensures
the existence of an immediate successors → s′′ � s′.) Computationally,s → s′ means that there is a
transition from states to states′, and the set of ancestors of a state can thus be listed withs as such a
(transfinite) sequence of transitionsεt → s1 → s2 → · · · → s.

F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159 149

Furthermore, the nodes of a tree are labelled by elements taken from some finite set�, representing the
atomic properties which are true at the given state of the computation. With this in mind, we define a�-
valued tree to be a functiont : S → �. (In the literature, states are sometimes labelled by subsets of a set
� of atomic properties, with each states assigned the label corresponding to the set of atomic properties
which hold ats; indeed, this is how we described the situation at the beginning of the Introduction.
However, we can restrict the labelling to elements of� simply by taking� to be the collection of all
subsets of�.)

A path through a treet is a maximal (finite or transfinite) sequence of successive nodesπ = 〈s0, s1,
s2, . . .〉 through the tree; that is,s0 → s1 → s2 → · · · (We occasionally use the term “path” to refer to a
non-maximal sequence of successive nodes ending at a specified node, but we shall always be explicit
with such uses.) If the initial node of a path is the rootεt , then the path is referred to as afull path or
branch. Theith nodesi in the pathπ is denoted byπi , and we useπi = 〈πi, πi+1, πi+2, . . .〉 to denote
the subpath ofπ rooted atπi . (In particular,π = π0.) Finally, we usets to denote the subtree oft rooted
at the nodes.

In the literature, various restrictions are often placed on trees. A tree is said to betotal if each node
has a successor; all paths through a total tree are thus infinite. An�-tree is a tree in which each node has
only a finite number of ancestors; all paths through anω-tree are thus either finite or of lengthω. We do
not impose any such restrictions except where we explicitly state them.

1.2. Monadic second-order logic

The monadic second-order logic MSOL(<,�) appropriate for expressing properties of�-valued
trees has individual variablesx, y, z, . . . (representing nodes), set variablesX, Y,Z (representing sets of
nodes), and predicate constantsPa (one for eacha∈�). Formulas are built up from atomic formulas of
the formx = y, x < y, x∈X andx∈Pa using the propositional connectives∧ and¬, and the quantifier
∃. We denote by FOL(<,�) the subset of first-order formulas, those that do not involve set variables.
We writeϕ(x1, . . . , xm,X1, . . . , Xn) to indicate the variables which (may) appearfree in ϕ, that is, not
within the scope of a quantifier. Thequantifier depth of a formulaϕ, denoted by qd(ϕ), is inductive-
ly defined to be the maximum number of nested quantifiers inϕ: qd(ϕ) = 0 for atomic formulasϕ;
qd(ϕ ∧ ϕ′) = max(qd(ϕ), qd(ϕ′)); and qd(∃xϕ) = qd(∃Xϕ) = 1 + qd(ϕ).

As usual, a formula isclosed if it involves no free variables, in which case it is referred to as a
sentence. Note that every formula must involve some first-order variable, so there are no sentences with
quantifier depth 0; and sentences of quantifier depth 1 have only first-order variables occurring within
them. We write

(t, s1, . . . , sm, S1, . . . , Sn) |= ϕ(x1, . . . , xm,X1, . . . , Xn).

if the formulaϕ(x1, . . . , xm,X1, . . . , Xn) is satisfied in the�-valued treet with xi interpreted by the
nodesi (1 � i � m) andXj interpreted by the set of nodesSj (1 � j � n).

We also interpret FOL(<,�) sentences over sequencesw of elements of�, writing w |= ϕ to mean
the expected: variables represent positions in the sequence with = and< representing relative position,
andx∈Pa means that the letter at positionx is a. It is straightforward to verify the correctness of this
interpretation, in the sense that for any treet which just consists of a pathπ = 〈π0, π1, π2, . . .〉 (that
is, every node has at most one successor), and for any FOL(<,�) sentenceϕ, we have thatt |= ϕ iff
t (π) |= ϕ, wheret (π) = t (π0)t (π1)t (π2) · · ·

150 F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159

Monadic path logic MPL is defined to be the monadic second-order logic as described, but where we
restrict the interpretation of set variables to range not over arbitrary sets of nodes but over branches. We
could equally consider quantification over arbitrary paths, but as noted by Hafer and Thomas [15] this
would give no difference in expressive power: denoting quantification over arbitrary paths by∃̂, we have
the following obvious translations:
• ∃Xϕ = ∃̂X∃r∀x[(r < x ∨ r = x) ∧ r∈X ∧ ϕ]; and
• ∃̂Xϕ = ∃X∃rϕ′, whereϕ′ is obtained fromϕ by replacing all atomic formulas of the formx∈X by
(r < x ∨ r = x) ∧ x∈X.

Remark 1 (MPL versus first-order logic). MPL is in a sense no more expressive than first-order logic
(cf. Proposition 1 of [13]). Given a treet , we can consider itscompletiontc obtained by extending each
branch with a limit node, so that each path intc has a maximal element. Given any MPL sentenceϕ,
let ϕc be the first-order formula obtained fromϕ by replacing all subformulas∃xα by ∃x∃�(x < � ∧ α),
and replacing all subformulas∃Xα by ∃�(¬∃x(� < x) ∧ α′) whereα′ is obtained fromα by replacing
each occurrence ofx∈X by x < �. Then clearlyt |= ϕ iff tc |= ϕc.

1.3. Counting-CTL∗: CTL∗ with counting

The syntax of the branching time computation tree logic CTL∗ (with counting)is specified by induc-
tively defining two sets of formulas,state formulas q andpath formulas p, starting from a finite set of
atomic propositions {Pa : a∈�} using the path operatorsEp (“ there exists a path such thatp”), Xp (“next
timep”) andpUp′ (“p until p′”), along with the counting operatorDDnq with n > 0 (“for (at least)n > 0
different successorsq”). Formally, these two sets of formulas are given by the following equations:

q ::= Pa | q ∧ q ′ | ¬q | Ep | DDnq,

p ::= q | p ∧ p′ | ¬p | Xp | pUp′.

Counting-CTL∗ then consists of the set of state formulasq generated by the above rules; the basic
language of CTL∗ consists of the state formulas not involving the counting operatorDDn. Further common
temporal operators are introduced as abbreviations; for example:Ap (“ for all paths,p”) abbreviates
¬E¬p; Fp (“eventuallyp”) abbreviates trueUp; andGp (“alwaysp”) abbreviates¬F¬p.

The set of path formulas not involving theE operator (nor the counting operatorDDn) defines the
propositional linear time logic LTL. It can be more succinctly defined as the set of formulas given by the
following equation:

p ::= Pa | p ∧ p′ | ¬p | Xp | pUp′.

Counting-CTL∗ formulas are interpreted over trees, and LTL formulas are interpreted over paths, by
way of a satisfaction relation|=. Given a treet , a nodes in this tree, and a pathπ through this tree, we
write (t, s) |= q to mean that state formulaq is true at nodes in the treet , and(t, π) |= p to mean that
path formulap is true of the pathπ in t . This relation is defined inductively as follows.

(t, s) |= Pa iff t (s) = a,

(t, s) |= q ∧ q ′ iff (t, s) |= q and(t, s) |= q ′,
(t, s) |= ¬q iff (t, s) �|= q,

F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159 151

(t, s) |= Ep iff there is a pathπ in t rooted ats such that(t, π) |= p,

(t, s) |= DDnq iff s → s′ and(t, s′) |= q for (at least)n different nodess′,
(t, π) |= q iff (t, π0) |= q,

(t, π) |= p ∧ p′ iff (t, π) |= p and(t, π) |= p′,
(t, π) |= ¬p iff (t, π) �|= p,

(t, π) |= Xp iff length(π) > 1 and(t, π1) |= p,

(t, π) |= pUp′ iff there isi with 0� i < length(π) such that
(t, πi) |= p′ and(t, πk) |= p whenever 0� k < i.

Note that most authors (particularly in the verification community) consider only totalω-trees. We do
not make such a restriction here, but our semantic definitions coincide with the usual interpretation over
totalω-trees. Also worth noting is that some authors use a slightly different version of the until operator
Û, wherepÛp′ makes no restrictions on the initial state. In the presence ofX these two operators
are equally expressive: the alternative operator can be translated into ours aspÛp′ = XpUp′, and
conversely our operator can be translated aspUp′ = p′ ∨ (p ∧ pÛp′).

As LTL formulas are actually interpreted over paths, they can just as well be interpreted over sequenc-
esw = w0w1w2 · · · over� by adapting the definition of the satisfaction relation|= as follows. (As with
paths, theith letter ofw is denotedwi and we usewi = wiwi+1 · · · to denote the suffix ofw starting at
theith letter.)

w |= Pa iff w0 = a,

w |= p ∧ p′ iff w |= p andw |= p′,
w |= ¬p iff w �|= p,

w |= Xp iff length(w) > 1 andw1 |= p,

w |= pUp′ iff there isi with 0� i < length(w) such that
wi |= p′ andwk |= p whenever 0� k < i.

It is straightforward to verify the correctness of this interpretation, in the sense that for any path
π = 〈π0, π1, π2, . . .〉 in any treet , and for any LTL formulap, we have that(t, π) |= p iff t (π) |= p,
wheret (π) = t (π0)t (π1)t (π2) · · ·

The following is an important result relating LTL and FOL(<,�) due to Kamp [19]. (More accessible
proofs of this result can be found in [7,8,17].)

Theorem 2 [19]. Overω-sequences, LTL and FOL(<,�) are equally expressive:
1. Given any LTL formulap there is an equivalent FOL(<,�) sentenceϕp:

for every�-labelledω-sequencew, w |= p iff w |= ϕp.

2. Given any FOL(<,�) sentenceϕ there is an equivalent LTL formulapϕ:
for every�-labelledω-sequencew, w |= ϕ iff w |= pϕ.

2. Logical equivalences and games

Given two treest andt ′, we write t ≡n t
′ if no MPL sentence of quantifier depthn can distinguish

between these trees. Formally,t ≡n t
′ if and only if for any MPL sentenceϕ with qd(ϕ) � n we

have t |= ϕ iff t ′ |= ϕ. Equally, we write(t, s) ≡n (t
′, s′) if no MPL formula ϕ(x) with qd(ϕ) � n

can distinguish between these trees with specified nodes; and finally we write(t, π) ≡n (t
′, π ′) if no

152 F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159

MPL formulaϕ(X) with qd(ϕ) � n can distinguish between these trees with specified branches (full
paths).

The relations≡n are clearly equivalence relations over trees, trees with specified nodes, and trees
with specified branches, and as indicated in [15] they enjoy the following important properties.

Lemma 3.
1. For eachn, the relation≡n defines finitely-many equivalence classesT1, T2, . . . , Tm of trees; that is,

t ≡n t
′ iff t, t ′ ∈ Ti for somei ∈ {1, 2, . . . , m}.

2. For each equivalence classTi there is a MPL sentenceβi with qd(βi) � n which characterises it;
that is, t ∈ Ti iff t |= βi.

3. Every MPL sentenceϕ with qd(ϕ) � n is equivalent to a(finite) disjunction of the characterising
sentencesβi.

(The lemma also holds for trees with a specified node or branch and MPL formulas with one free var-
iable with quantifier depth bounded byn. However, for ease of presentation, we only explicitly describe
the case for trees and sentences.)

The proof of the above lemma is easy once you realize that there are only finitely many semantically
distinct formulas with at most one free variable of a fixed quantifier depthn. This fact itself can be shown
easily by induction on quantifier depth.

The equivalences≡n have an elegant characterisation in terms of the followingEhrenfeucht–Fraissé
game. The game is played by two players on two treest andt ′, and involves the first player choosing
a node or branch in one of the two trees, after which the second player responds by choosing the
same type of object (node or branch) in the other tree which she believes ‘matches’ the object cho-
sen by the first player. Aftern rounds, there will ben nodes and branches(s1, . . . , sk, πk+1, . . . , πn)

selected in the first tree andn corresponding nodes and branches(s′1, . . . , s′k, π ′
k+1, . . . , π

′
n) selected

in the second tree. The second player is deemed the winner if the mappingsi �→ s′i and πj �→ π ′
j

respects the relations<, ∈, and∈Pa. If the second player has awinning strategy, that is, a strategy
to follow when choosing her responses to the first player’s moves which will guarantee her a win,
then we say thatt and t ′ aren-game equivalent, and we writet ∼n t

′. The relations(t, s) ∼n (t
′, s′)

and(t, π) ∼n (t
′, π ′) are defined analogously, where the mapping is extended withs �→ s′ in the first

instance andπ �→ π ′ in the second instance. The characterisation theorem is then as follows. (For a
proof, we refer to [4,16].)

Theorem 4. ≡n = ∼n. That is,
• t ≡n t

′ iff t ∼n t
′;

• (t, s) ≡n (t
′, s′) iff (t, s) ∼n (t

′, s′); and
• (t, π) ≡n (t

′, π ′) iff (t, π) ∼n (t
′, π ′).

3. A Composition Theorem for trees

Composition Theorems are tools which reduce sentences about some compound structure to sen-
tences about its parts. A seminal example of such a result is the Feferman–Vaught Theorem [6] which
reduces the first-order theory of generalised products to the first-order theory of its factors. Composition

F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159 153

theorems for theories of orderings were first explored by Läuchli [20], and subsequently developed
by Shelah [23]. The technique was used in a series of papers by Gurevich and Shelah [9,11,12,14],
and outlined in a survey exposition by Gurevich [10]. Thomas [24] provides an overview on using
composition theorems where he suggests that, despite their success, such techniques are still largely
ignored by the theoretical computer science community in favour of the well-established automata-
theoretic techniques. He emphasizes the importance of the approach for decidability questions, though
it is evident that it is of importance as well to questions of definability, as in the present paper.

Referring to Lemma 3, withn fixed, we can fixm as well as the equivalence classesT1, T2, . . . , Tm
and sentencesβ1, β2, . . . , βm as given in the lemma. We then define the extended alphabet

�′ = � ×
(
{1, . . . , m} → {0, . . . , n}

)
× {0, 1, . . . , m}.

Given a treet and a (prefix of a) branchπ in the tree, we denote byv(t, π) the sequence over�′ of
length equal to that ofπ whoseith letter is given by:

v(t, π)i =
(
t (πi), fπ,i, k

)
,

where for eachx with 1 � x � m,

fπ,i(x) = max
{
j � n : πi → s with ts ∈ Tx for j different nodess �∈ π

}
;

andtπi+1 ∈ Tk (or k = 0, if i = length(π)). That is, theith letter ofv(t, π) is (a, f, k), where
• theith nodeπi in the pathπ is labelled bya ∈ �;
• πi has (at least)f (x) different successors not on the pathπ (i.e., other thanπi+1) which are the roots

of subtrees in the classTx ;
• if f (x) < n thenπi has exactlyf (x) different successors not on the pathπ which are the roots of

subtrees in the classTx ;
• if πi+1 exists (that is, length(π) > i), thenk is defined such that the subtree rooted atπi+1 is in the

classTk; otherwise (if length(π) = i) k = 0.
We also use the notationv(t, s), wheres is a node in the treet to meanv(t, π), whereπ is the (partial)

path leading from the root of the tree tos. The importance ofv(t, s) andv(t, π) is that they capture the
whole of (t, s) and (t, π), respectively, with respect to the distinguishing power of MPL formulas of
quantifier depthn. This fact is formulated in terms of games in the following.

Lemma 5. Given a treet with nodes and branchπ, and a treet ′ with nodes′ and branchπ ′:
1. if v(t, s) ∼n v(t

′, s′) then(t, s) ∼n (t
′, s′);

2. if v(t, π) ∼n v(t
′, π ′) then(t, π) ∼n (t

′, π ′).

Proof. We prove only the first result, as the proof of the second result is virtually identical.
A winning strategy for the second player in the game played on trees(t, s) and(t ′, s′) can be based

directly on a winning strategy for the second player in the game played on wordsv(t, s) andv(t ′, s′)
as follows. Assume that some numberi < n of rounds have been played in the tree game, and that the
first player is about to choose a new node or branch. We shall asume the following property holds, along
with its symmetric version (interchangingt andt ′), and show that it remains invariant:

If s1 � s, and s′1 � s′is the node corresponding tos1 according to the winning strategy in the word
game, ands1→s2 with s2 � � s, then s′1→s′2 for somes′2 � � s′ such that the subtrees rooted ats2 and

154 F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159

s′2 come from the same equivalence class and contain corresponding previously selected nodes and
paths.

This property is certainly true at the start (wheni = 0, i.e., before any elements are chosen), ass1 and
s′1 must have the same label from�′ and hence have subtrees not on the path leading tos drawn from
the same equivalence classes.
• If the first player chooses a node onv(t, s), then the second player simply chooses the correspond-
ing node onv(t ′, s′) as dictated by the strategy for the word game. The invariant is clearly main-
tained.

A symmetric strategy applies if the first player chooses a node onv(t ′, s′).
• If the first player chooses a nodes0 in t not onv(t, s), then the second player looks at the last node
s1 on v(t, s) which is an ancestor of the chosen node, and the nodes2 with s1 → s2 � s0, and takes the
nodess′1 ands′2 as described in the invariant. The nodes′0 will be chosen by the second player to be in
the subtree rooted ats′2, thus maintaining the invariant. (In particular, taking the equal counts provided
by the labelling ofs1 ands′1 into consideration, if one has a successor not onv(t, s) which is the root of
a subtree containing no previously-selected objects, then the other must have such a successor as well.)
The particular choice fors′0 is then dictated by the strategy for the game played on these subtrees which
are drawn from the same equivalence class, and hence admit a winning strategy in the game for the
second player.

A symmetric strategy applies if the first player chooses a node int ′ not onv(t ′, s′).
• If the first player chooses a branchπ in t , then similar to the previous case, the second player looks at
the last nodes1 on v(t, s) which is on the branchπ , and the nodes2 on the branchπ with s1 → s2 and
takes the nodess′1 ands′2 as described in the invariant. (If the branchπ happens to be a finite path ending
at s, then the matching branchπ ′ is the finite path ending ats′.) The matching branchπ ′ will be chosen
by the second player to be in the subtree rooted ats′2, thus maintaining the invariant as in the previous
case. The particular choice forπ ′ is then dictated by the strategy for the game played on these subtrees
which are drawn from the same equivalence class, and hence admit a winning strategy in the game for
the second player.

A symmetric strategy applies if the first player chooses a branch int ′.
It is clear that this indeed provides a winning strategy for the second player.�
It is worth noting that the proof of this lemma does not refer to the last component of the new labelling

of nodes on paths; this component will only have effect in the proof of Lemma 8.
With Lemma 5 in place, we can now state and prove our Composition Theorem.

Theorem 6 (Composition Theorem).
1. For every MPL formulaϕ(x) with qd(ϕ) � n, there is a FOL(<,�′) sentenceψ with qd(ψ) � n

such that for all treest and all nodess in t we have

F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159 155

(t, s) |= ϕ(x) if and only if v(t, s) |= ψ.

2. For every MPL formulaϕ(X) with qd(ϕ) � n, there is a FOL(<,�′) sentenceψ with qd(ψ) � n

such that for all treest and all branchesπ in t we have

(t, π) |= ϕ(X) if and only if v(t, π) |= ψ.

With this theorem, we are thus reducing any propertyϕ(x) or ϕ(X) of a tree to an equivalent property
ψ of a sequence.

Proof. Again we only prove the first result, as the proof of the second result is virtually identical.
Let ϕ(x) with qd(ϕ) � n be fixed. Then let

• α1(x), . . . , αm(x) be formulas that define the≡n-equivalence classes of�-labelled trees with a spec-
ified node, as given in Lemma 3 (for the case of trees with a specified node). In particular, by Lemma
3(3) we have thatϕ(x) ↔ ∨

i∈I αi(x) for someI ⊆ {1, . . . , m};
• β1, . . . , βk be sentences that define the≡n-equivalence classes of�′-labelled words;

• Ji =
{
j : (t, s) |= αi(x) andv(t, s) |= βj for some(t, s)

}
for eachi ∈ {1, . . . , m} (note that by

Lemma 5 these sets must be disjoint); and finally
• ψ = ∨

i∈I
∨

j∈Ji βj .
We shall demonstrate that thisψ satisfies the conditions of the theorem.
Given any treet with nodes,

(t, s) |= ϕ(x) iff (t, s) |= αi(x) for somei ∈ I,

iff v(t, s) |= βj for somei ∈ I andj ∈ Ji,

iff v(t, s) |= ψ.

Finally, asv(t, s) is a word, the formulaψ can be assumed to be in FOL(<,�′), since any path
quantifiers would be redundant and can be removed.�

4. The expressiveness of MPL

In this section we demonstrate that the expressiveness of MPL coincides with that of Counting-CTL∗.
We start by simply noting the easily established direction.

Lemma 7. Given any Counting-CTL∗ formulaq there is an equivalent MPL sentenceϕq; that is, for
every treet, (t, εt) |= q if and only ift |= ϕq.

The existence of a translation in the opposite direction relies as follows from our Composition
Theorem 6.

Lemma 8. Given any MPL sentenceϕ there is an equivalent Counting-CTL∗ formulaqϕ overω-trees;
that is, for everyω-treet, t |= ϕ if and only if(t, εt) |= qϕ.

Proof. The proof of this result is by induction on the quantifier depth ofϕ. The result is easily obtained
for qd(n) = 1. For example, ifϕ = ∃x(x ∈ Pa) thenqϕ = EFPa.

156 F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159

In the induction step, we assume that any MPL sentence with quantifier depth no greater thann

is equivalent to some Counting-CTL∗ formula. The only cases of interest areϕ = ∃xϕ′(x) andϕ =
∃Xϕ′(X), where qd(ϕ′) = n.

By Lemma 3 we havem equivalence classesT1, T2, . . . , Tm of trees with respect to the equivalence
relation≡n, characterised by MPL sentencesβ1, β2, . . . , βm, each of quantifier depth no greater thann,
and hence by induction each equivalent to some Counting-CTL∗ formulaq1, q2, . . . , qm, respectively.

Consider the case whereϕ = ∃xϕ′(x)with qd(ϕ′) � n. We can apply the first part of the Composition
Theorem 6 to the subformulaϕ′(x) to get a FOL(<,�′) sentenceψ with qd(ψ) � n such that for all trees
t and all nodess of t we have(t, s) |= ϕ′(x) iff v(t, s) |= ψ . Let ψ ′ = ∃zψ�z, whereψ�z is obtained
from ψ by replacing all subformulas∃xα by ∃x(x� z ∧ α); then clearly∃z : v(t, z) |= ψ iff ∃π :
v(t, π) |= ψ ′. By Kamp’s Theorem 2, we can translate this first-order sentenceψ ′ into an equivalent
LTL formula p.

The LTL formulap involves atomic propositions of the formP(a,f,k) with (a, f, k) ∈ �′; we wish to
replace each such atomic proposition by a suitable Counting-CTL∗ path formulaq(a,f,k) expressing that:
• the node of interest satisfies the atomic predicatePa;
• for 1 � i � m with i /= k, there are at leastf (i) successor nodes in equivalence classTi (i.e., satisfy-

ing qi); and exactlyf (i) such successor nodes in the case whenf (i) < n;
• if k /=0, then there are at leastf (k)+1 successor nodes in equivalence classTk (i.e., satisfyingqk); and

exactlyf (k)+1 such successor nodes in the case whenf (k) < n; and
• if k /=0, then the next state is in equivalence classk (i.e., satisfiesqk).
The substitution is thus as follows (for ease, we break it up into cases).
• in the case wherek = 0, q(a,f,k) is given as follows:

Pa ∧
∧

1�i�m

DDf (i)qi ∧
∧

1�i�m
f (i)<n

¬ DDf (i)+1qi

• in the case wherek /=0 andf (k) = n, q(a,f,k) is given as follows:

Pa ∧
∧

1�i�m
i /=k

DDf (i)qi ∧
∧

1�i�m
i /=k,f (i)<n

¬ DDf (i)+1qi ∧ DDf (k)+1qk ∧ Xqk

• in the case wherek /=0 andf (k) < n, q(a,f,k) is given as follows:

Pa ∧
∧

1�i�m
i /=k

DDf (i)qi ∧
∧

1�i�m
i /=k , f (i)<n

¬ DDf (i)+1qi ∧ DDf (k)+1qk ∧ ¬ DDf (k)+2qk ∧ Xqk

Our desired Counting-CTL∗ formula is thenEp′, wherep′ denotes the Counting-CTL∗ path formula
which we obtain fromp after performing the above substitutions: given any tree,t ,

t |= ϕ iff ∃s : (t, s) |= ϕ′(x),
iff ∃s : v(t, s) |= ψ,

iff ∃π : v(t, π) |= ψ ′,
iff ∃π : v(t, π) |= p,

iff ∃π : (t, π) |= p′,
iff (t, εt) |= Ep′.

F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159 157

A simpler argument based on the second part of the Composition Theorem 6 (not requiring the quan-
tifier relativisation step) handles the case whereϕ = ∃Xϕ′(X) with qd(ϕ′) � n. �

5. Related results

5.1. CTL∗ versus bisimulation-invariant MPL

The main result in the paper complements our earlier result [22] that CTL∗ coincides with the
set of bisimulation invariant properties expressible in MPL. The proof of the earlier result fol-
lows the same compositional approach as the proof of the present result, and exploits the fact that
every treet is bisimulation equivalent to a so-calledwide tree tw, one in which for every transition
s → s′ there are infinitely-many transitionss → s′′ such thatts′ is isomorphic tots′′ . Every MPL prop-
erty ϕ is shown to be equivalent over the class of wide trees to some CTL∗ formula qϕ ; assuming
then that the propertyϕ is bisimulation invariant, we get thatt |= ϕ iff tw |= ϕ iff (tw, εtw) |= qϕ iff
(t, εt) |= qϕ .

We can extract this earlier result as a corollary of the new result as follows. Given a formula of MPL,
we translate this into an equivalent formula of Counting-CTL∗. If the original MPL formula respects
bisimulation, then so must this translated formula of Counting-CTL. We can thus safely replace each
occurrence ofDDnq with EXq to get an equivalent formula of CTL∗. (The proof of this is by a simple
induction on the structure of formulas.)

Hafer and Thomas [15] demonstrated the correspondence between MPL and CTL∗ over full binary
trees, again using a suitable composition theorem. This result is simpler in that bisimilarity between full
binary trees is trivial: two full binary trees are bisimulation equivalent only if they are isomorphic, and
MPL certainly respects isomorphism. Indeed, the result for full binary trees follows from the present
result, since over full binary trees, the counting operators add no power to CTL∗: DD1q is equivalent to
EXq; DD2q is equivalent toAXq; andDDnq for n > 2 is equivalent to false.

5.2. The Gurevich–Shelah Composition Theorem

In [13] Gurevich and Shelah reduce the decidability problem for MPL over the class of all trees
to the decidability problem for the first-order theory over the class of well-founded binary trees. They
then showed this latter problem to be decidable in [14] with the aid of a composition theorem. Our
composition theorem is reminiscent of the one given by Gurevich and Shelah in [14]. Their composition
theorem, however, deals with partial first-order theories of binary trees, and we were unable to reduce
our composition theorem to it. Below we briefly describe the Gurevich–Shelah composition theorem
and its relation to ours.

In [14] first-order structures with partial elements are considered. These are structures in which some
constant names can be interpreted as undefined elements. Given two such structurest andt ′, we write
t ≡GS

n t ′ if no first order sentence of quantifier depthn can distinguish between these structures. For
the equivalence≡GS

n the analogue of Lemma 3 holds. In particular, for eachn, the relation≡GS
n de-

fines finitely many equivalence classesT1, T2, . . . , Tm of trees; that is,t ≡GS
n t ′ iff t, t ′ ∈ Ti for some

i ∈ {1, 2, . . . , m}.

158 F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159

The Gurevich–Shelah composition theorem deals with binary trees. Referring to Lemma 3, letn be
fixed, and let equivalence classesT1, T2, . . . , Tm be the≡GS

n equivalence classes over binary�-labelled
trees. Define the new alphabet

�′ = {0, 1, . . . , m}.
Given a treet and a (prefix of a) branchπ in the tree, letti be the subtree oft over the set of nodes

{s : πi � s ∧ ¬(πi+1 � s)}. We denote byvGS(t, π) the sequence over�′ of length equal to that ofπ
whoseith letter isk iff ti is in thekth ≡GS

n -equivalence class,ti ∈ Tk. The Gurevich–Shelah composition
theorem then states that the truth value of a first order sentenceϕ of quantifier depthn in a treet can be
effectively reduced to the truth values of another sentenceψ of quantifier depthn overvGS(t, π).

To summarize, the Gurevich–Shelah composition theorem:
1. deals with only binary trees while our composition theorem considers trees with arbitrary branching;
2. considers structures with partial elements while our theorem considers standard structures; and
3. deals with first-order formulas while our theorem deals with monadic path logic formulas.

The first point is not very essential; the Gurevich–Shelah composition theorem can be modified for
trees with arbitrary branching. We do not fully understand the impact of the second point. The third point,
however, is essential. By Remark 1 there is a translation of MPL into first-order logic; however this trans-
lation does not preserve the quantifier depth of formulas. The composition theorem and our translation
of MPL into CTL∗ with counting operators is sensitive to the quantifier depth of formulas. This is the
main reason that we were unable to reduce our composition theorem to the Gurevich–Shelah theorem.

5.3. Theµ-calculus versus bisimulation-invariant MSOL

In [18] Janin and Walukiewicz define automata both for recognizing MSOL properties and for rec-
ognizingµ-calculus properties. The MSOL-automata differ from those for theµ-calculus in that they
involve elementary counting operations similar to those introduced in Counting-CTL∗. With this, they
are able to prove that theµ-calculus expresses exactly the bisimulation-invariant properties of MSOL,
analogous to the result above relating CTL∗ to bisimulation-invariant MPL. Though this paper does
not raise the question of adding such a counting mechanism to the syntax of theµ-calculus to derive a
calculus matching MSOL in expressive power, Walukiewicz [26] confirms that such a result holds.

The present result relating MPL to Counting-CTL∗ cannot, however, be derived from the automata-
theoretic proof relating MSOL to theµ-calculus, as it is unclear what the appropriate automata for MPL
would be. To prove our result using automata, we would first need to identify a natural class of automata
which has the same expressive power as MPL. As we noted in Remark 1, MPL is closely related to
monadic first-order logic, and the counter-free automata of McNaughton and Papert [21] have the same
expressive power on words as monadic first-order logic. Therefore one might look for a generalization
of counter-free automata in order to provide an automata-theoretic proof.

Equally, it is not clear how one might extend the compositional approach to the MSOL case. Thus the
MSOL result cannot be derived from the compositional proof used here for MPL.

References

[1] A. Abdelwaheb, D. Basin, Bounded model construction for monadic second-order logics, in: Proceedings of CAV’00: In-
ternational Conference on Computer-Aided Verification, Lecture Notes in Computer Science, vol. 1855, Springer-Verlag,
Berlin, 2000, pp. 99–113.

F. Moller, A. Rabinovich / Information and Computation 184 (2003) 147–159 159

[2] J.F.A.K. van Benthem, Modal Correspondence Theory. PhD Thesis. Mathematisch Instituut and Instituut voor Gro-
ndslagenonderzoek, University of Amsterdam (1976).

[3] E.M. Clarke, E.A. Emerson, Design and verification of synchronous skeletons using branching time temporal logic,
Lecture Notes in Computer Science 131 (1981) 52–71.

[4] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Springer Perspectives in Mathematical Logic (1995).
[5] E.A. Emerson, J.Y. Halpern, ‘Sometimes’ and ‘not never’ revisited: on branching versus linear time temporal logics,

Journal of the ACM 33 (1) (1986) 151–178.
[6] S. Feferman, R.L. Vaught, The first-order properties of products of algebraic systems, Fundamenta Mathematica 47 (1959)

57–103.
[7] D. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logic, Oxford University Press, Oxford, 1994.
[8] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of fairness, in: 7th Annual Symposium on Principles

of Programming Languages, 1980, pp. 163–173.
[9] Y. Gurevich, Modest theory of short chains I, Journal of Symbolic Logic 44 (1979) 481–490.

[10] Y. Gurevich, Monadic second-order theories, in: J. Barwise, S. Feferman (Eds.), Model-Theoretic Logics, Springer-Verlag,
Berlin, 1985, pp. 479–506.

[11] Y. Gurevich, S. Shelah, Modest theory of short chains II, Journal of Symbolic Logic 44 (1979) 491–502.
[12] Y. Gurevich, S. Shelah, Rabin’s uniformization problem, Journal of Symbolic Logic 48 (1979) 1105–1119.
[13] Y. Gurevich, S. Shelah, To the decision problem for branching time logic, in: P. Weingartner, G. Dorn (Eds.), Foundations

of Logic and Linguistics: Problems and their Solutions, Plenum, New York, 1985, pp. 181–198.
[14] Y. Gurevich, S. Shelah, The decision problem for branching time logic, Journal of Symbolic Logic 50 (3) (1985)

668–681.
[15] T. Hafer, W. Thomas, Computation tree logic CTL∗ and path quantifiers in the monadic theory of the binary tree, in: Pro-

ceedings of ICALP’87: International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer
Science, vol. 267, Springer-Verlag, Berlin, 1987, pp. 269–279.

[16] W. Hodges, Model Theory, Cambridge University Press, Cambridge, 1993.
[17] I. Hodkinson, Expressive completeness of Until and Since over dedekind complete linear time, in: A. Ponse, M. de Rijke,

Y. Venema (Eds.), Modal Logic and Process Algebra: A Bisimulation Perspective, CSLI Publications, 1995, pp. 171–185.
[18] D. Janin, I. Walukiewicz, On the expressive completeness of the propositionalµ-calculus with respect to monadic sec-

ond-order logic, in: Proceedings of CONCUR’96: International Conference on Concurrency Theory, Lecture Notes in
Computer Science, vol. 1119, Springer-Verlag, Berlin, 1996, pp. 263–277.

[19] H.W. Kamp, Tense Logic and the Theory of Linear Order, PhD Thesis, University of California, Los Angeles (1968).
[20] H. Läuchli, A decision procedure for the weak second-order theory of linear order, in: Contributions to Mathematical

Logic, Proceedings of Logic Colloquium Hanover 1966, North-Holland, Amsterdam, 1968.
[21] R. McNaughton, S. Papert, Counter-Free Automata, MIT Press, Cambridge, MA, 1971.
[22] F. Moller, A. Rabinovich, On the expressive power of CTL∗, in: Proceedings of LICS’99: The fourteenth IEEE Sympo-

sium on Logic in Computer Science (1999) 360–369.
[23] S. Shelah, The monadic theory of order, Annals of Mathematics 102 (1975) 379–419.
[24] W. Thomas, Ehrenfeucht games, the composition method, and the monadic theory of ordinal words, in: Structures in Logic

and Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht, Lecture Notes in Computer Science, vol. 1261,
Springer-Verlag, Berlin, 1997, pp. 118–143.

[25] I. Walukiewicz, Monadic second-order logic on tree-like structures, in: Proceedings of STACS’96: International Sym-
posium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 1046, Springer-Verlag,
Berlin, 1996, pp. 401–414.

[26] I. Walukiewicz, Personal Communication (2001).

