Final Exam - Program Verification

Alexander Rabinovich

July 3 2011

Please either print or write VERY CLEARLY. Submit a pdf file by e-mail or a hard copy by July 5. (A handwritten version can be scanned). You can use any literature. However, I would like to emphasize that the exam is an **INDIVIDUAL TASK and is NOT to be done in groups!!!**. Please submit together with the exam the signed declaration below.

Declaration

Student's Name:Student's ID Number:I certify hereby that:1. This exam was prepared by me solely, without any assistance from others.2. I have not assisted any other person in the preparation of his/her exam.SIGNATURE:

Grading: Exercises 1-5 are 20 points each.

Question 1

Show that the following problem is in PSPACE. **Input:** a Buchi automaton A and a TL(U) formula φ . **Question:** Is there an ω -string u such that u is accepted by A and $u, 0 \models \varphi$?

Question 2

Let $Z \times 2$ be a linear order defined as follows:

- (a) Domain: The set of pairs (i, a) where i is an integer and $a \in \{0, 1\}$.
- (b) The interpretation of $\langle (i, a) \rangle \langle (j, b)$ iff either (a = 0 and b = 1) or $(a = b \text{ and } i \langle j)$.

Show that there is an algorithm that for every MLO sentence φ decides whether φ is satisfiable in $Z \times 2$.

Question 3

Two ω -strings u and v over a finite alphabet Σ are said to be \sim_s -equivalent if $u = a_1^{n_1} a_2^{n_2} \dots a_k^{n_k} \dots$ and $v = a_1^{m_1} a_2^{m_2} \dots a_k^{m_k} \dots$ where $a_k \in \Sigma$ and $0 < \min(m_k, n_k)$ for every k. Prove that if Lis an ω -regular language, then $L_1 = \{u \mid \text{there is } v \in L \text{ such that } v \sim_s u \text{ and } v = a_1 a_2 \dots a_k \dots$ and $\forall i (a_i \neq a_{i+1}) \}$ is also ω -regular.

Question 4

Let X be a set of finite strings over $\{0,1\}^2$. Assume that the empty string is not in X. G(X) is a two person game defined as follows.

Round *i*: Player 1 chooses $a_i \in \{0, 1\}$. Player 2 replies by $b_i \in \{0, 1\}$.

Winning conditions for G(X): Player 1 wins a play $\rho = (a_1, b_1) (a_2, b_2) \dots (a_k, b_k) \dots$ if there is *i* such that $(a_1, b_1) (a_2, b_2) \dots (a_i, b_i) \in X$. Otherwise Player 2 wins ρ .

The game $G_{\omega}(X)$ is defined like G(X), but it has the following winning conditions. Winning conditions for $G_{\omega}(X)$: Player 1 wins a play ρ if $\rho \in X^{\omega}$; otherwise Player 2 wins ρ .

Prove

- (a) Player 2 has a winning strategy in G(X) iff he has a winning strategy in $G_{\omega}(X)$.
- (b) Player 1 has a winning strategy in G(X) iff he has a finite memory winning strategy in G(X).

A strategy σ for player 1 is called a finite memory iff there is a deterministic finite state automaton A over alphabet $\{0,1\}$ such that $\sigma((a_1,b_1)(a_2,b_2)\cdots(a_i,b_i)) = 1$ iff $b_1 \ldots b_i$ is accepted by A.

Question 5

Let Σ be a finite alphabet, $a_i \in \Sigma$ and $\Sigma_i \subseteq \Sigma$ for i = 1, ..., n. Write TL(U) formula φ such that $u, 0 \models \varphi$ iff $u \in \Sigma_1^* a_1 \Sigma_2^* a_2 \cdots \Sigma_n^* a_n \Sigma^{\omega}$.

GOOD LUCK