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Grading: Exercises 1-5 are 20 points each.

Question 1

Show that the following problem is in PSPACE.
Input: a Buchi automaton A and a TL(U) formula ϕ.
Question: Is there an ω-string u such that u is accepted by A and u, 0 |= ϕ?

Question 2

Let Z × 2 be a linear order defined as follows:

(a) Domain: The set of pairs (i, a) where i is an integer and a ∈ {0, 1}.

(b) The interpretation of <: (i, a) < (j, b) iff either (a = 0 and b = 1) or (a = b and i < j).

Show that there is an algorithm that for every MLO sentence ϕ decides whether ϕ is satisfiable
in Z × 2.

Question 3

Two ω-strings u and v over a finite alphabet Σ are said to be ∼s-equivalent if u = a1
n1a2

n2 . . . ak
nk . . .

and v = a1
m1a2

m2 . . . ak
mk . . . where ak ∈ Σ and 0 < min(mk, nk) for every k. Prove that if L

is an ω-regular language, then L1 = {u | there is v ∈ L such that v ∼s u and v = a1a2 . . . ak . . .

and ∀i(ai 6= ai+1) } is also ω-regular.

Question 4

Let X be a set of finite strings over {0, 1}2. Assume that the empty string is not in X.
G(X) is a two person game defined as follows.
Round i: Player 1 chooses ai ∈ {0, 1}. Player 2 replies by bi ∈ {0, 1}.
Winning conditions for G(X): Player 1 wins a play ρ = (a1, b1) (a2, b2) . . . (ak, bk) . . . if
there is i such that (a1, b1) (a2, b2) · · · (ai, bi) ∈ X. Otherwise Player 2 wins ρ.

The game Gω(X) is defined like G(X), but it has the following winning conditions.
Winning conditions for Gω(X): Player 1 wins a play ρ if ρ ∈ Xω; otherwise Player 2 wins
ρ.
Prove

(a) Player 2 has a winning strategy in G(X) iff he has a winning strategy in Gω(X).

(b) Player 1 has a winning strategy in G(X) iff he has a finite memory winning strategy in
G(X).

A strategy σ for player 1 is called a finite memory iff there is a deterministic finite state
automaton A over alphabet {0, 1} such that σ((a1, b1) (a2, b2) · · · (ai, bi)) = 1 iff b1 . . . bi is
accepted by A.

Question 5

Let Σ be a finite alphabet, ai ∈ Σ and Σi ⊆ Σ for i = 1, . . . , n. Write TL(U) fotmula ϕ such
that u, 0 |= ϕ iff u ∈ Σ∗

1a1Σ
∗

2a2 · · ·Σ
∗

nanΣω.

GOOD LUCK
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