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Abstract
We consider an interpretation of monadic second-order logic of order in the continuous time structure
of finitely variable signals and show the decidability of monadic logic in this structure. The expressive
power of monadic logic is illustrated by providing a straightforward meaning preserving translation
into monadic logic of three typical continuous time specification formalism: temporal logic of reals,
restricted duration calculus and the propositional fragment of mean value calculus. As a by-product
of the decidability of monadic logic we obtain that the above formalisms are decidable even when
extended by quantifiers.
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1 Introduction
In recent years systems whose behaviour changes in continuous (real) time have been
extensively investigated. Hybrid and control systems are prominent examples of real-
time systems.

A number of formalisms for specification of real-time behaviour were suggested in
the literature. Some of these formalisms (e.g. timed automata [1]) extend discrete
time formalisms by introducing metrical real-time constraints, others (e.g. temporal
logic of reals [2]) are defined by providing continuous (or dense) time interpretation
for the modalities studied in the discrete cases, yet others (e.g. duration calculus [5])
are based on ideas that were not popular among the formalisms for specification of
discrete time behaviour.

It is worthwhile to distinguish two aspects of real-time specifications: (a) Metric
aspects which deal with the distance between moments of real time; (b) Properties
of the order on the real numbers, e.g. the order is dense and Dedekind closed. In
this paper metric aspects of specification are not considered. Specifications that use
only the order relation on the reals will be called continuous time specifications and
are investigated in the sequel. In the conclusing section we comment about metrical
extensions.

A run of a real-time system is represented by a function from non-negative reals
into a set of values—the instantaneous states of a system. Such a function will be
called a signal. Usually, there is a further restriction on behaviour of continuous time
systems. For example a function that gives a value qo for the rationals and value qi
for the irrationals is not accepted as a 'legal' signal.

A requirement that is often imposed in the literature is that in every bounded time
interval a system can change its state only finitely many times. This requirement is
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670 On the Decidability of Continuous Time Specification Formalisms

called finite variability (or non-Zeno) requirement. It is clear that finite variability
requirement is not a metric requirement.

Recall that the language L£ of monadic second-order logic of order contains indi-
vidual variables, second-order variables and the binary predicate <• In the discrete
time structure u> (this structure will be defined precisely in Section 2.3), the individual
variables are interpreted as natural numbers, the second-order variables as monadic
predicates (monadic functions from the natural numbers into the Booleans), and <
is the standard order on the set of natural numbers.

In this paper we consider an interpretation of monadic logic in the continuous time
structure of finitely variable signals. In this structure the individual variables range
over real numbers, the second order variables range over finitely variable Boolean
signals, and < is the standard order relation on the set of real numbers. Note that
metric properties of reals cannot be specified in this logic.

First, we show that the L^ theory of the finitely variable signal structure is de-
cidable. The result is significant due to the fact that many specification formalisms
for reasoning about real time which were considered in the literature can be effec-
tively embedded in L%. In order to illustrate the expressive power of L^ over finitely
variable signals, we consider the following three formalisms for specifying non-metric
properties of a continuous time behaviour:

• restricted duration calculus—RDC [4].

• prepositional mean value calculus—PMVC [6, 20, 11].

• temporal logic of reals—TLR [2].

We recall the definition of these formalisms and provide meaning preserving compo-
sitional translations from the above formalisms into the first-order fragment of Lf.
These translations are directly obtained by a formalization of the semantical defini-
tions for RDC, PMVC and TLR.

As a by-product of the decidability of L£, we obtain a simple and uniform proof of
the decidability of the above formalisms. Decidability of TLR, RDC and PMVC are
not novel. A tableau decision algorithm for TLR was described in [8]; the presentation
of this algorithm and the proof of its correctness is quite long. The decidability of
RDC was proved in [4] and the decidability of PMVC was proved in [20]. The decision
procedure for RDC and PMVC appeals to automata theoretical methods. Neither
the decision algorithm for TLR, nor the decision algorithms for RDC and PMVC can
be generalized to treat quantifiers. However, from the decidability of second-order
monadic logic we easily obtain that the extensions of RDC, PMVC and TLR by the
quantifiers are also decidable.

The rest of this paper is organized as follows. In Section 2 the syntax and seman-
tics of monadic second-order logic of order is provided and classical theorems about
important structures for this logic are stated. In Section 3 we show that the set
of monadic second-order logic sentences that are true in the finitely variable signal
structure is decidable. In Section 4 we provide compositional translations of the re-
stricted duration calculus, the prepositional fragment of mean value calculus and the
temporal logic of reals into monadic logic. In Section 5 we comment on some related
results.
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On tie Decidability of Continuous Time SpedScation Formalisms 671

2 Monadic Second-order theory of order
In this section we recall the definitions of the syntax and the semantics of monadic
second-order theory of order.

2.1 Syntax

The language Lf of monadic second-order theory of order has a set Va.T\ of individual
variables, a set Var2 of second-order variables, a binary predicate < , the usual
prepositional connectives and first and second-order quantifiers.

We will use t, u, v for individual variables and x, y for second-order variables.
The atomic formulas of L£ are formulas of the form: t < u and x(t). The formulas

are constructed from atomic formulas by logical connectives and first and second-order
quantifiers.

We will write F(x,y,t, u) to indicate that the free variables of a formula F are
among x, y, t, u.

2.2 Semantics

A structure K = (A, B, <K ) for L% consists of a set A partially ordered by <K
and a set B of monadic functions from A into BOOL.

An environment a for individual variables is a function from the set of individual
variables into A and an environment 77 for the second-order variables is a function from
the set of second-order variables into B. Below the satisfiability relation (a, rj) ̂  rp
is defined by induction on the structure of L£ formulas.

DEFINITION 2.1
(Semantics of L^ formulas)

1. (a, 77) \= t < u if a(t) <K a(u).

2. (a, 77) |= x(t) if TJ(X) maps a(t) to TRUE.

3. (Q, 77) |= ipi A rp2 if (a, rj) f= Vi and (a, rj) \= rp2-

4. (a, TJ) |= -it/; if not (a, TJ) |= rp.

5. (a, r/) ^ 3lt.x}) if there exists a' such that a(u) = a'(u) for all u ^ t and
(a' , r,) \= rp.

6. (a, 77) (= 32x.rp if there exists rf such that t](y) = T)'(y) for all y ^ 1 and
(a, rf) \= V-

Notation: (a) In (5) the first-order existential quantifier 31 was defined and in (6)
the second-order existential quantifier 32 was defined. The symbol 3 will be used
for both these quantifiers in the sequel; the ambiguity will always be resolved by
a context. If 3 is followed by an individual (second-order) variable it will refer to

the first (second)-order existential quantifier, (b) We should have used \=K
2 for the

satisfiability relation in a structure K of language Lf, however, in the sequel the
ambiguity will always be resolved by a context.
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672 On the Decidability of Continuous Time Specification Formalisms

2.3 Examples of structures for L^

In this section we present three classical structures for L£ and recall some remarkable
theorems.

We will use the following:
Notation: N will be used for the set of natural numbers and <N for the standard

order on N. R (respectively R-°) will be used for the set of real (respectively, non-
negative real) numbers and <R for the standard order on R.

2.3.1 Structure a;
The structure u = (N, 2N, <N ), where 2N is the set of all monadic functions from
N into BOOL.

THEOREM 2.2
(Buchi [3]) The set of Lf sentences true in u; is decidable.

2.3.2 The structure of reals
Shelah considered the structure M = (R, 2R, <R ), where 2R is the set of all monadic
functions from R into BOOL.

THEOREM 2.3
(Shelah [18]) The set of L£ sentences true in M is undecidable.

2.3.3 F Structure for L%
Rabin considered the structure F = (R, Fa, <n ), where Fa is the set of monadic
functions from R into BOOL such that x € Fa iff either {T : x(r) = TRUE) or
{r : X{T) = FALSE} is a countable union of closed sets.

THEOREM 2.4
(Rabin [12]) The set of L^ sentences true in F is decidable.

3 Finitely variable signal structure
Below we define finitely variable signal structure.

DEFINITION 3.1
A function h from the non-negative reals into the set BOOL is called a Boolean
finitely variable signal if there exists an unbounded increasing sequence r0 = 0 <
T\ < T2 . . . < Tn < . . . such that h is constant on every interval (TV, TJ+I) . For a finite
set E, the notion of S-signal is defined similarly.

The word 'signal' will often stand below for 'finitely variable signal'.
We say that a signal x is right continuous at t iff there is t\ > t such that x(t) = x(t')

for all tf which satisfies t <t' <t\.
We say that a signal x is left continuous at t iff t = 0 or there is fi < t such that

x(t) = x(f) for all t' which satisfies h < t' < t.
We say that a signal is left (right) continuous iff it is left (right) continuous at t for

every t.
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On the Decidability of Continuous Time Specification Formalisms 673

Let SIGNAL (respectively RSIGNAL, or LSIGNAL) be the set of all Boolean
finitely variable signals (respectively right continuous signal or left continuous signals).
The signal structure Sig is defined as Sig = (R-°, SIGNAL, <R ), where R^° is
the set of non-negative reals. The structures of right continuous signals and left
continuous signals are defined similarly.

In [14] it was proved that monadic second-order logic over the structure of right
continuous signals is decidable. Slightly modifying the proof for right continuous
structures we obtain the following theorem.

THEOREM 3.2
The set of Lf sentences true in the signal structure Sig is decidable.

PROOF. First, let us note that for the restriction of the structure F to non-negative
reals, Theorem 2.4 still holds.

It is clear that if z is a finitely variable signal then {T € R-° | X{T) = TRUE} and
{r G R-° | X(T) = FALSE} can be represented as a countable union of closed sets.
Hence, every signal belongs to Fa. It is also clear that x £ Fa is a signal if and only
if it satisfies the formula signal(x) defined as:

signal(x) = Vi.3ii.t < U A Vt2.t < t2 < h -> (z(*i) +•>• x{t2))A
Vt.t > 0 -y 3*i.ti < t A VMi < *2 < t -> (x(ti) <->• x(t2)).

Below we provide an interpretation of the signal structure Sig inside structure F.
(See [13] for the detailed description of the methods of interpretation.)

If A is a monadic second-order formula then the formula AStg obtained from A by
relativizing all second-order quantifiers of A to signals is defined inductively on the
structure of A by the following rules: (1) If A is without second-order quantifiers then
ASi« = A. (2) If A = B A C or A = - B or A = 3H.B then ASi<> = BSi^ A CSi9 or
ASit> = iBSi9 or ASis = 3H.BSi9, respectively. (3) If A = 32x.B or A = ̂ x.B then
ASi9 _ (y2x,signal(x) A BSl») or ASis = (^x.signalix) -> BSi»), respectively.

This relativization allows us to reduce the satisfiability of the formula A in the
structure Sig to the satisfiability of the formula As'9 in the structure F. In particular,
if A is a closed formula, then \=sig A if and only if f=f As*9. Therefore, Theorem
3.2 follows from Theorem 2.4. I

One can is easily adapt this proof in order to show that the set of Lf sentences true
in the structure of left continuous signals is decidable.

4 Compositional translations into L?

In this section we consider three formalisms: temporal logic of reals [2], a non-metrical
subset of the duration calculus which is called RDC [4] and the propositional fragment
of mean value calculus [6, 20, 11] (PMVC). We recall the definition of syntax and the
semantics of TLR, RDC and PMVC and provide meaning preserving compositional
translations of these formalisms into first-order fragment of monadic logic of order. As
a by product we obtain that the above formalisms are decidable even when extended
by the second-order quantifiers.

Throughout this section we will use the following
Notation: D{u'/u} is a formula obtained from a formula D by the substitution

of u' for all free occurrences of u in D.
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674 On the Decidability of Continuous Time Specification Formalisms

4-1 Temporal logic of reals

The temporal logic of reals was proposed in [2]. It is based on the same set of
modalities as linear temporal logic, however, these modalities are interpreted over the
time domain of non-negative real numbers.

The set of TLR formulas is defined by the following grammar:

D ::= x | -.£) | D A D | O D | £E> \ D U D, where x ranges over the variables.

An environment maps variables into finitely variable signals. For an environment
p and a real number r, the satisfiability relation (p, r) ^TLR D is defined as follows:

• (P, r) \=TLR x iff p{x)(r) is true.
• (p, r) \=TLR 0-0 iff there exists rx > r such that (p, r2) \=TLR D for all r2, r <

T2 < T\.

• (p, r) ^TLR 0 D iff there exists r\ < r such that (p, r2) ^TLR D for all
ri, n < r2 <r.

• (p, r) \=TLR Dt U D2 iff there exists n > r such that (p, rx) [=TZ,R DI and
(P, »"2) Nrifi Di for all r2, r < r2 < rx.

• (P, r ) |=TLfl £»i A D2 iff (p, r) \=TLR Di and (p, r) \=TLR D2.
• (P, r) \=TLR ~>D iff not (p, r) (=rifi £>•

Let us fix an individual variable t. Let Z?(ii, . . . i n ) be a TLR formula with free vari-
ables in the set {xi.. . x n } . Our translation will map D to Lf formulaD'(x\,. ..xn,t)
with free second-order variables x\,...xn and free individual variable t.

The following theorem will hold for the translation Tr presented below.

THEOREM 4.1

Let D be a TLR formula. Then (p, r) \=TLR D iff (p, [t -¥ r] ) |= Tr(D), where
[t —> r] is the environment that assigns to the first-order variable t the real number r.

The translation is defined as follows:

• Tr(x) is defined as x(t).

• Tr(£>i A D2) is defined as Tr{Dl) ATr(D2).

• Tr(-.£>) is defined as -tfV(D).
• T r ( O ^ ) is defined as 3tx > t.Vt2. (t < t2 < h) -> (D{f2/t}).

• Tr(QD) is defined as 3ti < t.Vt2. (ti < t2 < t) -> (£>{t2/t».
• TrCDj 1/ £»2) is defined as 3*i > t.(D2{t1/t}) A Vt2.(t < t2 < fj) - • (I>i{t2/t}).

It is easy to see that Tr(D) is a first-order monadic formula and that Theorem 4.1
holds.

Let QTLR be the extension of TLR by the quantifiers over the variables, i.e. QTLR
is obtained by adding to the syntax of TLR the clause: if D is a formula then 3x.D is a
formula; the semantical clause for 3-quantifier is defined precisely as for the standard
second-order existential quantifier. The translation is extended to QTLR by the rule
Tr(3x.D) is 3x.Tr(D). It is immediate that Theorem 4.1 holds for QTLR.

As a consequence of Theorem 4.1 and Theorem 3.2 we obtain the following corollary.

COROLLARY 4.2

The extension of TLR by the quantifiers is decidable.
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On the Decidability of Continuous Time Specification Formalisms 675

4-2 Restricted duration calculus

The restricted duration calculus is a fragment of duration calculus in which metric
properties are ignored and state variables are interpreted as finitely variable Boolean
signals.

The state expressions are constructed from state variables by Boolean operations.
We will use 5 to range over the state expressions and X to range over the state
variables.

The formulas of RDC are defined by the following grammar:

D ::= [5] \D~~*D \ -*D \ D A D , where S ranges over state expressions.

The atomic formulas of RDC are the formulas of the form [5] and other formulas are
obtained from atomic formulas by applying propositional connectives and the 'chop'
operator ~ of interval temporal logic [9, 7].

An environment maps the state variables to finitely variable signals. The meaning
of a state expression S in an environment p is a signal [\S\]p defined as follows:

• [\x\]p is p(x).
• [\SX A S2DP is [|Si|]p&[|S2|]p, where & is the pointwise extension of the conjunc-

tion to signals, i.e. for every time moment r the value of [\SX A S2\]p at r is the
conjunction of the values of [|Si|]p and [|S2|]p at r.

• [HSIJp is not[|S|]p, where not is the pointwise extension of the negation to
signals.

Given an environment p and real numbers b and e, the satisfiability of RDC formulas
in the interval [b, e]. under environment p is defined as follows:

• (p, [b, e]) \=RDC \S] iff b < e and [\S\]p has the value TRUE almost everywhere
in the interval [b, e], i.e., /ft

e[|5|]p = e — b. However, since [\S\]p is a finitely variable
signal, this requirement is equivalent to the requirement that [\S\]p receives the
value FALSE at a finite number of points in the interval [b, e],

• (p, [b, e]) \=RDC DX~D2 iff (p, [b, m]) \=RDC DX and (p, [m, e]) j= f l Dc D2 for
some m in the interval [b, e]. Thus, D\^D2 is true in an interval if the interval
can be partitioned ('chopped') into two parts such that D\ is true in the first part
and JD2 is true in the second part.

• (p, [b, e]) \=RDC Dx A D2 iff (p, [b, e)) \=RDC Dx and (p, [b, e]) \=RDC Dx.

• (p, [b, e]) \=RDC -£> iff not (p, [b, e]) \=RDc D.

Let us fix two individual variables t and t'. Our translation Tr of RDC into monadic
logic is parameterized by these two variables. Let D(xx,...xn) be a RDC formula
the free variables {xx...xn}- Our translation will map D(xx,.. .xn) into L% for-
mula D'(xx,.. .xn,t,f) with free second-order variables xi,...xn and free individual
variables t, t1. The following theorem will hold for the translation Tr presented below.

THEOREM 4.3

Let D be a RDC formula. Then (p, [b, e]) \=RDC D if and only if (p, [t -4 r, t' -»•
e]) ^= Tr(D), where [t -> b, f -> e] is the environment that assigns to the first-order
variables t and t' real numbers b and e.
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676 On the Decidability of Continuous Time SpeciBcation Formalisms

The translation TV is defined as follows:
State expressions: The translation of a Boolean combination 5 of state variables

i i . . . xn is the formula 5', obtained from 5 by simultaneous substitution of Xj(t) for
Xi\ hence, Tr{S) has the second-order variables x\,...xn and only one free individual
variable t.

Note that a Boolean combination of finitely variable signals is a finitely variable
signal. Therefore, [\S\]p can change only a finite number of times in a bounded inter-
val. Therefore, [\S\]p is true almost everywhere in [b, e] iff for every m in the interval
(b, e) the signal defined by the state expression 5 holds in some open subinterval with
m as its right endpoint and in some open subinterval with m as its left endpoint.

Hence, the translation of [5] is defined as

t <
Vfi.

Vti.

t'A
t <
t <

h
ti

<
<

t'-H
f - i

• ( 3*2

• ( 3*2

.t <

•h

Ct2 <

< t2

: ti A Vt3.f2

< if A Vt3.t!
< t 3 <
< t 3 <

: ti -• Tr(5){<3/i})A
•+ rr(5){t3/t})

Tr(D^D2) is defined as 3tl.Tr{Dx){tl/t!) ATr(D2){h/t).
Propositional connectives are translated as usual. Namely, Tr(->D) is ->Tr(D) and

Tr{Di A D2) is Tr(£>i) A Tr{D2)
It is easy to see that Tr(D) is a first-order monadic formula and that Theorem 4.3

holds.
The extension QRDC of RDC by the quantifiers over the state variables, is ob-

tained by adding to the syntax of RDC the clause: if D is a formula then 3x.D is a
formula; the semantical clause for 3-quantifier is defined precisely as for the standard
second-order existential quantifier. The translation is extended to QRDC by the rule
Tr(3x.D) is 3x.Tr(D). It is immediate that Theorem 4.3 holds for QTLR.

As a consequence of Theorem 4.3 and Theorem 3.2 we obtain the following corollary.

COROLLARY 4.4
The extension of RDC by the quantifiers over the state variables is decidable.

4-3 Propositional mean value calculus

The set of propositional mean value calculus formulas is defined precisely as the set
of RDC formulas, except that formulas of the form [5] are replaced by the formulas
\S]°.

(p, [b, e]) ^MVC \&}° iff 6 = e and the value of the signal assigned to 5 in the
environment p is TRUE at the time moment e.

We translate \S]° as t = t' A Tr(S).
The semantics of chop and of the propositional connectives is defined precisely as

in RDC. Also for chop and for the propositional connectives the translation is defined
precisely as the translation of the corresponding RDC constructs.

It is easy to see that Tr maps PMVC formulas into first-order monadic formulas
and the following theorems hold.

THEOREM 4.5
Let D be a PMVC formula. Then (p, [b, e]) \=Mvc D if and only if (p, [t -> r, f ->
e]) [= Tr(D), where [t —> b, t' —> e] is the environment that assigns to the first-order
variables t and t' real numbers b and e.
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On the Decidability of Continuous Time Specification Formalisms 677

COROLLARY 4.6
The extension of PMVC by the quantifiers over the state variables is decidable.

Pandya [11] considered extensions of PMVC by other modalities. He provided a
compositional translation of these extensions into monadic logic. Note that finite
variability of signals was not assumed in [11].

5 Conclusion and related results

In this paper we have shown that monadic second-order logic over signals is decid-
able. We also illustrated the expressive power of this logic by providing composi-
tional translations of three typical formalisms for the specification of continuous time
behaviour, the temporal logic of reals [8], the restricted duration calculus and the
propositional mean value calculus into first-order fragment of monadic logic. More-
over, these translations are almost direct reformulations of the semantical definitions
of these formalisms. Hence, we immediately obtained the decidability of the above
formalisms. Moreover, this proof can be immediately adapted to show that the ex-
tensions of TLR, of RDC and of PMVC by the quantifiers are decidable.

The time complexity of all three translations is linear and hence the deciding satisfi-
ability/validity of TLR, RDC, PMVC formulas is linear time reducible to the problem
of deciding satisfiability/validity of monadic first-order logic of order in the finitely
variable structures. The space complexity of this problem is non-elementary [10, 17],
i.e. there is no k such that the satisfiability of first-order monadic formulas of size n
can be decided in space expt(n) where exp*(n) is the fc-times iterated exponential
function (e.g. exp2(n) — 22"). The complexity of the satisfiability problems for RDC
and PMVC is also non-elementary [16]. In [8] the complexity of the decision algo-
rithm for TLR was not analysed. Most probably the algorithm has exponential time
complexity and the satisfiability of TLR is PSPACE complete.

There exists a natural one-one correspondence between the set of signals over the
alphabet {0,1}" and the set of second-order environments for variables {x\,..., i n } .
With a formula rp(xi,... ,xn) the set of signals which satisfies rp through this cor-
respondence can be associated. Such a set of signals is called the signal language
definable by rp. Note that our proof of Theorem 3.2 does not provide any information
about signal languages that can be defined in monadic logic.

Let us comment about metrical extensions of monadic logic of order. In the lit-
erature instead of Lf the language of monadic second-order theory of one successor
(denoted as SIS) is often considered. The language of SIS is obtained by extending
Lf by the function Xt.t + 1. For the structure u of natural numbers (see Section
2.3.1), the successor function Xt.t + 1 is definable in Lf hence these two languages
are equivalent. For continuous structures, SIS is more expressive than Lf. It is easy
to show that the validity of SIS is undecidable for the signal structure.

A signal has a variability k if it does not change more than k times in any interval of
length 1. A signal has bounded variability if for a natural number k it has variability
k. Wilke [19] has shown that for any fixed k, the validity problem of SIS for signals
of variability k is decidable. One can show that even for the first-order fragment of
SIS the validity problem is undecidable for signals with bounded variability.

The full duration calculus, the mean value calculus and the temporal logic of reals
allow one to specify metrical properties. All these formalisms are undecidable. It is
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678 On the Decidability of Continuous Time Specification Formalisms

very important to find decidable fragments of monadic logic or of these formalisms
which still allow to specify a wide spectrum of 'natural' problems that arise in practice.

Acknowledgements
I would like to thank the anonymous referee for his helpful suggestions.

References
[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126, 183-235,

1994.
[2] H. Baringer, R. Kuiper and A. Pnueli. A really abstract concurrent model and its fully ab-

Btract semantics. In Proceedings of the 13th ACM Symposium on Principles of Programming
Languages, pp. 173-183, 1986.

[3] J. Buchi. On a decision method in restricted second order arithmetic. In Proceedings of
International Congress on Logic, Methodology and Philosophy of Science, E. Nagel et al. eds.
pp. 1-11. Stanford University Press, 1960.

[4] Z. Chaochen, M. Hansen and P. Sestoft. Decidability and undecidablity results for Duration
Calculus. In STACS'93, Vol. 665 of Lecture Notes in Computer Science, pp. 58-68, 1993.

[5] Z. Chaochen, C. A. R. Hoare and A. Ravn. A calculus of duration. Information Processing
Letters, 40, 269-279, 1991.

[6] Z. Chaochen and L. Xiaoshan. A mean value calculus of duration. In A Classical Mind: Essays
in Honor of C. A. R. Hoare, pp. 431-451. Prentice Hall, 1994.

[7] J. Halperin, B. Moszkowski and Z. Manna. A prepositional modal logic of time intervals. In
Proceedings of Logic in Computer Science, pp. 279-292. 1986.

[8] Y. Kesten, Z. Manna and A. Pnueli. Temporal verification of simulation and refinement. In A
Decade of Concurrency: Reflections and Perspectives. Vol. 803 of Lecture Notes in Computer
Science, pp. 273-346, 1993.

[9] B. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Stanford, 1983.
[10] A. R. Meyer. Week monadic second order theory of successor is not elementary-recursive. Mac

Tech. Memo 38. MIT Project MAC, 1973.
[11] P. Pandya. Some extensions to prepositional mean value calculus: expressiveness and decid-

ability. In Proceedings of Computer Science Logic 95. Vol. 1092 of Lecture Notes in Computer
Science, 1995.

[12] M. Rabin, Decidability of second order theories and automata on infinite trees. In Transactions
of the American Mathematical Society, 141, 1-35, 1969.

[13] M. Rabin. Decidable theories. In Handbook of Mathematical Logic, J. Barwise ed. North-
Holland, 1977.

[14] A. Rabinovich. On translation of temporal logic of actions into monadic second order logic. To
appear in Theoretical Computer Science.

[15] A. Rabinovich. On Expressive Completeness of Temporal Logic of Action. (Draft)
[16] A. Rabinovich. Non-elementary lower bound for prepositional duration calculus. To appear in

Information Processing Letters.
[17] L. Stockmeyer. The Complexity of Decision Problems in Automata and Logic, PhD thesis,

MIT, 1974.
[18] S. Shelah. The monadic theory of order. Ann. of Math., 102, 349-419, 1975.
[19] T. Wilke. Specifying timed state sequences in powerful decidable logic and timed automata. In

Vol. 863 of Lecture Notes in Computer Science, 1994.
[20] L. Xiaoshan. A Mean Value Duration Calculus, PhD thesis, Institute of Software, Academia

Sinica, Bejing, 1993.

Received 19 November 1996

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/8/5/669/1040406 by Tel Aviv U
niversity user on 28 M

ay 2021


