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Algorithm. If there is a conjunct � $ � � % replace all occur-

rences of � $ by � % and remove the conjunct � $ � � %.
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Lemma. The satisfiability problem over Q for quantifier free
formulas is decidable.
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The last case to consider:
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#

) #
where every ) # is of the form � % � � � or � � � � % or � � � � �.
If � � � � � is one of the conjunct replace the formula by

� � � � �

Otherwise replace it by % - / * 0 - 1 � % � � 0 where

2 � 3

iff

� % � � � is one of the conjuncts and 4 � 5

iff � � � � 0 is one
of the conjuncts.
Example:+ � � � � � � �  ! � � � � " ! � 6 � � � ! � 7 � � � �
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Validity Problem
Instance: a formula

�

Question: Is

�

valid?

Theorem (Church) The validity problem is undecidable. (i.e.,

there is no algorithm for the validity problem).
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1. Deep analysis of the notion of algorithm.

The analysis is done in the course of Automata and
Computability
The halting problem is undecidable
Instance: a Turing machine M
Question: Does M stops on all inputs.

2. Reduction techniques
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Reduction Technique - an Example

Satisfiability Problem
Instance: a sentence

�

Question: Is

�

satisfiable?

Reduction from Validity to satisfiability.�

is valid iff & �

is unsatisfiable.

Since Validity problem is undecidable we obtain that
satisfiability problem is undecidable.
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Reduction Technique

Assume that

� � and

�  are two decision problems
Def. An algorithm

8

is a reduction from
� � to
�  if it maps

every Yes-instance of
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Signature a constant ), two unary function
8? �
8 � and a

binary predicate

5

For every instance

@

of the Post Problem we construct a
formula

� A

such that

@

has a solution iff

� A

is valid.

Notations For a string B � C � � 	 	 	 C $ over

� ;
�

� 


we write

8
D

� � � as a shorthand for
8

E <
� 8

E =
�

	 	 	
� 8

E >
� � � � �

	 	 	
�

.
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Proof By induction on R.
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- follows from

� A
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- use

� A
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The direction of the Correctness
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The Universe all strings over
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�
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.
The interpretation of

8 � :

8 �
�

� B � � � B (put 1 in the front of
the string B).
The interpretation of

8? :

8 �
?

� B � � ; B

The interpretation of ): the empty string T.
The interpretation of

5

:

5 � � B � U � iff there is a sequence

� � � 	 	 	 �
�

N such that B V � � < � � = H H H � � Q and U V � � <
� � = H H H � � Q .

Observation

� A
� and

� A
 hold in .

Therefore, if

� A

is valid then there is a string B such that

5 � � B � B � .

Hence, (by the definition of

5 �

) the

@

instance of the Post

problem has a solution.
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