AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE
LANGUAGES

ALEXANDER RABINOVICH AND DORON TIFERET

Tel Aviv University, Israel
e-mail address: rabinoa@tauex.tau.ac.il
URL: https://www.cs.tau.ac.il/ rabinoa

Tel Aviv University, Israel
e-mail address: sdoronb.t2@Qgmail.com

ABSTRACT. An automaton is unambiguous if for every input it has at most one accepting
computation. An automaton is k-ambiguous (for k£ > 0) if for every input it has at most
k accepting computations. An automaton is boundedly ambiguous if it is k-ambiguous
for some k € N. An automaton is finitely (respectively, countably) ambiguous if for every
input it has at most finitely (respectively, countably) many accepting computations.

The degree of ambiguity of a regular language is defined in a natural way. A language is
k-ambiguous (respectively, boundedly, finitely, countably ambiguous) if it is accepted by
a k-ambiguous (respectively, boundedly, finitely, countably ambiguous) automaton. Over
finite words every regular language is accepted by a deterministic automaton. Over finite
trees every regular language is accepted by an unambiguous automaton. Over w-words every
regular language is accepted by an unambiguous Biichi automaton and by a deterministic
parity automaton. Over infinite trees Carayol et al. showed that there are ambiguous
languages.

We show that over infinite trees there is a hierarchy of degrees of ambiguity: For every
k > 1 there are k-ambiguous languages that are not £ — 1 ambiguous; and there are
finitely (respectively countably, uncountably) ambiguous languages that are not boundedly
(respectively finitely, countably) ambiguous.

1. INTRODUCTION

Degrees of Ambiguity. The relationship between deterministic and nondeterministic machines
plays a central role in computer science. An important topic is a comparison of expressiveness,
succinctness and complexity of deterministic and nondeterministic models. Various restricted
forms of nondeterminism were suggested and investigated (see [6, 11] for recent surveys).
Probably, the oldest restricted form of nondeterminism is unambiguity. An automaton is
unambiguous if for every input there is at most one accepting run. For automata over finite
words there is a rich and well-developed theory on the relationship between deterministic,
unambiguous and nondeterministic automata [11]. All three models have the same expressive
power. Unambiguous automata are exponentially more succinct than deterministic ones,

Key words and phrases: regular tree languages, parity tree automata, automata ambiguity.

Preprint submitted to © A. Rabinovich and D. Tiferet
Logical Methods in Computer Science © Creative Commons

http://creativecommons.org/about/licenses

2 A. RABINOVICH AND D. TIFERET

and nondeterministic automata are exponentially more succinct than unambiguous ones
[13, 14].

Some problems are easier for unambiguous than for nondeterministic automata. Asshown
by Stearns and Hunt [21], the equivalence and inclusion problems for unambiguous automata
are in polynomial time, while these problems are PSPACE-complete for nondeterministic
automata.

The complexity of basic regular operations on languages represented by unambiguous
finite automata was investigated in [12], and tight upper bounds on state complexity
of intersection, concatenation and many other operations on languages represented by
unambiguous automata were established.

It is well-known that the tight bound on the state complexity of the complementation of
nondeterministic automata is 2". In [12], it was shown that the complement of the language
accepted by an n-state unambiguous automaton is accepted by an unambiguous automaton
with 20-79n+logn states.

Many other notions of ambiguity were suggested and investigated. A recent paper [11]
surveys works on the degree of ambiguity and on various nondeterminism measures for finite
automata on words.

An automaton is k-ambiguous if on every input it has at most k accepting runs; it is
boundedly ambiguous if it is k-ambiguous for some k; it is finitely ambiguous if on every
input it has finitely many accepting runs.

It is clear that an unambiguous automaton is k-ambiguous for every k > 0, and a
k-ambiguous automaton is finitely ambiguous. The reverse implications fail. For e-free
automata over words (and over finite trees), on every input there are at most finitely many
accepting runs. Hence, every e-free automaton on finite words and on finite trees is finitely
ambiguous. However, over w-words there are nondeterministic automata with uncountably
many accepting runs. Over w-words and over infinite trees, finitely ambiguous automata are
a proper subclass of the class of countably ambiguous automata, which is a proper subclass
of nondeterministic automata.

The cardinality of the set of accepting computations of an automaton over an infinite
tree t is bounded by the cardinality of the set of functions from the nodes of ¢ to the
state of the automaton, and therefore, it is at most continuum 280. The set of accepting
computations on ¢ is definable in Monadic Second-Order Logic (MSO). In Barany et al. in
[2] it was shown that the continuum hypothesis holds for MSO-definable families of sets.
Therefore, if the set of accepting computations of an automaton on a tree t is uncountable,
then its cardinality is 280, Hence, there are exactly two infinite degrees of ambiguity.

The degree of ambiguity of a regular language is defined in a natural way. A language
is k-ambiguous (respectively, boundedly, finitely, countably ambiguous) if it is accepted by a
k-ambiguous (respectively, boundedly, finitely, countably ambiguous) automaton.

Over finite words, every regular language is accepted by a deterministic automaton.
Over finite trees, every regular language is accepted by a deterministic bottom-up tree
automaton and by an unambiguous top-down tree automaton. Over w-words every regular
language is accepted by an unambiguous Biichi automaton [1] and by a deterministic parity
automaton.

Hence, the regular languages over finite words, over finite trees and over w-words are
unambiguous.

In [5] it was shown that the aforementioned situation is different for infinite trees.
Carayol et al. [5] proved that the language L3, of infinite full-binary trees over the alphabet

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 3

{a,c}, defined as L3, := {t | t has at least one node labeled by a} is ambiguous. The proof
is based on the undefinability of a choice function in Monadic Second-Order logic (MSO)
[10, 4].

Our results imply that the complement of every countable regular language is not
finitely ambiguous. Since L3, is the complement (with respect to the alphabet {a, c}) of the
language that consists of a single tree (i.e. the tree with all nodes labeled by ¢), we conclude
that L3, is not finitely ambiguous (this strengthens the above mentioned result of [5]). Our
main result states that over infinite trees there is a hierarchy of degrees of ambiguity:

Theorem 1.1 (Hierarchy). (1) For every k > 1 there are k-ambiguous languages that are
not (k — 1)-ambiguous.

(2) There are finitely ambiguous languages that are not boundedly ambiguous.

(3) There are countably ambiguous languages that are not finitely ambiguous.

(4) There are uncountably ambiguous languages that are not countably ambiguous.

Some natural tree languages that witness items (1), (3) and (4) of Theorem 1.1 are
described in the examples below. We have not found a “natural” finitely ambiguous language
which is not boundedly ambiguous (Theorem 1.1(2)).

Examples 1.2. Let Ty be the set of all infinite full-binary trees over an alphabet X. Let

Yp ={c,a1,a2,...,a;}, and let Lo, :={t € Ts, | no node in ¢ is labeled by a;} for 1 <i <n.

Define:

(1) Lgyvev-ay = Lg, U-+-UL—q,. We show that this language is k-ambiguous, but is not
(k — 1)-ambiguous (see Sect. 5). In [3] it was shown that Lq,y-q, iS two ambiguous.

(2) Lag, := {t € T3}, | there exists an a;-labeled node in ¢}. This is a countably ambiguous
language that is not finitely ambiguous (see Sect. 4).

(3) Lno—max—a, := {t € T35, | above every a;-labeled node in ¢ there is an a;-labeled node}.

This is an uncountably ambiguous language that is not countably ambiguous (see Sect.
7).

Organization of the paper: In Sect. 2 we recall notations and basic results about
automata and monadic second-order logic. In Sect. 3 simple properties of languages are
proved. Sect. 4 gives a sufficient condition for a language to be not finitely ambiguous.
The proof techniques used in Sect. 4 refine the proof techniques of [5] - we rely on the
fact that a choice function is not MSO-definable to obtain a lower bound for degree of
ambiguity that is higher than the bound which was presented in [5]. Sect. 5 deals with
k-ambiguous languages - for every k € N, we describe a k-ambiguous language that is not
(k—1)-ambiguous. Sect. 6 provides an example of a finitely ambiguous language which is not
boundedly ambiguous. Sect. 7 introduces a scheme for obtaining uncountably ambiguous
languages from languages that are not boundedly ambiguous, and presents some natural
examples of uncountably ambiguous languages. In Sect. 8, relying on the characterization
of countable regular languages given by Niwinski [16], we prove that every countable tree
language is unambiguous. The conclusion is given in Sect. 9.

An extended abstract of this paper was published in [19]. Here we added those proofs
which were sketched or missing in [19], presented natural examples of uncountably ambiguous
languages (in Sect. 7), and added Sect. 8 in which we prove that countable languages are
unambiguous.

4 A. RABINOVICH AND D. TIFERET

2. PRELIMINARY

We recall here standard terminology and notations about trees, automata and logic [17, 18].
In Subsect. 2.3 we also recall Gurevich-Shelah’s theorem about undefinability of choice
function and derive Lemma 2.5 which plays an important role in our proofs.

2.1. Trees. We view the set {l,r}* of finite words over alphabet {l,r} as the domain of a
full-binary tree, where the empty word e is the root of the tree, and for each node v € {I,r}*,
we call v - [the left child of v, and v - r the right child of v.

We define a tree order “<” as a partial order such that Vu,v € {l,r}* :u <wviff uis a
prefix of v. Nodes u and v are incomparable - denoted by u L v - if neither v < v nor v < wu;
a set U of nodes is an antichain, if its elements are incomparable with each other.

We say that an infinite sequence m = wvg,v1,... is a tree branch if vg = ¢ and
VieN:v1 =v-lorvi =v;-r.

If 3 is a finite alphabet, then a >-labeled full-binary tree t is a labeling function
t:{l,r}* = X. We denote by Ty the set of all ¥-labeled full-binary trees. We often use
“tree” for “labeled full-binary tree.”

Given a Y-labeled tree ¢t and a node v € {l,7}*, the tree t>, (called the subtree of ¢,
rooted at v) is defined by t>,(u) := t(v - u) for each u € {I,r}*.

Grafting. Given two labeled trees ¢; and t9 and a node v € {l,7}*, the grafting of t2 on v
in t1, denoted by t[ta/v], is the tree ¢ that is obtained from ¢; by replacing the subtree of t;
* . —

rooted at v by ty. Formally, t(u) := fa(w) 3w € {.l,r} s

ti(u) otherwise

More generally, given a tree t1, an antichain Y C {l,7}* and a tree ty, the grafting of t,
on Y in ¢y, denoted by t1[t2/Y], is obtained by replacing each subtree of ¢; rooted at a node
y € Y by the tree to.

Tree Language. A language L over an alphabet ¥ is a set of 3-labeled trees. We denote
by L =T \ L the complement of L.

2.2. Automata.

2.2.1. w-word Automata.

Parity w-word Automata (PWA). A PWA is a tuple (Q4,%,Qr,d,C) where ¥ is a
finite alphabet, @ is a finite set of states, Q; C @ is a set of initial states, d C Q x X x @
is a transition relation, and C : Q — N is a coloring function. A run of A on an w-word
Yy = apay ... is an infinite sequence p = qoqi ... such that qo € Qr, and (g;, ai, ¢i+1) € 0 for
all 1 € N. We say that p is accepting if the maximal number that occurs infinitely often in
C(q0)C(q1) - .. is even.

Language. We denote the set of all accepting runs of A on y by ACC(A,y). The language
of A is defined as L(A) := {y € ¢ | ACC(A,y) # 0}.

2.2.2. Infinite Tree Automata.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 5

Parity Tree Automata (PTA). A PTA is a tuple (Q4,%,Qr,0,C) where § C @ x ¥ X
Q%X Q,and X, Q, Qr, F are defined as in PWA. A computation of A on a tree t is a function
¢ {l,r}* = @Q such that ¢(e) € Qr, and Vv € {[,7}* : (¢(v),t(v),d(v-1),Pp(v-7)) € 6. We
say that ¢ is accepting if for each tree branch # = vgv; ..., the maximal number that occurs
infinitely often in C(¢(vo))C(¢(v1)) ... is even.

Given a PTA A = (Q4,%,Q1,04,C4) and a set Q' C Q4, we define Ay =
(Qa,%,Q",04,Cy) as the automaton obtained from A by replacing the set of initial states
Qr with Q'. For a singleton Q" = {q}, we simplify this notation by Ag := Ag.

Language. We denote the set of all accepting computations of A on t by ACC(A,t). The
language of A is defined as L(A) := {t € T¥ | ACC(A,t) # 0}. A tree language is said to
be regular if it is accepted by a PTA.

A state ¢ € Q of a PTA A is called useful if there is a tree t € L(A), a computation
¢ € ACC(A,t) and a node v € {l,r}* such that ¢(v) = ¢. Throughout the paper we will
assume that all states of PTA are useful.

Degree of Ambiguity of an Automaton. We denote by | X| the cardinality of a set X.
An automaton A is k-ambiguous if [ACC(A,t)| < k for all ¢ € L(A); A is unambiguous if it
is 1-ambiguous; A is boundedly ambiguous if there is k € N such that A is k-ambiguous; A
is finitely ambiguous if ACC(A,t) is finite for all ¢; A is countably ambiguous if ACC(A,t)
is countable for all ¢.

The degree of ambiguity of A (notation da(A)) is defined by da(A) := k if A is k-
ambiguous and either £ = 1 or A is not k — 1 ambiguous, da(A) := finite if A is finitely
ambiguous and not boundedly ambiguous, da(A) := Ny if A is countably ambiguous and not
finitely ambiguous, and da(A) := 2% if A is not countably ambiguous.

We order the degrees of ambiguity in a natural way: i < j < finite < Xg < 280, for
i<jeN.

Degree of Ambiguity of a Language. We say that a regular tree language L is unambigu-
ous (respectively, k-ambiguous, finitely ambiguous, countably ambiguous) if it is accepted
by an unambiguous (respectively, k-ambiguous, finitely ambiguous, countably ambiguous)
automaton. We define da(L) := ming{da(A) | L(A) = L}.

2.3. Monadic Second-Order Logic. We use standard notations and terminology about
monadic second-order logic (MSO) [18, 23, 22].
Let 7 be a relational signature. A structure (for 7) is a tuple M = (D, {R™ | R € 7})
where D is a domain, and each symbol R € 7 is interpreted as a relation R on D.
MSO-formulas use first-order variables, which are interpreted by elements of the structure,
and monadic second-order variables, which are interpreted as sets of elements. Atomic
MSO-formulas are of the following form:

e R(z1,...,xy,) for an n-ary relational symbol R and first order variables z1,...,z,
e 1 = y for two first-order variables x and y
e x € X for a first-order variable x and a second-order variable X
MSO-formulas are constructed from the atomic formulas, using boolean connectives, the
first-order quantifiers, and the second-order quantifiers.

We write ¢(Xy,..., Xy, 21, ...,%,) to indicate that the free variables of the formula
¥ are X1,..., X, (second order variables) and 1, ...,z (first order variables). We write

6 A. RABINOVICH AND D. TIFERET

M = ¢(Aq, ..., Ap,a1,...ap) if ¥ holds in M when subsets A; are assigned to X; for
i =1,...,n and elements a; are assigned to variables x1,...,x,, fori=1,...,m.

Coding. Let A be a finite set. We can code a function from a set D to A by a tuple of
unary predicates on D. This type of coding is standard, and we shall use explicit variables
that range over such mappings and expressions of the form “F(u) = d” (for d € A) in
MSO-formulas, rather than their codings.

Formally, for each finite set A we have second-order variables X 1A, XQA, ... that range
over the functions from D to A, and atomic formulas X2 (u) = d for d € A and u a first
order variables [23]. Often the type of the second order variables will be clear from the
context and we drop the superscript A.

Definable Relations. The powerset of D is denoted by P(D). We say that a relation
R CP(D)" x D™ is MSO-definable in a structure S with universe D if there is an MSO-
formula (X7, ..., Xp, 21, .., %) such that R = {(D1, ..., Dp,u1,...,un) € P(D)"x D™ |
S l: w(Dl...,Dn,ul...,um)}.

An element d € D is MSO-definable in a structure S if there is a formula (z) such
that S | ¢(u) iff u=d. A set U C D is MSO-definable if there is a formula ¢(X) such that
SE¢(V)iff V.=U. A function is MSO-definable if its graph is.

The unlabeled binary tree is the structure ({{,7}*,{E;, E;}) where E; and E, are binary
symbols, respectively interpreted as {(v,v-1) |v € {l,7}*)} and {(v,v-7)|v € {l,r}*)}.

It is easy to verify the correctness of the following lemma:

Lemma 2.1. The following relations are MSO-definable in the unlabeled full-binary tree.

e The ancestor relation <.

o “A set of nodes is a branch,” “A set of nodes is an antichain.”

o Let A =(Q,%,Q1,0,C) be a PTA. We use ¢ for a function {l,r}* — Q and o for a
function {l,r}* — 3.
— “¢ is a computation of A on the tree o.”
— “¢ is an accepting computation of A on the tree o.”

The following two fundamental theorems were proved by Rabin in his famous 1969 paper
[18].

Theorem 2.2 (Rabin [18]). A tree language is regular iff it is MSO-definable in the unlabeled
binary tree structure.

A labeled tree is regular iff it has finitely many different subtrees. An equivalent
definition is: a tree is regular iff its labeling is MSO-definable [18]. Hence, for every regular
Y-labeled tree tq there is an MSO-formula vy, (o), where o is the coding of {l,r}* — %,
that is satisfied by t : {I,7}* — X iff t = t,.

Theorem 2.3 (Rabin’s basis theorem [18]). Any non-empty regular tree language contains
a reqular tree.

Choice Function. A choice function is a mapping that assigns to each non-empty set of
nodes one element from the set.

Theorem 2.4 (Gurevich and Shelah [10]). There is no MSO-definable choice function on
the full-binary tree.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 7

The following lemma follows from Theorem 2.4. It plays a key role in our proofs in Sect.
4, where sufficient conditions are provided for a language to be not finitely ambiguous.

Lemma 2.5. There is no MSO-definable function that assigns to every non-empty antichain
Y a finite non-empty subset X C Y.

Proof. Assume, for the sake of contradiction, that a function that returns a finite non-empty
subset for each non-empty antichain is MSO-definable in the unlabeled full-binary tree, by
an MSO-formula FiniteAntichainSubset(X,Y).

Claim 2.5.1 (Choice function over finite sets). There is an MSO-definable function that
assigns to each non-empty finite set X C {l,r}* an element x € X.

b

Proof. We first define a lexicographic order “<;.,” on {l,7}*, by u <, v iff u is a prefix of
voru=w-l-u and v=w-r-v for some w, v, v € {l,r}*.

It is easy to verify that <j., is MSO-definable in the unlabeled full-binary tree. <, is
a linear order, and therefore each non-empty finite set has exactly one <j.,-minimal element.
We conclude that a finite set choice function is definable by FiniteChoice(X, x) :=“x is the
<jez-minimal element in X”. [|

Let FiniteChoice(X,x) be an MSO-formula that defines a function as in Claim 2.5.1.
We will use formulas Finite AntichainSubset(X,Y) and FiniteChoice(X,x) to define a
choice function by an MSO-formula Choice(X,) which is the conjunction of the following
conditions:

(1) 3Z : “Z is the set of <-minimal elements in X"
(2) 3Y : FiniteAntichainSubset(Z,Y)
(3) FiniteChoice(Y,x)

For each non-empty set X there is a unique subset Z C X of the <-minimal elements in
X. This set is a non-empty antichain, and therefore Finite AntichainSubset(Z,Y") returns
a finite subset Y C Z. Therefore, FiniteChoice(Y, z) returns an element in Y. We conclude
that Choice(X,) returns an element x € X and therefore defines a choice function in the
unlabeled full-binary tree, in contradiction to Theorem 2.4. []

3. SIMPLE PROPERTIES OF AUTOMATA AND LANGUAGES

In this section some simple lemmas are collected.

Lemma 3.1. Let .,41 = (Ql,Zl,Q}l,él,(Cl) and ./42 = (QQ,EQ,Q%l,(SQ,(CQ) be two PTA.

Then:

(1) There exists an automaton B such that L(B) = L(A;) U L(A3) and for each t €
L(A1)U L(Ap), |ACC(B,t)| < |ACC(A1,t)| + |[ACC(Aa,t)].

(2) There exists an automaton B such that L(B) = L(A;) N L(A3) and for each t €
L(A1) N L(Az), |[ACC(B,1)] < [ACC (AL, t)| - |[ACC(As,)]

Proof. (1) Assume that @1 and Qs are disjoint, and let B := (Q1U Q2,31 UX2, Q1 UQ%, 61 U
d2,C1 UCy). Tt is clear that L(B) = L(A;) U L(Ay).

Let t € L(B). By definition of B, for each ¢ € ACC(B,t) we either have ¢ € ACC(Ay,t)
or ¢ € ACC(Asg,t). Therefore, we obtain |[ACC(B,t)| = |[ACC(Ay,t)| + |ACC(Aa,t)|.

(2) It is easy to verify that there is an MSO-formula over w-words that holds for
w=(c1,c}),...,(ci,ci), - € (Image(Cy) x Image(Cy))* iff the maximal color that appears

7

8 A. RABINOVICH AND D. TIFERET

infinitely often in the first coordinate of w and the maximal color that appears infinitely often
in the second coordinate of w are both even. Therefore (by McNaughton’s Theorem [15])
there is a deterministic PWA D = (Qp, Xp, q}), 0p, Cp) over alphabet ¥p = Image(Cy) x
Image(Cy) such that w € L(D) iff the maximal color that appears infinitely often in the first
coordinate of w and the maximal color that appears infinitely often in the second coordinate
of w are both even.

We will use the automata A;,.42 and D to define a PTA B := (Qp, EB,QIB,ég,(CB)
which accepts L(A;) N L(As).

* Qp=Q1xQ2xQp

e Y =31 MNXs

o QF = Q; x QF x {a7'}

* ((¢,p,5),a,(q1,p1,51),(q2,p2,52)) € 05 iff (q,a,q1,q2) € 61, (p,a,p1,p2) € 62, and 51 =
sz = 0p(s, (C1(q), C2(p)))-

e Cs(q1,42,p) :== Cp(p)

It is easy to verify that L(B) = L(A;) N L(As).

Assume, for the sake of contradiction, that there exists ¢ such that |[ACC(B,t)| >
|[ACC(Ayp,t)| - JACC(Ag,t)|. Since D is deterministic, it follows that there is a computation
in ACC(B,t) such that either the projection of the first coordinate of ¢ on @, denoted ¢y,
is not in ACC(Aj,t) or the projection of the second coordinate of ¢ on Q2, denoted ¢o, is
not in ACC/(Az,t). Assume w.l.o.g. that ¢; ¢ ACC(A;,t). Therefore, there is a tree branch
T = v, V1, ... such that the maximal color that C; assigns to the states that occurs infinitely
often in ¢1(m) is odd. By definition of D we conclude that w := (co, ¢f), (¢1,¢}), ... ¢ L(D),
where ¢; := Cy(¢1(v;)) and ¢ := Ca(¢2(v;)). Hence, by definition of B we conclude that the
sequence of colors that Cp assigns to the states ¢() is exactly w, and therefore ¢ ¢ ACC(B, 1)
- a contradiction. []

From Lemma 3.1, we obtain:

Corollary 3.2. Boundedly, finitely and countably ambiguous tree languages are closed under
finite union and intersection.

We often use implicitly the following simple Lemma.

Lemma 3.3 (Grafting). Let A be an automaton, t, t1 trees, v € {l,r}* and ¢ € ACC(A,t),
and ¢1 € ACC(Ag, t1). If ¢(v) = q, then @lp1/v] is an accepting computation of A on
t[tl/’U].

A similar lemma holds for general grafting. As an immediate consequence, we obtain
the following lemma:

Lemma 3.4. da(A) > da(Ay) for every useful state q of A.

Corollary 3.5. Let A be a boundedly (respectively, finitely, countably) ambiguous PTA
with a set Q of useful states, and let Q' C Q. Then Ag is boundedly (respectively, finitely,
countably) ambiguous.

Lemma 3.6. Let Ly and Ly be two tree languages such that da(L1) # da(Le) and Ly C Lo.
Then, there exists a tree t € Lo \ L.

Proof. The lemma follows immediately, since otherwise we have L1 = Lo and therefore
da(Ly) = da(Lg), in contradiction to da(Ly) # da(Ls).]

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 9

Lemma 3.7. Let A = (Q,%,Q1,6,C) be a PTA. Then, there exists a PTA B =
(Qs, %, {d?}, 65, C) with single initial state such that L(B) = L(A), and da(B) < da(A).

P?"OOf. Let QB = Q U {Q?} and 0 := 6./4 U {(Q?aa7qla%") ’ qr € QI and (q17a7QZ7QT) S 6} It
is easy to see that L(B) = L(A).

Let t € L(A), and let g; be a function from ACC(A,t) to ACC(B,t) that maps each
computation ¢ € ACC(A,t) to a computation ¢’ that assigns ¢? to node ¢, and ¢(v) to
other nodes. It is easy to see that ¢’ € ACC(B,t), and that g; is surjective, and therefore
Vit |ACC(A,t)| > |ACC(B,1)|, as requested.]

Definition 3.8 (Moore machine). A Moore machine is a tuple M = (X,T',Q, q1, 6, out),
where ¥ is a finite input alphabet, @) is a finite set of states, ¢ € @ is an initial state,
0:Q x X — (@Q is a transition function, I' is an output alphabet, and out : Q — I' is an
output function.

Define 4 : * — @ by 6(€) := q; and 6(w) := §(d(w'), a) for w = w' - a where w' € £
and a € ¥. We say that a function F': ¥* — I is definable by a Moore machine if there is a

-~

Moore machine M such that F(w) = out(d(w)) for all w € ¥*.

Definition 3.9. Let F': 37 — ¥, be a function definable by a Moore machine, and let
t1 € Ty,. We define 5 := F(t) as a tree in Ty, such that t3(v) := F(t1(vy) - - - ta(vg))
where v1,v2, ..., v is the path from the root to v.

For a tree language L C T% , we define F(L):={F(t)|te L} C Ty,

Lemma 3.10 (Reduction). Let Ly and Lo be regular tree languages over alphabets X1 and
Yo, respectively. Let F : X7 — Yo be a function definable by a Moore machine. Assume that

for eacht € Tg , t € Ly iff F(t) € Ly. Then da(Ly) < da(Ls).

Proof. Let Ay = (Q2, Yo, Q%, d2,Cs) such that As accepts Lo and da(As) = da(Ls).
Let M = ($1,%2,Qun, ¢, 6ar, 0utps) be a Moore machine defining F. We will use
Az and M to define an automaton A; = (Q1,%1,Q},01,Cy) such that ¢t € L(A;) iff

F\(t) € L(Az), by:
* Q1 =Q2xQum
o Qp=Qf x{q1"}
* ((¢,p); a,(q1,p1), (q2,p2)) € 01 iff p1 = p2 = O (p, a) and (q, outrs(p), q1,¢2) € b2
* Ci(g,p) := Ca(q)

First notice that Vt € T% : t € L(A;) < F(t) € L(Ay) < F(t) € Ly & t € Ly, and
therefore L(A;) = L; as needed.

Let ¢ € ACC(A;,t), and define a computation ¢’ by ¢'(v) = ¢1 for ¢(v) = (¢1,92) €
Q2 X Qur. Tt is easy to see that ¢/ € ACC(Ag, F(t)) and since M is deterministic, we
conclude that [ACC(Ay,t)| < |[ACC(As, F(t)])], and therefore da(A;) < da(As).

We conclude that da(Lq) < da(A1) < da(Az) = da(L2), as requested. []

Let us state another well-known characterization of regular trees.

Fact 3.11. A tree t is regular iff its labelling ¢t : {l,7}* — X is definable by a Moore
machine.

10 A. RABINOVICH AND D. TIFERET

4. NoT-FINITELY AMBIGUOUS LANGUAGES

We provide here sufficient conditions for a language to be not finitely ambiguous. These
conditions will allow us to present some natural languages which are countably ambiguous
and not finitely ambiguous, proving Theorem 1.1(3). In addition, these results are used in
Sects. 5-7 where it is proved that for every k > 1 there is a language of ambiguity degree
equal to k and there are languages with finite and uncountable degrees of ambiguity.

First, we state our main technical result - Proposition 4.1. Then, we derive some
consequences. Finally, a proof of Proposition 4.1 is given. Our proof relies on the fact that
there is no MSO-definable function that assigns to every non-empty antichain Y a finite
non-empty subset X CY (Lemma 2.5), and our proof techniques refine the proof techniques
of [5]

Recall that for trees t and ¢’ and an antichain Y, we denote by ¢[t'/Y] the tree obtained
from ¢ by grafting ¢’ at every node in Y.

Proposition 4.1. Let tg and t1 be reqular trees and L be a reqular language such that to & L
and to[t1/Y] € L for every non-empty antichain Y. Then L is not finitely ambiguous.

Definition 4.2. For a tree language L over alphabet 3, we denote by Subtree(L) the tree
language {t € T¢ | I’ € L v : 15, =t}

Corollary 4.3. Let L be a non-empty regular language over an alphabet Y such that
Subtree(L) # Ty. Then, the complement of L is not finitely ambiguous.

Proof. Let L be as in Corollary 4.3. We claim that there are regular X-labeled trees tg € L
and t; & Subtree(L). Indeed, by Rabin’s basis theorem there is a regular tg € L. Since L is
regular, there is an automaton B = (Q, X, {qr}, 0, C) (with only useful states) that accepts L.
It is clear that Bg accepts Subtree(L), and therefore Subtree(L) is regular. The complement
of Subtree(L) is regular (as the complement of a regular language) and non-empty (since
Subtree(L) # Ty), and therefore contains a regular tree ¢; (by Rabin’s basis theorem). Note
that to[t1/Y] & L for every non-empty antichain Y.

The complement of L satisfies the assumption of Proposition 4.1. Therefore, it is not
finitely ambiguous. L]

Corollary 4.4 (Not finitely ambiguous languages). The following languages are not finitely
ambiguous:

(1) The complement of a non-empty regqular countable tree language.

(2) The complement of a regular language that contains a single tree.

(3) The language L3g, = {t € T | t has at least one node labeled by a1} over alphabet
Y =A{ai,...,am,c}.

Proof. (1) Let L be a non-empty regular countable tree language. Every tree has countably
many subtrees, and since L is countable we conclude that Subtree(L) is countable. Therefore,
Subtree(L) does not contain all trees. By Corollary 4.3, we conclude that L is not finitely
ambiguous.

(2) Follows immediately from (1).

(3) By the definition of L3,, we have L3, N T o = T oy \ {tc}, and therefore by (2),
L3, NT, f{’é) is not finitely ambiguous. It is easy to see that Tfé,al} is unambiguous (since
there is a deterministic automaton that accepts it). Therefore, by Corollary 3.2 we conclude
that L3,, is not finitely ambiguous. []

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 11

It is easy to prove that the complement of every finite language (i.e. a language which
consists of finitely many trees) is countably ambiguous. Therefore, we obtain:

Corollary 4.5. If L is reqular and its complement is finite and non-empty, then da(L) = Ry.
Proof of Corollary 4.5. We first prove the following claim:

Claim 4.5.1. Let L be a regular tree language containing a single tree. Then L is countably
ambiguous.

Proof. Assume that L = {t}. L is a regular language, and therefore ¢ is regular. By Fact 3.11
there is a Moore machine M = ({l,7}, %, Qur, ¢, Sr, outps) such that for each v € {I,7}*,

~

out(0(v)) = o iff t(v) = o (that is, M defines the function ¢ : {{,r}* — X).

We will use M to construct a countably ambiguous automaton A that accepts L by
guessing a node v € {l,7}* such that t(v) # t/(v) for each tree t' € L.

Let A:=(Qa,%,Qr,0,C) such that:

e Qu={q.q} xQum

e Qr:=1{(d.a}"))

e § is defined by:
- ((¢;p),a,(q,p"),(q,p")) € 6 iff 6 (p,1) =P, Sm(p,7) =p
- ((¢,p),a,(q,0), (q,0")) € 6 iff dar(p, 1) =9, dps(p,7) = p” and out(p) # a
- ((q/’p)’ a, (q/,p’), (q,p”)), ((q’,p), a, (Q7p/)7 (q/vp”)) €6 iff dm(p,l) = Y, om(psr) = j

and out(p) = a.

e VpeQuy:C(g,p):=0and C(¢,p):=1

By definition of A, it is clear that ¢ € L(.A) iff there is a node v such that ¢'(v) # t(v),
and therefore t' € L(A) iff t' # t.

For each computation ¢ of A on t/, the Q); component is determined deterministically
by M and t. If ¢ is accepting, there are finitely many nodes v such that the first component
of ¢(v) is ¢’ - otherwise, there would be a branch where the maximal color assigned infinitely
often by C is odd, in contradiction to ¢ being an accepting computation. Therefore, there
are countably many accepting computations on each tree t' € L(A), and A is countably

/!

/

ambiguous. |
L is finite and therefore there are ¢1,...,t; € T such that L = {t1,...,t;}. A finite
tree language does not contain a non-regular tree, and therefore t1,...,t; are regular. By

Claim 4.5.1, for each tree ¢; € L, there is a countably ambiguous automaton A; such that
t € L(A;) iff t # ;. Notice that L = L(A;) N...,NL(A), and therefore by Lemma 3.1 we
conclude that L is countably ambiguous.]

On the proof of Proposition 4.1. In the rest of this section, Proposition 4.1 is proved.
Let us sketch some ideas of the proof. For a language L, as in Proposition 4.1, and any
non-empty antichain Y we show that if A does not accept ¢y and accepts ¢ := tg[t;/Y], then
every ¢ € ACC(A,t) chooses (in an MSO-definable way) an element from Y. Hence, the
computations in ACC/(A,t) choose together a subset X of Y of cardinality < |ACC(A,t)]|
(each computation chooses a single element). Therefore, if A accepts L and is finitely
ambiguous, then X is finite - a contradiction to Lemma 2.5. To implement this plan,
in Subsect. 4.1 we recall a game theoretical interpretation of “a tree is accepted by an
automaton.” Then, in Subsect. 4.2 we analyze which concepts related to these games are
MSO-definable. Finally, in Subsect. 4.3, the proof is completed.

12 A. RABINOVICH AND D. TIFERET

4.1. Membership Game. Let A = (Q,>,{q},0,C) be a PTA, and let ¢ be a X-labeled
tree. A two-player game G; 4 (called a “membership game”) between Automaton and
Pathfinder is defined as follows. The positions of Automaton are {l,7}* x @, and the
positions of Pathfinder are {l,7}* x @ x Q. The initial position is (e, qr).

From a position (v,q) € {l,r}* x Q Automaton chooses a tuple (g, ¢.) € Q x @ such
that 3a € ¥ : (¢,a,q;,9-) € 6, and moves to the position (v,q,¢q,). From a position
(v,q1,q-) € {l,7}* x Q x Q Pathfinder chooses a direction d € {l,r}, and moves to the
position (v - d, qq).

We define a play s := eg,do,e1,d1,...,e;,di, - € (Q x Q x {l,r})¥ as an infinite
sequence of moves, corresponding to the choices of Automaton and Pathfinder from the
initial position. We say that the move e; = (g;,¢,) from position (v,q) is invalid for
Automaton if (g,t(v),q,qr) ¢ 0.

A strategy for a player in G 4 is a function that determines the next move of the
player based on previous moves of both players.

A positional strategy for a player in G; 4 is a strategy that determines the next move
of the player based only on the current position. A positional strategy for Automaton is a
function str : {l,r}* x Q@ — @ x @, and a positional strategy for Pathfinder is a function
STR :{l,r}* xQ xQ — {l,r}.

Let Cg be a coloring function that maps each position in G 4 to a color in N. We define
Cg (v, q) := C(q) for Automaton’s positions, and Cg(v, ¢, ¢r) := 0 for Pathfinder’s positions.

For each play s define 73 as the infinite sequence of positions corresponding to the
moves in 5. A play 3 is winning for Automaton iff 3 does not contain an invalid move for
Automaton, and the maximal color that Cg assigns infinitely often to the positions in 73 is
even. Since all Pathfinder’s positions are colored by 0, it is sufficient to consider the coloring
of Automaton’s positions in .

We say that a play is consistent with a strategy of a player if all moves of the player are
according to the strategy. A winning strategy for a player is a strategy such that each
play that is consistent with the strategy is winning for the player.

Parity games are positionally determined [7], i.e., for each parity game, one of the players
has a positional winning strategy. Therefore, if a player has a winning strategy, then he has
a positional winning strategy. Additionally, if a positional strategy of a player wins against
all positional strategies of the other player, then it is a winning strategy.

We recall standard definitions and facts about the connections between games and tree
automata [9, 17].

Let ¢ : {l,r}* — @ be a function such that ¢(¢) = ¢; and Yv € {l,r} : Ja € ¥ :
(p(v),a,p(v-1),p(v-r)) € §. We define a positional strategy stry : {[,r}* x Q = Q x Q
for Automaton, by stry(v,q) == (¢(v - 1), ¢(v - r)). Conversely, for each positional strategy
str: {l,r}* x Q@ — Q x Q of Automaton we construct a function ¢z, : {l,r}* — Q
by ¢(€) := ¢r and for all v € {l,r}* we set ¢(v-1) := ¢, and ¢(v - r) := g, where
StT’(U, ¢(U)) = (QZ7 QT)'

Claim 4.1.1. (1) Let 5 be a play that is consistent with stry, and let (v;,q;) be the i-th
position of Automaton in ms. Then, ¢(v;) = g;.

(2) If p € ACC(A,t), then stry is a positional winning strategy for Automaton.

(3) If str is a positional winning strategy for Automaton, then ¢g, € ACC(A,t).

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 13

Proof. (1) We will prove by induction on i. For i = 0 we have (vo, qo) = (€, ¢qr) (by definition
of Gy 4), and indeed ¢(vp) = ¢(€) = gr. Assume the claim holds for ¢ = k and we prove for
i=Fk+1.

Let d € {l,r} be the i-th move of Pathfinder in 5. By definition of G 4 we have
vip1 = v; - d, and g;y1 = qq, where strg(vi, ¢;) = (q1,qr)-

By definition strg we have (q,q,) = (¢(vi - 1), ¢(v; - 1)), and therefore g1 = ¢(v; - d) =
®(vit1), as requested.

(2) and (3) are well known results about membership games [17]. |

The next claim describes what happens when Pathfinder plays his winning strategy in
Gy 4 against an Automaton’s winning strategy in Gy 4 (for ¢’ # t).

Claim 4.1.2. Assume t ¢ L(A) and let ¢ be an accepting computation of A on a tree t',
and STR be a winning strategy of Pathfinder in Gy 4. Lets := eqg,do,e1,d1,...,¢€,d;, ...
be the play that is consistent with stry and STR. Then, there is i € N such that e; is an
invalid move for Automaton in Gt 4. Moreover, if e; is the first invalid move for Automaton
in's, then t(v) # t'(v) forv:=dy...di—1.

Proof. Assume, for the sake of contradiction, that 5 does not contain an invalid move for
Automaton, and let (vj, ¢;) be the i-th position of Automaton in 7mg. By definition of Gt 4
it is easy to see that m = vg,...,v;,... is a branch in the full-binary tree. Since ¢ is an
accepting computation of A on t/, we conclude that the maximal color that C assigns
infinitely often to states in ¢(m) is even. By Claim 4.1.1(1) we have ¢(v;) = g;, and therefore
¢(m) =qo...qi.... By the definition of Cg; we have Cg(vi,q;) = C(¢;) and we conclude
that the maximal color that C assigns infinitely often in 75 is even, and therefore the play is
winning for Automaton - a contradiction to ST R being a winning strategy of Pathfinder.
Therefore, Automaton makes an invalid move in 3. Let e; = (¢, ¢,) be the first invalid
move of Automaton in S. Since e; is invalid we have (q;, t(v;), qi, gr) ¢ ¢, and by definition of
strg we obtain (¢,) = (¢(vi-1), ¢(vi-r)). Since ¢(v;) = ¢; we have (¢(vs), t(vi), d(vi-1), d(vi-
r)) ¢ 8. ¢ is a computation of A on t' and therefore (¢(v;),t' (v;), p(v; - 1), d(v; - 7)) € 4, and
we conclude that ¢(v;) # ¢'(v;). Notice that by the definition of G; 4 we have v; =dp...d;_1,
and the claim follows. |

4.2. MSO-definability. Throughout this section we will use the following conventions and
terminology.

Positional Pathfinder strategies as labeled trees: A positional strategy STR for
Pathfinder is a function in {l,7}* x Q@ x @ — {l,r}. Hence, it can be consid-
ered as a @ x Q — {l,r} labeled tree. Below we will not distinguish between
a positional Pathfinder’s strategy and the corresponding @ x @ — {l,r} labeled
full-binary tree. In particular, we call such a strategy regular, if the corresponding
tree is regular.

MSO-definability: We will use “MSO-definable” for “MSO-definable in the unlabeled
full-binary tree.”

The rest of the proof deals with MSO-definability. By Claim 4.1.2, there is a function
Invalid (¢, STR,t,v) that, for every accepting computation ¢ of A on t', returns a node
v such that ¢'(v) # t(v). This function depends on the strategy STR of Pathfinder. The
restriction of Invalid4 to the Pathfinder positional winning strategies in Gy 4 is MSO-
definable (with parameters ¢t and STR) by the following formula Leads (¢, STR, t,v), that

14 A. RABINOVICH AND D. TIFERET

describes in MSO the play of ¢ against STR up to the first invalid move of Automaton (at
the position (v, p(v)).
Define Leads 4(¢, STR,t,v) as the conjunction of:

(1) ¢(e) = qr -the play starts from the initial position.

(2) Vu<v: ((p(u),t(u), p(u-1),p(u-r)) € § - all Automaton’s moves at the positions (u, q),
where u is an ancestor of v respect §. (By Claim 4.1.1(1), in any play consistent with ¢,
Automaton can reach only the positions of the form (u, ¢(u))).

(3) (p(v),t(v),p(v-1),¢(v-7)) ¢ 6 - the Automaton move at (v, ¢(v)) is invalid.

(4) Vu <v: (STR(u,¢(u-1),¢(u-r)) =1) <> u-1 <)) - the Pathfinder moves dy...d;...
are consistent with ST R and are along the path from the root to v, i.e., dod; ...d; < v.

To sum up, we have the following claim:

Claim 4.1.3. Leads (¢, STR,t,v) defines a function that, for every tree t ¢ L(A), every
Pathfinder’s positional (in Gy _a) winning strategy STR, and every ¢ € ACC(A,t), returns
a node v such that t(v) # t'(v).

Claim 4.1.3 plays a crucial role in our proof. It is instructive to compare it with Theorem
2.4 which implies that there is no MSO-definable function F' (¢, D,v) that for a tree t # ¢/
and D := {u | t(u) # t'(u)} returns a node v such that t(v) # t'(v).

The following claim is folklore. Due to the lack of references, it is proved in the Appendix.

Claim 4.1.4. Let tg be a regular tree such that to ¢ L(A). Then, Pathfinder has a regular
positional winning strategqy in Gy, A.

Let ty be a regular tree such that ty ¢ L(A). By Claim 4.1.4 there is a regular positional

winning strategy STR of Pathfinder in Giy,.4- Now, we can substitute STR and to for
arguments ST R and t of Leads 4 and obtain the following Proposition:

Proposition 4.6. For every regular tree to ¢ L(A) and a regular positional winning strategy

STR for Pathfinder in Gy, a, there is an MSO-definable function that, for each accepting
computation ¢ of A on t', returns a node v such that to(v) # t'(v).

Proof. Let t¢,(0) and o= (STR) be MSO-formulas that define ¢o and STR. Then, by
Claim 4.1.3, 303STR : iy, (o) A Lb@(STR) A Leads (¢, STR,0,v) defines such a function.
[

Let us continue with the proof of Proposition 4.1. Recall that for trees ¢ and ¢’ and an
antichain Y, we denote by ¢[t'/Y] the tree obtained from ¢ by grafting ¢’ at every node in Y.

Claim 4.1.5. Let tg and t1 be regular trees. Then, there is an MSO-formula graft, , (Y,0)
defining a function that for every antichain'Y returns the tree ty[t1/Y].

Proof of Claim 4.1.5. ty and t; are regular, and therefore there are MSO-formulas ¢, (o)
and 1y, (o) that defines ty and t;.

Let w,%y (y,0) be a formula that is obtained from v, (o) by relativizing the first-order
quantifiers to > y, i.e., by replacing subformulas of the form Jz(...) and Vz(...) by
Jz(x > y) A (...) and Vz(z > y) — (...). Then, v,t ¢t21y(y,a) iff t>, = t1. Hence,
graft, 4 (Y,o) can be defined as the conjunction of:

9

(1) Joovi,(00) A Vv - “if no Y node is an ancestor of v then o(v) = o¢(v),” and

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 15

(2) Vy(yeY) — ¢%y(y, o) - “at every node in Y a tree ¢; is grafted.”
|

4.3. Finishing Proof of Proposition 4.1. Now, we have all the ingredients ready for the
proof of Proposition 4.1.
Let A be such that L(A) = L, and let a, 4. 57R(®,v) be a formula that defines the

function from Proposition 4.6 (to[t1/Y] now takes the role of t').
Define a formula: C’hoiceAto,thﬁ(Y, b,y) =y YA EIv(atO’A’S/TT%(qﬁ, v) Av > y).

Claim 4.1.6. ChoiceA touts S/T\R(Y, ®,y) defines a function that for every non-empty an-
tichain Y and an accepting computation ¢ of A on ty[t1/Y], returns a node y € Y.

Proof. By Proposition 4.6, a, 4 57R(@;v) returns a node v such that to(v) # (to[t1/Y])(v).

By definition of #g[t1/Y], there is a unique node y € Y such that v > y. [|
Define C'hooseSubset fo.t1 g7 (Y, X) ==V : 2 € X iff the following conditions hold:
(1) x €Y and

(2) Jo such that
(a) grafty, 4 (Y,0) - “o =to[t1/Y]” and
(b) JpAcceptingRun 4(o, ¢) A ChoiceAﬁtO,tl’ﬁ(Y, ¢, x), where AcceptingRun4(o,)
defines “¢ is an accepting computation of A on the tree ¢.”

Claim 4.1.7. ChooseSubsetA7t07tl7S/T7%(Y,X) defines a function that maps every non-empty

antichain 'Y to a non-empty subset X CY. Moreover, | X| <|ACC(A,to[t1/Y])].

Proof. If Y is non-empty, then ¢o[t; /Y] € L. Hence, A has at least one accepting computation
on tg[t1/Y]. Therefore, X is non-empty, by Claim 4.1.6. The “Moreover” part immediately
follows from Claim 4.1.6. |

Let A be such that L(A) = L and assume, for the sake of contradiction, that A is finitely
ambiguous. In particular, there are finitely many accepting computations of A on ¢y[t; /Y],
and therefore by Claim 4.1.7, we conclude that ChooseSubsetAyto,thS/Tﬁ(Y, X) assigns to
every non-empty antichain Y a finite non-empty X C Y - a contradiction to Lemma 2.5.

5. kAMBIGUOUS LANGUAGES

In this section we prove that for every 0 < k € N, there is a tree language with the degree of
ambiguity equal to k. First, we introduce some notations. For a letter o, we denote by t,,
the full-binary tree with all nodes labeled by o. Let L4, v...vnay = Logq; U+ U L, be a
tree language over alphabet ¥, = {c, a1, a2, ...,an}, where L—,, := {t € T¥{ | no node in ¢ is
labeled by a;}.

Proposition 5.1. The degree of ambiguity of L-q,v...v—a, for k <mn isk.

It is easy to see that L-,, are accepted by deterministic PTA. Therefore, by Lemma
3.1, we obtain that L-4,v...y—q, is k-ambiguous. In the rest of this section we will show that
L_4,v..v—q, is not (k — 1)-ambiguous. It was shown in [3] that L4, y—q, is ambiguous.

16 A. RABINOVICH AND D. TIFERET

Lemma 5.2. Let L3z a..pJa,, = {t € Ty | for every i < m there is a node in t labeled by
a;}, and let L be a tree language such that t. ¢ L and Lag a...AJa., OTE‘;: @ C L. Then,
L is not finitely ambiguous.

---7am}

Proof. Define a function F': ¥* — ¥ such that F(oy...0k) := ag—;41 if there is ¢ such that
oi=ay, forall j <i:0j# a; and k —i+ 1 < m. Otherwise, F(01...0%) :=c.

It is easy to see that F' is definable by a Moore machine, and V¢t € T{ : t € L3, iff
F(t) € L. Therefore, by Lemma 3.10 we conclude that da(L) > da(L3,,). Since Lz, is not
finitely ambiguous (by Corollary 4.4 (3)), we conclude that L is not finitely ambiguous. []

Notations. Let a € X, t; € T and ty € TY. We define Tree(a,t;,t2) € T3 as a tree ¢
where t(€) = a, t>; = t; and t>, = t.

Lemma 5.3. Let A be a finitely ambiguous automaton over alphabet 3, such that L(A) =
L, v-v—a, for k <n. Then |ACC(A,t.)| > k.

Proof. We will prove by induction on k. For & = 1 the claim holds trivially, since t. € L(.A)
implies that |[ACC(A,t.)| > 1.

Assume the claim holds for all £k < m < n and prove for k = m.

Let A= (Q,%,Qr,9,C) be a finitely ambiguous automaton that accepts L-q,v...v—a,, -
Define R := {(q1,¢2) € Q@ x Q | 3¢; € Q1 : (¢, ¢,q1,q2) €)}, and let R[1] and R[2] be the
projections of the first and second coordinate of R on @), respectively.

Define Q3q,, := {¢ € R[1] | L(Aq) N L3,,, # 0}, and let Qa4 a1, = {¢ € Qaa,, | tc €
L(Aq)} and Qﬂam/\ﬁtc = Qﬂam \ Qﬂam/\tc-

By deﬁnition of Q34,,t, we have t. ¢ L(Aga,, ...) and therefore L(Ags, . ,.)N
Ty € Tioan }\{tc} The language T, , \ {tc} is not finitely ambiguous by Corollary 4.4
(2). L(Aqs,,, 1) is finitely ambiguous (by Corollary 3.5) and since 7 (.am} 1S unambiguous

we conclude that L(Ag,, e tc)ﬂT{‘*’c am} is finitely ambiguous, by Corollary 3.2. Therefore, by
Lemma 3.6, there is a tree t' € T (e \ {tc} = La,,, N T{. o,y such that t' ¢ L(AQsu nv.)s
and since La,, NT2, | C L(Agon) = L(Agay, po) U L(Aqa,, .,.) we conclude that
Ve LAg,,..)

Define Q" := {¢q € R[1] | t' € L(Ay)} and R := {(q1,2) € R | ¢1 € Q'}. Since
t' e L3a,,NTY, ,, 4 we conclude that {t e T¢ | Tree(c,t',t) € Lgyvevoam } = La1vevoam -
Therefore, L(Ag/[2]) = L-ayv--v-am_1, and by induction assumption we obtain:
‘ACC(AR/[Z},tC)‘ >m — 1.

For each computation ¢ € ACC(Apg,tc) we will construct a computation g(¢) €
ACC(A,t.), as following. Let g2 := ¢(€). By the definition of R/, there is (¢1,¢2) € R’
such that ¢’ € L(Ag). Since t' € L(Aqa,, ,,.) we have t. € L(A,,), and therefore there
is a computation ¢, € ACC(Ag,,t.). Let ¢; € Qr such that (gi, ¢, q1,q2) € 6. By defining
g(¢) := Tree(qi, ¢c, $) we obtain that g(¢) € ACC(A,t.), as requested.

Let @ := {g(¢) | ¢ € ACC(.AR/[Q te)}. 9(¢)>r = ¢ and therefore g is injective, and we
conclude that [®| = [ACC(Apg/g), tc)| > m — 1.

We now need to find an additional computation ¢ € ACC(A,t.) such that ¢ ¢ P,
resulting |ACC(A,t.)| > m.

Let Q3a;n--A3apm_1 = 19 € R[2] | L(Ag)NL3aynA3ay,_y 7 O} and let Qi nZai ATy =
{q € QElal/\~~~/\Elam,1 | te € L(Aq)} and Qﬂtc/\ﬂal/\m/\ﬂam,l = Qﬂal/\---/\Elam,1\th/\Elal/\m/\Eam,l‘

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 17

Claim 5.3.1. There is a full-binary tree t" € Lagn..p3a,,_, 0T, such that

" y }devah---,amq}
t" e L(AthAaaM-'-AHam—l) and t ¢ L(AQﬁtc/\Ela1/\-~-AElam—l)'

Proof. By the definition of R[2] we have L3 a...AJa,, ; NI a1t S L(ARgjz) and there-
fore by the definition of Q¢ r3a,A-AJa,, ; aNd Q- AJayA-ATay,_ 1 WE have Lag a.nJa,, ; N
Tf{uc,al,...,a,m,l g L(AQtC/\EIal/\---/\EIamil) U L(AQﬂtc/\Elal/\»-</\Elam71)'

Assume, for the sake of contradiction, that the claim does not hold. Then, we obtain
Lﬂal/\-n/\ﬂam_l mTch,al,,,,,amfl} - L(’AQﬁtc/\aalmuAaam,l) We have t. ¢ L(AQﬁtC/\HalAuwaam,l)’
and therefore by Lemma 5.2 we conclude that L(AQ_, .5, r..\3) is not finitely ambiguous

e al Am—1

- a contradiction to A being finitely ambiguous. |

Let ¢t be a tree as in Claim 5.3.1. We have t’ € L n.p3a,,_, N TG am)
and therefore Tree(c,te,t") € Log,v..v-a,, = L(A), and there is a computation ¢ €
ACC(A, Tree(c,te,t")). Let q := ¢(r). By definition of ¢, we have ¢ € Q¢ AJaiA-ATay, 1
and therefore t. € L(Ag). Let ¢. € ACC(Ay,t.), and let ¢’ be the computation obtained
from ¢ by grafting ¢. on r. We conclude that ¢’ € ACC(A, t.).

Assume, for the sake of contradiction, that ¢ € ®, and let ¢ := ¢'(l) and g3 := ¢'(r).
We have t' € L(Ag,) (by definition of |®|) and ¢ € L(Ag,) (by definition of ¢’). Therefore,
by grafting computations ¢y € ACC(Ay,t') and ¢y € ACC(Ag,,t") to the left and
right children of the root of ¢., respectively, we obtain Tree(c,t',t") € L(A). That is a
contradiction, since t' contains an a,, labeled node, and ¢’ contains a1, ..., a,,—1 labeled
nodes, and therefore Tree(c,t’',t") & L_q,v..v-a,,-

We conclude that ¢ ¢ ®, and therefore |[ACC(A,t.)| > 1+|®|=14(m—1)=m. O

6. FINITELY AMBIGUOUS LANGUAGES

Definition 6.1. Let ¥ = {a1, az,c}. We define the following languages over X:

e For k,m € N such that k¥ < m, we define Ly, ,,, as the set of trees that are obtained from
t. by grafting a tree t' € L_4,v-q, on node I*r, and grafting t,, on node [™.

e For m € N we define Ly, := Upcpm Ly m.

o LT .= UmeNLm.-

In this section we prove the following proposition:
Proposition 6.2. The degree of ambiguity of LI is finite.

The proposition follows from Lemma 6.3 and Lemma 6.6 proved below.
Lemma 6.3. There is a finitely ambiguous automaton that accepts LT®

Proof. On a tree t € L,, the automaton “guesses” a position ¢ < m, checks that t<;, €
L-q,v-a, (using a 2-ambiguous automaton), checks that t-,;, = t. for all j # i Aj < m,
and checks that t>m = t,, (using deterministic automata). Below, a more detailed proof is
given.

First, notice that there are deterministic PTA A, Ag,, A-q4, and A-,, that accepts
languages {t.}, {ta,}, L-q, and L_,,, respectively.

By Lemma 3.1, there is a 2-ambiguous automaton A-,,v-q, that accepts the language
Log,v-ay := Log, UL _g,.

We will construct an automaton B := (Qg, X5, Q1,,05, Cp) that accepts Lte,

18 A. RABINOVICH AND D. TIFERET

e (Y is defined as the union of states of Ag,, A. and A4, v—q,, along with additional states
q1, 92
Yp :={a1,a2,c}
Qs = {q}
0p will consists of the transitions of A,,, A. and A4, v—a,, along with additional transi-
tions:
— (q1,¢,q1,p) € 0p for p an initial state in A,
— (q1,¢,q2,p) € 0p for p an initial state in A4, v-a,
— (q2,¢,q2,p) € o5 for p an initial state in A,
— (q2,a1,p,p) € 05 for p an initial state in A,,
Cg(q1) :=1, Cg(gz2) := 1, and for other states, the assigned color would be the same as in
the automaton the state has originated from (A,,, A. or A-q,v—qs,)

It is easy to see that L(B) = L.

Let t € L(B). By definition of L%, there is m € N such that ¢t € L,,. If ¢ is an accepting
computation on ¢, then ¢ assigns to the first m + 2 nodes on the leftmost branch the sequence

Gly---sq1° G2,---,42 +Qq, for some i € {1,...,m}, where q,, is the initial state of A,,
—_— ———
7 times m — 4+ 1 times

(total m possibilities). ¢ assigns to I7 - r the initial state of A, if j <i—lori—1<j<m;
the initial state of A4 ,v—q, if j = ¢ — 1; and the initial state of A,, if j > m. Since A, and
Aq, are deterministic and A4, y—q, is 2-ambiguous, the number of accepting computations
on t is at most 2m, hence, finite. []

Lemma 6.4. Let L be a tree language such that L,, C L C Lie, Then, L is not m — 1
ambiguous.

Proof. Let A be an automaton with states) that accepts L, and assume A is finitely
ambiguous. Define a set Q' C Q by Q' := {¢(l'r) | i <mAF € L: ¢ € ACCO(A,t)} and
Q3a, = {q € Q' | La,, N L(Ay) # 0}, and let Qiaza, = {q € Qa4, | tc € L(Ay)} and
Q—\tc/\ﬂal = Qﬂal \th/\ﬂay
Relying on the fact that T

{c,a
we derive the following claim:
Claim 6.4.1. There is a tree t3,, € (chm} \ {tc}) N (L(AthHal) \ L(AQ%CH”)). []

Recall that t™ is the tree that is obtained from t. by grafting t,, on node ™. For each
t < m, define ¢* as the tree that is obtained from ¢™ by grafting ¢3,, on node I'r. Tt is clear
that t* € L(.A), and therefore there is an accepting computation ¢; of A on t".

t301 € L(AQ, r50,) \ L(AQ_y r5,,) and since t34, € Ay, ir) we conclude that oi(l'r) €
Qt.n3a, and therefore t. € L(Ay, iry). Let ¢f € ACC(Ag, ir), te), and construct a computa-
tion ¢, from ¢; by grafting ¢$ on I’r. This tree that is obtained from " by grafting t. on
I'r is the tree t™ and therefore ¢, € ACC(A,t™).

We are going to show that for all i < j < m, the computations ¢;,¢; € ACC(A,t™)

0 \ {tc} is not finitely ambiguous (by Corollary 4.4 (2)),

are different. Assume towards a contradiction ¢} = ¢ and let b = ¢,. Define p; := gg(lir),
pj = o(lir), and let bp; € ACC(Ap,,t3q,) and ¢p, € ACC(Ap,,t34,). Construct ¢’ from t™

by grafting t3,, on nodes I’r and I/r, and construct ¢’ from a by grafting ¢, on l'r and ¢y,
on lJr. It follows that ¢’ is an accepting computation of A on t’. That is a contradiction,
since t' ¢ L/ (since tS s, = 15y, = t3a, # tc) and therefore ¢’ ¢ L (since L C Lf*). We
conclude that there are at least m different accepting computations of A on t™. []

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 19

Remark 6.5. The language L,, is 2m ambiguous but not m — 1 ambiguous. This implies
that the hierarchy of ambiguous languages is infinite. The point of the more complex
construction in Sect. 5 is to show that this hierarchy is populated at every level.

Lemma 6.6. L is not boundedly ambiguous

Proof. Ym € N : L,, C L7% and therefore from Lemma 6.4 it follows that Lf® is not
(m — 1)-ambiguous. That is, L/* is not boundedly ambiguous.]

7. UNCOUNTABLY AMBIGUOUS LANGUAGES

In this section we introduce a scheme for obtaining uncountably ambiguous languages from
languages which are not boundedly ambiguous. We then use this scheme to obtain natural
examples of uncountably ambiguous tree languages.

Definition 7.1. Let L™ be an arbitrary regular tree language over alphabet ¥ that is
not boundedly ambiguous, and let Ly be an arbitrary regular tree language over alphabet
¥ such that Lo N L™ = (). Let ¢ € ¥ and define a language £[Lg, L %] over alphabet ¥:
t € £[Lo, L™"] iff the following conditions hold:

o Vvel*:tv)=c

e There is an infinite set 7 C N such that Vi € I : ts;, € L7 and Vi € I : twpi,. € Lo.

Proposition 7.2. The degree of ambiguity of £[Lg, L™%%] is 2%0.

Proof. Let A = (Q,%,Q71,6,C) be a PTA that accepts £[Lg, L™%*]. We will show that
da(A) = 2%,

Let Q" = {¢(u) |u € l*-rand It : ¢ € ACC(A,t)}, and define Qunambr-L, := {q €
Q' | Ag is unambiguous and L(A,) N Lo = 0}.

Claim 7.2.1. L(AQ,,,n-r,) © L7

Proof. Assume, for the sake of contradiction, that there is a tree ¢t € L(Aq,,,mr-r,) SUch

that t ¢ L™, By definition of Qunampr— L, we conclude that ¢ ¢ L.

Let ¢ € Qunambnr—L, such that t € L(A,) and let ¢ € ACC(Ay,t). Recall that ¢ € Q'
(since Qunambr-, C Q') and therefore there is a tree t' € L(A), a computation ¢’ €
ACC(A,t') and a node u € I* - r such that ¢/(u) = ¢q. By the grafting lemma we conclude
that ¢'[¢/u] is an accepting computation of A on ¢'[t/u]. Therefore, t'[t/u] € L(A) for
t ¢ L7 U Ly - a contradiction to definition of A. [

Notice that L(AQ,,mr-r,) 18 boundedly ambiguous by Corollary 3.2 (as a finite

union of unambiguous languages), and since L™ is not boundedly ambiguous we con-
clude that da(L(AQ,,.min-r,)) # da(L™"). By Claim 7.2.1 we obtain L(AQnamor-ry)

L™ and applying Lemma 3.6 we conclude that there is a tree t_p, € L7 such that
t-ba & LIAQunamsn-1,)-

Let ¢ € ¥ be as in the definition of £[Lg, L], and let t. be a tree where all nodes are
labeled by ¢. Let A := [*-r be an antichain, and define t” := t.[t—y,/A]. By the definition of A
it is clear that t” € L(A). Let ¢" € ACC(A,t"), and let B := {u € A| L(Agr)) N Lo # 0}

For each u € B there is a tree t, € Lo and a computation ¢, € ACC(Agr(y),tu)-
Therefore, by the grafting lemma, we conclude that the tree ¢’ that is obtained from t” by
grafting ¢,, on each node u € B is in L(A).

20 A. RABINOVICH AND D. TIFERET

Assume, for the sake of contradiction, that A\ B is finite. By definition of ¢, for each
i € N such that u := "-r € B we have 7). = tu € Lo. Therefore, [{i € N[1], € € L™} =
Hue A|t”, e L™} = |{uc A\ B |t?, € L7} = |A\ B| < Ry, and by definition of
£[Lo, L] we conclude that t” ¢ £[Lo, Lﬁb“] a contradiction to the definition of A.

A\ B is infinite, and therefore there is a state ¢ and an infinite set AcCA \ B such
that ¢”(u) = q for all u € A. Recall that Vu € A : tZ,, = t-pq. Notice that for each u € A
we have u ¢ B, and by definition of B we obtain L(A¢//(u)) N Ly = L(Ay) N Lo = 0. Since
tobg ¢ L(.AQummb - Lo) we conclude that ¢ € Qunambr-L, - hence, A, is ambiguous.

Let t4mp € L(.A) be a tree with at least two accepting computations ¢,y €
AC’C(Aq, tamp). Let T := t"[t amb/A] and ¢ := ¢[¢1/A]. By the grafting lemma we ob-
tain ¢ € ACC(A 7). For each A’ C A, define a computation Par = d|da/A']. Notice that
pa € ACC(A,1) (by the grafting lemma) and that VA, Ay C A A # Ay — ba, # DA,
(since ¢y # ¢3). Therefore, |ACC(A,)| > [{A' | A C A} = 2%, and da(A) = 2%, as
requested.

[

We will now introduce a couple of definitions, and present three natural examples of
infinite tree languages that are not countable ambiguous.

Definition 7.3 (Characteristic tree). The characteristic tree of Uy,..., U, C {l,r}* is a
{0,1}™-labeled tree t[Uy,...,U,] such that t[Uy,...,Uy,|(u) := (b1,...,b,) where b; = 1 iff
u € U; for each 1 <4 <n.

Definition 7.4. For a set U C {l,r}"* we define U | as the downward closure of U.

Definition 7.5. A set X C {l,r}* is called perfect if X # () and Vu € X : Juj,v2 € X
such that v; and v9 are incomparable and greater than wu.

Proposition 7.6. The following reqular languages are not countably ambiguous:

(1) Lxcyy :={t[X,Y]| X CY |} - “for each node in X there is a greater or equal node in
Y.”

(2) Lno—maz = {t[X] | X has no mazimal element} - “for each node in X there is a greater
node in X.”

(3) Lperf := {t[X] | X is perfect } - “for each node in X there are at least two greater
incomparable nodes in X.”

In the rest of this section we will prove Proposition 7.6.

Proof of Proposition 7.6(1). Let Lieg == {t[X,Y] | X =1* and Y NI* = 0}. It is easy to
see that Lj.f; can be accepted by a deterministic PTA, and therefore da(Ljer) = 1.

By Lemma 3.1 we conclude that da(Lxcy NLiest) < da(Lxcy))-da(Liest) = da(Lxcyy).
We will show that Lxcy | N Ljefs is not countably ambiguous. By the above inequality, this
implies that Lxcy | is not countably ambiguous.

Claim 7.6.1. Let LX:@,Y;A(B = {t[X, Y] | X = @ and'Y 75 (Z)} Then t' € Lxgy¢ N Lleft Zﬁ
the following conditions hold:
(1) Vu e I* : t/(u) = (1,0)
(2) There is an infinite set I C N such that:
(a) Ifi €1 then t>ll € Lx—pyzp

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 21

(b) Ifi ¢ I then tlzli~r e {t[0,0]}

Proof. =: Let t' € Lxcy| N Liesi. By definition of Ljes; it is clear that the condition (1)
holds, and that for each i € N: ¢ ; € Ly_gyq or t5 ;, = t[),0]. Assume, for the sake of
contradiction, that the set {i € N | tlig € LX:@,Y;éQ)—} is finite. Therefore, by the second
condition, there is an index k € N such that Vi > k : ¢ ; = t[0,0]. Let u := I*. By the
definition of L;.s; we have u € X, and for each v > u we have either #'(v) = (1,0) if v € I*,
or t'(v) = (0,0) otherwise. Hence, Vv > u : v ¢ Y, in contradiction to ¢’ € Lxcy.

<: Assume that the conditions hold for ¢'. It is easy to see that t' € Lj.s. We will
show that t' € Lxcy . Assume, for the sake of contradiction, that there is a node u € X
such that v ¢ Y for each node v > u. Since all nodes in X are in [* we conclude that there
is i € N such that u = [*. Notice that the set I C N is infinite, and therefore there is j > i
such that tL,; € Lx_gy,p. Therefore, there is a node v > 17 - r > 1" = u such that v € Y -
a contradiction. |

Observe that the language Lx_py g := {t[X,Y] | X =0 and Y # 0} can be considered
as a tree language over alphabet {0} x {0,1}, and that Lx—pyzp = T{p) 40,1y \ {t[0,0]}.
Therefore, by Corollary 4.4(2) we conclude that Lx_gy ¢ is not finitely ambiguous.

Notice that by Claim 7.6.1 we obtain Lxcy| N Liyt = £[Lo, L™, for Lo = {t[0,0]}
and L7 = Lx—_g,y+p- Therefore, applying Proposition 7.2 we conclude that Lxcy| N Ly
is not countably ambiguous. L]

To prove Proposition 7.6(2), we will first prove the following lemma:
Lemma 7.7. Ly,,_maz @S not finitely ambiguous.

Proof. Let A= (Q,%,Qr,6,C) be a PTA that accepts Lpo—maz- Let Q' :={q € Q| Iqg €
Q3¢ € Q:(¢;,1,q,¢') € d and t[0] € L(Ay)}.
Claim 7.7.1. Define Ly := T\ {t[0]}. Then:
(1) Lno—maa \ {t[0]} S L(Ag)
(2) L(Ag) € Ly
Proof. (1) Let t' € Lyo—maz \ {t[0]}, and let t. := t[{e}] (that is, t.(e) := 1, and Vu #
€ :te(u) :=0). Let ¢ := t.[t'/l]. By the definition of Lyo—mas we obtain t” € Lyo—maz-
Therefore, there is a computation ¢ € ACC(A,t") such that ¢(I) € Q" and ' € L(Ayy), as
requested.

(2) Assume, for the sake of contradiction, that ()] € L(Ag/). Then there is a transition
(¢i,1,q1,¢2) € § from an initial state ¢; such that ¢[(] € L(A,,) and ¢[0] € L(Ay,). Therefore,

we conclude that t. := t[{€}] is accepted by A - a contradiction to the definition of Lyo—maz-
[|

Let ¥ := {0,1}. Define a function F': ¥* — ¥ such that

{1 J<i<m:0;=1

F(oil,...,0m) =
(o1 m) 0 otherwise

It is easy to see that F' is definable by a Moore machine. We show that F' reduces L_g
to L(.AQ/).

Notice that V¢ € T : t € L_g = F(t) € Lno—maz \ {t[0]}. Since Lo maz \ {t[0]} C
L(Ag) (by Claim 7.7.1(1)) we conclude that V¢’ € Ty : t' € Ly — F(t') € L(Ag).

22 A. RABINOVICH AND D. TIFERET

~

Conversely, V' € Ty : F(t') € Ly — t' € L_y, and since L(Ag) € Ly (by Claim 7.7.1(2))
we obtain V' € T : F(t') e L(Ag) —t' € Ly.

Therefore, by Lemma 3.10, we conclude that da(L(Ag)) > da(L-p). Notice that
L_g =T¥\{t[0]} and by Corollary 4.4(2) we obtain da(L_g) > No. Hence, A¢ is not finitely

ambiguous, and by Corollary 3.5 we conclude that da(A) > Ny.]

Proof of Proposition 7.6(2). Let Lyxnx—g := {t[X] | X N1* = 0}. It is easy to construct a
deterministic PTA that accepts Lj«~x—g, and therefore da(Lynx—g) = 1.

By Lemma 3.1 we conclude that da(Lno—maz N Lisnx=p) < da(Lno—maz) - da(Lpnx—g) =
da(Lno—maz). We will show that da(Lne—maz N Li=ax—gp) = 2%, and the lemma will follow.

Notice that ' € Lpo—maz N Li=nx—g iff the following hold:
e Vuel*:t(u)=0
e Vuel -r:tl, € Lyo—max

It is easy to see that Lyo_maz N Li=nx—p = £[Lo, L] for L™ := L, e (which is
not boundedly ambiguous, by Lemma 7.7) and Lo := (). Therefore, by Proposition 7.2 we
conclude that da(Lpo—maz N Lixnx—p) = 280 as requested. L]
Proof of Proposition 7.6(3). Let Leoptains—1+ := {t[X] | I* € X}. It is easy to see that
Leontains—i+ can be accepted by a deterministic PTA, and therefore da(Lcontains—1+) = 1.
Look at the language Lpers N Leontains—i+- By Lemma 3.1 we obtain da(Lpert N Leontains—1+) <
da(Lpers)-da(Leontains—i+) = da(Lpers). We will show that Lperf N Leontains—i= is not countably
ambiguous. By the above inequality, this implies that da(Lpes) = 2o,

Claim 7.7.2. L, is not finitely ambiguous.

1 d1<i<m:0;=1
0 otherwise. '
It is easy to see that F is definable by a Moore machine, and that V¢’ € T¥ : t' € T\ {t[0]} <

F(t') € Lpeys. Notice that T3 \ {t[0]} is not finitely ambiguous (by Corollary 4.4(2)), and
therefore by Lemma 3.10 we conclude that L,.s is not finitely ambiguous. |

Proof. Define a function F : ¥* — ¥ such that F(oq,...,0m) =

Claim 7.7.3. t' € Lpers N Leontains—i+ iff the following conditions hold:
(1) Vuel*: t'(u)=1
(2) There is an infinite set I C N such that Vi € I : 15, € Lpery and Vi & I 115, € {t[0]}.

Proof. =: Let t' € Lperf N Leontains—i+- By definition of Leontains—i+ it is clear that condition

(1) holds for ¢'. Notice that Vi € N : t{,; € Ly or t,; = t[f]. Assume, for the sake
of contradiction, that {i € N |1, € Ly} is finite. Therefore, there is k£ € N such that
Vi>k:tl, =t[0]. Let u:= ¥, and notice that ¢'(u) =1, and Yo > u: t'(v) =1 <> v € I*.

Hence, each pair of 1-labeled nodes that are greater than u are comparable - a contradiction
to the definition of L.

<: Let t' such that the conditions hold. By the first condition it is clear that ¢’ €
Leontains—i+- We will prove that ¢ € Ly, and the claim will follow. First, notice that
t'(e) = 1, and therefore ¢’ # t[]. Let u be a node such that ¢'(u) = 1. If u € I* then by
the second condition, there is a node v € I* - r such that v > u and t>, € Lys. Therefore,
there are two nodes wi,wy > v > u such that w; L wy and #'(w;) = ¢/(wy) = 1. Otherwise
(u ¢ 1*), there is a node v € [* -, such that v > v and t>, € Lpe,, and by definition of Lje.f

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 23

we conclude that there are two nodes wy, ws > u such that w; L wy and ¢/ (wy) = t'(wy) =1
- hence, t' € Lyery. [

It is easy to see that Lyers N Leontains—1+ = £[Lo, L) for L7t .= Lpers (which is not
boundedly ambiguous, by Claim 7.7.2) and Lg := {¢[0]}. Therefore, by Proposition 7.2 we
conclude that Lye,sr N Leontains—1+ = 280 as requested. L]

Observe that our proof shows that Lyerfamin = {t[X] | X is perfect and has the <-
minimal element} is also uncountable ambiguous. We conclude with an instructive example
of an unambiguous language which is similar to Lperfamin. Let X C {l,7}* be a set of nodes.
We say that v € X is a X-successor of v if u > v and there is no node w € X such that
v < w < u. We call X a full-binary subset-tree if X has a minimal node, and each node in
X has two X-successors.

Note that if X is a full-binary subset tree then X is perfect and has the <-minimal element.
However the language Lyinary := {t[X] | X is a full-binary subset tree} is unambiguous.

8. COUNTABLE LANGUAGES ARE UNAMBIGUOUS
In this section we prove the following Proposition:
Proposition 8.1. Fach reqular countable tree language is unambiguous

This section is self-contained and lacks technical connections to the previous sections. It
is instructive to compare the above Proposition with Corollary 4.4(1) which states that the
complement of every countable tree language is not finitely ambiguous.

To prove Proposition 8.1 we first recall finite tree automata (Subsect. 8.1). Then, we
present Niwiniski’s Representation for Countable Languages (Subsect. 8.2). Finally, the
proof of Proposition 8.1 is given (Subsect. 8.3).

8.1. Finite Trees and Finite Tree Automata.
Finite Trees. A finite tree is a finite set U C {l,7}* that is closed under prefix relation. U
is called a finite binary tree if Vu e U :u-l € U < u-r e U.

Finite Y-labeled Binary Trees. Let > be partitioned into two sets: Yo - labels of internal
nodes, and 3 - labels of leaves. A finite >-labeled binary tree is a function ty : U — 3,
where U C {l,r}* is a finite binary tree, ty(v) € g if v is a leaf, and ty(v) € 3g if v has
children.

When it is clear from the context, we will use “finite tree” or “labeled finite tree” for
“Y.-labeled finite binary tree”.

24 A. RABINOVICH AND D. TIFERET

Finite Tree Automata (FTA). An automaton over X-labeled finite trees is a tuple
B=(Q,%,Q5,9), where Q is a finite set of states, ¥ = ¥y U X is an alphabet, Q7 is a set
of initial states, and d C (Q x 3g) U (@ x 32 X @ x @) is a set of transitions.

An accepting computation of B on a finite tree ¢y is a function ¢ : U — @, such that
¢(€) € Qr, and for each node u € U, if w is not a leaf then (¢(u), ty(u), p(u-1), p(u-1)) €4,
and otherwise (¢(u), ty(u)) € 9.

The language of a FTA B is the set of finite trees ¢ such that B has an accepting
computation on t. A finite tree language is regular iff it is accepted by a FTA. It is well-
known that every regular finite tree language is unambiguous (i.e., for every finite tree
language there is an unambiguous automaton that accepts it).

8.2. Niwinski’s Representation for Countable Languages.

Definition 8.2. Define Tgé?xl o)) B8 the set of finite trees over alphabet YU {z1,...,x,}
where the internal nodes are -labeled, and the leaves are {x1, ..., z,}-labeled.
Let 7 € Tgé?xl zn)) be a finite tree, and let ¢1,...,%, € 1% be infinite binary trees over

alphabet ¥. We define 7[t;/x1,...,t,/zy,] as the infinite tree that is obtained from 7 by
grafting ¢; on leaves labeled by ;.
For a set M C ng?m e}y W€ define Mty /x1,. .., tn/xn] = U 7lt1/21,. .. tn/2n)].
et reM
Theorem 8.3 (D. Niwinski [16]). Let L be a countable regular tree language over alphabet
Y. Then there is a finite set of trees {t1,...,tn} such that the following hold:

(1) For each tree t € L and a tree branch w, there is a node v € w and a number 1 <i <n
such that t>, = t;.

(2) There is a regular finite tree language M C Tg?x1,-..7xn}) s.t. L= Ml[t1/x1,... ta/zy].

The following lemma strengthen item (2) of Theorem 8.3 by adding another condition
on M, implying a unique representation of each tree in L:

Lemma 8.4. Let L be a countable regular tree language over alphabet 3, and let {t1,... t,}
be a finite set of trees as in Theorem 8.3. Then there is a regular finite trees language
M C Téé?th’xn}) such that L = M[t1/x1, ... ,tn/zy], and for each t € L there is a unique
finite tree T € M such that t = T[t1/x1, ..., tn/Tn].

Proof. For each tree t € L, let g(t) be the tree that is obtained from ¢ by changing the

label of each node v € {l,r}* where t>, = t; to z;, and removing all descendants of

{z1,...,x,}-labeled node.
Claim 8.4.1. ¢(t) is finite for allt € L.

Proof. Assume, for the sake of contradiction, that there is ¢t € L such that the set of nodes
U C {l,r}* of g(t) is infinite. The number of children of each node in U is bounded by
2, and therefore, by Konig’s Lemma, there is a tree branch « such that Vv € 7 : v € U.
Therefore, by definition of ¢(t), we conclude that t>, # t; for eachv € rand 1 <i<n - a
contradiction to item (1) of Theorem 8.3. [

Notice that for each ¢ € L we obtain ¢(t)[t1/z1,...,tn/2xn] = t, and therefore g is
injective. Hence, L = M[t1/x1,...,t,/xy,] where M := {g(t) | t € L}. We will show that M
is a regular language of finite trees.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 25

It is easy to see that for each ¢ € L and finite tree 7 € T (Sty T g(t) iff the

{1’1
following conditions hold:
o t=rTt1/x1,. .. tn)]
e t>, #t; for each node v in 7 that is not a leaf, and for each 1 <i <n.

Since both conditions could be formulated in MSO, we conclude that M is MSO-definable,
and therefore regular.]

8.3. Proof of Proposition 8.1. Let L be a countable regular tree language over alphabet
3. We will show that L can be accepted by an unambiguous PTA.

By Lemma 8.4, there is a regular finite tree language M C T E?xl) and regular
infinite trees t1, ..., t, such that L = Mt /x1,...,t,/x,]. Additionally, for each ¢t € L there
is a unique 7 € M such that t = 7[t1/x1,. .., tn/Tn].

Each infinite tree t; : {l,7}* — X is regular, and therefore, by Fact 3.11, is definable
by a Moore machine M; = ({I,7},%, Qi, ¢4, 6M, outM). Let A; == (Qi, %, ¢t, 6, F;) where
F; := Q;, and (q,a,q1,q2) € & iff 1 = 0(q,1), 2 = d(q,7) and a = out}M(q). It is easy
to verify that A; is unambiguous, and L(A;) = {t;}. M is regular and therefore can be
accepted by an unambiguous FTA B = (Qp, XU {x1,...,z,}, q?, oB).

We use these automata to construct a PTA A :=(Q, %, Qr,0,C), by:

* Q:=Ui<i<n@Qi UQB
o g; = {a7}U{d} | (¢f, %) € b5}
e ¢ is the union of the following:
—{(q,a,q1,q2) € é | a € X} (all transitions of B on inner nodes)

- U1§i§n§z’ '
- {(Q7a %#]}) ‘ El(‘]a%@h%) € 53 : <Q17xi) € 53 and (Qan]) € 5[3}
{((La QIa(JI) | El(qv a, QI7Q2) € (SB : (qurj) € 58}
—{(¢,a,¢5, q2) | g, a,q1,q2) € 65 : (q1,2:) € 6}
(Q) Jdi:qeQ;
Cla) = otherwise

It is easy to see that L(A) = M[ti/x1,...,ty/zy] = L.

We will show that A is unambiguous. For each accepting computation ¢ € ACC(A,t),
define a set of nodes Uy := {u € {l,7}* | Vv < u: ¢(v) € Qp}. It is easy to see that Uy is
downward closed. Assume towards contradiction that Uy is infinite - by Kénig Lemma, Uy
contains an infinite tree branch 7. By definition of Uy all states in ¢(m) are in @, and
therefore colored by 1. That is a contradiction to ¢ being an accepting computation.

Define a labeled finite tree t4 : Uy — X U {z1,...,z,} by:

) Ji: p(u) =g}
¢ t(u) otherwise

By definition of t4 we obtain t = ty[t1 /21, ..., tn/xy], and by definition of B we conclude
that ts € M.

Assume, for the sake of contradiction, that A is ambiguous. Therefore, there is a tree
t € L and two distinct accepting computations ¢1, o € ACC(A,t). A; is deterministic for
each 1 <i < n, and therefore ¢y # ¢g iff ty, # tg,. We conclude that ty, [t1/z1,...,tn /0] =
tgo[t1/21, ... tn/ay] for ty,,ty, € M - a contradiction to the uniqueness property of M.

26 A. RABINOVICH AND D. TIFERET

9. CONCLUSION AND OPEN (QUESTIONS

We proved that the ambiguity hierarchy is strict for regular languages over infinite trees.

For each level of the ambiguity hierarchy we provided a language which occupies this
level. It is not difficult to see that all these languages are definable by MSO formulas without
the second-order quantifiers (formulas of the first-order fragment of MSO). Concerning the
topological complexity, Olivier Finkel [8] observed that these languages have low topological
complexity: L-q,v...v—q, are closed languages; LT and L3,, are countable unions of closed
sets, i.e., a Zg—sets; the uncountably ambiguous language Lo—maz 1S Hg. On the other hand,
Skrzypczak [20] proved that unambiguous languages climb up the whole index hierarchy
and are topologically as complex as arbitrary regular tree languages.

A natural question is whether the ambiguity degree is decidable. However, this is not
a trivial matter. In [3] some partial solutions for variants of the problem whether a given
language is unambiguous are provided. We proved that countable regular languages are
unambiguous. Since it is decidable whether a language is countable [16], this provides a
decidable sufficient condition for a langauge to be unambiguous.

A less ambitious task is to develop techniques for computing degrees of ambiguity
and compute the degree of ambiguity of some natural languages. Let X1 := {c¢,a1} and
L3soq, = {t € Ty, | there are infinitely many ai-labeled nodes in t}. Lzw,, = {t € T |
there is a branch with infinitely many ai-labeled nodes in t}. L, __ . ntichain = {t € 15,
the set of aj-labeled nodes in ¢ contain an infinite antichain}. All these languages are regular.
There are (Moore) reductions from L3,, to these languages, hence they are not finitely
ambiguous. We believe that their ambiguity degree is uncountable, but we were unable to
prove this.

We provided sufficient conditions for a language to be not finitely ambiguous and for a
language to have uncountable degree of ambiguity.

In particular, we proved that the degree of ambiguity of the complement of a countable
regular language is Rg or 2%, and provided natural examples of such languages with countable
degree of ambiguity. We proved that the degree of ambiguity of the complement of a finite
regular language is Ny. Yet, it is open whether the degree of ambiguity of the complement
of countable regular languages is Ng.

ACKNOWLEDGMENTS

We would like to thank anonymous referees for their helpful suggestions.

REFERENCES

[1] André Arnold. Rational omega-languages are non-ambiguous. Theor. Comput. Sci., 26:221-223, 09 1983.

[2] Vince Bardny, Lukasz Kaiser, and Alex Rabinovich. Expressing cardinality quantifiers in monadic
second-order logic over trees. Fundamenta Informaticae, 100(1-4):1-17, 2010.

[3] Marcin Bilkowski and Michal Skrzypczak. Unambiguity and uniformization problems on infinite trees.
In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September
2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 81-100. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2013.

[4] Arnaud Carayol and Christof Loding. MSO on the infinite binary tree: Choice and order. In International
Workshop on Computer Science Logic, pages 161-176. Springer, 2007.

[5] Arnaud Carayol, Christof Loding, Damian Niwinski, and Igor Walukiewicz. Choice functions and
well-orderings over the infinite binary tree. Open Mathematics, 8(4):662-682, 2010.

[6]

[7]

21]

22]

23]

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 27

Thomas Colcombet. Unambiguity in automata theory. In International Workshop on Descriptional
Complexity of Formal Systems, pages 3—18. Springer, 2015.

E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy. In FoCS,
volume 91, pages 368-377. Citeseer, 1991.

Olivier Finkel. Personal communication, 12 2020.

Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages 60-65, 1982.

Yuri Gurevich and Saharon Shelah. Rabin’s uniformization problem 1. The Journal of Symbolic Logic,
48(4):1105-1119, 1983.

Yo-Sub Han, Arto Salomaa, and Kai Salomaa. Ambiguity, nondeterminism and state complexity of finite
automata. Acta Cybernetica, 23(1):141-157, 2017.

Jozef Jirdsek, Galina Jirdskovd, and Juraj Sebej. Operations on unambiguous finite automata. In
International Conference on Developments in Language Theory, pages 243—255. Springer, 2016.

Ernst Leiss. Succinct representation of regular languages by boolean automata. Theoretical computer
science, 13(3):323-330, 1981.

Hing Leung. Descriptional complexity of nfa of different ambiguity. International Journal of Foundations
of Computer Science, 16(05):975-984, 2005.

Robert McNaughton. Testing and generating infinite sequences by a finite automaton. Information and
control, 9(5):521-530, 1966.

Damian Niwiniski. On the cardinality of sets of infinite trees recognizable by finite automata. In Andrzej
Tarlecki, editor, Mathematical Foundations of Computer Science 1991, pages 367-376, Berlin, Heidelberg,
1991. Springer Berlin Heidelberg.

Dominique Perrin and Jean-Eric Pin. Infinite words: automata, semigroups, logic and games, volume
141. Academic Press, 2004.

Michael O Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of
the american Mathematical Society, 141:1-35, 1969.

Alexander Rabinovich and Doron Tiferet. Ambiguity Hierarchy of Regular Infinite Tree Languages. In
Javier Esparza and Daniel Kré, editors, 45th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2020), volume 170 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 80:1-80:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
Michal Skrzypczak. Unambiguous languages exhaust the index hierarchy. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Daniel Marx, and Donald Sannella, editors, 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 140:1-140:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.

Richard Edwin Stearns and Harry B Hunt III. On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM Journal on Computing,
14(3):598-611, 1985.

Wolfgang Thomas. Automata on infinite objects. In Formal Models and Semantics, pages 133-191.
Elsevier, 1990.

Boris Trakhtenbrot and Ya Martynovich Barzdin. Finite automate: behaviour and synthesis. 1973.

28 A. RABINOVICH AND D. TIFERET

APPENDIX A. PROOF OF CLAIM 4.1.4

Claim 4.1.4. Let ty be a regular tree such that to ¢ L(A). Then, Pathfinder has a regular
positional winning strategy in Gy, A.

Proof. tq is regular, and therefore there is a formula 1, (o) that defines ¢y in the unlabeled
full-binary tree.

We will use 1, (c) to define the following formula Path finderWins (¢, STR), as
the conjunction of the following conditions:

(1) 37 such that:
(a) m is a branch
(b) Vu € m : (STR(u,p(u - 1),¢(u-1)) = 1) <> u-1l € 7) - the Pathfinder moves
do...dj... are consistent with ST R and are along the branch .
(2) Jo : ¢y, (o) and at least one of the following holds:
(a) Jv € 7 such that (¢(v),o(v),d(v-1),p(v-1)) ¢ § - the Automaton move at (v, p(v))
is invalid.
(b) The maximal color that C assigns infinitely often to states in ¢(m) is odd.

Claim A.1. PathfinderWinsa,(¢, STR) holds for a positional strategy STR of
Pathfinder and a computation ¢ of A on a tree t' iff the play 5 of STR against str,
in Gy, 4 is winning for Pathfinder.

Proof. By definition of Gy, 4, Pathfinder wins if either Automaton makes an invalid move
(condition 2a) or the maximal color that is assigned infinitely often to the positions in 75
is odd. Since all Pathfinder positions have color 0, this is equivalent to the maximal color
assigned infinitely often to Automaton positions being odd.

Let s =eqg,dg,e1,d1,...,¢e;,d;,.... Notice that by condition 1, there is a unique branch
7 such that m = vg,...v;,... where v; = dy...d;—1. By Claim 4.1.1, we have ¢(v;) = g;,
where the i-th position of Automaton in 7z is (v;, ¢;). Since Cg(vi, ¢;) = C(¢;), we conclude
that the maximal color that C assigns infinitely often to states in ¢(7) is odd iff the maximal
color that Cq assigns infinitely often to positions in 7z is odd. This is assured by condition
2b. |

Let WinningStrategys, a(STR) := V¢ such that the following holds:

e If there is ¢t such that ¢ is an accepting computation of A on t, then:
— PathfinderWinsa4,(¢, STR) holds

Recalling that the set of all computation of A is MSO-definable, we conclude that
WinningStrategys, 4(STR) is MSO-definable in the unlabeled full-binary tree.

Claim A.2. WinningStrategy:, 4(STR) holds for a positional strategy ST R of Pathfinder
iff STR is a positional winning strategy of Pathfinder.

Proof. =: By Claim A.1, STR wins in Gy, 4 against each positional strategy of Automaton.
Assume, for the sake of contradiction, that is a non-positional strategy str’ of automaton
that wins against ST R. Then by positional determinacy of parity games, we conclude that
there is a positional strategy str” that wins against STR - a contradiction.

«<: Follow immediately from Claim A.1. |

to ¢ L(A) and therefore by Claim 4.1.1(3), Automaton does not have a positional win-
ning strategy. From positional determinacy of parity games we conclude that Pathfinder

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 29

has a positional winning strategy. Therefore, there is a strategy STR' that satisfies
WinningStrategy, 4A(STR) in the unlabeled full-binary tree.
Therefore, WinningStrategy, A(STR) defines a non-empty tree language over alphabet

Q@ x Q — {l,r}. By Rabin’s basis Theorem, we conclude that there is a regular tree STR in

this language, and by Claim A.2 we conclude that STRis a positional winning strategy for
Pathfinder in Gy, 4. u

Remark (Logic Free Proof of Claim 4.1.4). One can reduce a membership game for a regular
tree to to a game on a finite graph. By positional determinacy Theorem, Pathfinder will have
a positional winning strategy in the reduced game. From this strategy a regular winning
strategy in Gy, 4 for Pathfinder is easily constructed.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminary
	2.1. Trees
	2.2. Automata
	2.3. Monadic Second-Order Logic

	3. Simple Properties of Automata and Languages
	4. Not-Finitely Ambiguous Languages
	4.1. Membership Game
	4.2. MSO-definability
	4.3. Finishing Proof of Proposition 4.1

	5. -Ambiguous Languages
	6. Finitely Ambiguous Languages
	7. Uncountably Ambiguous Languages
	8. Countable Languages are Unambiguous
	8.1. Finite Trees and Finite Tree Automata
	8.2. Niwinski's Representation for Countable Languages
	8.3. Proof of Proposition 8.1

	9. Conclusion and Open Questions
	Acknowledgments
	References
	Appendix A. Proof of Claim 4.1.4

