
AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE

LANGUAGES

ALEXANDER RABINOVICH AND DORON TIFERET

Tel Aviv University, Israel
e-mail address: rabinoa@tauex.tau.ac.il
URL: https://www.cs.tau.ac.il/~rabinoa

Tel Aviv University, Israel
e-mail address: sdoron5.t2@gmail.com

Abstract. An automaton is unambiguous if for every input it has at most one accepting
computation. An automaton is k-ambiguous (for k > 0) if for every input it has at most
k accepting computations. An automaton is boundedly ambiguous if it is k-ambiguous
for some k ∈ N. An automaton is finitely (respectively, countably) ambiguous if for every
input it has at most finitely (respectively, countably) many accepting computations.

The degree of ambiguity of a regular language is defined in a natural way. A language is
k-ambiguous (respectively, boundedly, finitely, countably ambiguous) if it is accepted by
a k-ambiguous (respectively, boundedly, finitely, countably ambiguous) automaton. Over
finite words every regular language is accepted by a deterministic automaton. Over finite
trees every regular language is accepted by an unambiguous automaton. Over ω-words every
regular language is accepted by an unambiguous Büchi automaton and by a deterministic
parity automaton. Over infinite trees Carayol et al. showed that there are ambiguous
languages.

We show that over infinite trees there is a hierarchy of degrees of ambiguity: For every
k > 1 there are k-ambiguous languages that are not k − 1 ambiguous; and there are
finitely (respectively countably, uncountably) ambiguous languages that are not boundedly
(respectively finitely, countably) ambiguous.

1. Introduction

Degrees of Ambiguity. The relationship between deterministic and nondeterministic machines
plays a central role in computer science. An important topic is a comparison of expressiveness,
succinctness and complexity of deterministic and nondeterministic models. Various restricted
forms of nondeterminism were suggested and investigated (see [6, 11] for recent surveys).

Probably, the oldest restricted form of nondeterminism is unambiguity. An automaton is
unambiguous if for every input there is at most one accepting run. For automata over finite
words there is a rich and well-developed theory on the relationship between deterministic,
unambiguous and nondeterministic automata [11]. All three models have the same expressive
power. Unambiguous automata are exponentially more succinct than deterministic ones,

Key words and phrases: regular tree languages, parity tree automata, automata ambiguity.

Preprint submitted to
Logical Methods in Computer Science

c© A. Rabinovich and D. Tiferet
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. RABINOVICH AND D. TIFERET

and nondeterministic automata are exponentially more succinct than unambiguous ones
[13, 14].

Some problems are easier for unambiguous than for nondeterministic automata. As shown
by Stearns and Hunt [21], the equivalence and inclusion problems for unambiguous automata
are in polynomial time, while these problems are PSPACE-complete for nondeterministic
automata.

The complexity of basic regular operations on languages represented by unambiguous
finite automata was investigated in [12], and tight upper bounds on state complexity
of intersection, concatenation and many other operations on languages represented by
unambiguous automata were established.

It is well-known that the tight bound on the state complexity of the complementation of
nondeterministic automata is 2n. In [12], it was shown that the complement of the language
accepted by an n-state unambiguous automaton is accepted by an unambiguous automaton
with 20.79n+logn states.

Many other notions of ambiguity were suggested and investigated. A recent paper [11]
surveys works on the degree of ambiguity and on various nondeterminism measures for finite
automata on words.

An automaton is k-ambiguous if on every input it has at most k accepting runs; it is
boundedly ambiguous if it is k-ambiguous for some k; it is finitely ambiguous if on every
input it has finitely many accepting runs.

It is clear that an unambiguous automaton is k-ambiguous for every k > 0, and a
k-ambiguous automaton is finitely ambiguous. The reverse implications fail. For ε-free
automata over words (and over finite trees), on every input there are at most finitely many
accepting runs. Hence, every ε-free automaton on finite words and on finite trees is finitely
ambiguous. However, over ω-words there are nondeterministic automata with uncountably
many accepting runs. Over ω-words and over infinite trees, finitely ambiguous automata are
a proper subclass of the class of countably ambiguous automata, which is a proper subclass
of nondeterministic automata.

The cardinality of the set of accepting computations of an automaton over an infinite
tree t is bounded by the cardinality of the set of functions from the nodes of t to the
state of the automaton, and therefore, it is at most continuum 2ℵ0 . The set of accepting
computations on t is definable in Monadic Second-Order Logic (MSO). In Bárány et al. in
[2] it was shown that the continuum hypothesis holds for MSO-definable families of sets.
Therefore, if the set of accepting computations of an automaton on a tree t is uncountable,
then its cardinality is 2ℵ0 . Hence, there are exactly two infinite degrees of ambiguity.

The degree of ambiguity of a regular language is defined in a natural way. A language
is k-ambiguous (respectively, boundedly, finitely, countably ambiguous) if it is accepted by a
k-ambiguous (respectively, boundedly, finitely, countably ambiguous) automaton.

Over finite words, every regular language is accepted by a deterministic automaton.
Over finite trees, every regular language is accepted by a deterministic bottom-up tree
automaton and by an unambiguous top-down tree automaton. Over ω-words every regular
language is accepted by an unambiguous Büchi automaton [1] and by a deterministic parity
automaton.

Hence, the regular languages over finite words, over finite trees and over ω-words are
unambiguous.

In [5] it was shown that the aforementioned situation is different for infinite trees.
Carayol et al. [5] proved that the language L∃a of infinite full-binary trees over the alphabet

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 3

{a, c}, defined as L∃a := {t | t has at least one node labeled by a} is ambiguous. The proof
is based on the undefinability of a choice function in Monadic Second-Order logic (MSO)
[10, 4].

Our results imply that the complement of every countable regular language is not
finitely ambiguous. Since L∃a is the complement (with respect to the alphabet {a, c}) of the
language that consists of a single tree (i.e. the tree with all nodes labeled by c), we conclude
that L∃a is not finitely ambiguous (this strengthens the above mentioned result of [5]). Our
main result states that over infinite trees there is a hierarchy of degrees of ambiguity:

Theorem 1.1 (Hierarchy). (1) For every k > 1 there are k-ambiguous languages that are
not (k − 1)-ambiguous.

(2) There are finitely ambiguous languages that are not boundedly ambiguous.
(3) There are countably ambiguous languages that are not finitely ambiguous.
(4) There are uncountably ambiguous languages that are not countably ambiguous.

Some natural tree languages that witness items (1), (3) and (4) of Theorem 1.1 are
described in the examples below. We have not found a “natural” finitely ambiguous language
which is not boundedly ambiguous (Theorem 1.1(2)).

Examples 1.2. Let TωΣ be the set of all infinite full-binary trees over an alphabet Σ. Let
Σk = {c, a1, a2, ..., ak}, and let L¬ai := {t ∈ TωΣk

| no node in t is labeled by ai} for 1 ≤ i ≤ n.
Define:

(1) L¬a1∨···∨¬ak := L¬a1 ∪ · · · ∪L¬ak . We show that this language is k-ambiguous, but is not
(k − 1)-ambiguous (see Sect. 5). In [3] it was shown that L¬a1∨¬a2 is two ambiguous.

(2) L∃a1 := {t ∈ TωΣ1
| there exists an a1-labeled node in t}. This is a countably ambiguous

language that is not finitely ambiguous (see Sect. 4).
(3) Lno−max−a1 := {t ∈ TωΣ1

| above every a1-labeled node in t there is an a1-labeled node}.
This is an uncountably ambiguous language that is not countably ambiguous (see Sect.
7).

Organization of the paper: In Sect. 2 we recall notations and basic results about
automata and monadic second-order logic. In Sect. 3 simple properties of languages are
proved. Sect. 4 gives a sufficient condition for a language to be not finitely ambiguous.
The proof techniques used in Sect. 4 refine the proof techniques of [5] - we rely on the
fact that a choice function is not MSO-definable to obtain a lower bound for degree of
ambiguity that is higher than the bound which was presented in [5]. Sect. 5 deals with
k-ambiguous languages - for every k ∈ N, we describe a k-ambiguous language that is not
(k−1)-ambiguous. Sect. 6 provides an example of a finitely ambiguous language which is not
boundedly ambiguous. Sect. 7 introduces a scheme for obtaining uncountably ambiguous
languages from languages that are not boundedly ambiguous, and presents some natural
examples of uncountably ambiguous languages. In Sect. 8, relying on the characterization
of countable regular languages given by Niwiński [16], we prove that every countable tree
language is unambiguous. The conclusion is given in Sect. 9.

An extended abstract of this paper was published in [19]. Here we added those proofs
which were sketched or missing in [19], presented natural examples of uncountably ambiguous
languages (in Sect. 7), and added Sect. 8 in which we prove that countable languages are
unambiguous.

4 A. RABINOVICH AND D. TIFERET

2. Preliminary

We recall here standard terminology and notations about trees, automata and logic [17, 18].
In Subsect. 2.3 we also recall Gurevich-Shelah’s theorem about undefinability of choice
function and derive Lemma 2.5 which plays an important role in our proofs.

2.1. Trees. We view the set {l, r}∗ of finite words over alphabet {l, r} as the domain of a
full-binary tree, where the empty word ε is the root of the tree, and for each node v ∈ {l, r}∗,
we call v · l the left child of v, and v · r the right child of v.

We define a tree order “≤” as a partial order such that ∀u, v ∈ {l, r}∗ : u ≤ v iff u is a
prefix of v. Nodes u and v are incomparable - denoted by u ⊥ v - if neither u ≤ v nor v ≤ u;
a set U of nodes is an antichain, if its elements are incomparable with each other.

We say that an infinite sequence π = v0, v1, . . . is a tree branch if v0 = ε and
∀i ∈ N : vi+1 = vi · l or vi+1 = vi · r.

If Σ is a finite alphabet, then a Σ-labeled full-binary tree t is a labeling function
t : {l, r}∗ → Σ. We denote by TωΣ the set of all Σ-labeled full-binary trees. We often use
“tree” for “labeled full-binary tree.”

Given a Σ-labeled tree t and a node v ∈ {l, r}∗, the tree t≥v (called the subtree of t,
rooted at v) is defined by t≥v(u) := t(v · u) for each u ∈ {l, r}∗.

Grafting. Given two labeled trees t1 and t2 and a node v ∈ {l, r}∗, the grafting of t2 on v
in t1, denoted by t1[t2/v], is the tree t that is obtained from t1 by replacing the subtree of t1

rooted at v by t2. Formally, t(u) :=

{
t2(w) ∃w ∈ {l, r}∗ : u = v · w
t1(u) otherwise

More generally, given a tree t1, an antichain Y ⊆ {l, r}∗ and a tree t2, the grafting of t2
on Y in t1, denoted by t1[t2/Y], is obtained by replacing each subtree of t1 rooted at a node
y ∈ Y by the tree t2.

Tree Language. A language L over an alphabet Σ is a set of Σ-labeled trees. We denote
by L := TωΣ \ L the complement of L.

2.2. Automata.

2.2.1. ω-word Automata.
Parity ω-word Automata (PWA). A PWA is a tuple (QA,Σ, QI , δ,C) where Σ is a
finite alphabet, Q is a finite set of states, QI ⊆ Q is a set of initial states, δ ⊆ Q× Σ×Q
is a transition relation, and C : Q → N is a coloring function. A run of A on an ω-word
y = a0a1 . . . is an infinite sequence ρ = q0q1 . . . such that q0 ∈ QI , and (qi, ai, qi+1) ∈ δ for
all i ∈ N. We say that ρ is accepting if the maximal number that occurs infinitely often in
C(q0)C(q1) . . . is even.

Language. We denote the set of all accepting runs of A on y by ACC(A, y). The language
of A is defined as L(A) := {y ∈ Σω | ACC(A, y) 6= ∅}.

2.2.2. Infinite Tree Automata.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 5

Parity Tree Automata (PTA). A PTA is a tuple (QA,Σ, QI , δ,C) where δ ⊆ Q× Σ×
Q×Q, and Σ, Q, QI , F are defined as in PWA. A computation of A on a tree t is a function
φ : {l, r}∗ → Q such that φ(ε) ∈ QI , and ∀v ∈ {l, r}∗ : (φ(v), t(v), φ(v · l), φ(v · r)) ∈ δ. We
say that φ is accepting if for each tree branch π = v0v1 . . . , the maximal number that occurs
infinitely often in C(φ(v0))C(φ(v1)) . . . is even.

Given a PTA A = (QA,Σ, QI , δA,CA) and a set Q′ ⊆ QA, we define AQ′ :=
(QA,Σ, Q

′, δA,CA) as the automaton obtained from A by replacing the set of initial states
QI with Q′. For a singleton Q′ = {q}, we simplify this notation by Aq := AQ′ .

Language. We denote the set of all accepting computations of A on t by ACC(A, t). The
language of A is defined as L(A) := {t ∈ TωΣ | ACC(A, t) 6= ∅}. A tree language is said to
be regular if it is accepted by a PTA.

A state q ∈ Q of a PTA A is called useful if there is a tree t ∈ L(A), a computation
φ ∈ ACC(A, t) and a node v ∈ {l, r}∗ such that φ(v) = q. Throughout the paper we will
assume that all states of PTA are useful.

Degree of Ambiguity of an Automaton. We denote by |X| the cardinality of a set X.
An automaton A is k-ambiguous if |ACC(A, t)| ≤ k for all t ∈ L(A); A is unambiguous if it
is 1-ambiguous; A is boundedly ambiguous if there is k ∈ N such that A is k-ambiguous; A
is finitely ambiguous if ACC(A, t) is finite for all t; A is countably ambiguous if ACC(A, t)
is countable for all t.

The degree of ambiguity of A (notation da(A)) is defined by da(A) := k if A is k-
ambiguous and either k = 1 or A is not k − 1 ambiguous, da(A) := finite if A is finitely
ambiguous and not boundedly ambiguous, da(A) := ℵ0 if A is countably ambiguous and not
finitely ambiguous, and da(A) := 2ℵ0 if A is not countably ambiguous.

We order the degrees of ambiguity in a natural way: i < j < finite < ℵ0 < 2ℵ0 , for
i < j ∈ N.

Degree of Ambiguity of a Language. We say that a regular tree language L is unambigu-
ous (respectively, k-ambiguous, finitely ambiguous, countably ambiguous) if it is accepted
by an unambiguous (respectively, k-ambiguous, finitely ambiguous, countably ambiguous)
automaton. We define da(L) := minA{da(A) | L(A) = L}.

2.3. Monadic Second-Order Logic. We use standard notations and terminology about
monadic second-order logic (MSO) [18, 23, 22].

Let τ be a relational signature. A structure (for τ) is a tuple M = (D, {RM | R ∈ τ})
where D is a domain, and each symbol R ∈ τ is interpreted as a relation RM on D.

MSO-formulas use first-order variables, which are interpreted by elements of the structure,
and monadic second-order variables, which are interpreted as sets of elements. Atomic
MSO-formulas are of the following form:

• R(x1, . . . , xn) for an n-ary relational symbol R and first order variables x1, . . . , xn
• x = y for two first-order variables x and y
• x ∈ X for a first-order variable x and a second-order variable X

MSO-formulas are constructed from the atomic formulas, using boolean connectives, the
first-order quantifiers, and the second-order quantifiers.

We write ψ(X1, . . . , Xn, x1, . . . , xm) to indicate that the free variables of the formula
ψ are X1, . . . , Xn (second order variables) and x1, . . . , xm (first order variables). We write

6 A. RABINOVICH AND D. TIFERET

M |= ψ(A1, . . . , An, a1, . . . am) if ψ holds in M when subsets Ai are assigned to Xi for
i = 1, . . . , n and elements ai are assigned to variables x1, . . . , xm for i = 1, . . . ,m.

Coding. Let ∆ be a finite set. We can code a function from a set D to ∆ by a tuple of
unary predicates on D. This type of coding is standard, and we shall use explicit variables
that range over such mappings and expressions of the form “F (u) = d” (for d ∈ ∆) in
MSO-formulas, rather than their codings.

Formally, for each finite set ∆ we have second-order variables X∆
1 , X

∆
2 , . . . that range

over the functions from D to ∆, and atomic formulas X∆
i (u) = d for d ∈ ∆ and u a first

order variables [23]. Often the type of the second order variables will be clear from the
context and we drop the superscript ∆.

Definable Relations. The powerset of D is denoted by P(D). We say that a relation
R ⊆ P(D)n ×Dm is MSO-definable in a structure S with universe D if there is an MSO-
formula ψ(X1, . . . , Xn, x1, . . . , xm) such that R = {(D1, . . . , Dn, u1, . . . , um) ∈ P(D)n×Dm |
S |= ψ(D1 . . . , Dn, u1 . . . , um)}.

An element d ∈ D is MSO-definable in a structure S if there is a formula ψ(x) such
that S |= φ(u) iff u = d. A set U ⊆ D is MSO-definable if there is a formula φ(X) such that
S |= φ(V) iff V = U . A function is MSO-definable if its graph is.

The unlabeled binary tree is the structure ({l, r}∗, {El, Er}) where El and Er are binary
symbols, respectively interpreted as {(v, v · l) | v ∈ {l, r}∗)} and {(v, v · r) | v ∈ {l, r}∗)}.

It is easy to verify the correctness of the following lemma:

Lemma 2.1. The following relations are MSO-definable in the unlabeled full-binary tree.

• The ancestor relation ≤.
• “A set of nodes is a branch,” “A set of nodes is an antichain.”
• Let A = (Q,Σ, QI , δ,C) be a PTA. We use φ for a function {l, r}∗ → Q and σ for a

function {l, r}∗ → Σ.
– “φ is a computation of A on the tree σ.”
– “φ is an accepting computation of A on the tree σ.”

The following two fundamental theorems were proved by Rabin in his famous 1969 paper
[18].

Theorem 2.2 (Rabin [18]). A tree language is regular iff it is MSO-definable in the unlabeled
binary tree structure.

A labeled tree is regular iff it has finitely many different subtrees. An equivalent
definition is: a tree is regular iff its labeling is MSO-definable [18]. Hence, for every regular
Σ-labeled tree t0 there is an MSO-formula ψt0(σΣ), where σΣ is the coding of {l, r}∗ → Σ,
that is satisfied by t : {l, r}∗ → Σ iff t = t0.

Theorem 2.3 (Rabin’s basis theorem [18]). Any non-empty regular tree language contains
a regular tree.

Choice Function. A choice function is a mapping that assigns to each non-empty set of
nodes one element from the set.

Theorem 2.4 (Gurevich and Shelah [10]). There is no MSO-definable choice function on
the full-binary tree.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 7

The following lemma follows from Theorem 2.4. It plays a key role in our proofs in Sect.
4, where sufficient conditions are provided for a language to be not finitely ambiguous.

Lemma 2.5. There is no MSO-definable function that assigns to every non-empty antichain
Y a finite non-empty subset X ⊆ Y .

Proof. Assume, for the sake of contradiction, that a function that returns a finite non-empty
subset for each non-empty antichain is MSO-definable in the unlabeled full-binary tree, by
an MSO-formula FiniteAntichainSubset(X,Y).

Claim 2.5.1 (Choice function over finite sets). There is an MSO-definable function that
assigns to each non-empty finite set X ⊆ {l, r}∗ an element x ∈ X.

Proof. We first define a lexicographic order “≤lex” on {l, r}∗, by u ≤lex v iff u is a prefix of
v or u = w · l · u′ and v = w · r · v′ for some w, u′, v′ ∈ {l, r}∗.

It is easy to verify that ≤lex is MSO-definable in the unlabeled full-binary tree. ≤lex is
a linear order, and therefore each non-empty finite set has exactly one ≤lex-minimal element.
We conclude that a finite set choice function is definable by FiniteChoice(X,x) :=“x is the
≤lex-minimal element in X”. �

Let FiniteChoice(X,x) be an MSO-formula that defines a function as in Claim 2.5.1.
We will use formulas FiniteAntichainSubset(X,Y) and FiniteChoice(X,x) to define a
choice function by an MSO-formula Choice(X,x) which is the conjunction of the following
conditions:

(1) ∃Z : “Z is the set of ≤-minimal elements in X”
(2) ∃Y : FiniteAntichainSubset(Z, Y)
(3) FiniteChoice(Y, x)

For each non-empty set X there is a unique subset Z ⊆ X of the ≤-minimal elements in
X. This set is a non-empty antichain, and therefore FiniteAntichainSubset(Z, Y) returns
a finite subset Y ⊆ Z. Therefore, FiniteChoice(Y, x) returns an element in Y . We conclude
that Choice(X,x) returns an element x ∈ X and therefore defines a choice function in the
unlabeled full-binary tree, in contradiction to Theorem 2.4.

3. Simple Properties of Automata and Languages

In this section some simple lemmas are collected.

Lemma 3.1. Let A1 = (Q1,Σ1, Q
1
I1
, δ1,C1) and A2 = (Q2,Σ2, Q

2
I1
, δ2,C2) be two PTA.

Then:

(1) There exists an automaton B such that L(B) = L(A1) ∪ L(A2) and for each t ∈
L(A1) ∪ L(A2), |ACC(B, t)| ≤ |ACC(A1, t)|+ |ACC(A2, t)|.

(2) There exists an automaton B such that L(B) = L(A1) ∩ L(A2) and for each t ∈
L(A1) ∩ L(A2), |ACC(B, t)| ≤ |ACC(A1, t)| · |ACC(A2, t)|.

Proof. (1) Assume that Q1 and Q2 are disjoint, and let B := (Q1∪Q2,Σ1∪Σ2, Q
1
I ∪Q2

I , δ1∪
δ2,C1 ∪ C2). It is clear that L(B) = L(A1) ∪ L(A2).

Let t ∈ L(B). By definition of B, for each φ ∈ ACC(B, t) we either have φ ∈ ACC(A1, t)
or φ ∈ ACC(A2, t). Therefore, we obtain |ACC(B, t)| = |ACC(A1, t)|+ |ACC(A2, t)|.

(2) It is easy to verify that there is an MSO-formula over ω-words that holds for
w = (c1, c

′
1), . . . , (ci, c

′
i), · · · ∈ (Image(C1)× Image(C2))ω iff the maximal color that appears

8 A. RABINOVICH AND D. TIFERET

infinitely often in the first coordinate of w and the maximal color that appears infinitely often
in the second coordinate of w are both even. Therefore (by McNaughton’s Theorem [15])
there is a deterministic PWA D = (QD,ΣD, q

D
I , δD,CD) over alphabet ΣD = Image(C1)×

Image(C2) such that w ∈ L(D) iff the maximal color that appears infinitely often in the first
coordinate of w and the maximal color that appears infinitely often in the second coordinate
of w are both even.

We will use the automata A1,A2 and D to define a PTA B := (QB,ΣB, Q
B
I , δB,CB)

which accepts L(A1) ∩ L(A2).

• QB = Q1 ×Q2 ×QD
• ΣB := Σ1 ∩ Σ2

• QBI := Q1
I ×Q2

I × {qDI }
• ((q, p, s), a, (q1, p1, s1), (q2, p2, s2)) ∈ δB iff (q, a, q1, q2) ∈ δ1, (p, a, p1, p2) ∈ δ2, and s1 =
s2 = δD(s, (C1(q),C2(p))).
• CB(q1, q2, p) := CD(p)

It is easy to verify that L(B) = L(A1) ∩ L(A2).
Assume, for the sake of contradiction, that there exists t such that |ACC(B, t)| >

|ACC(A1, t)| · |ACC(A2, t)|. Since D is deterministic, it follows that there is a computation
in ACC(B, t) such that either the projection of the first coordinate of φ on Q1, denoted φ1,
is not in ACC(A1, t) or the projection of the second coordinate of φ on Q2, denoted φ2, is
not in ACC(A2, t). Assume w.l.o.g. that φ1 /∈ ACC(A1, t). Therefore, there is a tree branch
π = v0, v1, . . . such that the maximal color that C1 assigns to the states that occurs infinitely
often in φ1(π) is odd. By definition of D we conclude that w := (c0, c

′
0), (c1, c

′
1), . . . /∈ L(D),

where ci := C1(φ1(vi)) and c′i := C2(φ2(vi)). Hence, by definition of B we conclude that the
sequence of colors that CB assigns to the states φ(π) is exactly w, and therefore φ /∈ ACC(B, t)
- a contradiction.

From Lemma 3.1, we obtain:

Corollary 3.2. Boundedly, finitely and countably ambiguous tree languages are closed under
finite union and intersection.

We often use implicitly the following simple Lemma.

Lemma 3.3 (Grafting). Let A be an automaton, t, t1 trees, v ∈ {l, r}∗ and φ ∈ ACC(A, t),
and φ1 ∈ ACC(Aq, t1). If φ(v) = q, then φ[φ1/v] is an accepting computation of A on
t[t1/v].

A similar lemma holds for general grafting. As an immediate consequence, we obtain
the following lemma:

Lemma 3.4. da(A) ≥ da(Aq) for every useful state q of A.

Corollary 3.5. Let A be a boundedly (respectively, finitely, countably) ambiguous PTA
with a set Q of useful states, and let Q′ ⊆ Q. Then AQ′ is boundedly (respectively, finitely,
countably) ambiguous.

Lemma 3.6. Let L1 and L2 be two tree languages such that da(L1) 6= da(L2) and L1 ⊆ L2.
Then, there exists a tree t ∈ L2 \ L1.

Proof. The lemma follows immediately, since otherwise we have L1 = L2 and therefore
da(L1) = da(L2), in contradiction to da(L1) 6= da(L2).

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 9

Lemma 3.7. Let A = (Q,Σ, QI , δ,C) be a PTA. Then, there exists a PTA B =
(QB,Σ, {qBI }, δB,C) with single initial state such that L(B) = L(A), and da(B) ≤ da(A).

Proof. Let QB := Q∪ {qBI } and δB := δA ∪ {(qBI , a, ql, qr) | qI ∈ QI and (qI , a, ql, qr) ∈ δ}. It
is easy to see that L(B) = L(A).

Let t ∈ L(A), and let gt be a function from ACC(A, t) to ACC(B, t) that maps each
computation φ ∈ ACC(A, t) to a computation φ′ that assigns qBI to node ε, and φ(v) to
other nodes. It is easy to see that φ′ ∈ ACC(B, t), and that gt is surjective, and therefore
∀t : |ACC(A, t)| ≥ |ACC(B, t)|, as requested.

Definition 3.8 (Moore machine). A Moore machine is a tuple M = (Σ,Γ, Q, qI , δ, out),
where Σ is a finite input alphabet, Q is a finite set of states, qI ∈ Q is an initial state,
δ : Q × Σ → Q is a transition function, Γ is an output alphabet, and out : Q → Γ is an
output function.

Define δ̂ : Σ∗ → Q by δ̂(ε) := qI and δ̂(w) := δ(δ̂(w′), a) for w = w′ · a where w′ ∈ Σ∗

and a ∈ Σ. We say that a function F : Σ∗ → Γ is definable by a Moore machine if there is a

Moore machine M such that F (w) = out(δ̂(w)) for all w ∈ Σ∗.

Definition 3.9. Let F : Σ∗1 → Σ2 be a function definable by a Moore machine, and let

t1 ∈ TωΣ1
. We define t2 := F̂ (t1) as a tree in TωΣ2

such that t2(v) := F (t1(v1) · · · · · t1(vk))
where v1, v2, . . . , vk is the path from the root to v.

For a tree language L ⊆ TωΣ1
, we define F̂ (L) := {F̂ (t) | t ∈ L} ⊆ TωΣ2

.

Lemma 3.10 (Reduction). Let L1 and L2 be regular tree languages over alphabets Σ1 and
Σ2, respectively. Let F : Σ∗1 → Σ2 be a function definable by a Moore machine. Assume that

for each t ∈ TωΣ1
, t ∈ L1 iff F̂ (t) ∈ L2. Then da(L1) ≤ da(L2).

Proof. Let A2 = (Q2,Σ2, Q
2
I , δ2,C2) such that A2 accepts L2 and da(A2) = da(L2).

Let M = (Σ1,Σ2, QM , q
M
I , δM , outM) be a Moore machine defining F . We will use

A2 and M to define an automaton A1 = (Q1,Σ1, Q
1
I , δ1,C1) such that t ∈ L(A1) iff

F̂ (t) ∈ L(A2), by:

• Q1 := Q2 ×QM
• Q1

I := Q2
I × {qMI }

• ((q, p), a, (q1, p1), (q2, p2)) ∈ δ1 iff p1 = p2 = δM (p, a) and (q, outM (p), q1, q2) ∈ δ2

• C1(q, p) := C2(q)

First notice that ∀t ∈ TωΣ : t ∈ L(A1) ⇔ F̂ (t) ∈ L(A2) ⇔ F̂ (t) ∈ L2 ⇔ t ∈ L1, and
therefore L(A1) = L1 as needed.

Let φ ∈ ACC(A1, t), and define a computation φ′ by φ′(v) = q1 for φ(v) = (q1, q2) ∈
Q2 × QM . It is easy to see that φ′ ∈ ACC(A2, F̂ (t)) and since M is deterministic, we

conclude that |ACC(A1, t)| ≤ |ACC(A2, F̂ (t)|)|, and therefore da(A1) ≤ da(A2).
We conclude that da(L1) ≤ da(A1) ≤ da(A2) = da(L2), as requested.

Let us state another well-known characterization of regular trees.

Fact 3.11. A tree t is regular iff its labelling t : {l, r}∗ → Σ is definable by a Moore
machine.

10 A. RABINOVICH AND D. TIFERET

4. Not-Finitely Ambiguous Languages

We provide here sufficient conditions for a language to be not finitely ambiguous. These
conditions will allow us to present some natural languages which are countably ambiguous
and not finitely ambiguous, proving Theorem 1.1(3). In addition, these results are used in
Sects. 5-7 where it is proved that for every k > 1 there is a language of ambiguity degree
equal to k and there are languages with finite and uncountable degrees of ambiguity.

First, we state our main technical result - Proposition 4.1. Then, we derive some
consequences. Finally, a proof of Proposition 4.1 is given. Our proof relies on the fact that
there is no MSO-definable function that assigns to every non-empty antichain Y a finite
non-empty subset X ⊆ Y (Lemma 2.5), and our proof techniques refine the proof techniques
of [5]

Recall that for trees t and t′ and an antichain Y , we denote by t[t′/Y] the tree obtained
from t by grafting t′ at every node in Y .

Proposition 4.1. Let t0 and t1 be regular trees and L be a regular language such that t0 6∈ L
and t0[t1/Y] ∈ L for every non-empty antichain Y . Then L is not finitely ambiguous.

Definition 4.2. For a tree language L over alphabet Σ, we denote by Subtree(L) the tree
language {t ∈ TωΣ | ∃t′ ∈ L ∃v : t′≥v = t}.

Corollary 4.3. Let L be a non-empty regular language over an alphabet Σ such that
Subtree(L) 6= TωΣ . Then, the complement of L is not finitely ambiguous.

Proof. Let L be as in Corollary 4.3. We claim that there are regular Σ-labeled trees t0 ∈ L
and t1 6∈ Subtree(L). Indeed, by Rabin’s basis theorem there is a regular t0 ∈ L. Since L is
regular, there is an automaton B = (Q,Σ, {qI}, δ,C) (with only useful states) that accepts L.
It is clear that BQ accepts Subtree(L), and therefore Subtree(L) is regular. The complement
of Subtree(L) is regular (as the complement of a regular language) and non-empty (since
Subtree(L) 6= TωΣ), and therefore contains a regular tree t1 (by Rabin’s basis theorem). Note
that t0[t1/Y] 6∈ L for every non-empty antichain Y .

The complement of L satisfies the assumption of Proposition 4.1. Therefore, it is not
finitely ambiguous.

Corollary 4.4 (Not finitely ambiguous languages). The following languages are not finitely
ambiguous:

(1) The complement of a non-empty regular countable tree language.
(2) The complement of a regular language that contains a single tree.
(3) The language L∃a1 := {t ∈ TωΣ | t has at least one node labeled by a1} over alphabet

Σ = {a1, . . . , am, c}.

Proof. (1) Let L be a non-empty regular countable tree language. Every tree has countably
many subtrees, and since L is countable we conclude that Subtree(L) is countable. Therefore,
Subtree(L) does not contain all trees. By Corollary 4.3, we conclude that L is not finitely
ambiguous.

(2) Follows immediately from (1).
(3) By the definition of L∃a1 we have L∃a1 ∩Tω{c,a1} = Tω{c,a1} \ {tc}, and therefore by (2),

L∃a1 ∩ Tω{c,a1} is not finitely ambiguous. It is easy to see that Tω{c,a1} is unambiguous (since

there is a deterministic automaton that accepts it). Therefore, by Corollary 3.2 we conclude
that L∃a1 is not finitely ambiguous.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 11

It is easy to prove that the complement of every finite language (i.e. a language which
consists of finitely many trees) is countably ambiguous. Therefore, we obtain:

Corollary 4.5. If L is regular and its complement is finite and non-empty, then da(L) = ℵ0.

Proof of Corollary 4.5. We first prove the following claim:

Claim 4.5.1. Let L be a regular tree language containing a single tree. Then L is countably
ambiguous.

Proof. Assume that L = {t}. L is a regular language, and therefore t is regular. By Fact 3.11
there is a Moore machine M = ({l, r},Σ, QM , qMI , δM , outM) such that for each v ∈ {l, r}∗,
out(δ̂(v)) = σ iff t(v) = σ (that is, M defines the function t : {l, r}∗ → Σ).

We will use M to construct a countably ambiguous automaton A that accepts L by
guessing a node v ∈ {l, r}∗ such that t(v) 6= t′(v) for each tree t′ ∈ L.

Let A := (QA,Σ, QI , δ,C) such that:

• QA := {q, q′} ×QM
• QI := {(q′, qMI)}
• δ is defined by:

– ((q, p), a, (q, p′), (q, p′′)) ∈ δ iff δM (p, l) = p′, δM (p, r) = p′′

– ((q′, p), a, (q, p′), (q, p′′)) ∈ δ iff δM (p, l) = p′, δM (p, r) = p′′ and out(p) 6= a
– ((q′, p), a, (q′, p′), (q, p′′)), ((q′, p), a, (q, p′), (q′, p′′)) ∈ δ iff δM (p, l) = p′, δM (p, r) = p′′

and out(p) = a.
• ∀p ∈ QM : C(q, p) := 0 and C(q′, p) := 1

By definition of A, it is clear that t′ ∈ L(A) iff there is a node v such that t′(v) 6= t(v),
and therefore t′ ∈ L(A) iff t′ 6= t.

For each computation φ of A on t′, the QM component is determined deterministically
by M and t. If φ is accepting, there are finitely many nodes v such that the first component
of φ(v) is q′ - otherwise, there would be a branch where the maximal color assigned infinitely
often by C is odd, in contradiction to φ being an accepting computation. Therefore, there
are countably many accepting computations on each tree t′ ∈ L(A), and A is countably
ambiguous. �

L is finite and therefore there are t1, . . . , tk ∈ TωΣ such that L = {t1, . . . , tk}. A finite
tree language does not contain a non-regular tree, and therefore t1, . . . , tk are regular. By
Claim 4.5.1, for each tree ti ∈ L, there is a countably ambiguous automaton Ai such that
t ∈ L(Ai) iff t 6= ti. Notice that L = L(A1) ∩ . . . ,∩L(Ak), and therefore by Lemma 3.1 we
conclude that L is countably ambiguous.

On the proof of Proposition 4.1. In the rest of this section, Proposition 4.1 is proved.
Let us sketch some ideas of the proof. For a language L, as in Proposition 4.1, and any
non-empty antichain Y we show that if A does not accept t0 and accepts t := t0[t1/Y], then
every φ ∈ ACC(A, t) chooses (in an MSO-definable way) an element from Y . Hence, the
computations in ACC(A, t) choose together a subset X of Y of cardinality ≤ |ACC(A, t)|
(each computation chooses a single element). Therefore, if A accepts L and is finitely
ambiguous, then X is finite - a contradiction to Lemma 2.5. To implement this plan,
in Subsect. 4.1 we recall a game theoretical interpretation of “a tree is accepted by an
automaton.” Then, in Subsect. 4.2 we analyze which concepts related to these games are
MSO-definable. Finally, in Subsect. 4.3, the proof is completed.

12 A. RABINOVICH AND D. TIFERET

4.1. Membership Game. Let A = (Q,Σ, {qI}, δ,C) be a PTA, and let t be a Σ-labeled
tree. A two-player game Gt,A (called a “membership game”) between Automaton and
Pathfinder is defined as follows. The positions of Automaton are {l, r}∗ × Q, and the
positions of Pathfinder are {l, r}∗ ×Q×Q. The initial position is (ε, qI).

From a position (v, q) ∈ {l, r}∗ ×Q Automaton chooses a tuple (ql, qr) ∈ Q×Q such
that ∃a ∈ Σ : (q, a, ql, qr) ∈ δ, and moves to the position (v, ql, qr). From a position
(v, ql, qr) ∈ {l, r}∗ × Q × Q Pathfinder chooses a direction d ∈ {l, r}, and moves to the
position (v · d, qd).

We define a play s := e0, d0, e1, d1, . . . , ei, di, · · · ∈ (Q × Q × {l, r})ω as an infinite
sequence of moves, corresponding to the choices of Automaton and Pathfinder from the
initial position. We say that the move ei = (ql, qr) from position (v, q) is invalid for
Automaton if (q, t(v), ql, qr) /∈ δ.

A strategy for a player in Gt,A is a function that determines the next move of the
player based on previous moves of both players.

A positional strategy for a player in Gt,A is a strategy that determines the next move
of the player based only on the current position. A positional strategy for Automaton is a
function str : {l, r}∗ ×Q → Q×Q, and a positional strategy for Pathfinder is a function
STR : {l, r}∗ ×Q×Q→ {l, r}.

Let CG be a coloring function that maps each position in Gt,A to a color in N. We define
CG(v, q) := C(q) for Automaton’s positions, and CG(v, ql, qr) := 0 for Pathfinder’s positions.

For each play s define πs as the infinite sequence of positions corresponding to the
moves in s. A play s is winning for Automaton iff s does not contain an invalid move for
Automaton, and the maximal color that CG assigns infinitely often to the positions in πs is
even. Since all Pathfinder’s positions are colored by 0, it is sufficient to consider the coloring
of Automaton’s positions in πs.

We say that a play is consistent with a strategy of a player if all moves of the player are
according to the strategy. A winning strategy for a player is a strategy such that each
play that is consistent with the strategy is winning for the player.

Parity games are positionally determined [7], i.e., for each parity game, one of the players
has a positional winning strategy. Therefore, if a player has a winning strategy, then he has
a positional winning strategy. Additionally, if a positional strategy of a player wins against
all positional strategies of the other player, then it is a winning strategy.

We recall standard definitions and facts about the connections between games and tree
automata [9, 17].

Let φ : {l, r}∗ → Q be a function such that φ(ε) = qI and ∀v ∈ {l, r} : ∃a ∈ Σ :
(φ(v), a, φ(v · l), φ(v · r)) ∈ δ. We define a positional strategy strφ : {l, r}∗ × Q → Q × Q
for Automaton, by strφ(v, q) := (φ(v · l), φ(v · r)). Conversely, for each positional strategy
str : {l, r}∗ × Q → Q × Q of Automaton we construct a function φstr : {l, r}∗ → Q
by φ(ε) := qI and for all v ∈ {l, r}∗ we set φ(v · l) := ql, and φ(v · r) := qr where
str(v, φ(v)) = (ql, qr).

Claim 4.1.1. (1) Let s be a play that is consistent with strφ, and let (vi, qi) be the i-th
position of Automaton in πs. Then, φ(vi) = qi.

(2) If φ ∈ ACC(A, t), then strφ is a positional winning strategy for Automaton.
(3) If str is a positional winning strategy for Automaton, then φstr ∈ ACC(A, t).

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 13

Proof. (1) We will prove by induction on i. For i = 0 we have (v0, q0) = (ε, qI) (by definition
of Gt,A), and indeed φ(v0) = φ(ε) = qI . Assume the claim holds for i = k and we prove for
i = k + 1.

Let d ∈ {l, r} be the i-th move of Pathfinder in s. By definition of Gt,A we have
vi+1 = vi · d, and qi+1 = qd, where strφ(vi, qi) = (ql, qr).

By definition strφ we have (ql, qr) = (φ(vi · l), φ(vi · l)), and therefore qi+1 = φ(vi · d) =
φ(vi+1), as requested.

(2) and (3) are well known results about membership games [17]. �

The next claim describes what happens when Pathfinder plays his winning strategy in
Gt,A against an Automaton’s winning strategy in Gt′,A (for t′ 6= t).

Claim 4.1.2. Assume t /∈ L(A) and let φ be an accepting computation of A on a tree t′,
and STR be a winning strategy of Pathfinder in Gt,A. Let s := e0, d0, e1, d1, . . . , ei, di, . . .
be the play that is consistent with strφ and STR. Then, there is i ∈ N such that ei is an
invalid move for Automaton in Gt,A. Moreover, if ei is the first invalid move for Automaton
in s, then t(v) 6= t′(v) for v := d0 . . . di−1.

Proof. Assume, for the sake of contradiction, that s does not contain an invalid move for
Automaton, and let (vi, qi) be the i-th position of Automaton in πs. By definition of Gt,A
it is easy to see that π = v0, . . . , vi, . . . is a branch in the full-binary tree. Since φ is an
accepting computation of A on t′, we conclude that the maximal color that C assigns
infinitely often to states in φ(π) is even. By Claim 4.1.1(1) we have φ(vi) = qi, and therefore
φ(π) = q0 . . . qi By the definition of CG we have CG(vi, qi) = C(qi) and we conclude
that the maximal color that C assigns infinitely often in πs is even, and therefore the play is
winning for Automaton - a contradiction to STR being a winning strategy of Pathfinder.

Therefore, Automaton makes an invalid move in s. Let ei = (ql, qr) be the first invalid
move of Automaton in s. Since ei is invalid we have (qi, t(vi), ql, qr) /∈ δ, and by definition of
strφ we obtain (ql, qr) = (φ(vi ·l), φ(vi ·r)). Since φ(vi) = qi we have (φ(vi), t(vi), φ(vi ·l), φ(vi ·
r)) /∈ δ. φ is a computation of A on t′ and therefore (φ(vi), t

′(vi), φ(vi · l), φ(vi · r)) ∈ δ, and
we conclude that t(vi) 6= t′(vi). Notice that by the definition of Gt,A we have vi = d0 . . . di−1,
and the claim follows. �

4.2. MSO-definability. Throughout this section we will use the following conventions and
terminology.

Positional Pathfinder strategies as labeled trees: A positional strategy STR for
Pathfinder is a function in {l, r}∗ × Q × Q → {l, r}. Hence, it can be consid-
ered as a Q × Q → {l, r} labeled tree. Below we will not distinguish between
a positional Pathfinder’s strategy and the corresponding Q × Q → {l, r} labeled
full-binary tree. In particular, we call such a strategy regular, if the corresponding
tree is regular.

MSO-definability: We will use “MSO-definable” for “MSO-definable in the unlabeled
full-binary tree.”

The rest of the proof deals with MSO-definability. By Claim 4.1.2, there is a function
InvalidA(φ, STR, t, v) that, for every accepting computation φ of A on t′, returns a node
v such that t′(v) 6= t(v). This function depends on the strategy STR of Pathfinder. The
restriction of InvalidA to the Pathfinder positional winning strategies in Gt,A is MSO-
definable (with parameters t and STR) by the following formula LeadsA(φ, STR, t, v), that

14 A. RABINOVICH AND D. TIFERET

describes in MSO the play of φ against STR up to the first invalid move of Automaton (at
the position (v, φ(v)).

Define LeadsA(φ, STR, t, v) as the conjunction of:

(1) φ(ε) = qI -the play starts from the initial position.
(2) ∀u < v : ((φ(u), t(u), φ(u · l), φ(u · r)) ∈ δ - all Automaton’s moves at the positions (u, q),

where u is an ancestor of v respect δ. (By Claim 4.1.1(1), in any play consistent with φ,
Automaton can reach only the positions of the form (u, φ(u))).

(3) (φ(v), t(v), φ(v · l), φ(v · r)) /∈ δ - the Automaton move at (v, φ(v)) is invalid.
(4) ∀u < v : (STR(u, φ(u · l), φ(u · r)) = l)↔ u · l ≤ v)) - the Pathfinder moves d0 . . . dj . . .

are consistent with STR and are along the path from the root to v, i.e., d0d1 . . . dj ≤ v.

To sum up, we have the following claim:

Claim 4.1.3. LeadsA(φ, STR, t, v) defines a function that, for every tree t 6∈ L(A), every
Pathfinder’s positional (in Gt,A) winning strategy STR, and every φ ∈ ACC(A, t′), returns
a node v such that t(v) 6= t′(v).

Claim 4.1.3 plays a crucial role in our proof. It is instructive to compare it with Theorem
2.4 which implies that there is no MSO-definable function F (t,D, v) that for a tree t 6= t′

and D := {u | t(u) 6= t′(u)} returns a node v such that t(v) 6= t′(v).
The following claim is folklore. Due to the lack of references, it is proved in the Appendix.

Claim 4.1.4. Let t0 be a regular tree such that t0 /∈ L(A). Then, Pathfinder has a regular
positional winning strategy in Gt0,A.

Let t0 be a regular tree such that t0 /∈ L(A). By Claim 4.1.4 there is a regular positional

winning strategy ŜTR of Pathfinder in Gt0,A. Now, we can substitute ŜTR and t0 for
arguments STR and t of LeadsA and obtain the following Proposition:

Proposition 4.6. For every regular tree t0 /∈ L(A) and a regular positional winning strategy

ŜTR for Pathfinder in Gt0,A, there is an MSO-definable function that, for each accepting
computation φ of A on t′, returns a node v such that t0(v) 6= t′(v).

Proof. Let ψt0(σ) and ψ
ŜTR

(STR) be MSO-formulas that define t0 and ŜTR. Then, by

Claim 4.1.3, ∃σ∃STR : ψt0(σ)∧ψ
ŜTR

(STR)∧LeadsA(φ, STR, σ, v) defines such a function.
�

Let us continue with the proof of Proposition 4.1. Recall that for trees t and t′ and an
antichain Y , we denote by t[t′/Y] the tree obtained from t by grafting t′ at every node in Y .

Claim 4.1.5. Let t0 and t1 be regular trees. Then, there is an MSO-formula graft t0,t1(Y, σ)
defining a function that for every antichain Y returns the tree t0[t1/Y].

Proof of Claim 4.1.5. t0 and t1 are regular, and therefore there are MSO-formulas ψt0(σ)
and ψt1(σ) that defines t0 and t1.

Let ψ≥yt1 (y, σ) be a formula that is obtained from ψt1(σ) by relativizing the first-order
quantifiers to ≥ y, i.e., by replacing subformulas of the form ∃x(. . .) and ∀x(. . .) by

∃x(x ≥ y) ∧ (. . .) and ∀x(x ≥ y) → (. . .). Then, v, t |= ψ≥yt1 (y, σ) iff t≥v = t1. Hence,
graft t0,t1(Y, σ) can be defined as the conjunction of:

(1) ∃σ0ψt0(σ0) ∧ ∀v - “if no Y node is an ancestor of v then σ(v) = σ0(v),” and

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 15

(2) ∀y(y ∈ Y)→ ψ≥yt1 (y, σ) - “at every node in Y a tree t1 is grafted.”

�

4.3. Finishing Proof of Proposition 4.1. Now, we have all the ingredients ready for the
proof of Proposition 4.1.

Let A be such that L(A) = L, and let α
t0,A,ŜTR

(φ, v) be a formula that defines the

function from Proposition 4.6 (t0[t1/Y] now takes the role of t′).
Define a formula: ChoiceA,t0,t1,ŜTR

(Y, φ, y) := y ∈ Y ∧ ∃v(α
t0,A,ŜTR

(φ, v) ∧ v ≥ y).

Claim 4.1.6. ChoiceA,t0,t1,ŜTR
(Y, φ, y) defines a function that for every non-empty an-

tichain Y and an accepting computation φ of A on t0[t1/Y], returns a node y ∈ Y .

Proof. By Proposition 4.6, α
t0,A,ŜTR

(φ, v) returns a node v such that t0(v) 6= (t0[t1/Y])(v).

By definition of t0[t1/Y], there is a unique node y ∈ Y such that v ≥ y. �

Define ChooseSubsetA,t0,t1,ŜTR
(Y,X) := ∀x : x ∈ X iff the following conditions hold:

(1) x ∈ Y and
(2) ∃σ such that

(a) graft t0,t1(Y, σ) - “σ = t0[t1/Y]” and
(b) ∃φAcceptingRunA(σ, φ) ∧ ChoiceA,t0,t1,ŜTR(Y, φ, x), where AcceptingRunA(σ, φ)

defines “φ is an accepting computation of A on the tree σ.”

Claim 4.1.7. ChooseSubsetA,t0,t1,ŜTR
(Y,X) defines a function that maps every non-empty

antichain Y to a non-empty subset X ⊆ Y . Moreover, |X| ≤ |ACC(A, t0[t1/Y])|.

Proof. If Y is non-empty, then t0[t1/Y] ∈ L. Hence, A has at least one accepting computation
on t0[t1/Y]. Therefore, X is non-empty, by Claim 4.1.6. The “Moreover” part immediately
follows from Claim 4.1.6. �

Let A be such that L(A) = L and assume, for the sake of contradiction, that A is finitely
ambiguous. In particular, there are finitely many accepting computations of A on t0[t1/Y],
and therefore by Claim 4.1.7, we conclude that ChooseSubsetA,t0,t1,ŜTR

(Y,X) assigns to

every non-empty antichain Y a finite non-empty X ⊆ Y - a contradiction to Lemma 2.5.

5. kAmbiguous Languages

In this section we prove that for every 0 < k ∈ N, there is a tree language with the degree of
ambiguity equal to k. First, we introduce some notations. For a letter σ, we denote by tσ,
the full-binary tree with all nodes labeled by σ. Let L¬a1∨···∨¬ak := L¬a1 ∪ · · · ∪ L¬ak be a
tree language over alphabet Σn = {c, a1, a2, ..., an}, where L¬ai := {t ∈ TωΣn

| no node in t is
labeled by ai}.

Proposition 5.1. The degree of ambiguity of L¬a1∨···∨¬ak for k ≤ n is k.

It is easy to see that L¬ai are accepted by deterministic PTA. Therefore, by Lemma
3.1, we obtain that L¬a1∨···∨¬ak is k-ambiguous. In the rest of this section we will show that
L¬a1∨···∨¬ak is not (k − 1)-ambiguous. It was shown in [3] that L¬a1∨¬a2 is ambiguous.

16 A. RABINOVICH AND D. TIFERET

Lemma 5.2. Let L∃a1∧···∧∃am := {t ∈ TωΣn
| for every i ≤ m there is a node in t labeled by

ai}, and let L be a tree language such that tc /∈ L and L∃a1∧···∧∃am ∩ Tω{c,a1,...,am} ⊆ L. Then,

L is not finitely ambiguous.

Proof. Define a function F : Σ∗ → Σ such that F (σ1 . . . σk) := ak−i+1 if there is i such that
σi = a1, for all j < i : σj 6= a1 and k − i+ 1 ≤ m. Otherwise, F (σ1 . . . σk) := c.

It is easy to see that F is definable by a Moore machine, and ∀t ∈ TωΣ : t ∈ L∃a1 iff

F̂ (t) ∈ L. Therefore, by Lemma 3.10 we conclude that da(L) ≥ da(L∃a1). Since L∃a1 is not
finitely ambiguous (by Corollary 4.4 (3)), we conclude that L is not finitely ambiguous.

Notations. Let a ∈ Σ, t1 ∈ TωΣ and t2 ∈ TωΣ . We define Tree(a, t1, t2) ∈ TωΣ as a tree t
where t(ε) = a, t≥l = t1 and t≥r = t2.

Lemma 5.3. Let A be a finitely ambiguous automaton over alphabet Σn such that L(A) =
L¬a1∨···∨¬ak for k ≤ n. Then |ACC(A, tc)| ≥ k.

Proof. We will prove by induction on k. For k = 1 the claim holds trivially, since tc ∈ L(A)
implies that |ACC(A, tc)| ≥ 1.

Assume the claim holds for all k < m ≤ n and prove for k = m.
Let A = (Q,Σ, QI , δ,C) be a finitely ambiguous automaton that accepts L¬a1∨···∨¬am .

Define R := {(q1, q2) ∈ Q×Q | ∃qi ∈ QI : (qi, c, q1, q2) ∈ δ)}, and let R[1] and R[2] be the
projections of the first and second coordinate of R on Q, respectively.

Define Q∃am := {q ∈ R[1] | L(Aq) ∩ L∃am 6= ∅}, and let Q∃am∧tc := {q ∈ Q∃am | tc ∈
L(Aq)} and Q∃am∧¬tc := Q∃am \Q∃am∧tc .

By definition of Q∃am∧¬tc we have tc /∈ L(AQ∃am∧¬tc) and therefore L(AQ∃am∧¬tc) ∩
Tω{c,am} ⊆ T

ω
{c,am}\{tc}. The language Tω{c,am}\{tc} is not finitely ambiguous by Corollary 4.4

(2). L(AQ∃am∧¬tc) is finitely ambiguous (by Corollary 3.5) and since Tω{c,am} is unambiguous

we conclude that L(AQ∃am∧¬tc)∩Tω{c,am} is finitely ambiguous, by Corollary 3.2. Therefore, by

Lemma 3.6, there is a tree t′ ∈ Tω{c,am} \ {tc} = L∃am ∩ Tω{c,am} such that t′ /∈ L(AQ∃am∧¬tc),

and since L∃am ∩ Tω{c,am} ⊆ L(AQ∃am) = L(AQ∃am∧tc) ∪ L(AQ∃am∧¬tc) we conclude that

t′ ∈ L(AQ∃am∧tc).
Define Q′ := {q ∈ R[1] | t′ ∈ L(Aq)} and R′ := {(q1, q2) ∈ R | q1 ∈ Q′}. Since

t′ ∈ L∃am∩Tω{c,am}, we conclude that {t ∈ TωΣ | Tree(c, t′, t) ∈ L¬a1∨···∨¬am} = L¬a1∨···∨¬am−1 .

Therefore, L(AR′[2]) = L¬a1∨···∨¬am−1 , and by induction assumption we obtain:
|ACC(AR′[2], tc)| ≥ m− 1.

For each computation φ ∈ ACC(AR′[2], tc) we will construct a computation g(φ) ∈
ACC(A, tc), as following. Let q2 := φ(ε). By the definition of R′, there is (q1, q2) ∈ R′
such that t′ ∈ L(Aq1). Since t′ ∈ L(AQ∃am∧tc) we have tc ∈ L(Aq1), and therefore there
is a computation φc ∈ ACC(Aq1 , tc). Let qi ∈ QI such that (qi, c, q1, q2) ∈ δ. By defining
g(φ) := Tree(qi, φc, φ) we obtain that g(φ) ∈ ACC(A, tc), as requested.

Let Φ := {g(φ) | φ ∈ ACC(AR′[2], tc)}. g(φ)≥r = φ and therefore g is injective, and we
conclude that |Φ| = |ACC(AR′[2], tc)| ≥ m− 1.

We now need to find an additional computation φ ∈ ACC(A, tc) such that φ /∈ Φ,
resulting |ACC(A, tc)| ≥ m.

Let Q∃a1∧···∧∃am−1 := {q ∈ R[2] | L(Aq)∩L∃a1∧···∧∃am−1 6= ∅} and let Qtc∧∃a1∧···∧∃am−1 :=
{q ∈ Q∃a1∧···∧∃am−1 | tc ∈ L(Aq)} and Q¬tc∧∃a1∧···∧∃am−1 := Q∃a1∧···∧∃am−1\Qtc∧∃a1∧···∧∃am−1 .

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 17

Claim 5.3.1. There is a full-binary tree t′′ ∈ L∃a1∧···∧∃am−1 ∩ Tω{c,a1,...,am−1} such that

t′′ ∈ L(AQtc∧∃a1∧···∧∃am−1
) and t′′ /∈ L(AQ¬tc∧∃a1∧···∧∃am−1

).

Proof. By the definition of R[2] we have L∃a1∧···∧∃am−1 ∩Tω{c,a1,...,am−1} ⊆ L(AR[2]) and there-

fore by the definition of Qtc∧∃a1∧···∧∃am−1 and Q¬tc∧∃a1∧···∧∃am−1 , we have L∃a1∧···∧∃am−1 ∩
Tω{c,a1,...,am−1} ⊆ L(AQtc∧∃a1∧···∧∃am−1

) ∪ L(AQ¬tc∧∃a1∧···∧∃am−1
).

Assume, for the sake of contradiction, that the claim does not hold. Then, we obtain
L∃a1∧···∧∃am−1 ∩Tω{c,a1,...,am−1} ⊆ L(AQ¬tc∧∃a1∧···∧∃am−1

). We have tc /∈ L(AQ¬tc∧∃a1∧···∧∃am−1
),

and therefore by Lemma 5.2 we conclude that L(AQ¬tc∧∃a1∧···∧∃am−1
) is not finitely ambiguous

- a contradiction to A being finitely ambiguous. �

Let t′′ be a tree as in Claim 5.3.1. We have t′′ ∈ L∃a1∧···∧∃am−1 ∩ Tω{c,a1,...,am−1},

and therefore Tree(c, tc, t
′′) ∈ L¬a1∨···∨¬am = L(A), and there is a computation φ ∈

ACC(A, T ree(c, tc, t′′)). Let q := φ(r). By definition of t′′, we have q ∈ Qtc∧∃a1∧···∧∃am−1

and therefore tc ∈ L(Aq). Let φc ∈ ACC(Aq, tc), and let φ′ be the computation obtained
from φ by grafting φc on r. We conclude that φ′ ∈ ACC(A, tc).

Assume, for the sake of contradiction, that φ′ ∈ Φ, and let q1 := φ′(l) and q2 := φ′(r).
We have t′ ∈ L(Aq1) (by definition of |Φ|) and t′′ ∈ L(Aq2) (by definition of φ′). Therefore,
by grafting computations φt′ ∈ ACC(Aq1 , t′) and φt′′ ∈ ACC(Aq2 , t′′) to the left and
right children of the root of tc, respectively, we obtain Tree(c, t′, t′′) ∈ L(A). That is a
contradiction, since t′ contains an am labeled node, and t′′ contains a1, . . . , am−1 labeled
nodes, and therefore Tree(c, t′, t′′) /∈ L¬a1∨···∨¬am .

We conclude that φ′ /∈ Φ, and therefore |ACC(A, tc)| ≥ 1 + |Φ| = 1 + (m− 1) = m.

6. Finitely Ambiguous Languages

Definition 6.1. Let Σ = {a1, a2, c}. We define the following languages over Σ:

• For k,m ∈ N such that k < m, we define Lk,m as the set of trees that are obtained from

tc by grafting a tree t′ ∈ L¬a1∨¬a2 on node lkr, and grafting ta1 on node lm.
• For m ∈ N we define Lm := ∪k<mLk,m.

• Lfa := ∪m∈NLm.

In this section we prove the following proposition:

Proposition 6.2. The degree of ambiguity of Lfa is finite.

The proposition follows from Lemma 6.3 and Lemma 6.6 proved below.

Lemma 6.3. There is a finitely ambiguous automaton that accepts Lfa

Proof. On a tree t ∈ Lm the automaton “guesses” a position i < m, checks that t≥lir ∈
L¬a1∨¬a2 (using a 2-ambiguous automaton), checks that t≥ljr = tc for all j 6= i ∧ j < m,
and checks that t≥lm = ta1 (using deterministic automata). Below, a more detailed proof is
given.

First, notice that there are deterministic PTA Ac, Aa1 , A¬a1 and A¬a2 that accepts
languages {tc}, {ta1}, L¬a1 and L¬a2 , respectively.

By Lemma 3.1, there is a 2-ambiguous automaton A¬a1∨¬a2 that accepts the language
L¬a1∨¬a2 := L¬a1 ∪ L¬a2 .

We will construct an automaton B := (QB,ΣB, QIB , δB,CB) that accepts Lfa.

18 A. RABINOVICH AND D. TIFERET

• QB is defined as the union of states of Aa1 , Ac and A¬a1∨¬a2 , along with additional states
q1, q2.
• ΣB := {a1, a2, c}
• QIB := {q1}
• δB will consists of the transitions of Aa1 , Ac and A¬a1∨¬a2 , along with additional transi-

tions:
– (q1, c, q1, p) ∈ δB for p an initial state in Ac
– (q1, c, q2, p) ∈ δB for p an initial state in A¬a1∨¬a2
– (q2, c, q2, p) ∈ δB for p an initial state in Ac
– (q2, a1, p, p) ∈ δB for p an initial state in Aa1
• CB(q1) := 1, CB(q2) := 1, and for other states, the assigned color would be the same as in

the automaton the state has originated from (Aa1 , Ac or A¬a1∨¬a2)

It is easy to see that L(B) = Lfa.
Let t ∈ L(B). By definition of Lfa, there is m ∈ N such that t ∈ Lm. If φ is an accepting

computation on t, then φ assigns to the first m+2 nodes on the leftmost branch the sequence
q1, . . . , q1︸ ︷︷ ︸
i times

· q2, . . . , q2︸ ︷︷ ︸
m− i+ 1 times

·qa1 for some i ∈ {1, . . . ,m}, where qa1 is the initial state of Aa1

(total m possibilities). φ assigns to lj · r the initial state of Ac if j < i− 1 or i− 1 < j < m;
the initial state of A¬a1∨¬a2 if j = i− 1; and the initial state of Aa1 if j ≥ m. Since Ac and
Aa1 are deterministic and A¬a1∨¬a2 is 2-ambiguous, the number of accepting computations
on t is at most 2m, hence, finite.

Lemma 6.4. Let L be a tree language such that Lm ⊆ L ⊆ Lfa. Then, L is not m − 1
ambiguous.

Proof. Let A be an automaton with states Q that accepts L, and assume A is finitely
ambiguous. Define a set Q′ ⊆ Q by Q′ := {φ(lir) | i < m ∧ ∃t ∈ L : φ ∈ ACC(A, t)} and
Q∃a1 := {q ∈ Q′ | L∃a1 ∩ L(Aq) 6= ∅}, and let Qtc∧∃a1 := {q ∈ Q∃a1 | tc ∈ L(Aq)} and
Q¬tc∧∃a1 := Q∃a1 \Qtc∧∃a1 .

Relying on the fact that Tω{c,a1} \ {tc} is not finitely ambiguous (by Corollary 4.4 (2)),

we derive the following claim:

Claim 6.4.1. There is a tree t∃a1 ∈
(
Tω{c,a1} \ {tc}

)
∩
(
L(AQtc∧∃a1

) \ L(AQ¬tc∧∃a1)
)
. �

Recall that tm is the tree that is obtained from tc by grafting ta1 on node lm. For each
i < m, define tmi as the tree that is obtained from tm by grafting t∃a1 on node lir. It is clear
that tmi ∈ L(A), and therefore there is an accepting computation φi of A on tmi .

t∃a1 ∈ L(AQtc∧∃a1
) \ L(AQ¬tc∧∃a1) and since t∃a1 ∈ Aφi(lir) we conclude that φi(l

ir) ∈
Qtc∧∃a1 and therefore tc ∈ L(Aφi(lir)). Let φci ∈ ACC(Aφi(lir), tc), and construct a computa-

tion φ′i from φi by grafting φci on lir. This tree that is obtained from tmi by grafting tc on
lir is the tree tm and therefore φ′i ∈ ACC(A, tm).

We are going to show that for all i < j < m, the computations φ′i, φ
′
j ∈ ACC(A, tm)

are different. Assume towards a contradiction φ′i = φ′j and let φ̂ := φ′i. Define pi := φ̂(lir),

pj := φ̂(ljr), and let φpi ∈ ACC(Api , t∃a1) and φpj ∈ ACC(Ap2 , t∃a1). Construct t′ from tm

by grafting t∃a1 on nodes lir and ljr, and construct φ′ from φ̂ by grafting φpi on lir and φp2
on ljr. It follows that φ′ is an accepting computation of A on t′. That is a contradiction,
since t′ /∈ Lfa (since t′≥ljr = t′≥lir = t∃a1 6= tc) and therefore t′ /∈ L (since L ⊆ Lfa). We

conclude that there are at least m different accepting computations of A on tm.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 19

Remark 6.5. The language Lm is 2m ambiguous but not m− 1 ambiguous. This implies
that the hierarchy of ambiguous languages is infinite. The point of the more complex
construction in Sect. 5 is to show that this hierarchy is populated at every level.

Lemma 6.6. Lfa is not boundedly ambiguous

Proof. ∀m ∈ N : Lm ⊆ Lfa, and therefore from Lemma 6.4 it follows that Lfa is not
(m− 1)-ambiguous. That is, Lfa is not boundedly ambiguous.

7. Uncountably Ambiguous Languages

In this section we introduce a scheme for obtaining uncountably ambiguous languages from
languages which are not boundedly ambiguous. We then use this scheme to obtain natural
examples of uncountably ambiguous tree languages.

Definition 7.1. Let L¬ba be an arbitrary regular tree language over alphabet Σ that is
not boundedly ambiguous, and let L0 be an arbitrary regular tree language over alphabet
Σ such that L0 ∩ L¬ba = ∅. Let c ∈ Σ and define a language L[L0, L

¬ba] over alphabet Σ:
t ∈ L[L0, L

¬ba] iff the following conditions hold:

• ∀v ∈ l∗ : t(v) = c
• There is an infinite set I ⊆ N such that ∀i ∈ I : t≥li·r ∈ L¬ba and ∀i 6∈ I : t≥li·r ∈ L0.

Proposition 7.2. The degree of ambiguity of L[L0, L
¬ba] is 2ℵ0.

Proof. Let A = (Q,Σ, QI , δ,C) be a PTA that accepts L[L0, L
¬ba]. We will show that

da(A) = 2ℵ0 .
Let Q′ := {φ(u) | u ∈ l∗ · r and ∃t : φ ∈ ACC(A, t)}, and define Qunamb∧¬L0 := {q ∈

Q′ | Aq is unambiguous and L(Aq) ∩ L0 = ∅}.

Claim 7.2.1. L(AQunamb∧¬L0
) ⊆ L¬ba.

Proof. Assume, for the sake of contradiction, that there is a tree t ∈ L(AQunamb∧¬L0
) such

that t /∈ L¬ba. By definition of Qunamb∧¬L0 we conclude that t /∈ L0.
Let q ∈ Qunamb∧¬L0 such that t ∈ L(Aq) and let φ ∈ ACC(Aq, t). Recall that q ∈ Q′

(since Qunamb∧¬L0 ⊆ Q′) and therefore there is a tree t′ ∈ L(A), a computation φ′ ∈
ACC(A, t′) and a node u ∈ l∗ · r such that φ′(u) = q. By the grafting lemma we conclude
that φ′[φ/u] is an accepting computation of A on t′[t/u]. Therefore, t′[t/u] ∈ L(A) for
t /∈ L¬ba ∪ L0 - a contradiction to definition of A. �

Notice that L(AQunamb∧¬L0
) is boundedly ambiguous by Corollary 3.2 (as a finite

union of unambiguous languages), and since L¬ba is not boundedly ambiguous we con-
clude that da(L(AQunamb∧¬L0

)) 6= da(L¬ba). By Claim 7.2.1 we obtain L(AQunamb∧¬L0
) ⊆

L¬ba, and applying Lemma 3.6 we conclude that there is a tree t¬ba ∈ L¬ba such that
t¬ba /∈ L(AQunamb∧¬L0

).

Let c ∈ Σ be as in the definition of L[L0, L
¬ba], and let tc be a tree where all nodes are

labeled by c. Let A := l∗ ·r be an antichain, and define t′′ := tc[t¬ba/A]. By the definition of A
it is clear that t′′ ∈ L(A). Let φ′′ ∈ ACC(A, t′′), and let B := {u ∈ A | L(Aφ′′(u))∩L0 6= ∅}.

For each u ∈ B there is a tree tu ∈ L0 and a computation φu ∈ ACC(Aφ′′(u), tu).
Therefore, by the grafting lemma, we conclude that the tree t′′′ that is obtained from t′′ by
grafting tu on each node u ∈ B is in L(A).

20 A. RABINOVICH AND D. TIFERET

Assume, for the sake of contradiction, that A \B is finite. By definition of t′′′, for each
i ∈ N such that u := li ·r ∈ B we have t′′′≥li·r = tu ∈ L0. Therefore, |{i ∈ N | t′′′≥li·r ∈ L

¬ba}| =
|{u ∈ A | t′′′≥u ∈ L¬ba}| = |{u ∈ A \ B | t′′′≥u ∈ L¬ba}| = |A \ B| < ℵ0, and by definition of

L[L0, L
¬ba] we conclude that t′′′ /∈ L[L0, L

¬ba] - a contradiction to the definition of A.

A \ B is infinite, and therefore there is a state q and an infinite set Â ⊆ A \ B such

that φ′′(u) = q for all u ∈ Â. Recall that ∀u ∈ Â : t′′≥u = t¬ba. Notice that for each u ∈ Â
we have u /∈ B, and by definition of B we obtain L(Aφ′′(u)) ∩ L0 = L(Aq) ∩ L0 = ∅. Since
t¬ba /∈ L(AQunamb∧¬L0

) we conclude that q /∈ Qunamb∧¬L0 - hence, Aq is ambiguous.

Let tamb ∈ L(Aq) be a tree with at least two accepting computations φ1, φ2 ∈
ACC(Aq, tamb). Let t̂ := t′′[tamb/Â], and φ̂ := φ[φ1/Â]. By the grafting lemma we ob-

tain φ̂ ∈ ACC(A, t̂). For each A′ ⊆ Â, define a computation φA′ := φ̂[φ2/A
′]. Notice that

φA′ ∈ ACC(A, t̂) (by the grafting lemma) and that ∀A1, A2 ⊆ Â : A1 6= A2 → φA1 6= φA2

(since φ1 6= φ2). Therefore, |ACC(A, t̂)| ≥ |{A′ | A′ ⊆ Â}| = 2ℵ0 , and da(A) = 2ℵ0 , as
requested.

We will now introduce a couple of definitions, and present three natural examples of
infinite tree languages that are not countable ambiguous.

Definition 7.3 (Characteristic tree). The characteristic tree of U1, . . . , Un ⊆ {l, r}∗ is a
{0, 1}n-labeled tree t[U1, . . . , Un] such that t[U1, . . . , Un](u) := (b1, . . . , bn) where bi = 1 iff
u ∈ Ui for each 1 ≤ i ≤ n.

Definition 7.4. For a set U ⊆ {l, r}∗ we define U ↓ as the downward closure of U .

Definition 7.5. A set X ⊆ {l, r}∗ is called perfect if X 6= ∅ and ∀u ∈ X : ∃v1, v2 ∈ X
such that v1 and v2 are incomparable and greater than u.

Proposition 7.6. The following regular languages are not countably ambiguous:

(1) LX⊆Y ↓ := {t[X,Y] | X ⊆ Y ↓} - “for each node in X there is a greater or equal node in
Y .”

(2) Lno−max := {t[X] | X has no maximal element} - “for each node in X there is a greater
node in X.”

(3) Lperf := {t[X] | X is perfect } - “for each node in X there are at least two greater
incomparable nodes in X.”

In the rest of this section we will prove Proposition 7.6.

Proof of Proposition 7.6(1). Let Lleft := {t[X,Y] | X = l∗ and Y ∩ l∗ = ∅}. It is easy to
see that Lleft can be accepted by a deterministic PTA, and therefore da(Lleft) = 1.

By Lemma 3.1 we conclude that da(LX⊆Y ↓∩Lleft) ≤ da(LX⊆Y ↓)·da(Lleft) = da(LX⊆Y ↓).
We will show that LX⊆Y ↓ ∩ Lleft is not countably ambiguous. By the above inequality, this
implies that LX⊆Y ↓ is not countably ambiguous.

Claim 7.6.1. Let LX=∅,Y 6=∅ := {t[X,Y] | X = ∅ and Y 6= ∅}. Then t′ ∈ LX⊆Y ↓ ∩ Lleft iff
the following conditions hold:

(1) ∀u ∈ l∗ : t′(u) = (1, 0)
(2) There is an infinite set I ⊆ N such that:

(a) If i ∈ I then t′≥li·r ∈ LX=∅,Y 6=∅

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 21

(b) If i /∈ I then t′≥li·r ∈ {t[∅, ∅]}

Proof. ⇒: Let t′ ∈ LX⊆Y ↓ ∩ Lleft. By definition of Lleft it is clear that the condition (1)
holds, and that for each i ∈ N : t′≥vi·l ∈ LX=∅,Y 6=∅ or t′≥vi·l = t[∅, ∅]. Assume, for the sake of

contradiction, that the set {i ∈ N | t′≥vi·l ∈ LX=∅,Y 6=∅} is finite. Therefore, by the second

condition, there is an index k ∈ N such that ∀i ≥ k : t′≥vi·l = t[∅, ∅]. Let u := lk. By the

definition of Lleft we have u ∈ X, and for each v ≥ u we have either t′(v) = (1, 0) if v ∈ l∗,
or t′(v) = (0, 0) otherwise. Hence, ∀v ≥ u : v /∈ Y , in contradiction to t′ ∈ LX⊆Y ↓.
⇐: Assume that the conditions hold for t′. It is easy to see that t′ ∈ Lleft. We will

show that t′ ∈ LX⊆Y ↓. Assume, for the sake of contradiction, that there is a node u ∈ X
such that v /∈ Y for each node v ≥ u. Since all nodes in X are in l∗ we conclude that there
is i ∈ N such that u = li. Notice that the set I ⊆ N is infinite, and therefore there is j > i
such that t′≥lj ·r ∈ LX=∅,Y 6=∅. Therefore, there is a node v ≥ lj · r > li = u such that v ∈ Y -

a contradiction. �

Observe that the language LX=∅,Y 6=∅ := {t[X,Y] | X = ∅ and Y 6= ∅} can be considered
as a tree language over alphabet {0} × {0, 1}, and that LX=∅,Y 6=∅ = Tω{0}×{0,1} \ {t[∅, ∅]}.
Therefore, by Corollary 4.4(2) we conclude that LX=∅,Y 6=∅ is not finitely ambiguous.

Notice that by Claim 7.6.1 we obtain LX⊆Y ↓ ∩ Lleft = L[L0, L
¬ba], for L0 = {t[∅, ∅]}

and L¬ba = LX=∅,Y 6=∅. Therefore, applying Proposition 7.2 we conclude that LX⊆Y ↓ ∩ Lleft
is not countably ambiguous.

To prove Proposition 7.6(2), we will first prove the following lemma:

Lemma 7.7. Lno−max is not finitely ambiguous.

Proof. Let A = (Q,Σ, QI , δ,C) be a PTA that accepts Lno−max. Let Q′ := {q ∈ Q | ∃qi ∈
QI∃q′ ∈ Q : (qi, 1, q, q

′) ∈ δ and t[∅] ∈ L(Aq′)}.

Claim 7.7.1. Define L¬∅ := TωΣ \ {t[∅]}. Then:

(1) Lno−max \ {t[∅]} ⊆ L(AQ′)
(2) L(AQ′) ⊆ L¬∅
Proof. (1) Let t′ ∈ Lno−max \ {t[∅]}, and let tε := t[{ε}] (that is, tε(ε) := 1, and ∀u 6=
ε : tε(u) := 0). Let t′′ := tε[t

′/l]. By the definition of Lno−max we obtain t′′ ∈ Lno−max.
Therefore, there is a computation φ ∈ ACC(A, t′′) such that φ(l) ∈ Q′ and t′ ∈ L(Aφ(l)), as
requested.

(2) Assume, for the sake of contradiction, that t[∅] ∈ L(AQ′). Then there is a transition
(qi, 1, q1, q2) ∈ δ from an initial state qi such that t[∅] ∈ L(Aq1) and t[∅] ∈ L(Aq2). Therefore,
we conclude that tε := t[{ε}] is accepted by A - a contradiction to the definition of Lno−max.

�

Let Σ := {0, 1}. Define a function F : Σ∗ → Σ such that

F (σ1, . . . , σm) :=

{
1 ∃1 ≤ i ≤ m : σi = 1

0 otherwise

It is easy to see that F is definable by a Moore machine. We show that F reduces L¬∅
to L(AQ′).

Notice that ∀t′ ∈ TωΣ : t′ ∈ L¬∅ → F̂ (t′) ∈ Lno−max \ {t[∅]}. Since Lno−max \ {t[∅]} ⊆
L(AQ′) (by Claim 7.7.1(1)) we conclude that ∀t′ ∈ TωΣ : t′ ∈ L¬∅ → F̂ (t′) ∈ L(AQ′).

22 A. RABINOVICH AND D. TIFERET

Conversely, ∀t′ ∈ TωΣ : F̂ (t′) ∈ L¬∅ → t′ ∈ L¬∅, and since L(AQ′) ⊆ L¬∅ (by Claim 7.7.1(2))

we obtain ∀t′ ∈ TωΣ : F̂ (t′) ∈ L(AQ′)→ t′ ∈ L¬∅.
Therefore, by Lemma 3.10, we conclude that da(L(AQ′)) ≥ da(L¬∅). Notice that

L¬∅ = TωΣ \{t[∅]} and by Corollary 4.4(2) we obtain da(L¬∅) ≥ ℵ0. Hence, AQ′ is not finitely
ambiguous, and by Corollary 3.5 we conclude that da(A) ≥ ℵ0.

Proof of Proposition 7.6(2). Let Ll∗∩X=∅ := {t[X] | X ∩ l∗ = ∅}. It is easy to construct a
deterministic PTA that accepts Ll∗∩X=∅, and therefore da(Ll∗∩X=∅) = 1.

By Lemma 3.1 we conclude that da(Lno−max∩Ll∗∩X=∅) ≤ da(Lno−max) ·da(Ll∗∩X=∅) =
da(Lno−max). We will show that da(Lno−max ∩ Ll∗∩X=∅) = 2ℵ0 , and the lemma will follow.

Notice that t′ ∈ Lno−max ∩ Ll∗∩X=∅ iff the following hold:

• ∀u ∈ l∗ : t(u) = 0
• ∀u ∈ l∗ · r : t′≥u ∈ Lno−max

It is easy to see that Lno−max ∩ Ll∗∩X=∅ = L[L0, L
¬ba] for L¬ba := Lno−max (which is

not boundedly ambiguous, by Lemma 7.7) and L0 := ∅. Therefore, by Proposition 7.2 we
conclude that da(Lno−max ∩ Ll∗∩X=∅) = 2ℵ0 , as requested.

Proof of Proposition 7.6(3). Let Lcontains−l∗ := {t[X] | l∗ ⊆ X}. It is easy to see that
Lcontains−l∗ can be accepted by a deterministic PTA, and therefore da(Lcontains−l∗) = 1.
Look at the language Lperf ∩Lcontains−l∗ . By Lemma 3.1 we obtain da(Lperf ∩Lcontains−l∗) ≤
da(Lperf)·da(Lcontains−l∗) = da(Lperf). We will show that Lperf ∩Lcontains−l∗ is not countably

ambiguous. By the above inequality, this implies that da(Lperf) = 2ℵ0 .

Claim 7.7.2. Lperf is not finitely ambiguous.

Proof. Define a function F : Σ∗ → Σ such that F (σ1, . . . , σm) :=

{
1 ∃1 ≤ i ≤ m : σi = 1

0 otherwise.
.

It is easy to see that F is definable by a Moore machine, and that ∀t′ ∈ TωΣ : t′ ∈ TωΣ \{t[∅]} ↔
F̂ (t′) ∈ Lperf . Notice that TωΣ \ {t[∅]} is not finitely ambiguous (by Corollary 4.4(2)), and
therefore by Lemma 3.10 we conclude that Lperf is not finitely ambiguous. �

Claim 7.7.3. t′ ∈ Lperf ∩ Lcontains−l∗ iff the following conditions hold:

(1) ∀u ∈ l∗ : t′(u) = 1
(2) There is an infinite set I ⊆ N such that ∀i ∈ I : t′≥li·r ∈ Lperf and ∀i 6∈ I : t′≥li·r ∈ {t[∅]}.

Proof. ⇒: Let t′ ∈ Lperf ∩Lcontains−l∗ . By definition of Lcontains−l∗ it is clear that condition
(1) holds for t′. Notice that ∀i ∈ N : t′≥li·r ∈ Lperf or t′≥li·r = t[∅]. Assume, for the sake

of contradiction, that {i ∈ N | t′≥li·r ∈ Lperf } is finite. Therefore, there is k ∈ N such that

∀i ≥ k : t′≥li·r = t[∅]. Let u := lk, and notice that t′(u) = 1, and ∀v > u : t′(v) = 1↔ v ∈ l∗.
Hence, each pair of 1-labeled nodes that are greater than u are comparable - a contradiction
to the definition of Lperf .
⇐: Let t′ such that the conditions hold. By the first condition it is clear that t′ ∈

Lcontains−l∗ . We will prove that t′ ∈ Lperf , and the claim will follow. First, notice that
t′(ε) = 1, and therefore t′ 6= t[∅]. Let u be a node such that t′(u) = 1. If u ∈ l∗ then by
the second condition, there is a node v ∈ l∗ · r such that v > u and t≥v ∈ Lperf . Therefore,
there are two nodes w1, w2 > v > u such that w1 ⊥ w2 and t′(w1) = t′(w2) = 1. Otherwise
(u /∈ l∗), there is a node v ∈ l∗ · r, such that u > v and t≥v ∈ Lperf , and by definition of Lperf

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 23

we conclude that there are two nodes w1, w2 > u such that w1 ⊥ w2 and t′(w1) = t′(w2) = 1
- hence, t′ ∈ Lperf . �

It is easy to see that Lperf ∩ Lcontains−l∗ = L[L0, L
¬ba] for L¬ba := Lperf (which is not

boundedly ambiguous, by Claim 7.7.2) and L0 := {t[∅]}. Therefore, by Proposition 7.2 we
conclude that Lperf ∩ Lcontains−l∗ = 2ℵ0 , as requested.

Observe that our proof shows that Lperf ∧min := {t[X] | X is perfect and has the ≤-
minimal element} is also uncountable ambiguous. We conclude with an instructive example
of an unambiguous language which is similar to Lperf ∧min. Let X ⊆ {l, r}∗ be a set of nodes.
We say that u ∈ X is a X-successor of v if u > v and there is no node w ∈ X such that
v < w < u. We call X a full-binary subset-tree if X has a minimal node, and each node in
X has two X-successors.

Note that ifX is a full-binary subset tree thenX is perfect and has the≤-minimal element.
However the language Lbinary := {t[X] | X is a full-binary subset tree} is unambiguous.

8. Countable Languages are Unambiguous

In this section we prove the following Proposition:

Proposition 8.1. Each regular countable tree language is unambiguous

This section is self-contained and lacks technical connections to the previous sections. It
is instructive to compare the above Proposition with Corollary 4.4(1) which states that the
complement of every countable tree language is not finitely ambiguous.

To prove Proposition 8.1 we first recall finite tree automata (Subsect. 8.1). Then, we
present Niwiński’s Representation for Countable Languages (Subsect. 8.2). Finally, the
proof of Proposition 8.1 is given (Subsect. 8.3).

8.1. Finite Trees and Finite Tree Automata.
Finite Trees. A finite tree is a finite set U ⊆ {l, r}∗ that is closed under prefix relation. U
is called a finite binary tree if ∀u ∈ U : u · l ∈ U ↔ u · r ∈ U .

Finite Σ-labeled Binary Trees. Let Σ be partitioned into two sets: Σ2 - labels of internal
nodes, and Σ0 - labels of leaves. A finite Σ-labeled binary tree is a function tU : U → Σ,
where U ⊆ {l, r}∗ is a finite binary tree, tU (v) ∈ Σ0 if v is a leaf, and tU (v) ∈ Σ2 if v has
children.

When it is clear from the context, we will use “finite tree” or “labeled finite tree” for
“Σ-labeled finite binary tree”.

24 A. RABINOVICH AND D. TIFERET

Finite Tree Automata (FTA). An automaton over Σ-labeled finite trees is a tuple
B = (Q,Σ, QI , δ), where Q is a finite set of states, Σ = Σ0 ∪ Σ2 is an alphabet, QI is a set
of initial states, and δ ⊆ (Q× Σ0) ∪ (Q× Σ2 ×Q×Q) is a set of transitions.

An accepting computation of B on a finite tree tU is a function φ : U → Q, such that
φ(ε) ∈ QI , and for each node u ∈ U , if u is not a leaf then (φ(u), tU (u), φ(u · l), φ(u · r)) ∈ δ,
and otherwise (φ(u), tU (u)) ∈ δ.

The language of a FTA B is the set of finite trees t such that B has an accepting
computation on t. A finite tree language is regular iff it is accepted by a FTA. It is well-
known that every regular finite tree language is unambiguous (i.e., for every finite tree
language there is an unambiguous automaton that accepts it).

8.2. Niwiński’s Representation for Countable Languages.

Definition 8.2. Define T finΣ({x1,...,xn}) as the set of finite trees over alphabet Σ∪{x1, . . . , xn}
where the internal nodes are Σ-labeled, and the leaves are {x1, . . . , xn}-labeled.

Let τ ∈ T finΣ({x1,...,xn}) be a finite tree, and let t1, . . . , tn ∈ TωΣ be infinite binary trees over

alphabet Σ. We define τ [t1/x1, . . . , tn/xn] as the infinite tree that is obtained from τ by
grafting ti on leaves labeled by xi.

For a set M ⊆ T finΣ({x1,...,xn}), we define M [t1/x1, . . . , tn/xn] :=
⋃
τ∈M

τ [t1/x1, . . . , tn/xn].

Theorem 8.3 (D. Niwiński [16]). Let L be a countable regular tree language over alphabet
Σ. Then there is a finite set of trees {t1, . . . , tn} such that the following hold:

(1) For each tree t ∈ L and a tree branch π, there is a node v ∈ π and a number 1 ≤ i ≤ n
such that t≥v = ti.

(2) There is a regular finite tree language M ⊆ T finΣ({x1,...,xn}) s.t. L = M [t1/x1, . . . , tn/xn].

The following lemma strengthen item (2) of Theorem 8.3 by adding another condition
on M , implying a unique representation of each tree in L:

Lemma 8.4. Let L be a countable regular tree language over alphabet Σ, and let {t1, . . . , tn}
be a finite set of trees as in Theorem 8.3. Then there is a regular finite trees language

M ⊆ T finΣ({x1,...,xn}) such that L = M [t1/x1, . . . , tn/xn], and for each t ∈ L there is a unique

finite tree τ ∈M such that t = τ [t1/x1, . . . , tn/xn].

Proof. For each tree t ∈ L, let g(t) be the tree that is obtained from t by changing the
label of each node v ∈ {l, r}∗ where t≥v = ti to xi, and removing all descendants of
{x1, . . . , xn}-labeled node.

Claim 8.4.1. g(t) is finite for all t ∈ L.

Proof. Assume, for the sake of contradiction, that there is t ∈ L such that the set of nodes
U ⊆ {l, r}∗ of g(t) is infinite. The number of children of each node in U is bounded by
2, and therefore, by König’s Lemma, there is a tree branch π such that ∀v ∈ π : v ∈ U .
Therefore, by definition of g(t), we conclude that t≥v 6= ti for each v ∈ π and 1 ≤ i ≤ n - a
contradiction to item (1) of Theorem 8.3. �

Notice that for each t ∈ L we obtain g(t)[t1/x1, . . . , tn/xn] = t, and therefore g is
injective. Hence, L = M [t1/x1, . . . , tn/xn] where M := {g(t) | t ∈ L}. We will show that M
is a regular language of finite trees.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 25

It is easy to see that for each t ∈ L and finite tree τ ∈ T finΣ({x1,...,xn}), τ = g(t) iff the

following conditions hold:

• t = τ [t1/x1, . . . , tn/xn]
• t≥v 6= ti for each node v in τ that is not a leaf, and for each 1 ≤ i ≤ n.

Since both conditions could be formulated in MSO, we conclude that M is MSO-definable,
and therefore regular.

8.3. Proof of Proposition 8.1. Let L be a countable regular tree language over alphabet
Σ. We will show that L can be accepted by an unambiguous PTA.

By Lemma 8.4, there is a regular finite tree language M ⊆ T finΣ({x1,...,xn}) and regular

infinite trees t1, . . . , tn such that L = M [t1/x1, . . . , tn/xn]. Additionally, for each t ∈ L there
is a unique τ ∈M such that t = τ [t1/x1, . . . , tn/xn].

Each infinite tree ti : {l, r}∗ → Σ is regular, and therefore, by Fact 3.11, is definable
by a Moore machine Mi = ({l, r},Σ, Qi, qiI , δMi , outMi). Let Ai := (Qi,Σ, q

i
I , δi, Fi) where

Fi := Qi, and (q, a, q1, q2) ∈ δi iff q1 = δ(q, l), q2 = δ(q, r) and a = outMi (q). It is easy
to verify that Ai is unambiguous, and L(Ai) = {ti}. M is regular and therefore can be
accepted by an unambiguous FTA B = (QB,Σ ∪ {x1, . . . , xn}, qBI , δB).

We use these automata to construct a PTA A := (Q,Σ, QI , δ,C), by:

• Q := ∪1≤i≤nQi ∪QB
• qiI := {qBI } ∪ {qiI | (qBI , xi) ∈ δB}
• δ is the union of the following:

– {(q, a, q1, q2) ∈ δB | a ∈ Σ} (all transitions of B on inner nodes)
– ∪1≤i≤nδi
– {(q, a, qiI , q

j
I) | ∃(q, a, q1, q2) ∈ δB : (q1, xi) ∈ δB and (q2, xj) ∈ δB}

– {(q, a, q1, q
j
I) | ∃(q, a, q1, q2) ∈ δB : (q2, xj) ∈ δB}

– {(q, a, qiI , q2) | ∃(q, a, q1, q2) ∈ δB : (q1, xi) ∈ δB}

• C(q) :=

{
Ci(q) ∃i : q ∈ Qi
1 otherwise

It is easy to see that L(A) = M [t1/x1, . . . , tn/xn] = L.
We will show that A is unambiguous. For each accepting computation φ ∈ ACC(A, t),

define a set of nodes Uφ := {u ∈ {l, r}∗ | ∀v < u : φ(v) ∈ QB}. It is easy to see that Uφ is
downward closed. Assume towards contradiction that Uφ is infinite - by König Lemma, Uφ
contains an infinite tree branch π. By definition of Uφ all states in φ(π) are in QB, and
therefore colored by 1. That is a contradiction to φ being an accepting computation.

Define a labeled finite tree tφ : Uφ → Σ ∪ {x1, . . . , xn} by:

tφ :=

{
xi ∃i : φ(u) = qiI
t(u) otherwise

By definition of tφ we obtain t = tφ[t1/x1, . . . , tn/xn], and by definition of B we conclude
that tφ ∈M .

Assume, for the sake of contradiction, that A is ambiguous. Therefore, there is a tree
t ∈ L and two distinct accepting computations φ1, φ2 ∈ ACC(A, t). Ai is deterministic for
each 1 ≤ i ≤ n, and therefore φ1 6= φ2 iff tφ1 6= tφ2 . We conclude that tφ1 [t1/x1, . . . , tn/xn] =
tφ2 [t1/x1, . . . , tn/xn] for tφ1 , tφ2 ∈M - a contradiction to the uniqueness property of M .

26 A. RABINOVICH AND D. TIFERET

9. Conclusion and Open Questions

We proved that the ambiguity hierarchy is strict for regular languages over infinite trees.
For each level of the ambiguity hierarchy we provided a language which occupies this

level. It is not difficult to see that all these languages are definable by MSO formulas without
the second-order quantifiers (formulas of the first-order fragment of MSO). Concerning the
topological complexity, Olivier Finkel [8] observed that these languages have low topological
complexity: L¬a1∨···∨¬ak are closed languages; Lfa and L∃a1 are countable unions of closed
sets, i.e., a Σ0

2-sets; the uncountably ambiguous language Lno−max is Π0
2. On the other hand,

Skrzypczak [20] proved that unambiguous languages climb up the whole index hierarchy
and are topologically as complex as arbitrary regular tree languages.

A natural question is whether the ambiguity degree is decidable. However, this is not
a trivial matter. In [3] some partial solutions for variants of the problem whether a given
language is unambiguous are provided. We proved that countable regular languages are
unambiguous. Since it is decidable whether a language is countable [16], this provides a
decidable sufficient condition for a langauge to be unambiguous.

A less ambitious task is to develop techniques for computing degrees of ambiguity
and compute the degree of ambiguity of some natural languages. Let Σ1 := {c, a1} and
L∃∞a1 := {t ∈ TωΣ1

| there are infinitely many a1-labeled nodes in t}. L∃ωa1 := {t ∈ TωΣ1
|

there is a branch with infinitely many a1-labeled nodes in t}. La1−∞antichain := {t ∈ TωΣ1
|

the set of a1-labeled nodes in t contain an infinite antichain}. All these languages are regular.
There are (Moore) reductions from L∃a1 to these languages, hence they are not finitely
ambiguous. We believe that their ambiguity degree is uncountable, but we were unable to
prove this.

We provided sufficient conditions for a language to be not finitely ambiguous and for a
language to have uncountable degree of ambiguity.

In particular, we proved that the degree of ambiguity of the complement of a countable
regular language is ℵ0 or 2ℵ0 , and provided natural examples of such languages with countable
degree of ambiguity. We proved that the degree of ambiguity of the complement of a finite
regular language is ℵ0. Yet, it is open whether the degree of ambiguity of the complement
of countable regular languages is ℵ0.

Acknowledgments

We would like to thank anonymous referees for their helpful suggestions.

References

[1] André Arnold. Rational omega-languages are non-ambiguous. Theor. Comput. Sci., 26:221–223, 09 1983.
[2] Vince Bárány, Lukasz Kaiser, and Alex Rabinovich. Expressing cardinality quantifiers in monadic

second-order logic over trees. Fundamenta Informaticae, 100(1-4):1–17, 2010.
[3] Marcin Bilkowski and Michal Skrzypczak. Unambiguity and uniformization problems on infinite trees.

In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September
2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 81–100. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2013.

[4] Arnaud Carayol and Christof Löding. MSO on the infinite binary tree: Choice and order. In International
Workshop on Computer Science Logic, pages 161–176. Springer, 2007.

[5] Arnaud Carayol, Christof Löding, Damian Niwinski, and Igor Walukiewicz. Choice functions and
well-orderings over the infinite binary tree. Open Mathematics, 8(4):662–682, 2010.

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 27

[6] Thomas Colcombet. Unambiguity in automata theory. In International Workshop on Descriptional
Complexity of Formal Systems, pages 3–18. Springer, 2015.

[7] E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy. In FoCS,
volume 91, pages 368–377. Citeseer, 1991.

[8] Olivier Finkel. Personal communication, 12 2020.
[9] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Proceedings of the fourteenth annual

ACM symposium on Theory of computing, pages 60–65, 1982.
[10] Yuri Gurevich and Saharon Shelah. Rabin’s uniformization problem 1. The Journal of Symbolic Logic,

48(4):1105–1119, 1983.
[11] Yo-Sub Han, Arto Salomaa, and Kai Salomaa. Ambiguity, nondeterminism and state complexity of finite

automata. Acta Cybernetica, 23(1):141–157, 2017.
[12] Jozef Jirásek, Galina Jirásková, and Juraj Šebej. Operations on unambiguous finite automata. In

International Conference on Developments in Language Theory, pages 243–255. Springer, 2016.
[13] Ernst Leiss. Succinct representation of regular languages by boolean automata. Theoretical computer

science, 13(3):323–330, 1981.
[14] Hing Leung. Descriptional complexity of nfa of different ambiguity. International Journal of Foundations

of Computer Science, 16(05):975–984, 2005.
[15] Robert McNaughton. Testing and generating infinite sequences by a finite automaton. Information and

control, 9(5):521–530, 1966.
[16] Damian Niwiński. On the cardinality of sets of infinite trees recognizable by finite automata. In Andrzej

Tarlecki, editor, Mathematical Foundations of Computer Science 1991, pages 367–376, Berlin, Heidelberg,
1991. Springer Berlin Heidelberg.

[17] Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups, logic and games, volume
141. Academic Press, 2004.

[18] Michael O Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of
the american Mathematical Society, 141:1–35, 1969.

[19] Alexander Rabinovich and Doron Tiferet. Ambiguity Hierarchy of Regular Infinite Tree Languages. In
Javier Esparza and Daniel Krá, editors, 45th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2020), volume 170 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 80:1–80:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[20] Michal Skrzypczak. Unambiguous languages exhaust the index hierarchy. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 140:1–140:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[21] Richard Edwin Stearns and Harry B Hunt III. On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM Journal on Computing,
14(3):598–611, 1985.

[22] Wolfgang Thomas. Automata on infinite objects. In Formal Models and Semantics, pages 133–191.
Elsevier, 1990.

[23] Boris Trakhtenbrot and Ya Martynovich Barzdin. Finite automate: behaviour and synthesis. 1973.

28 A. RABINOVICH AND D. TIFERET

Appendix A. Proof of Claim 4.1.4

Claim 4.1.4. Let t0 be a regular tree such that t0 /∈ L(A). Then, Pathfinder has a regular
positional winning strategy in Gt0,A.

Proof. t0 is regular, and therefore there is a formula ψt0(σ) that defines t0 in the unlabeled
full-binary tree.

We will use ψt0(σ) to define the following formula PathfinderWinsA,t0(φ, STR), as
the conjunction of the following conditions:

(1) ∃π such that:
(a) π is a branch
(b) ∀u ∈ π : (STR(u, φ(u · l), φ(u · r)) = l) ↔ u · l ∈ π) - the Pathfinder moves

d0 . . . dj . . . are consistent with STR and are along the branch π.
(2) ∃σ : ψt0(σ) and at least one of the following holds:

(a) ∃v ∈ π such that (φ(v), σ(v), φ(v · l), φ(v · r)) /∈ δ - the Automaton move at (v, φ(v))
is invalid.

(b) The maximal color that C assigns infinitely often to states in φ(π) is odd.

Claim A.1. PathfinderWinsA,t0(φ, STR) holds for a positional strategy STR of
Pathfinder and a computation φ of A on a tree t′ iff the play s of STR against strφ
in Gt0,A is winning for Pathfinder.

Proof. By definition of Gt0,A, Pathfinder wins if either Automaton makes an invalid move
(condition 2a) or the maximal color that is assigned infinitely often to the positions in πs
is odd. Since all Pathfinder positions have color 0, this is equivalent to the maximal color
assigned infinitely often to Automaton positions being odd.

Let s = e0, d0, e1, d1, . . . , ei, di, Notice that by condition 1, there is a unique branch
π such that π = v0, . . . vi, . . . where vi = d0 . . . di−1. By Claim 4.1.1, we have φ(vi) = qi,
where the i-th position of Automaton in πs is (vi, qi). Since CG(vi, qi) = C(qi), we conclude
that the maximal color that C assigns infinitely often to states in φ(π) is odd iff the maximal
color that CG assigns infinitely often to positions in πs is odd. This is assured by condition
2b. �

Let WinningStrategyt0,A(STR) := ∀φ such that the following holds:

• If there is t such that φ is an accepting computation of A on t, then:
– PathfinderWinsA,t0(φ, STR) holds

Recalling that the set of all computation of A is MSO-definable, we conclude that
WinningStrategyt0,A(STR) is MSO-definable in the unlabeled full-binary tree.

Claim A.2. WinningStrategyt0,A(STR) holds for a positional strategy STR of Pathfinder
iff STR is a positional winning strategy of Pathfinder.

Proof. ⇒: By Claim A.1, STR wins in Gt0,A against each positional strategy of Automaton.
Assume, for the sake of contradiction, that is a non-positional strategy str′ of automaton
that wins against STR. Then by positional determinacy of parity games, we conclude that
there is a positional strategy str′′ that wins against STR - a contradiction.
⇐: Follow immediately from Claim A.1. �

t0 /∈ L(A) and therefore by Claim 4.1.1(3), Automaton does not have a positional win-
ning strategy. From positional determinacy of parity games we conclude that Pathfinder

AMBIGUITY HIERARCHY OF REGULAR INFINITE TREE LANGUAGES 29

has a positional winning strategy. Therefore, there is a strategy STR′ that satisfies
WinningStrategyt0,A(STR) in the unlabeled full-binary tree.

Therefore, WinningStrategyt0,A(STR) defines a non-empty tree language over alphabet

Q×Q→ {l, r}. By Rabin’s basis Theorem, we conclude that there is a regular tree ŜTR in

this language, and by Claim A.2 we conclude that ŜTR is a positional winning strategy for
Pathfinder in Gt0,A. �

Remark (Logic Free Proof of Claim 4.1.4). One can reduce a membership game for a regular
tree t0 to a game on a finite graph. By positional determinacy Theorem, Pathfinder will have
a positional winning strategy in the reduced game. From this strategy a regular winning
strategy in Gt0,A for Pathfinder is easily constructed.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminary
	2.1. Trees
	2.2. Automata
	2.3. Monadic Second-Order Logic

	3. Simple Properties of Automata and Languages
	4. Not-Finitely Ambiguous Languages
	4.1. Membership Game
	4.2. MSO-definability
	4.3. Finishing Proof of Proposition 4.1

	5. -Ambiguous Languages
	6. Finitely Ambiguous Languages
	7. Uncountably Ambiguous Languages
	8. Countable Languages are Unambiguous
	8.1. Finite Trees and Finite Tree Automata
	8.2. Niwinski's Representation for Countable Languages
	8.3. Proof of Proposition 8.1

	9. Conclusion and Open Questions
	Acknowledgments
	References
	Appendix A. Proof of Claim 4.1.4

