
On Degrees of Ambiguity for Büchi Tree Automata

Alexander Rabinovich, Doron Tiferet∗

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract

An automaton is unambiguous if for every input it has at most one accepting computa-
tion. An automaton is finitely (respectively, countably) ambiguous if for every input it
has at most finitely (respectively, countably) many accepting computations. An automa-
ton is boundedly ambiguous if there is k ∈ N, such that for every input it has at most
k accepting computations. We consider nondeterministic Büchi automata (NBA) over
infinite trees and prove that it is decidable in polynomial time, whether an automaton is
unambiguous, boundedly ambiguous, finitely ambiguous, or countably ambiguous.

Keywords: Büchi automata, automata ambiguity
2010 MSC: 68Q45

1. Introduction

Degrees of Ambiguity. The relationship between deterministic and nondeterministic ma-
chines plays a central role in computer science. An important topic is a comparison of
expressiveness, succinctness, and complexity of deterministic and nondeterministic mod-
els. Various restricted forms of nondeterminism were suggested and investigated (see
[1, 2] for recent surveys).

Probably, the oldest restricted form of nondeterminism is unambiguity. An automaton
is unambiguous if for every input there is at most one accepting run. For automata
over finite words there is a rich and well-developed theory on the relationship between
deterministic, unambiguous, and nondeterministic automata [2]. All three models have
the same expressive power. Unambiguous automata are exponentially more succinct than
deterministic ones, and nondeterministic automata are exponentially more succinct than
unambiguous ones [3, 4].

Some problems are easier for unambiguous than for nondeterministic automata. As
shown by Stearns and Hunt [5], the equivalence and inclusion problems for unambigu-
ous automata are in polynomial time, while these problems are PSPACE-complete for
nondeterministic automata.

∗Corresponding author
Email addresses: rabinoa@tauex.tau.ac.il (Alexander Rabinovich), sdoron5.t2@gmail.com

(Doron Tiferet)

Preprint submitted to Information and Computation May 9, 2021

q0start

q1

f

a

b

a

a

a

q0start

q1

f

a

b

a

b

a

Figure 1: Finitely ambiguous and 2-ambiguous automata

The complexity of basic regular operations on languages represented by unambiguous
finite automata was investigated in [6], and tight upper bounds on state complexity
of intersection, concatenation, and many other operations on languages represented by
unambiguous automata were established.

It is well-known that the tight bound on the state complexity of the complementation
of nondeterministic automata is 2n. In [6], it was shown that the complement of the
language accepted by an n-state unambiguous automaton is accepted by an unambiguous
automaton with 20.79n+logn states.

Many other notions of ambiguity were suggested and investigated. A recent paper [2]
surveys works on the degree of ambiguity and on various nondeterminism measures for
finite automata on words.

An automaton is k-ambiguous if on every input it has at most k accepting runs; it is
boundedly ambiguous if it is k-ambiguous for some k; it is finitely ambiguous if on every
input it has finitely many accepting runs (see Figure 1 for examples).

It is clear that an unambiguous automaton is k-ambiguous for every k > 0, and a
k-ambiguous automaton is finitely ambiguous. The reverse implications fail. For ε-free
automata over words (and over finite trees), on every input there are at most finitely
many accepting runs. Hence, every ε-free automaton on finite words and on finite trees
is finitely ambiguous. However, over ω-words there are nondeterministic automata with
uncountably many accepting runs. Over ω-words and over infinite trees, finitely ambigu-
ous automata are a proper subclass of the class of countably ambiguous automata, which
is a proper subclass of nondeterministic automata.

Our main result is:

Theorem 1 There are polynomial time algorithms that decide whether a Büchi automa-
ton over trees is unambiguous, boundedly ambiguous, finitely ambiguous, or countably
ambiguous.

Over infinite trees, Büchi tree automata are less expressive than monadic second-order
logic or parity automata. In [7] we proved that the problem whether a parity tree
automaton is ambiguous is co-NP-complete.

Related Works. Weber and Seidl [8] investigated several classes of ambiguous automata
on words, and obtained polynomial time algorithms for deciding the membership in
each of these classes. Their algorithms were derived from structural characterizations of
the classes. In particular, they proved that the following Bounded Ambiguity Criterion

2

(BA) characterizes whether there is a bound k such that a nondeterministic automaton
on words has at most k accepting runs on each word.

Figure 2: Forbidden pattern for bounded ambiguity

Forbidden Pattern for Bounded Ambiguity: There are distinct useful1 states p, q ∈
Q such that for some word u, there are runs on u from p to p, from p to q, and
from q to q (see Figure 2).

Weber and Seidl [8] proved that an NFA is not boundedly ambiguous iff it contains the
forbidden pattern for bounded ambiguity. This pattern is testable in polynomial time;
hence, it can be decided in polynomial time whether the degree of ambiguity of an NFA
is bounded.

Seidl [9] provided a structural characterization of bounded ambiguity for automata
on finite trees, and derived a polynomial algorithm to decide whether such an automaton
is boundedly ambiguous.

Löding and Pirogov [10] and Rabinovich [11] provided structural characterizations and
polynomial algorithms for bounded, finite, and countable ambiguity of Büchi automata
on ω-words. These characterizations and algorithms can be adopted for other acceptance
conditions: parity, Rabin, Muller, etc.

Our proof of Theorem 1 will first provide structural characterizations of bounded,
finite, and countable ambiguity of automata on infinite trees, and then derive polynomial
algorithms.

As far as we know, the degrees of ambiguity for automata over infinite trees have not
been investigated. The decidability whether an automaton on infinite trees is finitely
ambiguous or countably ambiguous can be obtained from the results of Bárány et al.
in [12], where an extension of monadic second-order logic of order with the cardinality
quantifiers there exist uncountably many sets, “there are countably many sets,” “there
are finitely many sets” (MSO(∃<ℵ0 ,∃>ℵ0)) was investigated. It was proved that, over
the class of finitely branching trees, MSO(∃<ℵ0 ,∃>ℵ0) is (effectively) equally expres-
sive to plain monadic second-order logic of order (MSO). It is a routine exercise for a
given automaton on infinite trees to write sentences in MSO(∃<ℵ0 ,∃>ℵ0) that express
“the automaton has finitely many accepting runs,” “the automaton has countably many
accepting runs,” and “the automaton has uncountably many accepting runs.” By com-
bining these with Rabin’s theorem on decidability of MSO over infinite trees we conclude

1A state is useful if it is on an accepting run.

3

that it is decidable whether an automaton is finitely or countably ambiguous. Unfor-
tunately, the complexity of the algorithm extracted from this proof is (at least) triple
exponential.

An extended abstract of this paper was published in [13].
Organization of the paper: The next section contains standard definitions and no-
tations about tree automata. The main results are stated in Sect. 3 and are proved in
Sects. 4-9. The last section presents further problems.

2. Preliminaries

In Sections 2.1 and 2.2, we recall standard terminology and notations about trees
and automata [14, 15]. In Section 2.3 some simple lemmas are stated, and it is proved
that there is a polynomial time algorithm that checks whether a Büchi tree automaton
is unambiguous. In Section 2.4 we recall a forbidden pattern characterization of degrees
of ambiguity of automata on ω-words [10, 11].

2.1. Trees

We view the set {l, r}∗ of finite words over the alphabet {l, r} as the domain of a full-
binary tree, where the empty word ε is the root of the tree, and for each node v ∈ {l, r}∗,
we call v · l the left child of v, and v · r the right child of v.

We define a tree order “≤” as a partial order such that ∀u, v ∈ {l, r}∗ : u ≤ v iff u
is a prefix of v. Nodes u and v are incomparable - denoted by u ⊥ v - if neither u ≤ v
nor v ≤ u; a set U of nodes is an antichain, if its elements are incomparable with each
other.

We say that an infinite sequence π = v0, v1, . . . is a tree branch if v0 = ε and
∀i ∈ N : vi+1 = vi · l or vi+1 = vi · r. We sometimes refer to π as the set {vi | i ∈ N}. It
will be clear from the context whether π is interpreted as a set or a sequence.

If Σ is a finite alphabet, then a Σ-labeled full-binary tree t is a labeling function
t : {l, r}∗ → Σ. We denote by TωΣ the set of all Σ-labeled full-binary trees. We often use
“tree” for “labeled full-binary tree.”

Given a Σ-labeled tree t and a node v ∈ {l, r}∗, the tree t≥v (called the subtree of t,
rooted at v) is defined by t≥v(u) := t(v · u) for each u ∈ {l, r}∗.

Grafting Given two labeled trees t1 and t2 and a node v ∈ {l, r}∗, the grafting of t2
on v in t1, denoted by t1 ◦v t2, is the tree t which is obtained from t1 by replacing the

subtree of t1 rooted at v by t2. Formally, t(u) :=

{
t2(w) ∃w ∈ {l, r}∗ : u = v · w
t1(u) otherwise

More generally, given a tree t1, an antichain Y ⊆ {l, r}∗, and a tree t2, the grafting
of t2 on Y in t1, denoted by t1 ◦Y t2, is obtained by replacing each subtree of t1 rooted
at a node y ∈ Y by the tree t2.

Tree Language. A tree language L over an alphabet Σ is a set of Σ-labeled trees. We
denote by L := TωΣ \ L the complement of L.

Finite Tree. A finite tree is a finite set U ⊆ {l, r}∗ which is closed under prefix relation.

Node Depth. The depth of a node u ∈ {l, r}∗, denoted Depth(u), is defined as the length
of u. For a finite set of nodes U ⊆ {l, r}∗ we define Depth(U) := max{Depth(u) | u ∈ U}.

4

2.2. Automata

2.2.1. ω-word Automata

Büchi ω-word Automata (BWA). A BWAA is a tuple (QA,Σ, QI , δ, F) where Σ is a finite
alphabet, QA is a finite set of states, QI ⊆ QA is a set of initial states, δ ⊆ QA×Σ×QA
is a transition relation, and F ⊆ QA is a set of final states. A run of A on a ω-word
y = a0a1 . . . is an infinite sequence ρ = q0q1 . . . such that q0 ∈ QI , and (qi, ai, qi+1) ∈ δ
for all i ∈ N. We say that ρ is accepting if there is a state f ∈ F which appears infinitely
often in ρ.

Language. We denote the set of all accepting runs ofA on y by ACC(A, y). The language
of A is defined as L(A) := {y ∈ Σω | ACC(A, y) 6= ∅}.

2.2.2. Infinite Tree Automata

Büchi Tree Automata (BTA). A BTA is a tuple (QA,Σ, QI , δ, F) where Σ is a finite
alphabet, QA is a finite set of states, QI ⊆ QA is a set of initial states, δ ⊆ QA × Σ ×
QA × QA is a transition relation, and F ⊆ QA is a set of final states. A computation
of A on a tree t is a function φ : {l, r}∗ → QA such that φ(ε) ∈ QI , and ∀v ∈ {l, r}∗ :
(φ(v), t(v), φ(v · l), φ(v · r)) ∈ δ. We say that φ is accepting if for each tree branch
π = v0, v1, . . . there is a state f ∈ F such that the sequence φ(v0), φ(v1), . . . contains
infinitely many occurrences of f . When A is known from the context, we will omit the
subscript, and refer to the set of states as Q.

Language. We denote the set of all accepting computations of A on t by ACC(A, t).
The language of A is defined as L(A) := {t ∈ TωΣ | ACC(A, t) 6= ∅}.

Given an automaton (either a BWA or a BTA) A = (QA,Σ, QI , δ, F) and a state
q ∈ Q, we denote by Aq the automaton (QA,Σ, {q}, δ, F) which is obtained from A by
replacing the set of initial states QI with {q}.

A state q ∈ Q of a BTA A is called useful if there is a tree t ∈ L(A), a computation
φ ∈ ACC(A, t), and a node v ∈ {l, r}∗ such that φ(v) = q. For BTA, it is computable in
polynomial time whether a state is useful. Hence, throughout the paper we will assume
all states of BTA to be useful.

Degree of Ambiguity of an Automaton. We denote by |X| the cardinality of a set X. An
automaton A is k-ambiguous if |ACC(A, t)| ≤ k for all t ∈ L(A); A is unambiguous if it
is 1-ambiguous; A is boundedly ambiguous if there is k ∈ N such that A is k-ambiguous;
A is finitely ambiguous if ACC(A, t) is finite for all t; A is countably ambiguous if
ACC(A, t) is countable for all t.

The degree of ambiguity of A (notation da(A)) is defined by da(A) = k if A is k-
ambiguous and either k = 1 or A is not k − 1 ambiguous, da(A) = finite if A is finitely
ambiguous and not boundedly ambiguous, da(A) = ℵ0 if A is countably ambiguous and
not finitely ambiguous, and da(A) = 2ℵ0 if A is not countably ambiguous.

Example 2 Consider the BTA Ai = (Qi,Σi, Q
i
I , δi, Fi) for 1 ≤ i ≤ 4.

1. Q1 = Q1
I = F1 = {q}, Σ1 = {1}, and δ1 = {(q, 1, q, q)}. A1 is deterministic and

therefore unambiguous.

2. Q2 = Q2
I = F2 = {q1, q2}, Σ2 = {1}, and δ2 = Q2×Σ2×Q2×Q2. A2 is uncountably

ambiguous.
5

3. Q3 = {q, f}, Q3
I = {q}, F3 = {f}, Σ3 = {1}, and δ3 = {(q, 1, p1, p2) | p1, p2 ∈

Q3} ∪ {(f, 1, f, f)}. A3 is countably ambiguous.

4. Q4 = Q4
I = F4 = {q1, q2}, Σ4 = {1, 2, 3}, and δ4 = {(q1, a, q1, q1) |a 6= 1} ∪

{(q2, a, q2, q2) | a 6= 2}. A tree t is accepted by A4 iff t has no node labeled by 1 or t
has no node labeled by 2. An accepting run of A4 is either assigns q1 to all nodes or
q2 to all nodes. Hence, A4 has two accepting runs on the tree with all nodes labeled
by 3, and at most one accepting run on other trees. Therefore, A4 is 2-ambiguous.
Moreover, in [16] we proved that every automaton that accepts L(A4) has at least
two accepting runs on the tree with all nodes labeled by 3.

A computation φ of A on a Σ-labeled tree t can be considered as a QA-labeling of
t. Given two computations φ, φ′ and a node v ∈ {l, r}∗, the grafting of φ′ on v in φ
(denoted by φ ◦v φ′) is defined as for the corresponding QA-labeled trees.

2.3. Automata Properties

We often use implicitly the following simple Lemma.

Lemma 3 (Grafting) Let A be an automaton, t, t1 trees, v ∈ {l, r}∗, and φ ∈ ACC(A, t),
and φ1 ∈ ACC(Aq, t1). If φ(v) = q, then φ ◦v φ1 is an accepting computation of A on
t ◦v t1.

A similar lemma holds for general grafting. As an immediate consequence, we obtain the
following lemma:

Lemma 4 da(A) ≥ da(Aq) for every useful state q of A.

We suspect that the following lemma is folklore. For lack of reference, we provide a proof
of the lemma in the rest of this subsection.

Lemma 5 It is computable in polynomial time whether a BTA is unambiguous.

We first prove the following lemma:

Lemma 6 Let A = (Q,Σ, QI , δ, F) be a BTA, and assume all states in Q are useful.
Then da(A) > 1 iff at least one of the following holds:

• There are states p, q ∈ QI such that L(Ap) ∩ L(Aq) 6= ∅, or

• There are two different transitions (q, a, q1, q2), (q, a, q′1, q
′
2) ∈ δ such that L(Aq1) ∩

L(Aq′1) 6= ∅ and L(Aq2) ∩ L(Aq′2) 6= ∅.

Proof ⇒: Assume that da(A) > 1. Therefore, there is a tree t ∈ L(A) such that
|ACC(A, t)| > 1. Let φ1, φ2 ∈ ACC(A, t) such that φ1 6= φ2, and let v ∈ {l, r}∗ be a
node of minimal depth such that φ1(v) 6= φ2(v). If v = ε, then φ1(v), φ2(v) ∈ QI and
t ∈ L(Aφ1(v)) ∩ L(Aφ2(v)) - hence, item (1) holds. Otherwise, let v′ be the parent node
of v. Notice that φ1 and φ2 use different transitions (q, a, q1, q2), (q, a, q′1, q

′
2) ∈ δ from

v′. if v is the left child of v′ then q1 6= q′1, and otherwise q2 6= q′2. φ1 and φ2 are both
accepting and therefore t≥v·l ∈ L(Aq1) ∩ L(Aq′1) and t≥v·r ∈ L(Aq2) ∩ L(Aq′2), and we
obtain L(Aq1) ∩ L(Aq′1) 6= ∅ and L(Aq2) ∩ L(Aq′2) 6= ∅ - hence, item (2) holds.

6

⇐: If there are p, q ∈ QI such that L(Ap)∩L(Aq) 6= ∅ then there is a tree t ∈ L(Ap)∩
L(Aq). Therefore, there are two computations φ1, φ2 ∈ ACC(A, t) such that φ1(ε) = p
and φ2(ε) = q, and we obtain da(A) ≥ |ACC(A, t)| ≥ |{φ1, φ2}| = 2. Otherwise, there
are two different transitions (q, a, q1, q2), (q, a, q′1, q

′
2) ∈ δ such that L(Aq1) ∩ L(Aq′1) 6=

∅ and L(Aq2) ∩ L(Aq′2) 6= ∅. Therefore, there are t1 ∈ L(Aq1) ∩ L(Aq′1) and t2 ∈
L(Aq2) ∩ L(Aq′2), and computations φq1 ∈ ACC(Aq1 , t1), φq′1 ∈ ACC(Aq′1 , t1), φq2 ∈
ACC(Aq2 , t2), and φq′2 ∈ ACC(Aq′2 , t2). Since all states of A are useful, there is a tree
t ∈ L(A), a computation φ ∈ ACC(A, t), and a node v ∈ {l, r}∗ such that φ(v) = q. Let
t′ := (t◦v·l t1)◦v·r t2, and define two computations φ′ := φ◦v·lφq1 ◦v·r φq2 and φ′′ := φ◦v·l
φq′1 ◦v·r φq′2 . By grafting lemma, φ′, φ′′ ∈ ACC(A, t′). Since (q, a, q1, q2) 6= (q, a, q′1, q

′
2),

we conclude that q1 6= q′1 or q2 6= q′2. Therefore φ′(v · l) 6= φ′′(v · l) or φ′(v · r) 6= φ′′(v · r),
and we obtain φ′ 6= φ′′. We conclude that |ACC(A, t′)| ≥ |{φ′, φ′′}| = 2 and therefore
da(A) ≥ 2, as requested. �

Lemma 7 Let A and B be two BTA. Then the emptiness of L(A) ∩ L(B) is decidable
in polynomial time.

Proof Given two BTA A and B, it is well-known that there is a BTA C such that
L(C) = ∅ iff L(A) ∩ L(B) = ∅ and C can be constructed in O(|A| · |B|) time. Since the
emptiness of BTA could be determined in polynomial time, that concludes the proof. �

Now, we are ready to prove Lemma 5. Since the number of pairs of states in Q is
polynomial in A, it follows from Lemma 6 that it is sufficient to show that the emptiness
of L(Aq) ∩ L(Ap) can be decided in polynomial time for all p, q ∈ Q. The latter follows
from Lemma 7, and that concludes our proof.

2.4. Degree of Ambiguity for Automata on ω-words

The next definition and theorem are taken from [10, 11]. They provide a forbidden
pattern characterization of degrees of ambiguity of automata on ω-words.

Definition 8 (Forbidden pattern for BWA) Let B be a BWA such that all its states
are useful.

• B contains a forbidden pattern for bounded ambiguity if there are distinct states
p, q such that for a (finite) word u, there are runs of Bp on u from p to p and from
p to q, and there is a run of Bq on u from q to q.

• B contains a forbidden pattern for countable ambiguity if there is a final state f
and there are two distinct runs of Bf on the same word u from f to f .

• B contains a forbidden pattern for finite ambiguity if it contains the forbidden
pattern for countable ambiguity or there is a final state f , and q 6= f , and a word
u such that there are runs of Bq on u from q to q and from q to f and a run of Bf
on u from f to f (see Figure 3).

Theorem 9 Let B be a BWA.

1. B has uncountably many accepting runs on some ω-word if and only if B contains
the forbidden pattern for countable ambiguity.

7

Figure 3: Forbidden pattern for finite ambiguity of BWA

2. B has infinitely many accepting runs on some ω-word if and only if B contains the
forbidden pattern for finite ambiguity.

3. B is not boundedly ambiguous iff it contains the forbidden pattern for bounded
ambiguity.

3. Main Result

In this section we first introduce branch ambiguity and ambiguous transition patterns
and then state our main results.

3.1. Branch Ambiguity

Definition 10 (Projection of a computation on a branch) Let φ ∈ ACC(A, t) and
let π = v0, v1, . . . be a tree branch. We say that φ(π) := φ(v0)φ(v1) · · · ∈ QωA is the pro-
jection of φ on π, and define ACC(A, t, π) := {φ(π) | φ ∈ ACC(A, t)}.

Definition 11 (Branch ambiguity) A is at most k branch-ambiguous if |ACC(A, t, π)| ≤
k for every t and branch π. A is boundedly branch ambiguous if it is at most n branch am-
biguous for some n. A is finitely (respectively, countably) branch ambiguous if |ACC(A, t, π)|
is finite (respectively, countable) for every t and π.

LetA be a BTA. We define a BWAAB which has the same ambiguity as branch ambiguity
of A:

Definition 12 (Branch automaton) For a BTA A = (Q,Σ, QI , δ, F), the correspond-
ing branch automaton AB is an BWA (Q,ΣB , QI , δB , F), where

1. ΣB = Σ× Σd × Σcons with

(a) Σd := {l, r} directions alphabet (left/right).
(b) Σcons := {S ⊆ Q |

⋂
q∈S

L(Aq) 6= ∅} sets of states, which we consider “consis-

tent.”

2. (q, a, q′) ∈ δB iff a = (σ, l, S) and ∃p ∈ S : (q, σ, (q′, p)) ∈ δ; or a = (σ, r, S) and
∃p ∈ S : (q, σ, (p, q′)) ∈ δ.

The following lemma, which is proved in Subsection 4.1, states the connection between
branch ambiguity and ambiguity of branch automaton.

Lemma 13 The branch ambiguity of a tree automaton A is bounded (respectively, finite,
countable) iff the ambiguity of the corresponding branch ω-automaton AB is bounded
(respectively, finite, countable).

8

In Sect. 8 we will show:

Proposition 14 (Computability of branch ambiguity) It is computable in polyno-
mial time whether the branch ambiguity of A is bounded, finite, or countable.

3.2. Ambiguous Transition Pattern

Definition 15 (Ambiguous transition pattern) Let A = (Q,Σ, QI , δ, F) be a BTA
with a corresponding branch automaton AB = (Q,ΣB , QI , δB , F). A has a q-ambiguous
transition pattern if q ∈ Q and there are p1, p2 ∈ Q and y1 ∈ Σ∗B, y2 ∈ Σ+

B with runs
of AB from q to p1 on y1 and from p2 to q on y2 such that at least one of the following
holds:

1. There are two transitions (p1, (a, d, {q1}), p2), (p1, (a, d, {q2}), p2) ∈ δB with q1 6= q2

and L(Aq1) ∩ L(Aq2) 6= ∅ (see Figure 4), or

2. There is a transition (p1, (a, d, {q1}), p2) ∈ δB with da(Aq1) > 1.

A is said to have an ambiguous transition pattern if there exists q ∈ Q such that A
has a q-ambiguous transition pattern.

Figure 4: Ambiguous transition pattern. Notice that the green tree is accepted from both q1 and q2.

Lemma 16 (1) If A has an ambiguous transition pattern then its ambiguity degree is
not bounded. (2) If A has an f -ambiguous transition pattern (for a final state f) then
its ambiguity degree is not countable.

Lemma 16 is proven in Subsection 4.2. The next lemma, which deals with the com-
putability of the transition pattern, is proven in Sect. 8.

Lemma 17 It is computable in polynomial time whether A has an ambiguous transition
pattern and whether A has an f -ambiguous transition pattern for a final state f .

9

3.3. Characterizations of Degrees of Ambiguity

The next two propositions characterize bounded and finite ambiguity. Their proofs
are presented in Sect. 5 and 6.

Proposition 18 (Bounded ambiguity) The following are equivalent:

1. A BTA A is not boundedly ambiguous.

2. At least one of the following conditions holds:

(a) A is not boundedly branch ambiguous.
(b) A has an ambiguous transition pattern.

Proposition 19 (Finite ambiguity) The following are equivalent:

1. A BTA A is not finitely ambiguous.

2. At least one of the following conditions holds:

(a) A is not finitely branch ambiguous.
(b) A has an f -ambiguous transition pattern for a final state f .

The above characterizations of bounded and finite ambiguity are based on properties of
AB . In order to characterize countable ambiguity we first introduce branching patterns
for A (which are not captured by AB).

Definition 20 (A branching pattern for A over (R, f)) Let A be a BTA, f a final
state of A, and R ⊆ QA \ {f}, where QA are the states of A. A branching pattern M
for A over (R, f) is a function τM : R→ R×R and a tuple (q1, q2) ∈ R×R.

Definition 21 (Realizable branching pattern) Let t be a full-binary tree and u ⊥ v
two nodes of t. A branching pattern M for A over (R, f) is realized in t at u, v by
computations φ1, φ2, {φq | q ∈ R} iff the following hold:

1. φ1, φ2 ∈ ACC(Af , t) and φ1(u) = f = φ2(v), φ1(v) = q1 and φ2(u) = q2.

2. For each q ∈ R: φq ∈ ACC(Aq, t), τM (q) = (φq(v), φq(u)) and φq visits a final
state on both paths from the root of t to u and from the root of t to v.

In Sects. 7 and 9 we prove the next two propositions. Their proofs are more complicated
than the proofs of Propositions 18 and 19.

Proposition 22 (Countable ambiguity) The following are equivalent:

1. A BTA A is not countably ambiguous.

2. At least one of the following conditions holds:

(a) A is not countably branch ambiguous.
(b) A has an f -ambiguous transition pattern for a final state f .
(c) A branching pattern for A is realizable.

Proposition 23 It is computable in polynomial time whether there is a realizable branch-
ing pattern for a BTA A.

Theorem 24 (Main) It is computable in polynomial time whether a BTA is unambigu-
ous, bounded ambiguous, finitely ambiguous, or countably ambiguous.

10

Proof For unambiguity - by Lemma 5. For bounded ambiguity by Proposition 18, Lemma
17, and Proposition 14. For finite ambiguity by Proposition 19, Lemma 17, and Propo-
sition 14. For countable ambiguity by Propositions 22, 14, 23 and Lemma 17. �

Road map of the proofs: In Sect. 4 we prove Lemmas 13 and 16, and present a couple
of useful lemmas. Sect. 5, Sect. 6, and Sect. 7 deal with structural characterizations of
bounded, finite, and countable ambiguity of BTA and prove Propositions 18, 19 and 22,
respectively. Sect. 8 deals with computability of branch ambiguity and of the ambiguous
transition pattern, and Lemma 17 and Proposition 14 are proved there. Sect. 9 deals
with computability of a branching pattern and proves Proposition 23.

4. Ambiguous Transition Pattern and Branch Ambiguity

In the first subsection we prove Lemma 13, and in the second subsection we prove
Lemma 16. In the last subsection we prove two useful lemmas which provide sufficient
conditions for an ambiguous pattern and for uncountable branch ambiguity.

4.1. Proof of Lemma 13

Recall that Lemma 13 states that the branch ambiguity of a BTA A is the same as
the ambiguity of the corresponding branch automaton AB .

The proof will use the following two lemmas which deal with the connection between
computations of A and runs of AB :

Lemma 25 Let t ∈ L(A), and let π = v0, v1, . . . be a tree branch. Then there exists
y ∈ L(AB) such that ACC(A, t, π) ⊆ ACC(AB , y).

Proof Let y = (a1, d1, S1) . . . (ai, di, Si) . . . be a word over the alphabet ΣB, such that:

• di ∈ {l, r} and di = l iff vi is the left child of vi−1

• ai := t(vi−1)

• Si := {φ(v′i) | φ ∈ ACC(A, t)} where v′i is the child of vi−1 which is not vi

Let φ ∈ ACC(A, t). We will prove that ρ := φ(π) is a run of AB on y. Assume
that ρ = p0p1 For each i ∈ N we have pi−1 = φ(vi−1) and pi = φ(vi). If vi is
the left child of vi−1 then we obtain (φ(vi−1), t(vi−1), φ(vi), φ(v′i)) ∈ δ, and otherwise
(φ(vi−1), t(vi−1), φ(v′i), φ(vi)) ∈ δ. By the definition of Si we obtain φ(v′i) ∈ Si. Notice
that ai = t(vi−1), and di = l iff vi is the left child of vi−1. Therefore, by the definition
of AB, we conclude that (φ(vi−1), (ai, di, Si), φ(vi)) = (pi−1, (ai, di, Si), pi) ∈ δB, and the
lemma follows. �

Lemma 26 Let A be a BTA with the corresponding branch automaton AB. If y =
(a1, d1, S1) . . . (ai, di, Si) . . . is an ω-word over the alphabet ΣB such that y ∈ L(AB)
then there exist a tree t ∈ L(A) and a branch π = v0, v1, . . . such that:

• t(vi) = ai+1

• vi+1 is the left child of vi iff di = l

11

• For each run ρ ∈ ACC(AB , y) there is a computation φ ∈ ACC(A, t) such that
φ(π) = ρ.

Proof For each Si, let ti ∈
⋂
q∈Si

L(Aq) (there is such ti, since Si ∈ Σcons).

Let π = v0, v1, . . . where v0 := ε and ∀i ∈ N : vi+1 := vi · di, and let v′i be the child of
vi which is not vi+1.

We define an infinite Σ-labeled tree t by t(u) :=

{
ai+1 ∃i : u = vi

ti+1(w) ∃i : u = v′i · w
(see Figure 5 for an illustration).

Figure 5: The tree t constructed in the proof of Lemma 26

Let ρ = p0p1 . . . be an accepting run of AB on y. By the definition of AB, for each
i ∈ N there is a state qi ∈ Q such that (pi, ai, pi+1, qi) ∈ δ if di = l or (pi, ai, qi, pi+1) ∈ δ
if di = r. Recall that ti ∈ L(Aqi), and therefore there is a computation φi ∈ ACC(Aqi , ti).
We use ρ and φi to define a computation φ of A on t, as follows:

φ(u) :=

{
pi ∃i : u = vi

φi+1(w) ∃i : u = v′i · w
It is easy to see that φ is a computation of A on t. We will show that φ is accepting.

For each tree branch π′, if π′ = π then φ(π′) = φ(π) = ρ and since ρ ∈ ACC(AB , y)
we conclude that φ(π′) has infinitely many occurrences of states in F . Otherwise, by

12

the definition of t, there is i ∈ N such that v′i ∈ π′. By the definition of φ we obtain
φ(u) = φi(w) for all nodes u = v′i · w, and since φi is accepting we conclude that φ(π′)
has infinitely many occurrences of states in F . Hence, φ ∈ ACC(A, t) as requested. �

We are now ready to prove Lemma 13.
⇒: By Lemma 25, for each tree t ∈ L(A) and a tree branch π there is an ω-word

y ∈ L(AB) such that ACC(A, t, π) ⊆ ACC(AB , y). Therefore, if A is not boundedly (re-
spectively, finitely, countably) branch ambiguous then AB is not boundedly (respectively,
finitely, countably) ambiguous.
⇐: By Lemma 26, for each y ∈ L(AB) there is a tree t ∈ L(A) and a tree branch π

such that ACC(AB , y) ⊆ ACC(A, t, π). Therefore, if AB is not boundedly (respectively,
finitely, countably) ambiguous then A is not boundedly (respectively, finitely, countably)
branch ambiguous.

4.2. Proof of Lemma 16

Fix a BTA A, and let AB = (Q,ΣB , QI , δB , F) be the corresponding branch automa-
ton of A. By the definition of q-ambiguous transition pattern, there exist p′1, p

′
2 ∈ Q and

z1 ∈ Σ∗B , z2 ∈ Σ+
B such that there is a run ρ1 of (AB)q on z1 from q to p′1, and a run ρ2

of (AB)p′2 on z2 from p′2 to q.
We choose z′ ∈ ΣB as follows:

• If there are transitions (p′1, (a
′, d′, {q1}), p′2), (p′1, (a

′, d′, {q2}), p′2) ∈ δB with L(Aq1)∩
L(Aq2) 6= ∅, then by the definition of AB there exists a transition (a′, d′, {q1, q2}) ∈
δB . Let z′ := (a′, d′, {q1, q2}).

• Otherwise, by the definition of q-ambiguous transition, there exists a transition
(p′1, (a

′, d′, {q1}), p′2) ∈ δB with da(Aq1) > 1. In this case, let z′ := (a′, d′, {q1}).

Define a word y := z1 · z′ · z2 over the alphabet ΣB , and let ρ := ρ1 · ρ2. Notice that
ρ is a run of AB on y from q to q.

(1) We will show that for each k ∈ N there is a tree tk ∈ L(A) such that |ACC(A, tk)| ≥
2k.

Denote by ρ′ the run ρ without the last state. By the definition of ρ we conclude that
(ρ′)k · q is a run of AB on yk from q to q.

All states in Q are useful and therefore there is an ω-word ŷ ∈ L((AB)q) and an
accepting run ρ̂ ∈ ACC((AB)q, ŷ). We conclude that (ρ′)k · ρ̂ is an accepting run of
(AB)q on yk · ŷ.

yk · ŷ is of the form (a1, d1, S1) . . . (ai, di, Si) . . . where ai ∈ Σ, di ∈ {l, r}, and Si ⊆ Q.
Assume z′ = (az, dz, Sz), and let tz ∈

⋂
q′∈Sz

L(Aq′) such that there are two accepting

computations φ1 and φ2 on tz, where φ1(ε), φ2(ε) ∈ Sz (there is such tz by the definition
of z′).

By Lemma 26, there is a tree t ∈ L(Aq), a computation φ ∈ ACC(Aq, t), and a tree
branch π = v0, v1, . . . such that φ(π) = (ρ′)k · ρ̂; and for each i ∈ N we have t(vi) = ai+1,
and vi+1 is the left child of vi iff di = l.

Let J := {i | the i-th transition of (ρ′)k · ρ̂ is from p′1 to p′2 over z′}. By the definition
of ρ we conclude that |J | ≥ k. Denote by v′i the child of vi which is not vi+1, and define
A := {v′i | i ∈ J}. Notice that A is an antichain, and therefore tk := t ◦A tz - i.e., the
grafting of tz in t at all nodes in A - is well-defined.

13

For each B ⊆ A, let φB : {l, r}∗ → Q such that:

φB(u) =


φ1(w) ∃i : u = v′i · w and v′i ∈ A \B
φ2(w) ∃i : u = v′i · w and v′i ∈ B
φ(u) otherwise

Notice that φB = (φ ◦A\B φ1) ◦B φ2. It is easy to verify that, similarly to Lemma 3,
φB is an accepting computation of Aq on tk.

For completeness, we will show that φB respects δ by proving that (φB(u), tk(u), φB(u·
l), φB(u · r)) ∈ δ for all u ∈ {l, r}∗:

• If u = v·w for v ∈ A\B, then (φB(u), tk(u), φB(u·l), φB(u·r)) = (φ1(w), t1(w), φ1(w·
l), φ1(w · r)) which is in δ by the definition of φ1.

• Otherwise, if u = v · w for v ∈ B, then (φB(u), tk(u), φB(u · l), φB(u · r)) =
(φ2(w), t2(w), φ2(w · l), φ2(w · r)) which is in δ by the definition of φ2.

• If u = vi for i ∈ J , then assume w.l.o.g. that vi+1 is the left child of vi and
v′i ∈ A\B (the other cases are symmetrical). By the definition of φ and z′ we obtain
(φB(u), tk(u), φB(u · l), φB(u · r)) = (φ(u), tk(u), φ(u · l), φ1(ε)) = (p′1, az, p

′
2, φ1(ε)),

and since φ1(ε) ∈ Sz, we conclude that (p′1, (az, dz, Sz), p
′
2) ∈ δB for dz = l. Hence,

(p′1, az, p
′
2, φ1(ε)) ∈ δ, as requested.

• Otherwise, by the definition of φB we conclude that u · l � v′j and u · r � v′j for all
j ∈ N, and therefore we obtain (φB(u), tk(u), φB(u·l), φB(u·r)) = (φ(u), tk(u), φ(u·
l), φ(u · r)) which is in δ by the definition of φ.

Let B1, B2 ⊆ A such that there exists b ∈ B1, b /∈ B2. By the definition of φB1
and

φB2 , we have ∀w ∈ {l, r}∗ : φB1(b · w) = φ2(w) and φB2(b · w) = φ1(w). φ1 6= φ2 and
therefore there is a node w such that φ1(w) 6= φ2(w) and therefore φB1(b ·w) 6= φB2(b ·w).
Similarly, if there is b ∈ B2 \B1, then φB1

6= φB2
. Hence, B1 6= B2 → φB1

6= φB2
.

We obtain da(Aq) ≥ |ACC(Aq, tk)| ≥ |{B | B ⊆ A}| ≥ 2k, and by Lemma 4 we
conclude that da(A) ≥ da(Aq) ≥ 2k. Therefore, A is not boundedly ambiguous.

(2) Assume that f := q is a final state of A.
yω is an ω-word in ΣωB . Recall that ρ is a run of AB on y from q to q, and denote by

ρ′ the run ρ without the last state. By the definition of ρ we conclude that (ρ′)ω is a run
of (AB)f on yω. Notice that ρ′ contains a final state, and therefore (ρ′)ω is an accepting
run, and yω ∈ L((AB)f).

yω is of the form (a1, d1, S1) . . . (ai, di, Si) . . . where ai ∈ Σ, di ∈ {l, r}, and Si ⊆ Q.
Assume z′ = (az, dz, Sz), and let tz ∈

⋂
q′∈Sz

L(Aq′) such that there are two accepting

computations φ1 and φ2 on tz, where φ1(ε), φ2(ε) ∈ Sz (there is such tz by the definition
of z′).

By Lemma 26, there is a tree t ∈ L(Af), a computation φ ∈ ACC(Af , t), and a tree
branch π = v0, v1, . . . such that φ(π) = (ρ′)ω; and for each i ∈ N we have t(vi) = ai, and
vi+1 is the left child of vi iff di = l.

Let J := {i | the i-th transition of (ρ′)ω is from p′1 to p′2 over z′}. By the definition
of ρ we conclude that J is an infinite subset of N. Denote by v′i the child of vi which
is not vi+1, and define A := {v′i | i ∈ J}. Notice that A is an antichain, and therefore
t′ := t ◦A tz is a well-defined grafting of tz in t at all nodes in A.

14

For each B ⊆ A we define a computation φB by:

φB(u) =


φ1(w) ∃i : u = v′i · w and v′i ∈ A \B
φ2(w) ∃i : u = v′i · w and v′i ∈ B
φ(u) otherwise

Similarly to the proof of (1), we conclude that φB is a computation of Af on t′, and
that B1 6= B2 → φB1 6= φB2 . Since the number of subsets of A is uncountable, and each
subset B yields a unique accepting computation φB ofA on t′, it follows that ACC(Af , t′)
is not countable. By Lemma 4, we conclude that A is not countably ambiguous.

4.3. Two Useful Lemmas

Here we prove two simple but useful lemmas - Lemma 27, which provides sufficient
conditions for an ambiguous transition pattern; and Lemma 28, which provides sufficient
conditions for uncountable branch ambiguity.

Lemma 27 (q-ambiguous transition pattern) Let A be a BTA and let v⊥w. If one
of the following conditions holds, then A has a q-ambiguous transition pattern.

1. There is φ ∈ ACC(Aq, t) such that φ(v) = q and φ(w) = p, where Ap is ambiguous.

2. There are φ, φ′ ∈ ACC(Aq, t) such that φ(v) = q and ∀v′ : (v′ ≤ v) → (φ(v′) =
φ′(v′), and φ(w) 6= φ′(w).

Proof Let u be the node of maximal depth on the path from the root of t to v such that
w > u. Let u′, u′′ be the children of u such that w ≥ u′ and v ≥ u′′. Assume w.l.o.g.
that u′ is the left child of u.

(1) By the definition of φ, there is a transition (φ(u), t(u), φ(u′), φ(u′′)) ∈ δ. Since
da(Aφ(w)) > 1, we can use Lemma 4 to obtain da(Aφ(u′)) > 1. Hence, condition 2 of the
definition of q-ambiguous transition pattern applies.

(2) Look at transitions (φ(u), t(u), φ(u′), φ(u′′)), (φ′(u), t(u), φ′(u′), φ′(u′′)) ∈ δ. Since
u′′ ≤ v we have φ(u′′) = φ′(u′′). If φ(u′) = φ′(u′) then the restriction of φ and φ′ on
t≥u′ are two different computations in ACC(Aφ(u′), t≥u′) and therefore da(Aφ(u′)) > 1
and condition 2 of q-ambiguous transition pattern definition applies. Otherwise, we have
φ(u′) 6= φ′(u′) and t≥u′ ∈ L(Aφ(u′))∩L(Aφ′(u′)) and therefore condition 1 of q-ambiguous
transition pattern definition applies. �

Lemma 28 (uncountable branch ambiguity) Let A be a BTA with the correspond-
ing branch automaton AB. Let f be a final state of A, and let u < w < v be nodes in
{l, r}∗. If there are φ1, φ2 ∈ ACC(A, t) such that φ1(u) = φ1(v) = φ2(u) = φ2(v) = f
and φ1(w) 6= φ2(w), then A is not countably branch ambiguous.

Proof Assume that there are φ1, φ2 ∈ ACC(A, t) such that φ1(u) = φ1(v) = φ2(u) =
φ2(v) = f and φ1(w) 6= φ2(w). Let π = v0, v1, . . . be a tree branch such that u, v, w ∈ π.
By Lemma 25, there is an ω-word y ∈ L(AB) such that for each computation φ ∈
ACC(A, t) the projection of φ on π is an accepting run of AB on y. Therefore, we
obtain φ1(π), φ2(π) ∈ ACC(AB , y).

By the definition of π, there are i < j < k such that vi = u, vj = w and vk = v. Let
ρ1 := φ1(vi)φ1(vi+1) . . . φ1(vk), and ρ2 := φ2(vi)φ2(vi+1) . . . φ2(vk). By the definition of
φ1 and φ2 we have φ1(vi) = φ2(vi) = f , φ1(vk) = φ2(vk) = f and φ1(vj) 6= φ2(vj).

15

Assume that y = z1z2 . . . for zi ∈ ΣB. By the definition of y we conclude that ρ1 and ρ2

are two distinct runs of (AB)f on zi, zi+1, . . . , zk−1 from f to f . Hence, AB contains the
forbidden pattern for countable ambiguity, and by Theorem 9 and Lemma 13 we conclude
that A is not countably branch ambiguous. �

5. Bounded Ambiguity

In this section we prove Proposition 18 - a structural characterization of bounded
ambiguity. (2) ⇒ (1) follows from Lemma 13 and Lemma 16. Below we prove the (1)
⇒ (2) direction. Our proof is based on the results shown in [9], where Seidl gave two
criteria characterizing not boundedly ambiguous finite tree automata.

We first introduce labeled finite binary trees, and automata over finite binary trees.

Definition 29 A finite prefix closed set U ⊆ {l, r}∗ is called a finite binary tree if for
each u ∈ U , if u is not maximal in U then u · l, u · r ∈ U . A node u ∈ U is called a leaf
if it is maximal in U . Otherwise, u is called an internal node. As labels of the finite
binary trees we use a finite alphabet Σ which is partitioned into two sets: Σ2 - labels
of internal nodes, and Σ0 - labels of leaves. A finite Σ-labeled binary tree is a function
tU : U → Σ, where U ⊆ {l, r}∗ is a finite binary tree, tU (v) ∈ Σ0 if v is a leaf, and
tU (v) ∈ Σ2 if v has children.

Definition 30 An automaton over finite binary trees is a tuple B = (Q,Σ, QI , δ), where
Q is a finite set of states, Σ = Σ0 ∪ Σ2 is an alphabet, QI is a set of initial states, and
δ ⊆ (Q× Σ0) ∪ (Q× Σ2 ×Q×Q) is a set of transitions.

An accepting computation of B on a finite binary tree tU is a function φ : U → Q,
such that φ(ε) ∈ QI , and for each node u ∈ U , if u is not a leaf then (φ(u), tU (u), φ(u ·
l), φ(u · r)) ∈ δ, and otherwise (φ(u), tU (u)) ∈ δ.

The following definitions are taken from [9]. Since our proof only uses finite binary trees,
we simplify the notations where appropriate.

Definition 31 (Finite tree branch automaton) The corresponding branch automa-
ton BB of a finite binary tree automaton B = (Q,Σ, QI , δ) with Σ = Σ2 ∪ Σ0 is a finite
word automaton (Q,ΣB , QI , δB , F), where:

• ΣB := Σ2 × {l, r}

• F := {q ∈ Q | ∃a ∈ Σ0 : (q, a) ∈ δ}

• δB is the minimal set such that (q, a, ql, qr) ∈ δ implies (q, (a, d), qd) ∈ δB for
d ∈ {l, r}.

Definition 32 (Conditions T1 and T2) Let B be a finite binary tree automaton, with
the corresponding branch automaton BB.

T1: BB satisfies condition T1 if there are states p, q, qd ∈ Q and finite words y1, y2 ∈ Σ∗B
such that there is a run of (BB)p on y1 from p to q, a run of (BB)qd on y2 from
qd to p, and a transition (q, (a, d), qd) ∈ δ for a ∈ Σ, such that at least one of the
following hold:

16

1. There exist two different transitions (q, a, qd, q1), (q, a, qd, q2) ∈ δ (if d = l) or
(q, a, q1, qd), (q, a, q2, qd) ∈ δ (if d = r) such that L(Bq1) ∩ L(Bq2) 6= ∅

2. There exists a transition (q, a, qd, q1) ∈ δ (if d = l) or (q, a, q1, qd) ∈ δ (if
d = r) such that da(Bq1) > 1.

T2: BB satisfies condition T2 if there are two distinct states p, q ∈ Q, a finite word
y ∈ Σ+

B, and runs ρ1 of (BB)p on y from p to p, ρ2 of (BB)p on y from p to q, and
ρ3 of (BB)q on y from q to q such that the following holds:

Let ρi = pi0p
i
1 . . . , p

i
n for 1 ≤ i ≤ 3, and y = (a1, d1) . . . (an, dn). Then for all

1 ≤ j ≤ n there are transitions (pij−1, aj , p
i
j , q

i
j) ∈ δ for 1 ≤ i ≤ 3 if dj = l, or

(pij−1, aj , q
i
j , p

i
j) ∈ δ for 1 ≤ i ≤ 3 if dj = r, such that L(Bq1j)∩L(Bq2j)∩L(Bq3j) 6= ∅.

This definition is illustrated in Figure 6.

Figure 6: Conditions T1 and T2

The following theorem provides a structural characterization of bounded ambiguity
for automata over finite trees:

Theorem 33 (Seidl [9]) An automaton B over finite trees is not boundedly ambiguous
if and only if B satisfies condition T1 or condition T2.

We will now show a reduction from BTA to automata over finite binary trees. Let
A = (Q,Σ, QI , δ, F) be a BTA, and let Qcons := {Q′ ⊆ Q | ∩q∈Q′L(Aq) 6= ∅}. We define
a finite binary tree automaton Afin := (Q,Σfin, QI , δfin), where:

• Σfin := Σ2 ∪Σ0, where Σ2 := Σ is the set of labels of nodes with two children, and
Σ0 := Qcons is the set of labels of node without children (i.e. leaves).

• δfin := δ ∪ {(q,Q′) | q ∈ Q′ and Q′ ∈ Qcons} (i.e., the transitions on inner nodes
are according to δ, and a Q′-labeled leaf is accepted from a state q iff q ∈ Q′).

Lemma 34 If A is not boundedly ambiguous, then Afin is not boundedly ambiguous.

Proof We have to prove that for each k ∈ N, Afin has at least k accepting computations
on some finite Σfin-labeled tree. Assume that A is not boundedly ambiguous. Therefore,

17

there is an infinite tree t ∈ L(A) such that |ACC(A, t)| ≥ k. Let φ1, . . . , φk ∈ ACC(A, t)
be pairwise different computations of A on t. For each 1 ≤ i < j ≤ k, let ui,j ∈ {l, r}∗
be a node such that φi(ui,j) 6= φj(ui,j). Let m be the maximal depth of a node ui,j, and
let U := {u ∈ {l, r}∗ | u is of depth ≤ m + 1}. It is clear that U is a finite binary tree.
Define a finite labeled tree tU : U → Σfin as follows:

tU (u) :=

{
t(u) u is not a leaf in U

{φ(u) | φ ∈ ACC(A, t)} u is a leaf in U

Notice that for each leaf u ∈ U and for each computation φ ∈ ACC(A, t) we have
t≥u ∈ L(Aφ(u)). Therefore, ∩q∈SuL(Aq) 6= ∅ for Su := {φ(u) | φ ∈ ACC(A, t)} ∈ Qcons
and we conclude that tU is well-defined.

For each φ ∈ ACC(A, t), let φ′ be the restriction of φ on U . For each node u ∈ U ,
if u is not a leaf then (φ(u), t(u), φ(u · l), φ(u · r)) = (φ′(u), tU (u), φ′(u · l), φ′(u · r)) ∈ δ,
and since δ ⊆ δfin, we conclude that (φ′(u), tU (u), φ′(u · l), φ′(u · r)) ∈ δfin. If u is a
leaf then we have φ′(u) = φ(u) ∈ Su = tU (u), and by the definition of δfin we conclude
that (φ′(u), tU (u)) ∈ δB. Hence, φ′ is an accepting computation of Afin on tU . Notice
that ∀u ∈ U : φ′(u) = φ(u), and therefore φ′i(ui,j) = φi(ui,j) 6= φj(ui,j) = φ′j(ui,j) for

each 1 ≤ i < j ≤ k. We conclude that φ′1, φ
′
2, . . . , φ

′
k ∈ ACC(Afin, tU) are k distinct

accepting computations, and therefore |ACC(Afin, tU)| ≥ k. �

Lemma 35 Let U ⊆ {l, r}∗ be a finite binary tree, and let tU : U → Σfin be a finite
binary Σfin-labeled tree. Then there is an infinite Σ-labeled binary tree t such that for

each computation φ ∈ ACC(Afinφ(ε), tU) there is a computation φ′ ∈ ACC(Aφ(ε), t) such

that φ′(u) = φ(u) for all u ∈ U .

Proof By the definition of Afin, for each leaf u ∈ U which is labeled by Su := tU (u)
we have ∩q∈Su

L(Aq) 6= ∅, and therefore there is a tree tu ∈ ∩q∈Su
L(Aq). We use tu to

define an infinite Σ-labeled tree t:

t(u) :=

{
tU (u) u ∈ U and u is not a leaf in U

tv(w) u = v · w for a leaf v ∈ U and w ∈ {l, r}∗

Let φ ∈ ACC(Afinφ(ε), tU). Again by the definition of Afin, for every leaf u ∈ U we

have φ(u) ∈ Su - hence, there is a computation φu ∈ ACC(Aφ(u), tu). We define a
computation φ′ as follows:

φ′(u) :=

{
φ(u) u ∈ U and u is not a leaf in U

φv(w) u = v · w for a leaf v ∈ U and w ∈ {l, r}∗
It is clear that φ′ is a computation of A on t, and that ∀u ∈ U : φ′(u) = φ(u). We

will prove that φ′ is accepting by showing that for each tree branch π there are infinitely
many occurrences of final state in φ′(π). Let π = v0, . . . , vi, Since U is a finite
tree, there is a leaf u ∈ U such that vi = u for i ∈ N. Therefore, π is of the form
v0 . . . (vi−1)(u·v′1)(u·v′2) By the definition of φ′ we obtain ∀i ∈ N : φ′(u·v′i) = φu(v′i).
Recall that φu is an accepting computation, and therefore φ′(π) contains infinitely many
occurrences of a final state in F . We conclude that φ′ ∈ ACC(Aφ(ε), t), as requested. �

Corollary 36 If Afin is not boundedly ambiguous then A is not boundedly ambiguous.

Remark (On Reduction of A to Afin) By Lemma 34 and Corollary 36 we obtain
that A is boundedly ambiguous iff Afin is boundedly ambiguous. The alphabet of Afin

18

might be exponential in the size of A. Hence, this reduction is not polynomial. We
use this reduction to obtain a structural characterization of bounded ambiguity for BTA
from the structural characterization of bounded ambiguity for automata on finite trees
(Theorem 33). In the rest of this section we show that if Afin satisfies T1 (respectively,
T2), then A has an ambiguous transition pattern (respectively, is not boundedly branch
ambiguous). In Section 8 we show that it is testable in polynomial time whether A has
an ambiguous transition pattern or is boundedly branch ambiguous. This will give us a
polynomial algorithm to test whether a BTA is boundedly ambiguous.

Lemma 37 1. If L(Afinp) ∩ L(Afinq) 6= ∅ then L(Ap) ∩ L(Aq) 6= ∅.
2. If da(Afinq) > 1 then da(Aq) > 1.

Proof (1) Let tU : U → Σfin be a finite binary Σfin-labeled tree such that tU ∈
L(Afinp) ∩ L(Afinq), and let φ1 ∈ ACC(Afinp , tU) and φ2 ∈ ACC(Afinq , tU). By Lemma

35, there is an infinite tree t such that for each computation φ ∈ ACC(Afinφ(ε), tU) there

is a computation φ′ ∈ ACC(Aφ(ε), t) such that φ′(u) = φ(u) for all u ∈ U .
Therefore, there are two computations φ′1 ∈ ACC(Ap, t) and φ′2 ∈ ACC(Aq, t), and

we obtain t ∈ L(Ap) ∩ L(Aq). Hence, L(Ap) ∩ L(Aq) 6= ∅, as requested.
(2) Let tU be a finite binary Σfin-labeled tree, such that there are two distinct com-

putations φ1, φ2 ∈ ACC(Aq, tU). By Lemma 35, there is an infinite tree t and two
computations φ′1, φ

′
2 ∈ ACC(Aq, t) such that ∀u ∈ U : φ′1(u) = φ1(u) and φ′2(u) = φ2(u).

φ1 6= φ2, and therefore there is a node u ∈ U such that φ1(u) 6= φ2(u). We conclude that
φ′1(u) = φ1(u) 6= φ2(u) = φ′2(u), and therefore φ′1 6= φ′2, and we obtain da(Aq) > 1, as
requested. �

Lemma 38 Let B := Afin, and let BB be the corresponding branch automaton of B.

1. If BB satisfies condition T1 then A has an ambiguous transition pattern.

2. If BB satisfies condition T2 then A is not boundedly branch ambiguous

Proof Let AB = (Q,ΣAB
, QI , δAB

, FAB
) be the corresponding branch automaton of A.

We will first prove the following claim:

Claim 38.1 If there exists a run ρ of (BB)p on a word y from p to q, then there exists
a word y′ such that (AB)p has a run on y′ from p to q.

Proof of Claim 38.1 Let y = (a1, d1) . . . (an, dn), and let ρ = p0 . . . pn. By the defi-
nition of BB, for each 1 ≤ i ≤ n, there is a transition (pi−1, ai, pi, qi) ∈ δ if di = l,
or a transition (pi−1, ai, qi, pi) ∈ δ if di = r. Let Si := {qi}, and define a word
y′ := (a1, d1, S1) . . . (an, dn, Sn). By the definition of AB, we conclude that ρ is a run of
(AB)p on y′ from p to q, as requested. �

Now, we are ready to prove Lemma 38.
(1) By Claim 38.1, we conclude that there are words y′1 and y′2 such that there is a

run of (AB)p on y′1 from p to q, and a run of (AB)qd on y′2 from qd to p.
Let (q, (a, d), qd) ∈ δ as guaranteed by pattern T1, and assume w.l.o.g. that d = l (the

proof for d = r is symmetrical). We will separate to cases:
Case 1: There exist two different transitions (q, a, qd, q1), (q, a, qd, q2) ∈ δ such that

L(Bq1) ∩ L(Bq2) 6= ∅. By the definition of BB we conclude that there are two transitions
19

(q, (a, d, {q1}), qd), (q, (a, d, {q2}), qd) ∈ δAB
, and by Lemma 37(1) we obtain L(Aq1) ∩

L(Aq2) 6= ∅, and therefore AB has a p-ambiguous transition pattern.
Case 2: There exists a transition (q, a, qd, q1) ∈ δ such that da(Bq1) > 1. By the

definition of BB we conclude that (q, (a, d, {q1}), qd) ∈ δAB
and by Lemma 37(2) we

obtain da(Aq1) > 1, and therefore AB has a p-ambiguous transition pattern.
(2) Let y = (a1, d1) . . . (an, dn), and ρi = pi0p

i
1 . . . p

i
n for 1 ≤ i ≤ 3. By the definition

of T2, for all 1 ≤ j ≤ n there is qij such that (pij−1, aj , p
i
j , q

i
j) ∈ δB for 1 ≤ i ≤ 3 if

dj = l, or (pij−1, aj , q
i
j , p

i
j) ∈ δB for 1 ≤ i ≤ 3 if dj = r. Define Sj := {q1

j , q
2
j , q

3
j } for

1 ≤ j ≤ n. Note that Sj are consistent, i.e., L(Aq1j) ∩ L(Aq2j) ∩ L(Aq3j) 6= ∅ for j ≤ n.

Let y′ := (a1, d1, S1) . . . (an, dn, Sn). By the definition of AB we conclude that ρ1 is a
run of (AB)p on y′ from p to p, ρ2 is a run of (AB)p on y′ from p to p, and ρ3 is a
run of (AB)q on y′ from q to q. Hence, AB contains the forbidden pattern for bounded
ambiguity, and therefore A is not boundedly branch ambiguous. �

We now proceed with the proof of the (1) ⇒ (2) direction of Proposition 18. A
is not boundedly ambiguous, and therefore by Lemma 34 we conclude that Afin is
not boundedly ambiguous. Therefore, by Theorem 33, Afin satisfies condition T1 or
condition T2. Applying Lemma 38, we conclude that A has an ambiguous transition
pattern, or that A is not bounded branch ambiguous, as requested.

6. Finite Ambiguity

In this section we prove Proposition 19 - a structural characterization of finite ambi-
guity. (2)⇒ (1) follows from Lemma 13 and Lemma 16. Below we prove the (1) ⇒ (2)
direction.

Let t be a tree such that ACC(A, t) is not finite. We define a branch π = v0, . . . , vi, . . .
in t and an ω-sequence of states q0 . . . qi . . . such that for every i:

1. From qi there are infinitely many accepting computations of Aqi on the subtree
t≥vi .

2. There is an accepting computation φi on t such that φi(vj) = qj for every j ≤ i.

Define v0 as the root of t and q0 as an initial state from which there are infinitely many
accepting computations.

Assume that vi and qi were defined. Since there are infinitely many accepting com-
putations from state qi on the subtree t≥vi , infinitely many of them take the same first
transition from qi to 〈ql, qr〉 and either there are infinitely many accepting computations
from state ql on the subtree rooted at the left child of vi, or from state qr on the subtree
rooted at the right child of vi. Define vi+1 and qi+1 according to these cases.

If |ACC(A, t, π)| is infinite, then by the definition of branch ambiguity we have that
A is not finitely branch ambiguous, and 2(a) holds. Otherwise, there exist φ1, . . . , φk ∈
ACC(A, t) such that ACC(A, t, π) = {φi(π) | 1 ≤ i ≤ k}. Choose n such that for all
1 ≤ i < j ≤ k : φi(v0) . . . φi(vn) 6= φj(v0) . . . φj(vn).

There is 1 ≤ j ≤ k such that φj(v0) . . . φj(vn) = q0 . . . qn. Notice that by the definition
of n, each computation φ ∈ ACC(A, t) which assigns q0, . . . , qn to the nodes v0, . . . , vn
must also agree with φj on each node vi for i ∈ N. Therefore, again by the definition of
π and q0, . . . , qi, . . . , we conclude that φj(π) = q0q1

20

Let f be an accepting state which occurs infinitely often in φj(π). Choose N > n such
that φj(vN) = qN = f . By selection of qN , there are infinitely many accepting computa-
tions of Af on t≥vN . Take two different accepting computations φ′, φ′′ ∈ ACC(Af , t≥vN).
Note that φ ◦vN φ′ and φ ◦vN φ′′ are accepting computations which coincide with φ on
v0, . . . vN and hence on v0, . . . vn. Therefore, they coincide with φ on π and ∀i ≥ N :
φj(vi) = φ′(vi) = φ′′(vi) = qi. Therefore, φ′ and φ′′ differ at some node w /∈ π, and there
exist i > N such that φj(vi) = f = φ′(vi) = φ′′(vi) and vi ⊥ w. Applying Lemma 27(2)
on φ′, φ′′, and vi ⊥ w, we conclude that Af has an f -ambiguous transition pattern, and
2(b) holds.

7. Countable Ambiguity

In this section we prove Proposition 22 - a structural characterization of countable
ambiguity.

7.1. Direction (2)⇒ (1) of Proposition 22

2(a) ⇒ (1) follows by the definition of branch ambiguity, and 2(b) ⇒ (1) follows by
Lemma 16. Below 2(c)⇒ (1) is proved.

Definition 39 (Corresponding automaton AM for pattern M) Let M be a branch-
ing pattern for A over (R, f) (see Definition 20). We define a BTA AM over the unary
alphabet with the set of states R ∪ {f}; all states are final, the initial state is f , and
the transition relation is ∆M := {(q, q′, q′′) | q ∈ R and (q′, q′′) = τM (q)} ∪ {(f, q1, f),
(f, f, q2)}.

The following simple lemma states the properties of accepting computations of AM . It
will be useful in showing that if a branching pattern for A is realized, then A is not
countably ambiguous.

Lemma 40 (Accepting computations of AM)

1. Let φ be an accepting computation of AM . Then the set of nodes {v | φ(v) = f} is
a branch.

2. For every branch π there is an accepting computation φ of AM such that φ(v) = f
for all v ∈ π.

3. The set of accepting computations of AM is uncountable.

Lemma 41 Let A = (QA,Σ, QI , δ, F) be a BTA such that a branching pattern for A is
realizable. Then A is not countably ambiguous.

Proof Assume that a branching pattern M over (R, f) is realized in t at u ⊥ v by φ1,
φ2, {φq | q ∈ R}. We construct a sequence of trees: t1 := t, and ∀i ≥ 1 : ti+1 := ti ◦Ai

t,
where Ai = {u, v}i. We graft t at every node in Ai of ti. This operation is well-defined
as Ai is an antichain (∀a1 6= a2 ∈ Ai : a1 ⊥ a2, since u ⊥ v).

For each y ∈ {l, r}∗ we define ky := max{i | y ∈ {u, v}i ·z, z ∈ {l, r}∗}. Notice that by
the construction, if t1+ky (y) = a then ∀i > ky : ti(y) = a. Define tω as tω(y) := t1+ky (y).

We now proceed to show that the set of accepting computations of Af on tω is not
countable, by defining an injective map from the set of accepting computations of AM
(on the tree over the unary alphabet) to the set of accepting computations of Af on tω.

21

Notation 42 Let h be a function from {l, r}∗ into {l, r}∗ defined as follows: h(l) := v,
h(r) := u, and h(d1 . . . dm) := h(d1) . . . h(dm) for di ∈ {l, r}. Since u⊥v, it follows that
h is a bijection from {l, r}∗ onto {u, v}∗.

For each accepting computation φ of AM we assign an accepting computation φ̂ of Af on

tω. If w ∈ {u, v}∗ then φ̂(w) := φ(h−1(w)) (hence, the map is injective). Otherwise, let

w = y · z where y ∈ {u, v}kw and z ∈ {l, r}+. If φ(h−1(y)) = q 6= f then φ̂(w) := φq(z).
If φ(h−1(y)) = f there are two cases: (1) φ(h−1(y · u)) = f , in this case we define

φ̂(w) := φ1(z); (2) φ(h−1(y · v)) = f , in this case we define φ̂(w) := φ2(z) (recall that
φ1, φ2, φq are computations on t that realize M).

It is routine to verify that φ̂ is an accepting computation of Af on tω. By Lemma
40, AM has uncountably many accepting computations and we defined an injective map
from these computations to accepting computations of Af . Hence, Af is not countably
ambiguous. Therefore, by Lemma 4, A is not countably ambiguous. �

7.2. Direction (1) ⇒ (2) of Proposition 22

Definition 43 (q-path and q-computation) Given a BTA A = (Q,Σ, QI , δ, F), a
state q ∈ Q, and a tree t ∈ L(A), we define the following:

• A q-path (of an accepting computation φ ∈ ACC(Aq, t)) is a tree branch π such
that q occurs infinitely often in φ(π).

• A q-computation is an accepting computation φ of Aq on t such that φ has a
q-path.

The next lemma reduces the question whether the cardinality of accepting computations
is uncountable to the question whether the cardinality of f -computations is uncountable
for a final state f ∈ F .

Lemma 44 A BTA A = (Q,Σ, QI , δ, F) has uncountably many accepting computations
on t iff there is a state f ∈ F , a node u ∈ {l, r}∗ and an accepting computation φ0 ∈
ACC(A, t) such that φ0(u) = f and Af has uncountably many f -computations on t≥u.

Proof ⇐: For each computation φ ∈ ACC(Af , t≥u), define g(φ) := φ0 ◦u φ. By the
grafting lemma we obtain g(φ) ∈ ACC(A, t). For each two computations φ1, φ2 ∈
ACC(Af , t≥u), φ0 ◦u φ1 = φ0 ◦u φ2 implies φ1 = φ2, and therefore the function g :
ACC(Af , t≥u)→ ACC(A, t) is injective. We obtain |ACC(Af , t≥u)| ≤ |ACC(A, t)|, as
requested.
⇒: Assume that the set Φ := ACC(A, t) of accepting computations of A on t is

uncountable. For each computation φ ∈ Φ define a set of nodes Uφ := {v ∈ {l, r}∗ | ∀u <
v : if φ(u) ∈ F then φ has no φ(u)-paths on t≥u}. It is clear that Uφ is downward closed.
If u is a leaf (maximal node) of Uφ, then φ(u) ∈ F and φ has a φ(u)-path on t≥u.

Observe that Uφ is finite. Otherwise, by the König Lemma, there is an infinite branch
π = v0, . . . , vi, . . . such that vi ∈ Uφ for all i ∈ N. φ is accepting and therefore there is
i ∈ N such that φ(vi) ∈ F and φ(vi) occurs infinitely often in φ(π) - a contradiction to
vi+1 ∈ Uφ.

Therefore, to each computation φ ∈ Φ corresponds a finite set Uφ ⊆ {l, r}∗. Since
there are countably many finite subsets of {l, r}∗, and uncountably many computations in

22

Φ, we conclude that there is a finite set U ⊆ {l, r}∗ and an uncountable set Φ′ ⊆ Φ such
that ∀φ ∈ Φ′ : Uφ = U . Since there are finitely many assignments of states to the nodes
in U , we conclude that there is a function ψ : U → Q and an uncountable set Φ′′ ⊆ Φ′

such that ∀φ ∈ Φ′′ ∀u ∈ U : φ(u) = ψ(u). For each maximal node u in U , define Φ′′u as
the set of restrictions of Φ′′ on t≥u. Notice that the cardinality of Φ′′ is bounded by the
product of the cardinalities of Φ′′u. Hence, there is u such that Φ′′u is uncountable. Each
computation φ ∈ Φ′′u has originated from a computation with a ψ(u)-path on t≥u, and
therefore Φ′′u is the set of f -computations of Af on t≥u for f := ψ(u). �

Let us state a simple lemma about f -paths:

Lemma 45 Assume conditions 2(a) and 2(b) of Proposition 22 do not hold.

1. If φ1 6= φ2 are f -computations of A on t and π is an f -path of φ1, then φ1(π) 6=
φ2(π).

2. Let π be a tree branch and let Φπ := {φ | π is an f -path of φ}. Then Φπ is
countable.

Proof (1) Assume, for the sake of contradiction, that φ1(π) = φ2(π). Since φ1 6= φ2,
there is a node w /∈ π such that φ1(w) 6= φ2(w). Since π is an f -path of φ1, there is a
node v ∈ π such that v ⊥ w and φ1(v) = f . By the assumption, ∀v′ ≤ v : φ1(v′) = φ2(v′)
and therefore by Lemma 27(2) we conclude that A has an f -ambiguous transition pattern,
in contradiction to condition 2(b) not holding in A.

(2) By (1), if φ1 6= φ2 ∈ Φπ, then φ1(π) 6= φ2(π). Since A has countable branch
ambiguity it follows that Φπ is countable. �

Notations

1. For a final state f of A, let f−Comp(Af , t) be the set of f -computations of Af on
t.

2. For Φ ⊆ f−Comp(Af , t), define

B(Φ, t) := {v | ∃φ ∈ Φ : φ(v) = f and f−Comp(Af , t≥v) is uncountable}.

We are going to investigate the structure of B(Φ, t). Our main technical lemma implies
that if f−Comp(Af , t) is uncountable, then the full-binary tree can be embedded in
B(f−Comp(Af , t), t), i.e., there is an injective function e : {l, r}∗ → B(f−Comp(Af , t), t)
such that s1 < s2 iff e(s1) < e(s2).

Let Φ := f−Comp(Af , t), and let g be a function from Φ to tree branches such that
for each φ ∈ Φ, g(φ) is an f -path of φ.

Let π be a branch, and let Φπ := {φ | π is an f -path of φ}. Define Γπ : (f−Comp(A, t)\
Φπ) → ({l, r}+ \ π) as a function which, for each φ ∈ f−Comp(A, t) \ Φπ, returns an
arbitrary node in {u ∈ g(φ)\π | φ(u) = f}. Notice that the set {u ∈ g(φ)\π | φ(u) = f}
is non-empty because g(φ) 6= π and φ assigns the state f to infinitely many nodes on
g(φ) - hence, Γπ is well-defined.

Lemma 46 (Properties of Γπ) Assume conditions 2(a) and 2(b) of Proposition 22 do
not hold.

1. If Γπ(φ1) = u = Γπ(φ2), then φ1(w) = φ2(w) for every w ∈ {w′ | ¬(w′ > u)}.
23

2. If Γπ(φ1) = u = Γπ(φ2) and φ1 6= φ2, then φ1(v) 6= φ2(v) for some v > u.

3. If Γπ(φ) = u then φ≥u ∈ f−Comp(Af , t≥u).

Proof (1) If φ1(w) 6= φ2(w) for w < u then by Lemma 28 we conclude that A is not
countably branch ambiguous - a contradiction to condition 2(a) not holding. If φ1(w) 6=
φ2(w) for w ⊥ u then, by Lemma 27(2), A has an f -ambiguous transition pattern - a
contradiction to condition 2(b) not holding. Hence, φ1(w) = φ2(w) for every w ∈ {w′ |
¬(w′ > u)}.

(2) Immediately follows from (1).
(3) By the definition of Γπ we conclude that φ(u) = f . Recall that g(φ) is an f -path

of φ, and therefore g(φ) ∩ {v | v ≥ u} is an f -path of φ≥u.

Lemma 47 Assume conditions 2(a) and 2(b) of Proposition 22 do not hold. If Φ :=
f−Comp(Af , t) is uncountable, then:

1. For every branch π there is a node u not on π such that u ∈ B(Φ, t).

2. There are v1 ⊥ v2 such that such that v1, v2 ∈ B(Φ, t).

Proof (1) The domain f−Comp(A, t)\Φπ of Γπ is uncountable (by the assumption and
Lemma 45(2)), and its range {l, r}+ \π is countable. Therefore, there is u 6∈ π such that
Ψ := {φ ∈ f−Comp(A, t) \ Φπ | Γπ(φ) = u} is uncountable. By Lemma 46 (2)-(3), we
conclude that Ψ≥u := {φ≥u | φ ∈ Ψ} is an uncountable set of f -computations on t≥u,
and therefore u ∈ B(Φ, t).

(2) Assume, for the sake of contradiction, that there are no v1 ⊥ v2 such that v1, v2 ∈
B(Φ, t). Therefore, there is a branch π such that B(Φ, t) ⊆ π. However, by (1), there is
u 6∈ π such that u ∈ B(Φ, t) - a contradiction. �

The main technical lemma uses the following definition.

Definition 48 Let T ⊆ {l, r}∗ be a set of nodes. We say that u ∈ T is a T -leaf if
∀v ∈ T : ¬(v > u); u is a T -successor of v if u > v and there is no node w ∈ T such
that v < w < u.

We call T a binary subset-tree if T has a minimal node, and each node in T is
either a T -leaf, or has two T -successors.

We call T a full-binary subset-tree if T is a binary subset-tree with no leaves.

Lemma 49 (Main) Assume f is a final state, there are uncountably many f -computations
of A on t, and conditions 2(a) and 2(b) of Proposition 22 do not hold. Then, there is a
full-binary subset-tree T of t such that for every u ∈ T there is an f -computation φu on
t such that if v ∈ T and v ≤ u then φu(v) = f .

Proof First we define a sequence T0, T1, . . . of finite binary subset-trees of t such that

1. Ti+1 is obtained from Ti by adding two children to a leaf of Ti of minimal depth.

2. For every u ∈ Ti, there are uncountably many f -computations of Af on t≥u.

3. if v ∈ Ti is a Ti-successor of u ∈ Ti, then there is an f -computation φ′ of Af on
t≥u such that φ′(v) = f .

24

Let T0 be a set which consists of the root of t. It is clear that (2)-(3) hold. Assume we
have defined Ti such that (2)-(3) hold. Let u be a leaf of Ti of minimal depth. We apply
Lemma 47(2) to t≥u and obtain v1, v2 ∈ B(f−Comp(Af , t≥u), t≥u) such that v1 ⊥ v2.
Define Ti+1 as Ti ∪ {v1, v2}. It is clear that (1)-(3) holds for Ti+1.

Let T :=
⋃
Ti. It is clear that T is a (infinite) full-binary subset-tree of t.

In order to complete the proof of Lemma 49, we have to construct φu for u ∈ T . We
construct φu by induction on the depth of u in T . For the root, take an arbitrary f -
computation as φu. For other nodes, let v be the predecessor of u in T . By the definition
of T , there is i such that u ∈ Ti+1 \ Ti. and by our construction there exists an f -
computation φ′ on t≥v such that φ′(u) = f . By induction assumption there exists φv
which assigns f to all nodes w : w ∈ T,w ≤ v. The computation φu := φv ◦u φ′ fulfills
the requirement of Lemma 49. �

The next lemma is easily derived from the König Lemma.

Lemma 50 If T is a full-binary subset-tree of t, then there is a full-binary subset-tree
T ′ ⊆ T such that for each u ∈ T ′ with T ′-successors v1, v2, and for each q ∈ Q such that
t≥u ∈ L(Aq), there is a computation φ ∈ ACC(Aq, t≥u) which passes through F on the
paths of t≥u from u to v1 and from u to v2.

Proof We first prove the following claim:

Claim 50.1 Let A = (Q,Σ, QI , δ, F) be a BTA, t ∈ L(Aq), and φ ∈ ACC(Aq, t). Then
there is d := d(φ) ∈ N such that for every node v′ of depth greater than d, φ enters F at
the path from the root to v′.

Proof of Claim 50.1 Let U := {u ∈ {l, r}∗ | ∀w ≤ u : φ(w) /∈ F} and assume, for
the sake of contradiction, that U is infinite. It is clear that U is downward closed under
ancestor relation, and therefore, by the König Lemma, U contains an infinite branch π
such that ∀w ∈ π : φ(w) /∈ F - a contradiction to φ being an accepting computation.
Therefore U is finite, and we conclude that Claim 50.1 holds for d := Depth(U) + 1. �

We are now ready to prove Lemma 50, by constructing a binary subset-tree T ′ ⊆ T
which fulfills the requirement. We will first define T ′k for all k ∈ N, and then define
T ′ :=

⋃
k∈N

T ′k. Let T ′0 be the tree which consists of the root of T (a single node). T ′k+1 will

be constructed from T ′k in the following way:
Let u be a leaf of T ′k of minimal depth, and let Q′ := {q | t≥u ∈ L(Aq)}. For each

q ∈ Q′, let φq ∈ ACC(Aq, t≥u). By Claim 50.1, for each q ∈ Q′ there is du,q ∈ N such
that the computation φq enters F on the paths from u to each node of depth greater than
du,q. Define du = max{du,q | q ∈ Q′}.

Let v1, v2 ∈ T such that v1, v2 > u, v1 ⊥ v2 and the distances of v1 and v2 from u are
greater than du. Notice that φq visits a final state on the paths from u to v1 and from u
to v2. We now define T ′k+1 = T ′k ∪ {v1, v2}.

Notice that for each i, T ′i+1 is obtained from T ′i by adding two children to the minimal
leaf of T ′i . Therefore, T ′ :=

⋃
k∈N

T ′k is a full-binary subset tree.

Let u, v1, v2 ∈ T ′ such that v1, v2 are T ′-successors of u. By the definition of T ′, v1, v2

were both added in the same iteration k, and for each q such that t≥u ∈ L(Aq), there is
an accepting computation of Aq on t≥u which passes through F on both paths from u to
v1 and from u to v2. Therefore, T ′ fulfills the requirement. �

25

Lemma 51 Let (T,≤) be the full-binary tree, Σ be a finite alphabet, and σ : {l, r}∗ → Σ
be a labeling function. Then, there are v1, v2 > u such that v1 ⊥ v2 and σ(v1) = σ(u) =
σ(v2).

Proof Choose a node u such that the cardinality of Σ≥u := {σ(w) | u ≤ w} is minimal.
Then for every w′ ≥ u and every a ∈ Σ≥w there is v′ ≥ w′ with σ(v′) = a. �

The next Lemma, together with Lemma 44, shows that if a BTA is not countably am-
biguous and 2(a) and 2(b) of Proposition 22 do not hold, then 2(c) holds. This implies
the (1)⇒ (2) direction of Proposition 22.

Lemma 52 Let A be a BTA and f be a final state of A. Assume that there are uncount-
ably many f -computations of Af on t and conditions 2(a) and 2(b) of Proposition 22 do
not hold. Then, there are three nodes u, v1, v2 ∈ {l, r}∗ such that a branching pattern for
Af is realized at v1, v2 in t≥u.

Proof Let T be the full-binary subset-tree of t, guaranteed by Lemma 49. By applying
Lemma 50 to T , we obtain a full-binary subset-tree T ′ ⊆ T . Define a labeling of T ′ by
σ(v) = {φ(v)|φ ∈ ACC(Af , t)} for each v ∈ T ′. This is a labeling by a finite alphabet.
Therefore, by Lemma 51, we have nodes v1, v2 > u such that v1 ⊥ v2 and σ(u) = σ(v1) =
σ(v2) = Q′. We are going to define computations that realize a branching pattern over
(Q′ \ {f}, f) at v1, v2 in t≥u.

For i = 1, 2, set φi to be the restriction of φvi to t≥u, where φvi is as in Lemma 49.
This gives immediately that φi ∈ ACC(Af , t≥u) and φ1(v1) = φ2(v2) = f . Since Af is
ambiguous, by Lemma 27(1) and the assumption that A has no f -ambiguous transition
pattern, we obtain φ1(v2) 6= f 6= φ2(v1).

By Lemma 50, for each q ∈ Q′ \ {f} there is φq ∈ ACC(Aq, t≥u) which visits F on
the paths (in t≥u) from u to the children of u in T ′. Hence, it visits F on the paths from
u to v1 and from u to v2. Next, observe that φq(v1), φq(v2) ∈ Q′ by the definition of the
labeling. We are going to show that φq(v1) 6= f and φq(v2) 6= f . This will show that
φ1, φ2, and φq for q ∈ Q′ \ {f} realize a branching pattern, and thus finish the proof.

Aiming for a contradiction, assume φq(v1) = f . There is φ′ ∈ ACC(Af , t) such that
φ′(u) = q. Let φ′q be a grafting of φq on φ′ at u. It reaches v1 in state f . Let φv1 be as in
Lemma 49. φv1(v) = f if v1 ≥ v ∈ T . We have φ′(v1) = φv1(v1) = f = φ′(ε) = φv1(ε),
φ′(u) = q 6= f = φv1(u), and ε < u < v1. Therefore, by Lemma 28, we conclude that A
is not countably branch ambiguous - contradiction. The proof of φq(v2) 6= f is similar.�

8. Computability of Branch Ambiguity and the Ambiguous Transition Pat-
tern

Here we describe algorithms to test the degree of ambiguity of branch automata and
to test if a BTA has an ambiguous transition pattern. The following Lemma easily follows
from Definition 12 of the branch automaton.

Lemma 53 Let AB be the branch automaton of A. Assume that ri ∈ Ql+1 for i =
1, . . . , k are runs of AB on u = (σ1, d1, S1) . . . (σl, dl, Sl) ∈ Σ∗B. Then for i = 1, . . . , l
there are S′i ⊆ Si such that |S′i| ≤ k and ri for i = 1, . . . , k are runs of AB on u =
(σ1, d1, S

′
1) . . . (σl, dl, S

′
l).

26

A letter (σ, d, S) ∈ ΣB is called a k-state letter if S has at most k states. If A has n states,
then the alphabet ΣB of the branch automaton AB might be of size 2|Σ| × 2n, yet the

number of k-state letters is bounded by 2|Σ| ×
∑k
i=1

(
n
i

)
≤ 2|Σ|nk. To test whether a k-

state letter (σ, d, S) is in ΣB , we can check whether the intersection of the tree languages
L(Aq) for q ∈ S is non-empty. This can be done in O(n2k) time (checking non-emptiness
of the intersection Büchi language). Therefore, the restriction of the branch automaton

AB to k-state letters, which we denote by A(k)
B , is computable from A in O(|A|2k) time.

Now, we are ready to prove Lemma 17 and Proposition 14.

Proof (Proof of Lemma 17) For each p1 and p2, items 1 and 2 of Definition 15 can
be tested in polynomial time. There is a q-ambiguous pattern in A, if there is a run of

A(1)
B from q to p1 and from p2 to q for a pair p1 and p2 which passed the test. This is

reduced to the reachability problem. �

Proof (Proof Sketch of Proposition 14) The degree of ambiguity of BWA is charac-
terized by the forbidden patterns in Theorem 9. Each of these patterns involves conditions
on at most three runs on the same word and can be tested for an automaton B in polyno-

mial time. Hence, by Lemma 53, AB has these patterns iff A(3)
B has them, and this can

be tested in time p(|A(3)
B |) for a polynomial p. Since A(3)

B is computable in polynomial
time from A, we obtain a polynomial time algorithm. �

9. Computability of a Branching Pattern

Here we prove Proposition 23. In Sect. 9.1 we show that if A has a branching pattern,
then it has a branching pattern over (R, f), where R has at most two states. Sect. 9.2
presents a polynomial time algorithm to verify if A has a branching pattern with at most
two states.

9.1. Reduction to Small Branching Patterns

In Sect. 7.1 we assigned to each branching pattern M a BTA AM over the unary
alphabet. This automaton is almost deterministic, in the sense that from every state
q 6= f it has a unique transition and it does not enter f . Hence, AM has a unique
accepting computation from every q 6= f . From f it has two transitions. The transition
function defined next will help to describe the properties of the accepting computations
of AM .

Definition 54 (Transition function of branching pattern) Let M be a branching
pattern for A over (R, f) with τM : R→ R×R and a tuple (q1, q2) ∈ R×R. Its transition
function δM : ({f} ∪R)× {l, r} → R is defined as follows:

δM (f, d) :=

{
q1 if d = l

q2 if d = r

For p 6= f with τM (p) = (q′, q′′) we define:

δM (p, d) :=

{
q′ if d = l

q′′ if d = r

δM is naturally extended to a function δM : R × {l, r}+ → R by δM (q, d · w) :=
δM (δM (q, d), w) for all w ∈ {l, r}∗ and d ∈ {l, r}.

27

The following lemma follows from the definition of the transition relation of AM :

Lemma 55 1. Let q 6= f and φq be a (unique) accepting computation of AM (on the
tree over unary alphabet) from q. Then φq(w) = δM (q, w) for every w ∈ {l, r}∗

2. Let s = d1 . . . dk ∈ {l, r}+, and let φs be an accepting computation of AM from
f such that φs(d1 . . . di) = f for every i ≤ k. Then for every w ∈ {l, r}∗: (a) if
di = l then φs(d1 . . . di−1rw) = δM (f, lw) and (b) if di = r then φs(d1 . . . di−1lw) =
δM (f, rw).

Lemma 56 Assume a branching pattern M for A over (R, f) is realized. Let lM (q) :=
δM (q, l) and rM (q) := δM (q, r) for all q ∈ R. Then:

1. If lM maps R to Q0 (R, then a branching pattern for A over (Q0, f) is realized.
Dually, if rM maps R to Q1 (R then a branching pattern for A over (Q1, f) is
realized.

2. If lM and rM are bijections, then there is Q′ such that |Q′| ≤ 2 and a branching
pattern for A over (Q′, f) is realized.

3. A branching pattern for A over (Q′, f) is realized with |Q′| ≤ 2.

Proof We will assume the branching pattern M for A over (R, f) is realized in a tree t
at nodes u, v by computations φ1, φ2, {φq | q ∈ R}.

(1) Assume lM maps R to Q0 (R. Let t′ := (t ◦u t) ◦v t. Define the following
computations on t′: φ′1 := (φ1◦uφ2)◦vφq1 and φ′2 := (φ2◦uφq2)◦vφ2. For each q ∈ Q0 with
τM (q) = (p1, p2), let φ′q := (φq◦uφp2)◦vφp1 . Let u′ := u·v and v′ = v·v be two nodes of t′.
By Lemma 3 we have φ′1, φ

′
2 ∈ ACC(Af , t) and ∀q ∈ Q0 : φ′q ∈ ACC(Aq, t

′). Notice that
φ′1(u′) = φ′1(u ·v) = φ2(v) = f , φ′2(v′) = φ′2(v ·v) = φ2(v) = f , and from the construction
it follows that φ′1(v′), φ′2(u′), φ′q(u

′), φ′q(v
′) ∈ {φq(v) | q ∈ R} = {δM (q, l) | q ∈ R} ⊆ Q0.

Since φq visits F on both paths from the root to u and from the root to v, so does φ′q
on the path from the root to u′ = u · v and from the root to v′ = v · v. It follows that a
branching pattern for A over (Q0, f) is realized in t′ at u′, v′ by computations φ′1, φ′2,
and {φ′q | q ∈ Q0}. The proof of the dual case is symmetric.

(2) The set of bijections on a finite set is a finite group under the composition and
the identity map is its identity element. If k is the cardinality of a finite group, then ck

is equal to the identity for every element c. Let k > 0 be such that both lkM and rkM are
the identity map.

Define tu1 := t, tv1 := t and ∀i > 1 let tui+1 := t ◦u tui and tvi+1 := t ◦v tvi . Finally,
construct a tree t′ := (t ◦u tuk−1) ◦v tvk−1.

Let p1 := δM (f, lk) and p2 := δM (f, rk). We will show that a branching pattern for
A over ({p1, p2}, f) is realized in t′ at uk, vk.

The following are obtained using Lemma 3 and the definition of δM :

i αi := φ1 ◦u (φ1 ◦u (· · · ◦u φ1) . . .)︸ ︷︷ ︸
i times

is an accepting computation of Af on tui . It assigns

f to node ui.

ii βi := φ2 ◦v (φ2 ◦v (· · · ◦v φ2) . . .)︸ ︷︷ ︸
i times

is an accepting computation of Af on tvi . It assigns

f to node vi.

28

iii Let q0 ∈ R and qi := δM (q0, r
i). Then φr

i

q0 := φq0 ◦u (φq1 ◦u (· · · ◦u φqi−1) . . .) is an

accepting computation of Aq0 on tui , and φr
i

q0(uj) = qj for j ≤ i.
iv Let q′0 ∈ R and q′i := δM (q′0, l

i). Then φl
i

q′0
:= φq′0 ◦v (φq′1 ◦v (· · · ◦v φq′i−1

) . . .) is an

accepting computation of Aq′0 on tvi , and φl
i

q′0
(vj) = q′j for j ≤ i.

Let q′ := φ1(v) and q′′ := φ2(u). From i and iv, it follows that φ′1 := (φ1 ◦u αk−1) ◦v
φl

k−1

q′ is an accepting computation of Af on t′, such that φ′1(uk) = f , φ′1(vk) = δM (f, lk),

and φ′1 visits F on the path from the root to vk (as it coincides with φ1 on the path from
the root to v, which visits F).

Using similar arguments from ii and iii, we conclude that φ′2 := (φ2 ◦u φr
k−1

q′′)◦v βk−1

is an accepting computation of Af on t′, such that φ′2(vk) = f , φ′2(uk) = δM (f, rk), and
φ′2 visits F on the path from the root to uk.

In addition, from iii and iv is follows that for all p ∈ R with τM (p) = (p′, p′′),

the computation φ′p := (φp ◦u φr
k−1

p′′) ◦v φl
k−1

p′ is an accepting computation of Ap on

t′, such that φ′p(u
k) = δM (p, rk) and φ′p(v

k) = δM (p, lk). By selection of k we have

δM (p, lk) = δM (p, rk) = p and therefore we conclude that φ′p(u
k) = p = φ′p(v

k).

Take p1 := δM (f, lk) = φ′1(vk) and p2 := δM (f, rk) = φ′2(uk). We have φ′p1(uk) =

φ′p1(vk) = p1 and φ′p2(uk) = φ′p2(vk) = p2, and therefore we conclude that a branching

pattern for A over ({p1, p2}, f) is realized in t′ at uk, vk by the computations φ′1, φ′2, φ′p1 ,
and φ′p2 , as requested.

(3) Let M over (R, f) be a realizable branching pattern for A such that the cardinality
of R is minimal. If either lM or rM is not a bijection, then by item 1, there is a realizable
pattern over (Q0, f), where |Q0| < |R|. Hence, both lM and rM are bijections. Therefore,
by item 2 and minimality of |R|, we obtain |R| ≤ 2. �

9.2. Small Branching Patterns are Computable in Polynomial Time

In this subsection we will show a polynomial time algorithm for deciding whether
there are R and f such that |R| ≤ 2, and a branching pattern for A over (R, f) is
realized.

For every t over Σ and u1, u2 ∈ {l, r}∗, define a tree t′ := t(u1, u2) over the alphabet
Σ′ := Σ× Σu1

× Σu2
with Σui

:= {0, 1}, such that the projection of t′ on Σ is t and the
projection of t′ on Σui

is a tree tui
with tui

(w) = 1 iff w = ui for i = 1, 2
It is easy to construct BTA over the alphabet Σ′ with the following properties in

O(|A|) time:

• A BTA Anodes which accepts t′ iff t′ = t(u1, u2) and u1 ⊥ u2.

• A BTA Aq,q1,q2 which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Aq, t) with φ(u1) = q1, φ(u2) = q2 and φ visits an accepting state on
both paths from the root to u1 and from the root to u2.

• A BTA Alf,q which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Af , t) such that φ(u1) = f and φ(u2) = q.

• A BTA Arf,q which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Af , t) such that φ(u1) = q and φ(u2) = f .

29

By Lemma 56, A has a realizable branching pattern iff there exists a realizable branching
pattern over (R, f), τM : R → R × R, (q1, q2) ∈ R × R with |R| ≤ 2. For each such
branching pattern we define:

LM := L(Anodes) ∩
⋂

(p,p1,p2)|p∈R,τM (p)=(p1,p2)

L(Ap,p1,p2) ∩ L(Alf,q1) ∩ L(Arf,q2)

By the construction of the automata we have that the branching pattern M is re-
alizable iff LM 6= ∅. This could be verified in polynomial time in |QA|, as this is an
intersection of at most five Büchi tree languages. Since the number of such patterns is
polynomial in |QA| we obtain a polynomial time algorithm.

10. Conclusion and Further Results

We proved that the degree of ambiguity of Büchi tree automata (BTA) is computable
in polynomial time. The Büchi acceptance conditions on trees are less expressive than
parity, Rabin, Streett, and Muller conditions. Unfortunately, the degrees of ambiguity
problem for parity tree automata is co-NP hard [7].

The complementation of finitely ambiguous Büchi automata over ω-words is easier
than the complementation of non-deterministic Büchi automata over ω-words [11]. It is
interesting to find natural problems for Büchi Tree Automata which are easier for Büchi
Tree Automata with small degrees of ambiguity than for arbitrary Büchi Tree Automata.

The degree of ambiguity of a regular language is defined in a natural way. For
example, a language is k-ambiguous if it is accepted by a k-ambiguous automaton and
no (k − 1)-ambiguous automaton accepts it. Over finite words and finite trees, every
regular language is accepted by a deterministic automaton. Over ω-words every regular
language is accepted by an unambiguous automaton [17]. Over infinite trees there are
ambiguous languages [18]. In [16] we proved that over infinite trees there is a hierarchy
of degrees of ambiguity: There are k-ambiguous languages for every k ∈ N; and there
are finitely, countably, and uncountably ambiguous languages. The question whether the
degree of ambiguity of an infinite tree language is decidable is still open.

Acknowledgement

We would like to thank anonymous referees for their helpful suggestions. Supported
in part by Len Blavatnik and the Blavatnik Family foundation.

References

[1] T. Colcombet, Unambiguity in automata theory, in: International Workshop on Descriptional Com-
plexity of Formal Systems, Springer, 2015, pp. 3–18.

[2] Y.-S. Han, A. Salomaa, K. Salomaa, Ambiguity, nondeterminism and state complexity of finite
automata, Acta Cybernetica 23 (1) (2017) 141–157.

[3] E. Leiss, Succinct representation of regular languages by Boolean automata, Theoretical computer
science 13 (3) (1981) 323–330.

[4] H. Leung, Descriptional complexity of NFA of different ambiguity, International Journal of Foun-
dations of Computer Science 16 (05) (2005) 975–984.

30

[5] R. E. Stearns, H. B. Hunt III, On the equivalence and containment problems for unambiguous
regular expressions, regular grammars and finite automata, SIAM Journal on Computing 14 (3)
(1985) 598–611.

[6] J. Jirásek, G. Jirásková, J. Šebej, Operations on unambiguous finite automata, in: International
Conference on Developments in Language Theory, Springer, 2016, pp. 243–255.

[7] A. Rabinovich, D. Tiferet, Degrees of ambiguity for parity tree automata, in: C. Baier, J. Goubault-
Larrecq (Eds.), 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), Vol. 183
of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2021, pp. 36:1–36:20.

[8] A. Weber, H. Seidl, On the degree of ambiguity of finite automata, Theoretical Computer Science
88 (2) (1991) 325–349.

[9] H. Seidl, On the finite degree of ambiguity of finite tree automata, Acta Informatica 26 (6) (1989)
527–542.

[10] C. Löding, A. Pirogov, On finitely ambiguous Büchi automata, in: Developments in Language The-
ory - 22nd International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings,
2018, pp. 503–515.

[11] A. Rabinovich, Complementation of finitely ambiguous Büchi automata, in: International Confer-
ence on Developments in Language Theory, Springer, 2018, pp. 541–552.

[12] V. Bárány, L. Kaiser, A. Rabinovich, Expressing cardinality quantifiers in monadic second-order
logic over trees, Fundamenta Informaticae 100 (1-4) (2010) 1–17.

[13] A. Rabinovich, D. Tiferet, Degrees of ambiguity of Büchi tree automata, in: 39th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[14] W. Thomas, Automata on infinite objects, in: Formal Models and Semantics, Elsevier, 1990, pp.
133–191.

[15] D. Perrin, J.-É. Pin, Infinite words: automata, semigroups, logic and games, Vol. 141, Academic
Press, 2004.

[16] A. Rabinovich, D. Tiferet, Ambiguity hierarchy of regular infinite tree languages, in: 45th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS 2020, Vol. 170 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 80:1–80:14.

[17] A. Arnold, Rational ω-languages are non-ambiguous, Theoretical Computer Science 26 (1-2) (1983)
221–223.

[18] A. Carayol, C. Löding, D. Niwiński, I. Walukiewicz, Choice functions and well-orderings over the
infinite binary tree, Open Mathematics 8 (4) (2010) 662–682.

31

	Introduction
	Preliminaries
	Trees
	Automata
	-word Automata
	Infinite Tree Automata

	Automata Properties
	Degree of Ambiguity for Automata on -words

	Main Result
	Branch Ambiguity
	Ambiguous Transition Pattern
	Characterizations of Degrees of Ambiguity

	Ambiguous Transition Pattern and Branch Ambiguity
	Proof of Lemma 13
	Proof of Lemma 16
	Two Useful Lemmas

	Bounded Ambiguity
	Finite Ambiguity
	Countable Ambiguity
	Direction (2) (1) of Proposition 22
	 Direction (1) (2) of Proposition 22

	Computability of Branch Ambiguity and the Ambiguous Transition Pattern
	Computability of a Branching Pattern
	Reduction to Small Branching Patterns
	Small Branching Patterns are Computable in Polynomial Time

	Conclusion and Further Results

