On Degrees of Ambiguity for Biichi Tree Automata

Alexander Rabinovich, Doron Tiferet*

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract

An automaton is unambiguous if for every input it has at most one accepting computa-
tion. An automaton is finitely (respectively, countably) ambiguous if for every input it
has at most finitely (respectively, countably) many accepting computations. An automa-
ton is boundedly ambiguous if there is k£ € N, such that for every input it has at most
k accepting computations. We consider nondeterministic Biichi automata (NBA) over
infinite trees and prove that it is decidable in polynomial time, whether an automaton is
unambiguous, boundedly ambiguous, finitely ambiguous, or countably ambiguous.

Keywords: Biichi automata, automata ambiguity
2010 MSC: 68Q45

1. Introduction

Degrees of Ambiguity. The relationship between deterministic and nondeterministic ma-
chines plays a central role in computer science. An important topic is a comparison of
expressiveness, succinctness, and complexity of deterministic and nondeterministic mod-
els. Various restricted forms of nondeterminism were suggested and investigated (see
[1L 2] for recent surveys).

Probably, the oldest restricted form of nondeterminism is unambiguity. An automaton
is unambiguous if for every input there is at most one accepting run. For automata
over finite words there is a rich and well-developed theory on the relationship between
deterministic, unambiguous, and nondeterministic automata [2]. All three models have
the same expressive power. Unambiguous automata are exponentially more succinct than
deterministic ones, and nondeterministic automata are exponentially more succinct than
unambiguous ones [3], [].

Some problems are easier for unambiguous than for nondeterministic automata. As
shown by Stearns and Hunt [5], the equivalence and inclusion problems for unambigu-
ous automata are in polynomial time, while these problems are PSPACE-complete for
nondeterministic automata.

*Corresponding author
Email addresses: rabinoa@tauex.tau.ac.il (Alexander Rabinovich), sdoron5.t2@gmail.com
(Doron Tiferet)

Preprint submitted to Information and Computation May 9, 2021

a
a b

a
b
start —> b @ start —> @

a a a a

Figure 1: Finitely ambiguous and 2-ambiguous automata

The complexity of basic regular operations on languages represented by unambiguous
finite automata was investigated in [6], and tight upper bounds on state complexity
of intersection, concatenation, and many other operations on languages represented by
unambiguous automata were established.

It is well-known that the tight bound on the state complexity of the complementation
of nondeterministic automata is 2". In [6], it was shown that the complement of the
language accepted by an n-state unambiguous automaton is accepted by an unambiguous
automaton with 20-79n+logn gtates.

Many other notions of ambiguity were suggested and investigated. A recent paper [2]
surveys works on the degree of ambiguity and on various nondeterminism measures for
finite automata on words.

An automaton is k-ambiguous if on every input it has at most k accepting runs; it is
boundedly ambiguous if it is k-ambiguous for some k; it is finitely ambiguous if on every
input it has finitely many accepting runs (see Figure [1] for examples).

It is clear that an unambiguous automaton is k-ambiguous for every k > 0, and a
k-ambiguous automaton is finitely ambiguous. The reverse implications fail. For e-free
automata over words (and over finite trees), on every input there are at most finitely
many accepting runs. Hence, every e-free automaton on finite words and on finite trees
is finitely ambiguous. However, over w-words there are nondeterministic automata with
uncountably many accepting runs. Over w-words and over infinite trees, finitely ambigu-
ous automata are a proper subclass of the class of countably ambiguous automata, which
is a proper subclass of nondeterministic automata.

Our main result is:

Theorem 1 There are polynomial time algorithms that decide whether a Biichi automa-
ton over trees is unambiguous, boundedly ambiguous, finitely ambiguous, or countably
ambiguous.

Over infinite trees, Biichi tree automata are less expressive than monadic second-order
logic or parity automata. In [7] we proved that the problem whether a parity tree
automaton is ambiguous is co-NP-complete.

Related Works. Weber and Seidl [§] investigated several classes of ambiguous automata
on words, and obtained polynomial time algorithms for deciding the membership in
each of these classes. Their algorithms were derived from structural characterizations of
the classes. In particular, they proved that the following Bounded Ambiguity Criterion

2

(BA) characterizes whether there is a bound & such that a nondeterministic automaton
on words has at most k accepting runs on each word.

u

Figure 2: Forbidden pattern for bounded ambiguity

Forbidden Pattern for Bounded Ambiguity: There are distinct usefuﬂstates D, q €
Q such that for some word u, there are runs on u from p to p, from p to ¢, and
from ¢ to g (see Figure .

Weber and Seidl [8] proved that an NFA is not boundedly ambiguous iff it contains the
forbidden pattern for bounded ambiguity. This pattern is testable in polynomial time;
hence, it can be decided in polynomial time whether the degree of ambiguity of an NFA
is bounded.

Seidl [9] provided a structural characterization of bounded ambiguity for automata
on finite trees, and derived a polynomial algorithm to decide whether such an automaton
is boundedly ambiguous.

Léding and Pirogov [10] and Rabinovich [I1] provided structural characterizations and
polynomial algorithms for bounded, finite, and countable ambiguity of Biichi automata
on w-words. These characterizations and algorithms can be adopted for other acceptance
conditions: parity, Rabin, Muller, etc.

Our proof of Theorem [I] will first provide structural characterizations of bounded,
finite, and countable ambiguity of automata on infinite trees, and then derive polynomial
algorithms.

As far as we know, the degrees of ambiguity for automata over infinite trees have not
been investigated. The decidability whether an automaton on infinite trees is finitely
ambiguous or countably ambiguous can be obtained from the results of Barany et al.
in [12], where an extension of monadic second-order logic of order with the cardinality
quantifiers there exist uncountably many sets, “there are countably many sets,” “there
are finitely many sets” (MSO(3<®0 3>®0)) was investigated. It was proved that, over
the class of finitely branching trees, MSO(3<Xo,3>X0) is (effectively) equally expres-
sive to plain monadic second-order logic of order (MSO). It is a routine exercise for a
given automaton on infinite trees to write sentences in MSO(3<N0, 3>R0) that express
“the automaton has finitely many accepting runs,” “the automaton has countably many
accepting runs,” and “the automaton has uncountably many accepting runs.” By com-
bining these with Rabin’s theorem on decidability of MSO over infinite trees we conclude

1A state is useful if it is on an accepting run.

that it is decidable whether an automaton is finitely or countably ambiguous. Unfor-
tunately, the complexity of the algorithm extracted from this proof is (at least) triple
exponential.

An extended abstract of this paper was published in [13].
Organization of the paper: The next section contains standard definitions and no-
tations about tree automata. The main results are stated in Sect. [3] and are proved in
Sects. The last section presents further problems.

2. Preliminaries

In Sections 2.1] and [2.2] we recall standard terminology and notations about trees
and automata [I4, [15]. In Section some simple lemmas are stated, and it is proved
that there is a polynomial time algorithm that checks whether a Biichi tree automaton
is unambiguous. In Section we recall a forbidden pattern characterization of degrees
of ambiguity of automata on w-words [10] [IT].

2.1. Trees

We view the set {l,7}* of finite words over the alphabet {I, 7} as the domain of a full-
binary tree, where the empty word € is the root of the tree, and for each node v € {I,r}*,
we call v - [the left child of v, and v - r the right child of v.

We define a tree order “<” as a partial order such that Yu,v € {l,7}* : u < v iff u
is a prefix of v. Nodes u and v are incomparable - denoted by u L v - if neither u < v
nor v < u; a set U of nodes is an antichain, if its elements are incomparable with each
other.

We say that an infinite sequence m = wvg,v1,... is a tree branch if vy = € and
Vi € N:wvjp1 =v; -1 or v;41 = v; - 7. We sometimes refer to 7 as the set {v; | i € N}. It
will be clear from the context whether 7 is interpreted as a set or a sequence.

If ¥ is a finite alphabet, then a ¥-labeled full-binary tree ¢ is a labeling function
t:{l,r}* — X. We denote by T¥ the set of all E-labeled full-binary trees. We often use
“tree” for “labeled full-binary tree.”

Given a X-labeled tree t and a node v € {I,r}*, the tree ¢>, (called the subtree of ¢,
rooted at v) is defined by t>,(u) :=t(v - u) for each u € {I,r}*.

Grafting Given two labeled trees ¢; and t2 and a node v € {l,r}*, the grafting of ¢,
on v in t1, denoted by t1 o, ta, is the tree ¢ which is obtained from t; by replacing the

to(w) Jwe{l,r}* tu=v-w
subtree of t; rooted at v by to. Formally, t(u) := 2(w) { }
t1(u) otherwise

More generally, given a tree t1, an antichain Y C {l,r}*, and a tree t9, the grafting
of to on Y in t1, denoted by t; oy to, is obtained by replacing each subtree of ¢; rooted

at a node y € Y by the tree 5.

Tree Language. A tree language L over an alphabet X is a set of ¥-labeled trees. We
denote by L := T¢ \ L the complement of L.

Finite Tree. A finite tree is a finite set U C {I,r}* which is closed under prefix relation.

Node Depth. The depth of a node u € {l,r}*, denoted Depth(u), is defined as the length
of u. For a finite set of nodes U C {I,r}* we define Depth(U) := max{Depth(u) | u € U}.
4

2.2. Automata

2.2.1. w-word Automata

Biichi w-word Automata (BWA). A BWA Aisatuple (Q4,%, Qr, 6, F) where X is a finite
alphabet, Q) 4 is a finite set of states, Q7 C Q 4 is a set of initial states, § C Q4 X X X Q4
is a transition relation, and F' C Q4 is a set of final states. A run of A on a w-word
Yy = apay ... is an infinite sequence p = qoq; ... such that o € Qr, and (¢;,a4,¢;+1) € §
for all i € N. We say that p is accepting if there is a state f € F which appears infinitely
often in p.

Language. We denote the set of all accepting runs of A on y by ACC(A,y). The language
of A is defined as L(A) := {y € 3¢ | ACC(A,y) # 0}.

2.2.2. Infinite Tree Automata

Biichi Tree Automata (BTA). A BTA is a tuple (Qa,%,Qr,0,F) where ¥ is a finite
alphabet, Q4 is a finite set of states, Q; C Q4 is a set of initial states, § C Q4 X X X
Q4 X Q4 is a transition relation, and F C Q4 is a set of final states. A computation
of A on a tree t is a function ¢ : {l,7}* — Q4 such that ¢(e) € Qr, and Vv € {l,r}* :
(p(v),t(v),d(v - 1), p(v - 1)) € 6. We say that ¢ is accepting if for each tree branch
T = vg,v1,... there is a state f € F such that the sequence ¢(vp), d(v1),... contains
infinitely many occurrences of f. When A is known from the context, we will omit the
subscript, and refer to the set of states as Q.

Language. We denote the set of all accepting computations of A on t by ACC(A,t).
The language of A is defined as L(A) := {t € T¢ | ACC(A,t) # 0}.

Given an automaton (either a BWA or a BTA) A = (Q4,%,Qr1,6, F) and a state
q € @, we denote by A, the automaton (Q4, %, {¢},d, F) which is obtained from A by
replacing the set of initial states Q; with {q}.

A state ¢ € @Q of a BTA A is called useful if there is a tree t € L(.A), a computation
¢ € ACC(A,t), and a node v € {l,7}* such that ¢(v) = ¢q. For BTA, it is computable in
polynomial time whether a state is useful. Hence, throughout the paper we will assume
all states of BTA to be useful.

Degree of Ambiguity of an Automaton. We denote by | X| the cardinality of a set X. An
automaton A is k-ambiguous if [ACC(A,t)| < k for all t € L(A); A is unambiguous if it
is 1-ambiguous; A is boundedly ambiguous if there is & € N such that A is k-ambiguous;
A is finitely ambiguous if ACC(A,t) is finite for all ¢; A is countably ambiguous if
ACC(A,t) is countable for all ¢.

The degree of ambiguity of A (notation da(A)) is defined by da(A) = k if A is k-
ambiguous and either £k =1 or A is not k — 1 ambiguous, da(A) = finite if A is finitely
ambiguous and not boundedly ambiguous, da(A) = Xq if A is countably ambiguous and
not finitely ambiguous, and da(A) = 2%¢ if A is not countably ambiguous.

Example 2 Consider the BTA A; = (Q;, %, Q%,8;, F;) for 1 <i < 4.

L. Q1 =Q)=F ={q}, 1 = {1}, and 61 = {(¢,1,¢,9)}. A1 is deterministic and
therefore unambiguous.
2. Qe=Q?=F={q,q2}, 2 = {1}, and 02 = Q2 x L2 x Q2 x Q2. Ay is uncountably
ambiguous.
)

3. Q3 = {Qa f}) Q:; = {q}7 F; = {f}7 Y3 = {1}7 and 63 = {(q717p17p2) | p1,p2 €
QsyU{(f, 1, f, f)}. As is countably ambiguous.

4. Qs = Qf = Fy = {q1, 2}, ¥a = {1,2,3}, and 64 = {(q1,0,q1,q1) |a # 1} U
{(g2,a,q2,q2) | a # 2}. A tree t is accepted by Ay iff t has no node labeled by 1 ort
has no node labeled by 2. An accepting run of Ay is either assigns q1 to all nodes or
g2 to all nodes. Hence, Ay has two accepting runs on the tree with all nodes labeled
by 3, and at most one accepting run on other trees. Therefore, Ay is 2-ambiguous.
Moreover, in [16] we proved that every automaton that accepts L(A4) has at least
two accepting runs on the tree with all nodes labeled by 3.

A computation ¢ of A on a 3-labeled tree ¢ can be considered as a @ 4-labeling of
t. Given two computations ¢, ¢ and a node v € {l,r}*, the grafting of ¢’ on v in ¢
(denoted by ¢ o, ¢') is defined as for the corresponding Q 4-labeled trees.

2.3. Automata Properties

We often use implicitly the following simple Lemma.

Lemma 3 (Grafting) Let A be an automaton, t, t1 trees, v € {l,7}*, and ¢ € ACC(A, 1),
and ¢1 € ACC(Ay,t1). If ¢(v) = q, then ¢ o, ¢1 is an accepting computation of A on
t Oy tl .

A similar lemma holds for general grafting. As an immediate consequence, we obtain the
following lemma:

Lemma 4 da(A) > da(Ay) for every useful state q of A.

We suspect that the following lemma is folklore. For lack of reference, we provide a proof
of the lemma in the rest of this subsection.

Lemma 5 [t is computable in polynomial time whether a BTA is unambiguous.

We first prove the following lemma:

Lemma 6 Let A = (Q,%,Q1,6,F) be a BTA, and assume all states in Q are useful.
Then da(A) > 1 iff at least one of the following holds:

e There are states p,q € Qr such that L(A,) N L(A,) # 0, or

o There are two different transitions (q, a, q1,42), (¢, a, 4, q5) € § such that L(Ag)N
L(Ag) # 0 and L(Ag,) N L(Ag) # 0.

Proof =: Assume that da(A) > 1. Therefore, there is a tree t € L(A) such that
|[ACC(A,t)] > 1. Let ¢1,¢p2 € ACC(A,t) such that ¢1 # ¢2, and let v € {I,r}* be a
node of minimal depth such that ¢1(v) # ¢2(v). If v = €, then ¢1(v), P2(v) € Qr and
t € L(Ag, (v)) N L(Ag, () - hence, item (1) holds. Otherwise, let v' be the parent node
of v. Notice that ¢1 and ¢o use different transitions (q,a,q1,q2), (¢, a,q},q5) € § from
v'. if v is the left child of v/ then q1 # q}, and otherwise g2 # ¢5. ¢1 and ¢o are both
accepting and therefore t>,.1 € L(Ag) N L(Ag;) and t>y.r € L(Ag,) N L(Ag), and we
obtain L(Aq,) NL(Ay) # 0 and L(Ay,) N L(Ag,) # 0 - hence, item (2) holds.

6

<: If there are p,q € Qr such that L(A,)NL(A,) # 0 then there is a tree t € L(A,)N
L(A;). Therefore, there are two computations ¢1, ¢ € ACC(A,t) such that ¢1(e) =p
and ¢2(€) = q, and we obtain da(A) > |[ACC(A,t)| > [{¢1, p2}| = 2. Otherwise, there
are two different transitions (q,a,q1,92),(¢,a,q1,95) € 0 such that L(Ag,) N L(Ay) #
0 and L(Ag,) N L(Ay) # 0. Therefore, there are t1 € L(Ag,) N L(Ay) and ta €
L(Ag,) N L(Ay), and computations ¢, € ACC(Ay 1), 0 € ACC(Ay,t1),dq, €
ACC(Ay,,t2), and ¢g € ACC(Agy,ta). Since all states of A are useful, there is a tree
t € L(A), a computation ¢ € ACC(A,t), and a node v € {I,r}* such that $(v) = q. Let
t':= (toy.it1) oy ta, and define two computations ¢' := ¢,y Pg, Opr Pgy and ¢ 1= P oy,
bg; v Bgy- By grafting lemma, ¢',¢" € ACC(A,t'). Since (¢,a,q1,q2) # (¢,a,41,33),
we conclude that g1 # ¢} or g2 # ¢4. Therefore ¢'(v-1) # ¢ (v-1) or ¢'(v-1) # ¢"(v-71),
and we obtain ¢' # ¢". We conclude that |ACC(A,t")| > {¢’,¢"}| = 2 and therefore
da(A) > 2, as requested. O

Lemma 7 Let A and B be two BTA. Then the emptiness of L(A) N L(B) is decidable
i polynomial time.

Proof Given two BTA A and B, it is well-known that there is a BTA C such that
L(C) =0 iff LLA)NL(B) =0 and C can be constructed in O(|A] - |B|) time. Since the
emptiness of BTA could be determined in polynomial time, that concludes the proof. [

Now, we are ready to prove Lemma Since the number of pairs of states in @ is
polynomial in A, it follows from Lemma [6] that it is sufficient to show that the emptiness
of L(A4) N L(A,) can be decided in polynomial time for all p, ¢ € Q. The latter follows
from Lemma |7} and that concludes our proof.

2.4. Degree of Ambiguity for Automata on w-words

The next definition and theorem are taken from [I0, I1I]. They provide a forbidden
pattern characterization of degrees of ambiguity of automata on w-words.

Definition 8 (Forbidden pattern for BWA) Let B be a BWA such that all its states
are useful.

e 3 contains a forbidden pattern for bounded ambiguity if there are distinct states
D, q such that for a (finite) word u, there are runs of B, on u from p to p and from
p to q, and there is a run of By on u from q to q.

e 3 contains a forbidden pattern for countable ambiguity if there is a final state f
and there are two distinct runs of By on the same word u from f to f.

e B contains a forbidden pattern for finite ambiguity if it contains the forbidden
pattern for countable ambiguity or there is a final state f, and q # f, and a word
u such that there are runs of By on u from q to g and from q to f and a run of By
on u from f to f (see Figure @

Theorem 9 Let B be a BWA.

1. B has uncountably many accepting runs on some w-word if and only if B contains
the forbidden pattern for countable ambiguity.
7

Figure 3: Forbidden pattern for finite ambiguity of BWA

2. B has infinitely many accepting runs on some w-word if and only if B contains the
forbidden pattern for finite ambiguity.

3. B is not boundedly ambiguous iff it contains the forbidden pattern for bounded
ambiguity.

3. Main Result

In this section we first introduce branch ambiguity and ambiguous transition patterns
and then state our main results.

8.1. Branch Ambiguity

Definition 10 (Projection of a computation on a branch) Let ¢ € ACC(A,t) and
let m = vo,v1,... be a tree branch. We say that ¢(m) := ¢p(vo)p(v1)--- € Q% is the pro-
jection of ¢ on w, and define ACC(A,t,m) = {¢(rm) | ¢ € ACC(A,¢)}.

Definition 11 (Branch ambiguity) A is at most k branch-ambiguous if |ACC(A,t,7)| <
k for every t and branch . A is boundedly branch ambiguous if it is at most n branch am-
biguous for somen. A is finitely (respectively, countably) branch ambiguous if |ACC (A, t,)|
is finite (respectively, countable) for everyt and .

Let A be a BTA. We define a BWA Apg which has the same ambiguity as branch ambiguity
of A:

Definition 12 (Branch automaton) Fora BTA A= (Q,X,Qy,9d, F), the correspond-
ing branch automaton Ap is an BWA (Q,Xp,Qr,0p, F), where

1. ZB =YX Ed X Econs with
(a) Xgq:={l,r} directions alphabet (left/right).

(b) Xeons :=={S C Q| N L(Ay) # 0} sets of states, which we consider “consis-
qeSs

tent.”
2. (¢,a,q") € dp iff a = (0,1,5) and Ip € S : (q,0,(¢',p)) € §; or a = (o,r,S) and
IpeS:(q0,pq)) o

The following lemma, which is proved in Subsection [4.1] states the connection between
branch ambiguity and ambiguity of branch automaton.

Lemma 13 The branch ambiguity of a tree automaton A is bounded (respectively, finite,
countable) iff the ambiguity of the corresponding branch w-automaton Apg is bounded
(respectively, finite, countable).

8

In Sect. B we will show:

Proposition 14 (Computability of branch ambiguity) It is computable in polyno-
mial time whether the branch ambiguity of A is bounded, finite, or countable.

3.2. Ambiguous Transition Pattern

Definition 15 (Ambiguous transition pattern) Let A = (Q,%,Q;,0,F) be a BTA
with a corresponding branch automaton Agp = (Q,Xp,Qr,05, F). A has a g-ambiguous
transition pattern if ¢ € QQ and there are p1,p2 € Q and y1 € X%, Y2 € EE with runs

of Ap from q to p1 on y1 and from py to q on y2 such that at least one of the following
holds:

1. There are two transitions (p1, (a,d,{q1}),p2), (p1, (a,d,{q2}),p2) € 0 with ¢1 # q2
and L(Ag,) N L(Ag,) # 0 (see Figure[]]), or

2. There is a transition (p1, (a,d,{q1}),p2) € dp with da(A,,) > 1.

A is said to have an ambiguous transition pattern if there exists ¢ € Q such that A
has a q-ambiguous transition pattern.

Figure 4: Ambiguous transition pattern. Notice that the green tree is accepted from both ¢; and g¢2.

Lemma 16 (1) If A has an ambiguous transition pattern then its ambiguity degree is
not bounded. (2) If A has an f-ambiguous transition pattern (for a final state f) then
its ambiguity degree is not countable.

Lemma is proven in Subsection The next lemma, which deals with the com-
putability of the transition pattern, is proven in Sect. [§

Lemma 17 It is computable in polynomial time whether A has an ambiguous transition
pattern and whether A has an f-ambiguous transition pattern for a final state f.

9

3.8. Characterizations of Degrees of Ambiguity

The next two propositions characterize bounded and finite ambiguity. Their proofs
are presented in Sect. [5 and [6]

Proposition 18 (Bounded ambiguity) The following are equivalent:

1. A BTA A is not boundedly ambiguous.

2. At least one of the following conditions holds:
(a) A is not boundedly branch ambiguous.
(b) A has an ambiguous transition pattern.

Proposition 19 (Finite ambiguity) The following are equivalent:

1. A BTA A is not finitely ambiguous.
2. At least one of the following conditions holds:
(a) A is not finitely branch ambiguous.
(b) A has an f-ambiguous transition pattern for a final state f.

The above characterizations of bounded and finite ambiguity are based on properties of
Apg. In order to characterize countable ambiguity we first introduce branching patterns
for A (which are not captured by Ap).

Definition 20 (A branching pattern for A over (R, f)) Let A be a BTA, f a final
state of A, and R C Q4 \ {f}, where Q4 are the states of A. A branching pattern M
for A over (R, f) is a function Tay : R — R X R and a tuple (q1,q2) € R X R.

Definition 21 (Realizable branching pattern) Lett be a full-binary tree and v L v
two nodes of t. A branching pattern M for A over (R, f) is realized in t at u,v by
computations ¢1, ¢, {¢q | ¢ € R} iff the following hold:

L. ¢1,¢2 € ACC(Ay,t) and ¢1(u) = f = ¢2(v), ¢1(v) = q1 and ¢2(u) = go.
2. For each g € R: ¢4 € ACC(Ay,t), Tm(q) = (¢4(v), 0q(w)) and ¢4 visits a final
state on both paths from the root of t to u and from the root of t to v.

In Sects. [7]and [9] we prove the next two propositions. Their proofs are more complicated
than the proofs of Propositions [I8] and

Proposition 22 (Countable ambiguity) The following are equivalent:

1. A BTA A is not countably ambiguous.

2. At least one of the following conditions holds:
(a) A is not countably branch ambiguous.
(b) A has an f-ambiguous transition pattern for a final state f.
(¢) A branching pattern for A is realizable.

Proposition 23 [t is computable in polynomial time whether there is a realizable branch-
ing pattern for a BTA A.

Theorem 24 (Main) It is computable in polynomial time whether a BTA is unambigu-
ous, bounded ambiguous, finitely ambiguous, or countably ambiguous.
10

Proof For unambiguity - by Lemmal[3 For bounded ambiguity by Proposition[I8, Lemma
and Proposition[Lfl For finite ambiguity by Proposition[19, Lemma[I7, and Propo-
sition[I4) For countable ambiguity by Propositions and Lemma |17 O

Road map of the proofs: In Sect. [f] we prove Lemmas [I3]and [I6 and present a couple
of useful lemmas. Sect. [B] Sect. [6} and Sect. [7] deal with structural characterizations of
bounded, finite, and countable ambiguity of BTA and prove Propositions and
respectively. Sect. [8| deals with computability of branch ambiguity and of the ambiguous
transition pattern, and Lemma [I7] and Proposition [I4] are proved there. Sect. [0 deals
with computability of a branching pattern and proves Proposition 23]

4. Ambiguous Transition Pattern and Branch Ambiguity

In the first subsection we prove Lemma and in the second subsection we prove
Lemma In the last subsection we prove two useful lemmas which provide sufficient
conditions for an ambiguous pattern and for uncountable branch ambiguity.

4.1. Proof of Lemma[I3

Recall that Lemma [13] states that the branch ambiguity of a BTA A is the same as
the ambiguity of the corresponding branch automaton Apg.

The proof will use the following two lemmas which deal with the connection between
computations of A and runs of Ap:

Lemma 25 Let t € L(A), and let 1 = vg,v1,... be a tree branch. Then there exists
y € L(Ap) such that ACC(A,t,7) C ACC(Ag,y).

Proof Lety = (a1,d1,S51)...(a;,d;, Si) ... be a word over the alphabet ¥, such that:
o d; € {l,r} and d; =l iff v; is the left child of v;_1
o a;:=1t(vi—1)
o S;:={¢p(v))| ¢ € ACC(A,t)} where v} is the child of v;_1 which is not v;

Let ¢ € ACC(A,t). We will prove that p := ¢(w) is a run of Ag on y. Assume
that p = pop1.... For each i € N we have p;—1 = ¢(v;—1) and p; = ¢(v;). If v; is
the left child of vi—1 then we obtain (¢(vi—1),t(vi—1), d(v;), d(v})) € 6, and otherwise
(p(vi—1),t(vi—1), p(v}), ¢(v;)) € 6. By the definition of S; we obtain ¢(v) € S;. Notice
that a; = t(vi—1), and d; =1 iff v; is the left child of vi_1. Therefore, by the definition
of Ap, we conclude that (¢(vi—1), (ai, di, Si), d(vi)) = (Pi—1, (a;,d;i, Si),pi) € 0B, and the
lemma follows. O

Lemma 26 Let A be a BTA with the corresponding branch automaton Ap. If y =
(a1,d1,51) ...(a;,d;,S;) ... is an w-word over the alphabet Xp such that y € L(Apg)
then there exist a tree t € L(A) and a branch m = vg,v1,... such that:
o t(v;) = ajt1
e v; 11 is the left child of v; iff d; =1
11

e For each run p € ACC(Ap,y) there is a computation ¢ € ACC(A,t) such that
o(m) = p.

Proof For each S;, let t; € () L(A,) (there is such t;, since S; € Xeons)-
qeS;
Let m = vg,v1,... where vy :=¢€ and Vi € N: v;11 :=v; - d;, and let v} be the child of
v; which is not vi41.
i Jitu=v
We define an infinite X-labeled tree t by t(u) := Fit1 Z w=v
tipi(w) Firu=v-w
(see Figure[5 for an illustration).

Figure 5: The tree t constructed in the proof of Lemma@

Let p = pop1 ... be an accepting run of Ag on y. By the definition of Ag, for each
1 € N there is a state ¢; € Q such that (p;,a;,piv1,q:) €6 if di =1 or (ps, ai,Gi, piv1) € 0
ifd; = r. Recall thatt; € L(Ay,), and therefore there is a computation ¢; € ACC(Ay,, ;).
We use p and ¢; to define a computation ¢ of A on t, as follows:

. JDi
o) = { ir1(w) Fiiu=v)w

It is easy to see that ¢ is a computation of A on t. We will show that ¢ is accepting.
For each tree branch 7', if 7' = 7 then ¢(n') = ¢(w) = p and since p € ACC(Ap,vy)
we conclude that ¢(n') has infinitely many occurrences of states in F. Otherwise, by

12

diiu=uv;

the definition of t, there is i € N such that v, € ©’. By the definition of ¢ we obtain
o(u) = ¢;(w) for all nodes u = v} - w, and since ¢; is accepting we conclude that ¢(')
has infinitely many occurrences of states in F'. Hence, ¢ € ACC(A,t) as requested. O

We are now ready to prove Lemma

=: By Lemma for each tree ¢t € L(A) and a tree branch 7 there is an w-word
y € L(Ag) such that ACC(A,t,m) C ACC(Ag,y). Therefore, if A is not boundedly (re-
spectively, finitely, countably) branch ambiguous then Apg is not boundedly (respectively,
finitely, countably) ambiguous.

<: By Lemma |26 for each y € L(Ap) there is a tree t € L(A) and a tree branch =
such that ACC(Ag,y) C ACC(A,t, 7). Therefore, if Ap is not boundedly (respectively,
finitely, countably) ambiguous then A is not boundedly (respectively, finitely, countably)
branch ambiguous.

4.2. Proof of Lemma[1q

Fix a BTA A, and let Ag = (Q,Xp,Qr, 05, F) be the corresponding branch automa-
ton of A. By the definition of g-ambiguous transition pattern, there exist p/,p) € @ and
21 € X%, 72 € EE such that there is a run p; of (Ag), on z; from ¢ to P}, and a run py
of (Ap)p, on 23 from p5 to g.

We choose 2’ € ¥ as follows:

e If there are transitions (p', (a’,d’, {q1}),p5), (P, (¢/,d’, {q2}),P5) € 0B with L(Ag)N
L(Ay,) # 0, then by the definition of Ap there exists a transition (a’, d’, {q1,¢2}) €
dp. Let 2/ == (d/,d', {q1, q2}).

e Otherwise, by the definition of g-ambiguous transition, there exists a transition
0y, (o, d' {q1}), ph) € dp with da(A,,) > 1. In this case, let 2’ := (a’,d', {1 }).

Define a word y := 21 - 2’ - 25 over the alphabet X g, and let p := p; - po. Notice that
p is a run of Ap on y from ¢ to q.

(1) We will show that for each k € N there is a tree t,, € L(A) such that [ACC(A, tx)| >
2k,

Denote by p’ the run p without the last state. By the definition of p we conclude that
(p")* - q is a run of Ap on y* from q to q.

All states in @ are useful and therefore there is an w-word § € L((Ag),) and an
accepting run p € ACC((Ap)q,9). We conclude that (p/)* - p is an accepting run of
(Ap)q on y* - 3.

y* -9 is of the form (ay,dy, S1) ... (a;,d;, S;) ... wherea; € ¥, d; € {I,r}, and S; C Q.
Assume 2’ = (a,d.,S.), and let t, € [\ L(Ay) such that there are two accepting

q'E€S:
computations ¢; and ¢o on t,, where ¢1(€), ¢2(€) € S, (there is such ¢, by the definition
of 2').

By Lemma there is a tree t € L(A,), a computation ¢ € ACC(A,,t), and a tree
branch m = vg, vy, ... such that ¢(7) = (p’)* - p; and for each i € N we have t(v;) = a;11,
and v;41 is the left child of v; iff d; = [.

Let J := {i | the i-th transition of (p’)* - p is from p to p} over 2'}. By the definition
of p we conclude that |J| > k. Denote by v} the child of v; which is not v;41, and define
A= {v} | i€ J}. Notice that A is an antichain, and therefore t;, := ¢t o4 ¢, - i.e., the
grafting of ¢, in ¢ at all nodes in A - is well-defined.

13

For each B C A, let ¢ : {I,7}* — @ such that:
$1(w) Fi:u=v-wandv, € A\ B
¢(u) =< ¢o(w) Fi:u=v,-wandv, €B
¢(u) otherwise
Notice that ¢p = (¢ o4\ ¢1) 0B ¢2. It is easy to verify that, similarly to Lemma
¢p is an accepting computation of A, on tg.
For completeness, we will show that ¢ 5 respects by proving that (¢5(u), tx(u), ds(u-
D),¢pp(u-r)) €dforall ue{l,r}:

e Ifu =vwforv e A\B, then (¢p(u), tx(u), pp(ul), pp(ur)) = (¢1(w),t1(w), ¢ (w-
1), ¢1(w - r)) which is in 6 by the definition of ¢;.

e Otherwise, if u = v - w for v € B, then (¢pp(u),tp(u),pp(u -1),¢p(u - 1)) =
(p2(w), ta(w), p2(w - 1), pa(w - r)) which is in 6 by the definition of ¢s.

o If u = wv; for i € J, then assume w.l.o.g. that v;y1 is the left child of v; and
v; € A\ B (the other cases are symmetrical). By the definition of ¢ and 2z’ we obtain
(¢B(u)7 tk(“)? QSB(“ : l)v QSB(U : T)) = (¢(U), tk(u)v (b(u ' l)a d)l(e)) = (p/h a27p,27 ¢1(€))7
and since ¢1(€) € S, we conclude that (p}, (az,d,S,),ps) € dp for d, = I. Hence,
(P}, az, ph, #1(€)) € 4, as requested.

e Otherwise, by the definition of ¢5 we conclude that u -1 % 113- and u-r % v§ for all
j € N, and therefore we obtain (¢ (u), tx(u), pp(u-l), pp(u-r)) = (¢p(u), ty(u), p(u-
1), d(u - 7)) which is in 0 by the definition of ¢.

Let By, By C A such that there exists b € By, b ¢ By. By the definition of ¢p, and
¢B,, we have Yw € {l,r}* : ¢p,(b-w) = ¢a(w) and ¢p,(b-w) = ¢1(w). ¢1 # P2 and
therefore there is a node w such that ¢ (w) # ¢a(w) and therefore ¢p, (b-w) # ¢, (b-w).
Similarly, if there is b € By \ By, then ¢p, # ¢p,. Hence, By # By — ¢p, # éB,.

We obtain da(A,) > |ACC (A, tk)| > {B | B € A}| > 2%, and by Lemmawe
conclude that da(A) > da(A,) > 2*. Therefore, A is not boundedly ambiguous.

(2) Assume that f := ¢ is a final state of A.

y“ is an w-word in 3%. Recall that p is a run of Ap on y from ¢ to ¢, and denote by
p' the run p without the last state. By the definition of p we conclude that (p’)“ is a run
of (Ap)s on y“. Notice that p’ contains a final state, and therefore (p")* is an accepting
run, and y* € L((Ap)f).

y* is of the form (ay,dy,S1)...(a;,d;, S;) ... where a; € X, d; € {l,r}, and S; C Q.
Assume 2 = (a,,d;,S.), and let ¢, € [\ L(Ay) such that there are two accepting

q'€S:
computations ¢; and ¢o on t,, where ¢1(€), d2(€) € S, (there is such ¢, by the definition
of 2').

By Lemma there is a tree t € L(Ay), a computation ¢ € ACC(Ay,t), and a tree
branch m = v, v1, ... such that ¢(w) = (p')“; and for each ¢ € N we have ¢(v;) = a;, and
v;41 is the left child of v; iff d; =I.

Let J := {i | the i-th transition of (p’)¥ is from p} to pj over z’'}. By the definition
of p we conclude that J is an infinite subset of N. Denote by v the child of v; which
is not v;+1, and define A := {v} | i € J}. Notice that A is an antichain, and therefore
t' :==toyt, is a well-defined grafting of ¢, in ¢ at all nodes in A.

14

For each B C A we define a computation ¢p by:
p1(w) Fi:u=0v,-wandv, € A\ B
¢B(u) =< ¢po(w) Fi:u=v)-wand v, €B
¢(u) otherwise
Similarly to the proof of (1), we conclude that ¢ is a computation of Ay on ¢/, and
that By # By — ¢p, # ¢p,. Since the number of subsets of A is uncountable, and each
subset B yields a unique accepting computation ¢ of A on t’, it follows that ACC(Ay,t")
is not countable. By Lemma 4 we conclude that A is not countably ambiguous.

4.3. Two Useful Lemmas

Here we prove two simple but useful lemmas - Lemma which provides sufficient
conditions for an ambiguous transition pattern; and Lemma [28] which provides sufficient
conditions for uncountable branch ambiguity.

Lemma 27 (g-ambiguous transition pattern) Let A be a BTA and let vlw. If one
of the following conditions holds, then A has a q-ambiguous transition pattern.

1. Thereis ¢ € ACC(Ay,t) such that ¢p(v) = q and ¢p(w) = p, where A, is ambiguous.
2. There are ¢,¢' € ACC(Ay,t) such that ¢(v) = q and Yo' : (v < v) = (p(v) =
¢'(v"), and ¢(w) # ¢'(w).

Proof Let u be the node of maximal depth on the path from the root of t to v such that
w > u. Let v/, v’ be the children of u such that w > v’ and v > u”. Assume w.l.o.g.
that v’ is the left child of u.

(1) By the definition of ¢, there is a transition (p(u),t(u), dp(u'), p(u”)) € §. Since
da(Agpw)) > 1, we can use Lemma to obtain da(Agy) > 1. Hence, condition 2 of the
definition of q-ambiguous transition pattern applies.

(2) Look at transitions (¢(u), t(u), p(u'), p(u”)), (¢'(u), t(u), ¢'(v'), ¢'(u")) € §. Since
u” < v we have ¢p(u”) = ¢’ (u"). If p(u') = ¢'(u') then the restriction of ¢ and ¢’ on
t>w are two different computations in ACC(Ag(yy,t>u) and therefore da(Ag,y) > 1
and condition 2 of q-ambiguous transition pattern definition applies. Otherwise, we have
d(u') # @' (v') and t>y € L(Agy) VL(Agy () and therefore condition 1 of g-ambiguous
transition pattern definition applies. ([

Lemma 28 (uncountable branch ambiguity) Let A be a BTA with the correspond-
ing branch automaton Ag. Let f be a final state of A, and let u < w < v be nodes in
{l,r}*. If there are ¢1,¢2 € ACC(A,t) such that ¢1(u) = ¢1(v) = da(u) = ¢a(v) = f
and ¢1(w) # ¢a(w), then A is not countably branch ambiguous.

Proof Assume that there are ¢1,¢ps € ACC(A,t) such that ¢1(u) = ¢1(v) = Pa(u) =
d2(v) = f and ¢1(w) # do(w). Let m = vo,v1,... be a tree branch such that u,v,w € 7.
By Lemma there is an w-word y € L(Ap) such that for each computation ¢ €
ACC(A,t) the projection of ¢ on 7 is an accepting run of Ap on y. Therefore, we
obtain ¢1(m), pa(m) € ACC(AB,vy).

By the definition of m, there are i < j < k such that v; = u, v; = w and v, = v. Let
p1 = ¢1(vi)P1(Vig1) ... P1(vr), and pz = ¢2(vs)P2(vVit1) ... ¢2(vk). By the definition of
¢1 and ¢a we have ¢1(v;) = d2(vi) = f, ¢p1(vk) = ¢2(v) = f and ¢1(v;) # P2(v)).

15

Assume that y = 2122 ... for z; € ¥p. By the definition of y we conclude that p1 and po

are two distinct runs of (Ag)f on z;, ziy1, ..., 2k—1 from f to f. Hence, Ap contains the
forbidden pattern for countable ambiguity, and by Theorem[9 and Lemma[I3 we conclude
that A is not countably branch ambiguous. ([

5. Bounded Ambiguity

In this section we prove Proposition - a structural characterization of bounded
ambiguity. (2) = (1) follows from Lemma [13| and Lemma Below we prove the (1)
= (2) direction. Our proof is based on the results shown in [9], where Seidl gave two
criteria characterizing not boundedly ambiguous finite tree automata.

We first introduce labeled finite binary trees, and automata over finite binary trees.

Definition 29 A finite prefiz closed set U C {l,r}* is called a finite binary tree if for
each u € U, if u is not mazimal in U then u-l,u-r € U. A node uw € U is called a leaf
if it is maximal in U. Otherwise, u is called an internal node. As labels of the finite
binary trees we use a finite alphabet ¥ which is partitioned into two sets: o - labels
of internal nodes, and X¢ - labels of leaves. A finite X-labeled binary tree is a function
ty : U — X, where U C {l,7}* is a finite binary tree, ty(v) € Xo if v is a leaf, and
ty(v) € Xa if v has children.

Definition 30 An automaton over finite binary trees is a tuple B = (Q, %, Qr,0), where
Q is a finite set of states, X = g U Yo is an alphabet, Q; is a set of initial states, and
dC(QxXy)U(QXxX2xQXQ) isa set of transitions.

An accepting computation of B on a finite binary tree ty is a function ¢ : U — Q,
such that ¢(€) € Qr, and for each node w € U, if u is not a leaf then (¢p(u), ty(u), ¢(u -
D),p(u-r)) €3, and otherwise (¢(u),ty(u)) € 0.

The following definitions are taken from [9]. Since our proof only uses finite binary trees,
we simplify the notations where appropriate.

Definition 31 (Finite tree branch automaton) The corresponding branch automa-
ton Bp of a finite binary tree automaton B = (Q, X, Qr,d) with ¥ = 39 U Xg is a finite
word automaton (Q,Xp,Qr,dp, F), where:

° EB = EQX{Z,T}
e F:={¢qeQ]|Jaey: (q,a)cd}

e dp is the minimal set such that (q,a,q;,q-) € & implies (q,(a,d),qq) € dp for
de{l,r}.

Definition 32 (Conditions T1 and T2) Let B be a finite binary tree automaton, with
the corresponding branch automaton Bg.

T1: Bp satisfies condition T1 if there are states p,q,qq € Q and finite words y1,y2 € X5
such that there is a run of (Bg), on y1 from p to q, a run of (Bg)g, on ya from
ga to p, and a transition (q,(a,d),qq) € 0 for a € X, such that at least one of the
following hold:

16

1. There exist two different transitions (q,a,q4,q1),(q,a,q4,q2) €6 (if d =1) or
(Q7aa QIaqd)a (Q7 a, 42, qd) €40 (Zfd = 7") such that L(Bth) N L(qu) 7é (Z)

2. There exists a transition (q,a,q4,q1) € § (if d = 1) or (q,a,q1,q4) € § (if
d =r) such that da(Bg,) > 1.

T2: Bp satisfies condition T2 if there are two distinct states p,q € Q, a finite word
y € X%, and runs py of (Bg)p ony from p to p, p2 of (Bg), ony from p to q, and
p3 of (Bg)q ony from q to q such that the following holds:

Let p; = pipi....p% for 1 < i <3, and y = (a1,d1)...(an,dn). Then for all
1 < j < n there are transitions (p§_17aj,p§-,q§) €6 forl <i<3ifd; =1, or
(s _1,a5,q5,p%) €6 for 1 <i<3ifd; =r, such that L(Bq})ﬂL(BqE)ﬂL(Bq]s) £ 0.

This definition is illustrated in Figure [

T1 T2

Figure 6: Conditions T1 and T2

The following theorem provides a structural characterization of bounded ambiguity
for automata over finite trees:

Theorem 33 (Seidl [9]) An automaton B over finite trees is not boundedly ambiguous
if and only if B satisfies condition T1 or condition T2.

We will now show a reduction from BTA to automata over finite binary trees. Let
A=(Q,%,Qr,6,F) be a BTA, and let Qcons := {Q' C Q | NgeqrL(A,) # 0}. We define
a finite binary tree automaton A/ := (Q, X fin, Qr, 8 in), Where:

® Yfin i= Yo UXg, where ¥y := ¥ is the set of labels of nodes with two children, and
30 := Qeons is the set of labels of node without children (i.e. leaves).

o dpin =0U{(q,Q) | ¢ € Q" and Q' € Qcons} (i-e., the transitions on inner nodes
are according to 0, and a @’-labeled leaf is accepted from a state ¢ iff ¢ € Q’).

Lemma 34 If A is not boundedly ambiguous, then A" is not boundedly ambiguous.

Proof We have to prove that for each k € N, A" has at least k accepting computations
on some finite ¥ i -labeled tree. Assume that A is not boundedly ambiguous. Therefore,

17

there is an infinite tree t € L(A) such that |[ACC(A,t)| > k. Let ¢1,...,¢r € ACC(A,¥)
be pairwise different computations of A ont. For each 1 <i < j <k, letu;; € {l,r}"*
be a node such that ¢;(u; ;) # ¢;(ui ;). Let m be the mazimal depth of a node u; ;, and
let U:={u € {l,r}* | u is of depth < m + 1}. It is clear that U is a finite binary tree.
Define a finite labeled tree ty : U — X4y, as follows:

tor () t(u) u is not a leaf in U
vis {p(u) | p € ACC(A,t)} wis aleafinU

Notice that for each leaf w € U and for each computation ¢ € ACC(A,t) we have
t>u € L(Ag)). Therefore, Nges, L(Aq) # 0 for Sy :={p(u) | p € ACC(A,t)} € Qcons
and we conclude that ty is well-defined.

For each ¢ € ACC(A,t), let ¢’ be the restriction of ¢ on U. For each node u € U,
if u is not a leaf then (¢(u),t(uw), p(u-1),¢p(u- 1)) = (¢'(u), ty(u), ¢ (u-1), ¢ (u-r)) €4,
and since § C 8y, we conclude that (¢ (w),ty(w), ¢ (w-1),¢ (u-7)) € dpin. Ifu is a
leaf then we have ¢'(u) = ¢(u) € Sy, = ty(u), and by the definition of dy:, we conclude
that (¢'(u),ty(u)) € 6g. Hence, ¢' is an accepting computation of AT on tyy. Notice
that Vu € U : ¢'(u) = ¢(u), and therefore ¢}(u; ;) = ¢i(ui;) # ¢;(ui;) = qﬁz(u”) for
each 1 < i < j < k. We conclude that ¢\, %, ...,¢, € ACC(AT™ ty) are k distinct
accepting computations, and therefore |ACC(AT"™ ty)| > k. O

Lemma 35 Let U C {l,r}* be a finite binary tree, and let ty : U — g4y, be a finite
binary X yin-labeled tree. Then there is an infinite X-labeled binary tree t such that for
each computation ¢ € ACC(.AﬁZ),tU) there is a computation ¢' € ACC(Age),t) such
that ¢'(u) = ¢(u) for allu e U.

Proof By the definition of Af™, for each leaf u € U which is labeled by S, := ty(u)
we have Nges, L(Aq) # 0, and therefore there is a tree t,, € Nges, L(A,). We use t, to
define an infinite 3-labeled tree t:
Hu) = {tU(u) u €U and u is not a leaf in U
ty(w) u=v-w for aleafveU and w e {I,r}*

Let ¢ € ACC(AQ?Z)JU). Again by the definition of AT, for every leaf u € U we
have ¢(u) € Sy - hence, there is a computation ¢, € ACC(Agwy,tu). We define a
computation ¢’ as follows:

o (u) = o(u) weU andu is not a leaf in U

' dp(w) u=v-w foraleafveU andw € {l,r}*

It is clear that ¢' is a computation of A ont, and that Vu € U : ¢'(u) = ¢(u). We
will prove that ¢' is accepting by showing that for each tree branch m there are infinitely
many occurrences of final state in ¢'(m). Let m = vg,...,04.... Since U is a finite
tree, there is a leaf w € U such that v; = u for i € N. Therefore, 7 is of the form
Vo .. (Vi—1)(u-v])(u-vh) By the definition of ¢’ we obtain Vi € N : ¢/ (u-v}) = ¢, (v}).
Recall that ¢, is an accepting computation, and therefore ¢'(m) contains infinitely many
occurrences of a final state in F. We conclude that ¢' € ACC(Ag(e),t), as requested. O

Corollary 36 If A’™ is not boundedly ambiguous then A is not boundedly ambiguous.

Remark (On Reduction of A to Af*") By Lemma |34 and Corollary |36 we obtain
that A is boundedly ambiguous iff A'" is boundedly ambiguous. The alphabet of Af"
18

might be exponential in the size of A. Hence, this reduction is not polynomial. We
use this reduction to obtain a structural characterization of bounded ambiguity for BTA
from the structural characterization of bounded ambiguity for automata on finite trees
(Theorem . In the rest of this section we show that if A" satisfies T1 (respectively,
T2), then A has an ambiguous transition pattern (respectively, is not boundedly branch
ambiguous). In Section@ we show that it is testable in polynomial time whether A has
an ambiguous transition pattern or is boundedly branch ambiguous. This will give us a
polynomial algorithm to test whether a BTA is boundedly ambiguous.

Lemma 37 1. If L(AJ"™) N L(AJ™) # 0 then L(Ap) N L(Ag) # 0.
2. If da(AJ™) > 1 then da(Ag) > 1.

Proof (1) Let ty : U — Xy be a finite binary Xyip,-labeled tree such that ty €
L(Agm) N L(Agi"), and let ¢1 € ACC(Agi”,tU) and ¢o € ACC(Agi”,tU). By Lemma
there is an infinite tree t such that for each computation ¢ € ACC(Aéé?),tU) there
is a computation ¢ € ACC(Ag(e,t) such that ¢'(u) = ¢p(u) for allu € U.

Therefore, there are two computations ¢} € ACC(A,,t) and 95 € ACC(Ay,t), and
we obtain t € L(Ap) N L(Ay). Hence, L(A,) N L(Ay) # 0, as requested.

(2) Let ty be a finite binary X sin-labeled tree, such that there are two distinct com-
putations ¢1,¢62 € ACC(Ay ty). By Lemma there is an infinite tree t and two
computations ¢y, ¢y € ACC(Ay,t) such that Vu € U : ¢} (u) = ¢1(u) and ¢5h(u) = ¢a2(u).
@1 # ¢a, and therefore there is a node u € U such that ¢1(u) # ¢o(u). We conclude that
&1 (u) = d1(u) # ¢p2(u) = ¢h(u), and therefore ¢y # ¢h, and we obtain da(Ay) > 1, as
requested. (Il

Lemma 38 Let B := A/ and let Bg be the corresponding branch automaton of B.

1. If B satisfies condition T1 then A has an ambiguous transition pattern.
2. If Bp satisfies condition T2 then A is not boundedly branch ambiguous

Proof Let Ap = (Q, Y 4,,Q1,04,,Fas) be the corresponding branch automaton of A.
We will first prove the following claim:

Claim 38.1 If there exists a run p of (Bg), on a word y from p to q, then there exists
a word y' such that (Ag), has a run on y' from p to q.

Proof of Claim 38.1 Let y = (a1,d1)...(an,dy,), and let p = po...p,. By the defi-
nition of Bg, for each 1 < i < n, there is a transition (p;—1,ai,pi,q) € 0 if di =1,
or a transition (pi—1,ai,q;,pi) € 6 if d; = r. Let S; := {¢}, and define a word
y = (a1,d1,51)...(an,dn, Syp). By the definition of Ag, we conclude that p is a run of
(Ag)p ony’ from p to q, as requested. []

Now, we are ready to prove Lemma [38,

(1) By Claim [38.1], we conclude that there are words yi and yy such that there is a
run of (Ag), on yi from p to q, and a run of (Ag)g, on y5 from gqq to p.

Let (q,(a,d),qq) € § as guaranteed by pattern T1, and assume w.l.o.g. that d =1 (the
proof for d = r is symmetrical). We will separate to cases:

Case 1: There exist two different transitions (q,a,q4,q1),(q,a,qa,q2) € 0 such that
L(B,,) N L(B,,) # 0. By the definition of Bg we conclude that there are two transitions

19

(q7 (a’a da {Q1})7 qd)a (q7 (aa da {QQ})7 qd) € 5./437 and by Lemma (1) we obtain L(A(h) N
L(Ag,) # 0, and therefore Ap has a p-ambiguous transition pattern.

Case 2: There exists a transition (q,a,qq4,q1) € 6 such that da(Bg,) > 1. By the
definition of Bp we conclude that (q,(a,d,{q:1}),q4) € 04, and by Lemma [37(2) we
obtain da(Agq) > 1, and therefore Ap has a p-ambiguous transition pattern.

(2) Let y = (a1,dy) ... (an,dyn), and p; = pipt ...pt for 1 < i < 3. By the definition
of T2, for all 1 < j < n there is ¢} such that (p_,,a;,p5,q;) € dp for 1 < i < 3 if
d; =1, or (péfl,aj,q;»,pz») € dp for1 <i <3 ifd; =r. Define Sj := {qjl-,qu-,q?} for
1 < j < n. Note that S; are consistent, i.e., L(Ag) N L(.Aq;g) NL(Ag) # 0 forj <mn.
Let o := (a1,d1,51) ... (an,dn,Sn). By the definition of Ap we conclude that py is a
run of (Ag)p, on y' from p to p, p2 is a run of (Ag), on y' from p to p, and p3 is a
run of (Ag)q ony' from q to q. Hence, Ap contains the forbidden pattern for bounded
ambiguity, and therefore A is not boundedly branch ambiguous. O

We now proceed with the proof of the (1) = (2) direction of Proposition A
is not boundedly ambiguous, and therefore by Lemma we conclude that A/ is
not boundedly ambiguous. Therefore, by Theorem AT satisfies condition T1 or
condition T2. Applying Lemma we conclude that 4 has an ambiguous transition
pattern, or that A is not bounded branch ambiguous, as requested.

6. Finite Ambiguity

In this section we prove Proposition [19|- a structural characterization of finite ambi-
guity. (2) = (1) follows from Lemma [13]and Lemma [16] Below we prove the (1) = (2)
direction.

Let t be a tree such that ACC(A,t) is not finite. We define a branch 7 = vg, ..., v;, ...
in ¢ and an w-sequence of states qg...q; ... such that for every i:

1. From g; there are infinitely many accepting computations of A, on the subtree
t>y,-
2. There is an accepting computation ¢; on t such that ¢;(v;) = ¢; for every j <.

Define vy as the root of ¢t and gy as an initial state from which there are infinitely many
accepting computations.

Assume that v; and ¢; were defined. Since there are infinitely many accepting com-
putations from state g; on the subtree t>,,, infinitely many of them take the same first
transition from g; to (g, ¢-) and either there are infinitely many accepting computations
from state ¢; on the subtree rooted at the left child of v;, or from state ¢, on the subtree
rooted at the right child of v;. Define v; 1 and g; 41 according to these cases.

If |JACC(A,t,)| is infinite, then by the definition of branch ambiguity we have that
A is not finitely branch ambiguous, and 2(a) holds. Otherwise, there exist ¢1,..., ¢ €
ACC(A,t) such that ACC(A,t,m) = {¢i(m) | 1 < i < k}. Choose n such that for all
1<i<j<k:di(vo)...0i(vn) # dj(vo)...d5(vn).

Thereis 1 < j < ksuch that ¢;(vo) ... ¢;(vn) = qo ... gn. Notice that by the definition
of n, each computation ¢ € ACC(A,t) which assigns qo, ..., ¢, to the nodes vy, ..., v,
must also agree with ¢; on each node v; for i € N. Therefore, again by the definition of
m and qo, ..., ¢, ..., we conclude that ¢;(m) = qoq1

20

Let f be an accepting state which occurs infinitely often in ¢; (7). Choose N > n such
that ¢;(vny) = gv = f. By selection of ¢y, there are infinitely many accepting computa-
tions of Ay on t>,, . Take two different accepting computations ¢, ¢"” € ACC(Af,t>yy)-
Note that ¢ o,, ¢ and ¢ o,, ¢’ are accepting computations which coincide with ¢ on
Vg, -..vyn and hence on vy, ...v,. Therefore, they coincide with ¢ on 7 and Vi > N :
i (vi) = ¢'(v;) = ¢ (v;) = q;. Therefore, ¢’ and ¢" differ at some node w ¢ 7, and there
exist ¢ > N such that ¢;(v;) = f = ¢'(v;) = ¢"(v;) and v; L w. Applying Lemma [27|2)
on ¢’, ¢, and v; L w, we conclude that Ay has an f-ambiguous transition pattern, and
2(b) holds.

7. Countable Ambiguity

In this section we prove Proposition 2] - a structural characterization of countable
ambiguity.

7.1. Direction (2) = (1) of Proposition |23
2(a) = (1) follows by the definition of branch ambiguity, and 2(b) = (1) follows by
Lemma [16] Below 2(c) = (1) is proved.

Definition 39 (Corresponding automaton Ay, for pattern M) Let M be a branch-
ing pattern for A over (R, f) (see Definition[20). We define a BTA Ay over the unary
alphabet with the set of states R U {f}; all states are final, the initial state is f, and
the transition relation is Ay = {(q,¢',¢") | ¢ € R and (¢',q") = mu (@)} U{(f,q1, f),
(fu f7 QZ)}

The following simple lemma states the properties of accepting computations of Ap;. It
will be useful in showing that if a branching pattern for A is realized, then A is not
countably ambiguous.

Lemma 40 (Accepting computations of Apy)

1. Let ¢ be an accepting computation of Apr. Then the set of nodes {v | p(v) = f} is
a branch.

2. For every branch w there is an accepting computation ¢ of Ay such that ¢(v) = f
for allv € m.

3. The set of accepting computations of Apr is uncountable.

Lemma 41 Let A= (Qa,%,Qr1,0,F) be a BTA such that a branching pattern for A is
realizable. Then A is not countably ambiguous.

Proof Assume that a branching pattern M over (R, f) is realized in t at w L v by ¢1,
¢2, {¢q | ¢ € R}. We construct a sequence of trees: t1 :=1t, and Vi > 1:t,41 :=1t; 04, t,
where A; = {u,v}*. We graft t at every node in A; of t;. This operation is well-defined
as A; is an antichain (Va1 # ag € A; : a1 L as, since u L v).

For eachy € {l,r}* we define ky := maz{i | y € {u,v}"-z,2z € {l,r}*}. Notice that by
the construction, ift1yr, (y) = a then ¥i > ky : t;(y) = a. Definet* as t“(y) := tiyx, (y).

We now proceed to show that the set of accepting computations of Ay on t* is not
countable, by defining an injective map from the set of accepting computations of Apr
(on the tree over the unary alphabet) to the set of accepting computations of Ay on t.

21

Notation 42 Let h be a function from {I,r}* into {l,r}* defined as follows: h(l) := v,
h(r) :=wu, and h(dy ...dp) == h(dy) ... h(dy,) for d; € {l,r}. Since ulwv, it follows that
h is a bijection from {l,r}* onto {u,v}*.

For each accepting computation ¢ of Ay we assign an accepting computation (;AS of Ay on
. Ifw € {u,v}* then p(w) := ¢(h= (w)) (hence, the map is injective). Otherwise, let
w=vy-z where y € {u,v}*v and z € {l,r}*. If p(h"1(y)) = q # f then gg(w) = Pg(2).
If p(h=1(y)) = f there are two cases: (1) ¢(h™ (y-u)) = f, in this case we define
d(w) = #1(2); (2) d(h~Y(y-v)) = f, in this case we define d(w) = ¢2(z) (recall that
®1, P2, @q are computations on t that realize M).

It is routine to verify that (E is an accepting computation of Ay on t*. By Lemma
[40, A has uncountably many accepting computations and we defined an injective map
from these computations to accepting computations of Ay. Hence, Ay is not countably
ambiguous. Therefore, by Lemmal[f), A is not countably ambiguous. [

7.2. Direction (1) = (2) of Proposition[24
Definition 43 (g-path and g-computation) Given a BTA A = (Q,%,Q,0,F), a
state ¢ € Q, and a tree t € L(A), we define the following:

o A g-path (of an accepting computation ¢ € ACC(Ay,t)) is a tree branch 7 such
that q occurs infinitely often in ¢(x).

o A g-computation is an accepting computation ¢ of A, on t such that ¢ has a
q-path.

The next lemma reduces the question whether the cardinality of accepting computations
is uncountable to the question whether the cardinality of f-computations is uncountable
for a final state f € F.

Lemma 44 A BTA A= (Q,%,Qr,6, F) has uncountably many accepting computations
on t iff there is a state f € F, a node u € {l,7}* and an accepting computation ¢y €
ACC(A,t) such that ¢o(u) = f and Ay has uncountably many f-computations on t>,.

Proof «<: For each computation ¢ € ACC(Ayf,t>y), define g(¢) == ¢g o, ¢. By the
grafting lemma we obtain g(¢) € ACC(A,t). For each two computations ¢1,¢ps €
ACC(Af,t>u), ¢0 0w 01 = o 0y P2 tmplies 1 = ¢, and therefore the function g :
ACC(Ayg,t>y) = ACC(A,t) is injective. We obtain [ACC(Ay,t>y)| < [ACC(A,t)|, as
requested.

=: Assume that the set & := ACC(A,t) of accepting computations of A on t is
uncountable. For each computation ¢ € O define a set of nodes Uy := {v € {l,r}* | Vu <
v:if o(u) € F then ¢ has no ¢(u)-paths on t>,}. It is clear that Uy is downward closed.
If u is a leaf (mazimal node) of Uy, then ¢(u) € F and ¢ has a ¢p(u)-path on t>,.

Observe that Uy is finite. Otherwise, by the Konig Lemma, there is an infinite branch

T =Vg,...,V,... such that v; € Uy for all i € N. ¢ is accepting and therefore there is
i € N such that ¢p(v;) € F and ¢(v;) occurs infinitely often in ¢(w) - a contradiction to
Vi1 € U¢

Therefore, to each computation ¢ € ® corresponds a finite set Uy C {l,r}*. Since
there are countably many finite subsets of {I,r}*, and uncountably many computations in
22

®, we conclude that there is a finite set U C {l,r}* and an uncountable set &' C & such
that V¢ € @' : Uy = U. Since there are finitely many assignments of states to the nodes
in U, we conclude that there is a function ¢ : U — Q and an uncountable set ®" C &’
such that Vo € ®" Vu € U : ¢(u) = ¥(u). For each maximal node u in U, define D!/ as
the set of restrictions of ®" on t>,. Notice that the cardinality of ®" is bounded by the
product of the cardinalities of ®!I. Hence, there is u such that ®!! is uncountable. Each
computation ¢ € ®!, has originated from a computation with a ¥ (u)-path on t>,, and
therefore @ is the set of f-computations of Ay on t>, for f:=1(u). a

Let us state a simple lemma about f-paths:

Lemma 45 Assume conditions 2(a) and 2(b) of Proposition[23 do not hold.

1. If ¢1 # ¢o are f-computations of A on t and 7 is an f-path of ¢1, then ¢1(7) #
pa(m).

2. Let w be a tree branch and let . = {¢ | w is an f-path of ¢}. Then ¥, is
countable.

Proof (1) Assume, for the sake of contradiction, that ¢1(mw) = ¢a(mw). Since ¢1 # @2,
there is a node w ¢ m such that ¢1(w) # ¢a(w). Since w is an f-path of ¢1, there is a
node v € 7 such that v L w and ¢1(v) = f. By the assumption, Yv' < v : ¢1(v") = ¢a(v')
and therefore by Lemma (2) we conclude that A has an f-ambiguous transition pattern,
in contradiction to condition 2(b) not holding in A.

(2) By (1), if p1 # ¢o € Pr, then ¢1(m) # Pa(mw). Since A has countable branch
ambiguity it follows that ®, is countable. (I

Notations

1. For a final state f of A, let f—Comp(Ay,t) be the set of f-computations of Ay on
t.
2. For & C f—Comp(Ay,t), define

B(®,t):={v|3p € ®:¢(v) = f and f—Comp(Ay,t>,) is uncountable}.

We are going to investigate the structure of B(®,t). Our main technical lemma implies
that if f—Comp(Ay,t) is uncountable, then the full-binary tree can be embedded in
B(f—Comp(Ay,t),t),1e., thereis an injective function e : {l,r}* — B(f—Comp(Ay,t),t)
such that s; < sg iff e(s1) < e(s2).

Let @ := f—Comp(Ay,t), and let g be a function from ® to tree branches such that
for each ¢ € @, g(¢) is an f-path of ¢.

Let 7 be a branch, and let &, := {¢ | wis an f-path of ¢}. Define I'; : (f—Comp(A,t)\
@) — ({l,r}T \ 7) as a function which, for each ¢ € f—Comp(A,t)\ ®,, returns an
arbitrary node in {u € g(¢)\ 7 | #(u) = f}. Notice that the set {u € g(¢)\7 | p(u) = f}
is non-empty because g(¢) # 7 and ¢ assigns the state f to infinitely many nodes on
g(¢) - hence, T'; is well-defined.

Lemma 46 (Properties of I'x) Assume conditions 2(a) and 2(b) of Proposition[29 do
not hold.

L IfTr(¢1) = u=Dr(d2), then ¢1(w) = d2(w) for every w € {w’ | ~(w’ > u)}.
23

2. If T (1) = u =Tr(¢2) and ¢1 # ¢a, then ¢1(v) # ¢a(v) for some v > u.
3. IfT'x(¢) = u then ¢>, € f—Comp(Ayg,t>,).

Proof (1) If ¢1(w) # ¢a(w) for w < u then by Lemma [28 we conclude that A is not
countably branch ambiguous - a contradiction to condition 2(a) not holding. If ¢1(w) #
p2(w) for w L u then, by Lemma (2), A has an f-ambiguous transition pattern - a
contradiction to condition 2(b) not holding. Hence, ¢1(w) = ¢2(w) for every w € {w’ |
—(w' > u)}.

(2) Immediately follows from (1).

(3) By the definition of T'x we conclude that ¢p(u) = f. Recall that g(¢) is an f-path
of ¢, and therefore g(¢) N{v | v > u} is an f-path of ¢>,.

Lemma 47 Assume conditions 2(a) and 2(b) of Proposition (22 do not hold. If ® :=
f—Comp(Ay,t) is uncountable, then:

1. For every branch w there is a node u not on 7 such that u € B(®,t).
2. There are v1 L vy such that such that v1,vs € B(®,t).

Proof (1) The domain f—Comp(A,t)\ @, of I'x is uncountable (by the assumption and
Lemma (2)), and its range {l,r}* \ 7w is countable. Therefore, there is u & such that
U= {¢ € f—Comp(A,t)\ ®r | Tr(¢) = u} is uncountable. By Lemmal[{ (2)-(3), we
conclude that Us,, := {¢>y, | ¢ € ¥} is an uncountable set of f-computations on t>,,
and therefore u € B(®,t).

(2) Assume, for the sake of contradiction, that there are no vi L vy such that vi,ve €
B(®,t). Therefore, there is a branch 7 such that B(®,t) C w. However, by (1), there is
u & m such that uw € B(®,t) - a contradiction. O

The main technical lemma uses the following definition.

Definition 48 Let T C {l,r}* be a set of nodes. We say that uw € T is a T-leaf if
Yo €T : (v >u); uis aT-successor of v if u > v and there is no node w € T such
that v < w < u.

We call T a binary subset-tree if T has a minimal node, and each node in T is
either a T-leaf, or has two T-successors.

We call T a full-binary subset-tree if T is a binary subset-tree with no leaves.

Lemma 49 (Main) Assume f is a final state, there are uncountably many f-computations
of A on t, and conditions 2(a) and 2(b) of Proposz'tz'on do not hold. Then, there is a
full-binary subset-tree T of t such that for every uw € T there is an f-computation ¢, on

t such that if v € T and v < u then ¢, (v) = f.

Proof First we define a sequence Ty, Ty, ... of finite binary subset-trees of t such that

1. Ti41 is obtained from T; by adding two children to a leaf of T; of minimal depth.
2. For every u € T;, there are uncountably many f-computations of Ay on t>.

3. if v € T; is a T;-successor of u € T;, then there is an f-computation ¢' of Ay on
t>y such that ¢'(v) = f.

24

Let Ty be a set which consists of the root of t. It is clear that (2)-(3) hold. Assume we
have defined T; such that (2)-(3) hold. Let u be a leaf of T; of minimal depth. We apply
Lemma (2) to t>y and obtain vi,vs € B(f—Comp(Ayf,t>y),t>u) such that vi L vs.
Define T; 11 as T; U {v1,v2}. It is clear that (1)-(3) holds for T;11.

Let T :=JT;. It is clear that T is a (infinite) full-binary subset-tree of t.

In order to complete the proof of Lemmal[{9 we have to construct ¢, for u € T. We
construct ¢, by induction on the depth of u in T. For the root, take an arbitrary f-
computation as ¢,,. For other nodes, let v be the predecessor of uw in T. By the definition
of T, there is i such that u € T;11 \ T;. and by our construction there exists an f-
computation ¢ on t>, such that ¢'(u) = f. By induction assumption there exists ¢,
which assigns f to all nodes w: w € T,w < v. The computation ¢, := ¢, oy ¢ fulfills
the requirement of Lemma[]9 O

The next lemma is easily derived from the Koénig Lemma.

Lemma 50 If T is a full-binary subset-tree of t, then there is a full-binary subset-tree
T' C T such that for each u € T" with T"-successors vy, va, and for each q € Q such that
t>y € L(Ay), there is a computation ¢ € ACC(Ay,t>y) which passes through F on the
paths of t>, from u to vi and from u to va.

Proof We first prove the following claim:

Claim 50.1 Let A= (Q,%,Qr,0,F) be a BTA, t € L(Ay), and ¢ € ACC(Agy,t). Then
there is d := d(¢) € N such that for every node v' of depth greater than d, ¢ enters F at
the path from the root to v'.

Proof of Claim 50.1 Let U := {u € {l,7}* | Vw < u : ¢(w) ¢ F} and assume, for
the sake of contradiction, that U is infinite. It is clear that U is downward closed under
ancestor relation, and therefore, by the Konig Lemma, U contains an infinite branch w
such that Yw € m : ¢(w) ¢ F - a contradiction to ¢ being an accepting computation.

Therefore U is finite, and we conclude that Claim holds for d :== Depth(U) +1. B

We are now ready to prove Lemma by constructing a binary subset-tree T' C T
which fulfills the requirement. We will first define Ty, for all k € N, and then define

T':= \JTj. LetTj be the tree which consists of the root of T' (a single node). Ty, will
kEN
be constructed from T}, in the following way:

Let u be a leaf of T}, of minimal depth, and let Q' :== {q | t>, € L(Ay)}. For each
q€Q, let o, € ACC(Aq,t>y). By Claim for each q € Q' there is dy,q € N such
that the computation ¢4 enters F' on the paths from u to each node of depth greater than
dy.q- Define d, = max{d, q | ¢ € Q'}.

Let vi,v9 € T such that vi,vs > u, v1 L vo and the distances of v1 and ve from u are
greater than d,,. Notice that ¢4 visits a final state on the paths from u to vi and from u
to vy. We now define Ty, = T;, U {vi,va}.

Notice that for each i, Ty, is obtained from T by adding two children to the minimal
leaf of T!. Therefore, T' := |J T}, is a full-binary subset tree.

keN
Let u,v1,v9 € T such that vi,vs are T'-successors of w. By the definition of T', v1,vo

were both added in the same iteration k, and for each q such that t>, € L(Ay), there is

an accepting computation of Ay on t>, which passes through F' on both paths from u to

vy and from u to ve. Therefore, T' fulfills the requirement. O
25

Lemma 51 Let (T, <) be the full-binary tree, 3 be a finite alphabet, and o : {l,r}* — X
be a labeling function. Then, there are v1,vy > u such that v1 L vy and o(v1) = o(u) =

O'(’UQ).

Proof Choose a node u such that the cardinality of £>,, := {o(w)

| uw < w} is minimal.
Then for every w' > u and every a € X>,, there is v/ > w' with o(v') =

u
") =a. O
The next Lemma, together with Lemma shows that if a BTA is not countably am-
biguous and 2(a) and 2(b) of Proposition [22| do not hold, then 2(c) holds. This implies
the (1) = (2) direction of Proposition [22]

Lemma 52 Let A be a BTA and f be a final state of A. Assume that there are uncount-
ably many f-computations of Ay ont and conditions 2(a) and 2(b) of Proposition |29 do
not hold. Then, there are three nodes u,vy,ve € {l,7}* such that a branching pattern for
Ay is realized at v1,v2 0 t>y,.

Proof Let T be the full-binary subset-tree of t, guaranteed by Lemma[{9 By applying
Lemma to T, we obtain a full-binary subset-tree T C T. Define a labeling of T' by
o(v) = {o(v)|p € ACC(Ay,t)} for each v € T'. This is a labeling by a finite alphabet.
Therefore, by Lemma we have nodes vy, v > u such that v1 L vg and o(u) = o(vy) =
o(vy) = Q. We are going to define computations that realize a branching pattern over
(Q'\{f} f) at v1,v2 int>,.

Fori=1,2, set ¢; to be the restriction of ¢, to t>,, where ¢,, is as in Lemma ,
This gives immediately that ¢; € ACC(Af,t>y) and ¢1(vi) = ¢pa(v2) = f. Since Ay is
ambiguous, by Lemma (Z) and the assumption that A has no f-ambiguous transition
pattern, we obtain ¢1(ve) # f # ¢a(vy).

By Lemma for each ¢ € Q" \ {f} there is ¢4 € ACC(Aq,t>y) which visits F' on
the paths (in t>y,) from u to the children of w in T'. Hence, it visits F' on the paths from
u to vy and from u to va. Next, observe that ¢q4(v1), ¢e(v2) € Q' by the definition of the
labeling. We are going to show that ¢4(v1) # f and ¢q(ve) # f. This will show that
o1, P2, and ¢4 for g € Q' \ {f} realize a branching pattern, and thus finish the proof.

Aiming for a contradiction, assume ¢q(v1) = f. There is ¢’ € ACC(Ay,t) such that
¢'(u) = q. Let ¢, be a grafting of ¢, on ¢' at u. It reaches vy in state f. Let ¢u, be as in
Lemma ' Gu, (v) = f ifvi > veT. We have ¢/(vl) = Gy, (v1) = f = ¢/(6) = ¢v, (€),
¢'(u) =q# f = ¢v(u), and € <u < v1. Therefore, by Lemma [28, we conclude that A
is not countably branch ambiguous - contradiction. The proof of ¢q(ve) # f is similar.C)

8. Computability of Branch Ambiguity and the Ambiguous Transition Pat-
tern

Here we describe algorithms to test the degree of ambiguity of branch automata and
to test if a BTA has an ambiguous transition pattern. The following Lemma easily follows
from Definition [[2] of the branch automaton.

Lemma 53 Let Ap be the branch automaton of A. Assume that r; € Q' for i =
1,....k are runs of Ap on u = (01,d1,51)...(01,d;,S1) € 5. Then fori =1,...,1
there are S} C S; such that |Si| < k and r; for i = 1,...,k are runs of Ag on u =
(0’1,d1,S{)...(0’l,dl,SlI).

26

A letter (0,d,S) € Xp is called a k-state letter if S has at most k states. If A has n states,
then the alphabet ¥ of the branch automaton .Ap might be of size 2|3| x 2", yet the
number of k-state letters is bounded by 2|3 x Ele (") < 2[|n*. To test whether a k-
state letter (o, d, S) is in X, we can check whether the intersection of the tree languages
L(A,) for g € S is non-empty. This can be done in O(n?*) time (checking non-emptiness
of the intersection Biichi language). Therefore, the restriction of the branch automaton
Ap to k-state letters, which we denote by ,Agf), is computable from A in O(].A]?*) time.
Now, we are ready to prove Lemma [17] and Proposition

Proof (Proof of Lemma For each p1 and po, items 1 and 2 of Definition can
be tested in polynomial time. There is a q-ambiguous pattern in A, if there is a run of
.,4591) from q to p1 and from ps to q for a pair p1 and py which passed the test. This is
reduced to the reachability problem. (I

Proof (Proof Sketch of Proposition The degree of ambiguity of BWA is charac-
terized by the forbidden patterns in Theorem[9 Each of these patterns involves conditions
on at most three runs on the same word and can be tested for an automaton B in polyno-
mial time. Hence, by Lemma Ap has these patterns iff Ag) has them, and this can

be tested in time p(|Ag)\) for a polynomial p. Since .Ag) is computable in polynomial
time from A, we obtain a polynomial time algorithm. O

9. Computability of a Branching Pattern

Here we prove Proposition[23] In Sect. [0.I] we show that if A has a branching pattern,
then it has a branching pattern over (R, f), where R has at most two states. Sect.
presents a polynomial time algorithm to verify if .4 has a branching pattern with at most
two states.

9.1. Reduction to Small Branching Patterns

In Sect. we assigned to each branching pattern M a BTA Aj; over the unary
alphabet. This automaton is almost deterministic, in the sense that from every state
q # f it has a unique transition and it does not enter f. Hence, Ay; has a unique
accepting computation from every q # f. From f it has two transitions. The transition
function defined next will help to describe the properties of the accepting computations

of .AM

Definition 54 (Transition function of branching pattern) Let M be a branching
pattern for A over (R, f) with p; : R — RX R and a tuple (q1,q2) € RX R. Iits transition
function dpr - ({f}UR) x {l,r} — R is defined as follows:

@ ifd=1
) ,d) =
w(fd) q ifd=r
For p # f with 7a;(p) = (¢', ¢") we define:

g ifd=1
1) ,d) =
m(p) {q” ifd=r
dnr is naturally extended to a function dpr @ R x {l,r}T — R by dp(q,d - w) =
I (0a (g, d),w) for allw € {I,r}* and d € {I,r}.
27

The following lemma follows from the definition of the transition relation of A;:

Lemma 55 1. Let ¢ # [and ¢? be a (unique) accepting computation of Apr (on the
tree over unary alphabet) from q. Then ¢9(w) = dprr(q,w) for every w € {I,r}*
2. Let s = dy...dp € {l,r}T, and let ¢ be an accepting computation of Apr from
f such that ¢s(dy...d;) = f for every i < k. Then for every w € {l,r}*: (a) if
d; =1 then ¢s(dy ...di—1rw) = Opr(f,lw) and (b) if d; =7 then ¢ps(dy ... d;—1lw) =
o (f,rw).

Lemma 56 Assume a branching pattern M for A over (R, f) is realized. Let lpr(q) :=
On(q,1) and rpr(q) := 0 (g,) for all g € R. Then:

1. If lyy maps R to Qo C R, then a branching pattern for A over (Qo, f) is realized.
Dually, if rapr maps R to Q1 S R then a branching pattern for A over (Q1, f) is
realized.

2. If lyr and rpy are bijections, then there is Q' such that |Q'| < 2 and a branching
pattern for A over (Q’, f) is realized.

3. A branching pattern for A over (@', f) is realized with |Q’'] < 2.

Proof We will assume the branching pattern M for A over (R, f) is realized in a tree t
at nodes w,v by computations ¢1, 2, {¢q | ¢ € R}.

(1) Assume lpr maps R to Qo C R. Let t' := (t o, t) o, t. Define the following
computations ont': ¢} 1= ($104,P2)0udg, and ¢ := (P204,Pq,)ond2. For each q € Qo with
T (q) = (p1,p2), let @) := (¢q0udp,)0uPp, - Let v’ := u-v and v’ = v-v be two nodes of t'.
By Lemma@ we have ¢, ¢y € ACC(Ay,t) and Vg € Qo : ¢, € ACC(Ay,t'). Notice that
P (u) = @i u-v) = ga(v) = f, Ph(v") = dh(v-v) = ¢p2(v) = f, and from the construction
it follows that &, (v"), éh(u'), &) ('), &(v") € {6g(v) | 4 € R} = {631(0,1) | 4 € R} C Qo.
Since ¢4 visits F' on both paths from the root to w and from the root to v, so does ¢,
on the path from the root to ' = u - v and from the root to v' = v -v. It follows that a
branching pattern for A over (Qo, f) is realized in t' at u’, v/ by computations ¢}, ¢5,
and {9}, | ¢ € Qo}. The proof of the dual case is symmetric.

(2) The set of bijections on a finite set is a finite group under the composition and
the identity map is its identity element. If k is the cardinality of a finite group, then c*
is equal to the identity for every element c. Let k > 0 be such that both l’& and wa are
the identity map.

Define t} :=t, t{ :==t and Vi > 1 let 1}, 1= t o, t} and tj | =t o, t]. Finally,
construct a tree t' 1= (t o, t}_) o, th_;.

Let py = Spr(f,1%) and py := 6p(f,r%). We will show that a branching pattern for
A over ({p1,p2}, f) is realized in t' at u® v*.

The following are obtained using Lemmal[3 and the definition of dpr:

i o= 10y (¢104 (--- 0y @1)...) is an accepting computation of Ay on t¥. It assigns

7 times
f to node u'.

i B; =20, (P20, (-+-0p @2)...) is an accepting computation of Ay on t¥. It assigns

i times
f to node v°.

28

i Let qo € R and qi ‘= 5M(quri)' Then d)gz : (qu Oy (d)(h Oy (T Oy qui,l) ..) s an
accepting computation of Ag, on t¥, and ¢ (uv)) = q; for j <.
iv Let ¢y € R and ¢, := Sp(qh,1Y). Then (;556 1= Ggy 00 (Pgy 00 (- 0u g)...) is an

accepting computation of Ay on t7, and (bf;é (v7) = ¢} forj <.

Let ¢’ := ¢1(v) and ¢ := ¢2(u). From i and v, it follows that ¢} := (1 0y g—1) 0y
gbf;_l is an accepting computation of Ay on t', such that ¢y (u¥) = f, ¢} (vF) = dp (f,1F),
and ¢ visits F' on the path from the root to v* (as it coincides with ¢y on the path from
the root to v, which visits F').

Using similar arguments from i and i3, we conclude that ¢ := (¢2 0, (b;i_l) 0y Br—1
is an accepting computation of Ay on t', such that ¢h(v¥F) = f, ¢h(u*) = Spr(f, %), and
@b wvisits F' on the path from the root to u.

In addition, from it and v is follows that for all p € R with Tps(p) = (p',p"),
the computation (b;, = (¢p oy ¢;i71) 0y (bg,fl is an accepting computation of A, on
t', such that gzﬁg,(uk) = Sp(p,7*%) and qb;,(vk) = 6n(p,I¥). By selection of k we have
61 (p, 1¥) = 601 (p, %) = p and therefore we conclude that ¢, (u*) = p = ¢/, (v").

Take py := 6a(f,1%) = ¢4 (V%) and py := Sn(f,7%) = ¢h(u¥). We have ¢, (uF) =

7 (0F) = p1oand ¢, (u*) = ¢, (v*) = py, and therefore we conclude that a branching
pattern for A over ({p1,p2}, f) is realized in t' at u*,v* by the computations ¢}, ¢}, o1
and ¢,,,, as requested.

(8) Let M over (R, f) be a realizable branching pattern for A such that the cardinality
of R is minimal. If either ly; or vy is not a bijection, then by item 1, there is a realizable
pattern over (Qo, f), where |Qo| < |R|. Hence, both s and rp; are bijections. Therefore,
by item 2 and minimality of |R|, we obtain |R| < 2. O

9.2. Small Branching Patterns are Computable in Polynomial Time

In this subsection we will show a polynomial time algorithm for deciding whether
there are R and f such that |R| < 2, and a branching pattern for A over (R, f) is
realized.

For every t over ¥ and uy,us € {I,7}*, define a tree t' := ¢(u1,us) over the alphabet
¥ =% X X, X Xy, with 3, := {0,1}, such that the projection of ¢ on ¥ is ¢ and the
projection of ¢ on X, is a tree t,, with ¢,,(w) =1 iff w =wu,; for i =1,2

It is easy to construct BTA over the alphabet Y’ with the following properties in
O(JA]) time:

e A BTA A, odes which accepts ¢ iff ¢/ = ¢(u1,ug) and uy L us.
e A BTA Ay 4, . which accepts t’ iff ¢ = t(u1,u2) and there exists a computation

¢ € ACC(Agy,t) with ¢(u1) = g1, ¢(u2) = g2 and ¢ visits an accepting state on
both paths from the root to u; and from the root to wus.

e A BTA .A57 which accepts ¢’ iff ¢ = t(uy,u2) and there exists a computation
¢ € ACC(Ay,t) such that ¢(uq) = f and ¢(u2) = q.

e A BTA A?7q which accepts ¢ iff ¢ = t(u1,us) and there exists a computation
¢ € ACC(Ay,t) such that ¢(uq) = ¢ and ¢(ug) = f.
29

By Lemma 50} A has a realizable branching pattern iff there exists a realizable branching
pattern over (R, f), 7y : R — R x R, (q1,¢2) € R x R with |R| < 2. For each such
branching pattern we define:

Ly := L(Anodes) N ﬂ L(Ap,m,pz) N L(Ai‘,ql) N L(?,qz)

(p,p1,p2)IPER, M (P)=(p1,P2)

By the construction of the automata we have that the branching pattern M is re-
alizable iff Ly; # 0. This could be verified in polynomial time in |Q 4], as this is an
intersection of at most five Biichi tree languages. Since the number of such patterns is
polynomial in |Q 4] we obtain a polynomial time algorithm.

10. Conclusion and Further Results

We proved that the degree of ambiguity of Biichi tree automata (BTA) is computable
in polynomial time. The Biichi acceptance conditions on trees are less expressive than
parity, Rabin, Streett, and Muller conditions. Unfortunately, the degrees of ambiguity
problem for parity tree automata is co-NP hard [7].

The complementation of finitely ambiguous Biichi automata over w-words is easier
than the complementation of non-deterministic Biichi automata over w-words [11]. It is
interesting to find natural problems for Biichi Tree Automata which are easier for Biichi
Tree Automata with small degrees of ambiguity than for arbitrary Biichi Tree Automata.

The degree of ambiguity of a regular language is defined in a natural way. For
example, a language is k-ambiguous if it is accepted by a k-ambiguous automaton and
no (k — 1)-ambiguous automaton accepts it. Over finite words and finite trees, every
regular language is accepted by a deterministic automaton. Over w-words every regular
language is accepted by an unambiguous automaton [I7]. Over infinite trees there are
ambiguous languages [18]. In [I6] we proved that over infinite trees there is a hierarchy
of degrees of ambiguity: There are k-ambiguous languages for every k € N; and there
are finitely, countably, and uncountably ambiguous languages. The question whether the
degree of ambiguity of an infinite tree language is decidable is still open.

Acknowledgement

We would like to thank anonymous referees for their helpful suggestions. Supported
in part by Len Blavatnik and the Blavatnik Family foundation.

References

[1] T. Colcombet, Unambiguity in automata theory, in: International Workshop on Descriptional Com-
plexity of Formal Systems, Springer, 2015, pp. 3-18.

[2] Y.-S. Han, A. Salomaa, K. Salomaa, Ambiguity, nondeterminism and state complexity of finite
automata, Acta Cybernetica 23 (1) (2017) 141-157.

[3] E. Leiss, Succinct representation of regular languages by Boolean automata, Theoretical computer
science 13 (3) (1981) 323-330.

[4] H. Leung, Descriptional complexity of NFA of different ambiguity, International Journal of Foun-
dations of Computer Science 16 (05) (2005) 975-984.

30

(5]

[6]

[7]

(8]
[9]

(10]

(11]
(12]

(13]

14]
(15]

[16]

17]

(18]

R. E. Stearns, H. B. Hunt III, On the equivalence and containment problems for unambiguous
regular expressions, regular grammars and finite automata, SIAM Journal on Computing 14 (3)
(1985) 598-611.

J. Jirdsek, G. Jirdskové, J. Sebej, Operations on unambiguous finite automata, in: International
Conference on Developments in Language Theory, Springer, 2016, pp. 243-255.

A. Rabinovich, D. Tiferet, Degrees of ambiguity for parity tree automata, in: C. Baier, J. Goubault-
Larrecq (Eds.), 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), Vol. 183
of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, Dagstuhl, Germany, 2021, pp. 36:1-36:20.

A. Weber, H. Seidl, On the degree of ambiguity of finite automata, Theoretical Computer Science
88 (2) (1991) 325-349.

H. Seidl, On the finite degree of ambiguity of finite tree automata, Acta Informatica 26 (6) (1989)
527-542.

C. Léding, A. Pirogov, On finitely ambiguous Biichi automata, in: Developments in Language The-
ory - 22nd International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings,
2018, pp. 503-515.

A. Rabinovich, Complementation of finitely ambiguous Biichi automata, in: International Confer-
ence on Developments in Language Theory, Springer, 2018, pp. 541-552.

V. Béarany, L. Kaiser, A. Rabinovich, Expressing cardinality quantifiers in monadic second-order
logic over trees, Fundamenta Informaticae 100 (1-4) (2010) 1-17.

A. Rabinovich, D. Tiferet, Degrees of ambiguity of Biichi tree automata, in: 39th ITARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

W. Thomas, Automata on infinite objects, in: Formal Models and Semantics, Elsevier, 1990, pp.
133-191.

D. Perrin, J-E. Pin, Infinite words: automata, semigroups, logic and games, Vol. 141, Academic
Press, 2004.

A. Rabinovich, D. Tiferet, Ambiguity hierarchy of regular infinite tree languages, in: 45th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS 2020, Vol. 170 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020, pp. 80:1-80:14.

A. Arnold, Rational w-languages are non-ambiguous, Theoretical Computer Science 26 (1-2) (1983)
221-223.

A. Carayol, C. Loding, D. Niwinski, I. Walukiewicz, Choice functions and well-orderings over the
infinite binary tree, Open Mathematics 8 (4) (2010) 662—682.

31

	Introduction
	Preliminaries
	Trees
	Automata
	-word Automata
	Infinite Tree Automata

	Automata Properties
	Degree of Ambiguity for Automata on -words

	Main Result
	Branch Ambiguity
	Ambiguous Transition Pattern
	Characterizations of Degrees of Ambiguity

	Ambiguous Transition Pattern and Branch Ambiguity
	Proof of Lemma 13
	Proof of Lemma 16
	Two Useful Lemmas

	Bounded Ambiguity
	Finite Ambiguity
	Countable Ambiguity
	Direction (2) (1) of Proposition 22
	 Direction (1) (2) of Proposition 22

	Computability of Branch Ambiguity and the Ambiguous Transition Pattern
	Computability of a Branching Pattern
	Reduction to Small Branching Patterns
	Small Branching Patterns are Computable in Polynomial Time

	Conclusion and Further Results

