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ABSTRACT

" Behavior Structures integrate causality and branching. Nets of
Behavior Structures provide a unifying approach to different net models
of Concurrency. The Theory is illustrated wrt Nets over automata in

particular wrt Petri Nets.

0. Introduction

In the theory of Concurrency there is a proliferation of models for describing con-

current processes. An evident source of this phenomenon lies in the controversies:

Interleaving Semantics vs Partial Order (causality)

Linear Time vs Branching Time

Yet another source of diversity is connected with the way a complex system is assem-
bled from elementary blocks. In Algebras of Processes the assembling proceeds in an
explicit compositional way through the chosen repertoire of operations upon processes.
At the other hand in Networks concurrently executing components are assumed to
communicate through wired channels. In these models (like Petri Nets, Data Flow
Networks), no compositionality seems to be assumed explicitly. Indeed, for a long
time in the theory of Petri Nets the question of modularity did not even arise. In its
simplest form this question deals with a subnet N’ of a given net V. Assume that N/
is replaced in IV by a net N which behaves like NV/; is it the case that the new net pro-
duced as result of the replacing behaves like the original net N? Note originally
[Milner, Hoare] Algebras (and compositionality) were oriented on interleaving
models, whereas Nets were deemed to be more appropriate for the revealing of causal-
ity.

Our main concern in this paper is about Nets of Processes, which are expected to
bridge between these original views on algebras and networks. The underlying idea
may be traced to Mazurkiewicz [Maz84] and Pratt [Pr]; it acknowledges that synchron-
ization of processes is a sufficient tool for composing complex nets from appropriate

"blocks”. The construct "Net of Processes” may be parametrized wrt a favorite model

©1988, Polish Mathematical Society



358 A. Rabinovich, B.A. Trakhtenbrot [ Behavior Structures and Nets

of processes. Mazurkiewicz and Pratt considered Nets of Pomset Processes, whereas
in this paper we deal with Nets of Behavior Structures. Unlike Pomset Processes,
which reflect causality but ignore branching, Behavior Structures (BS) integrate causal-
ity with branching. Actually, Behavior Structures are one more version in the series
of models, beginning with Event Structures |NPW], which includes Configuration
Structures [NPW], Prefix Structures (M2z84], and Behavioral Systems [Shi]. However
we find Behavior Structures more appropriate for our purpose and we say about this

more in this sequel.

Through Nets of Behavior Structures we aim at a unilying approach to different Net
models of Concurrency. In this way we hope to explain phenomena which may be
blurred by more common ad hoc approaches. We illustrate the situation for Nets N
over automata {multiautomata), which cover as particular cases both Petri Nets and
Data Flow Networks. Usually, there is a strong intuition (and a general consensus)
that IV behaves globally as an aufomalon (multiautomaton); yet the inherent causal
aspects of this interleaving - branching behavior are still to be discerned. For exam-
ple, in a Petri Net the multiautomaton behavior is convincingly exhibited by the token
game. But starting with Petri’s seminal work much effort went (and is still going on)
into defining the "genuine” causal behavior of such nets. We believe that our results
from Appendix explain why for the case of Petri’s original model (C/FE Nets), all the
known and apparently different approaches result in essentially the same causal seman-
tics. This is in full contrast with the generalized models (P/T Nets) for which
different treatments of causality are possible and it is up to personal responsibility to

choose the appropriate one.
In this sequel our exposition is organized as follows:

Section 1 is dedicated to the Behavior Structure (BS) machinery, including as a concep-
tual contribution carefully elaborated definitions of BS, BS-bisimulation, embedding
into BS, and synchronization of BS. The main technical result about synchronization

is that 1t is fully compositional and also inherits bisimulation and embeddings.

Section 2. The notions and results of Section 1 may be used to formulate and investi-
gate in a very general setting Nets of Processes. More specifically we concentrate on
Nets over Automata (Multiautomata) and introduce the crucial notion of robust BS-
semantics for such nets. Then we show that robust BS-semantics actually coincides
with or refines semantics provided by other existing non compositional approaches
(Occurrence Semantics, Traces, etc.). We clarify also conditions under which the

robust BS-semantics may be recovered from partial information.

Finally, the Appendix illustrates the theory wrt Petri Nets. Here we follow and
improve in some respects the modular approach Mazurkiewicz elaborated for C/E
Petri Nets. Relying on the techniques of robust BS-semantics we characterize the deep
difference between Petri’s original model (C/E nets) and its generalizations known as

P/T nets. At the same time we claim that the modular approach is consistent with
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earlier established operational semantics. This material is presented without proofs.

We use also Nets of Processes in the investigation of Data Flow Networks. These

results will appear in [RT).

Our work was strongly influenced by Mazurkiewicz’s approach [Maz84|, where one
can already find the main ideas about compositional semantics for nets.
Mazurkiewicz’s elegant theory covers fully the case of finite C/E Nets. Roughly
speaking our aim was to examine how far the methodology can be advanced into the

realm of more general nets.

As usually for texts in semantics there is the painful dilemma between the need to be
very careful and the desire to keep the paper at an acceptable size and level of intelli-
gibility. We try to avoid slipping down into cumbersome details; in particular, often we

provide only sketches of proofs, counting on the collaboration of the reader.

1. Processes

Preliminary Remarks

Figure 1 schematically represents the “refining” order between six models of processes,

which differ from each other by the way they do or do not reflect branching and

causality.
Automata Muitiautomata Behaviour Structures
i T B
string languages step sequence pomset processes
Fig. 1

The lower level contains the linear time models whereas the upper level contains the
corresponding branching versions. Behavior Structures (defined in 1.3) are the most
discriminating model we know and the main object of interest in this section (1.3 -
1.6). We include also in 1.1 - 1.2 a rather cursory survey of other models. In each
model # one distinguishes in a standard way the concrete and abstract approaches to
the objects under consideration. For concrete objects one defines the most discrim-

inating equivalence relation, called strict isomorphism and designated as =,,; one
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should always have in mind that strict isomorphisms differ from (standard) isomor-
phism through the additional requirement that the compared objects have the same
declared alphabet. Equivalence classes wrt =, are abstract objects, each element P
of the class being a representative of the absiract object [P]. For each of the three
branching models, ol great importance is a weaker equivalence than ==, called
bisimulation: =j; is the Milner-Park bisimulation for automata, =,ss, =ps the
respective bisimulations for Multiautomata and Behavior Structures. When referring
to the basic equivalence == in the model # we have In mind strict isomorphism in
the case of linear models and bisimulation in the case of branching models. Finally,
for each pair of comparable models 7 <p there is also an embedding relation "process
P, [rom model 7 is embeddable into process Py from model p”. Through appropriate
combination of embeddings and basic equivalences many other equivalences may be

delined.
We can now characterize the format of two tasks (parametrized wrt different models)
we consider in this section.
Task 1. For a given model compare different equivalences between processes in this
model.
Task 2. For two com parable models 7, p prove that each process in 7 is embeddable
in some process in p. Find out when the embedding is unique {up to some favorite
equivalence).
The next task has to do with Synchronization, which is the crucial operation on
processes. Synchronization is also parametrized with respect to the model 7; the most
relevant for us is synchronization ol BS (Section 1.6).
Let R be one of the relations considered above: it may be an equivalence in some
model 7, or an embedding from 7 into p. We say that synchronization (in model 7)
inherits the relation R if:
P,RP'|, P,RP'y,...
implies
Synch( Py, Ps,..)RSynch(P'y, Py,...)
Task 3. For a given relation prove that it is inherited by synchronization.
In all models Synchronization has the following basic properties:
(i) Synchronization inherits isomorphism. Hence, synchronization of abstract objects
is correctly defined through arbitrary representatives.

(i) Synchronization is fully compositional. In more detail:

a)  Up to isomorphism the result of Synch (P, P,,...) does not depend on the

order of the operands.
b)  Given any disjoint partition of the set {P;} into sequences 5€q,,5€qq, * - -

Synch (P, Py,..) =, Synch ( Synch( seq,), Synch(seq,),...)
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Our main results for Behavior Structures are in 1.6 (Task 1), 1.4 (Task 2) and 1.6
(Task 3).

We want to finish the short survey of this section with some explanation why we
prefer to deal with Behavior Structure despite the already existing notions of Event
Structures and Configuration Structures, which essentially capture the same entity.
(Unfortunately we were not aware about Events Structures, when we started this
work. We are thankful to R. Milner and U. Montanari who called our attention to this
omission.) It seems enough clear that ultimately the objects to be considered in Pro-
cess Theory are Configuration Structures (CS) or Behavior Structures (BS), whereas
Event Structures (ES) are only a compact way to represent CS or BS. The comparison
with matrices as a tool to represent linear functionals suggests itself. And indeed it is
difficult to reflect the crucial equivalence, namely BS-bisimulation, in terms of ES.
Actually the only difference between labeled CS and BS is that in an LCS all
configurations refer to a global set of events, whereas in a BS each configuration uses
its local set of events; that is why a BS should be equipped with a family of appropriate
embeddings between different configurations. Though BS’s form a broader class of
concrete objects than LCS’s it is the case that every BS is strictly isomorphic to an
LCS. Hence, when synchronizing abstract BS’s one could manage with LCS-
representatives. But we prefer to deal directly with Concrete BS’s to avoid transfor-
mations to L.CS’s.

1.1. Linear Time Processes

We consider in this section the three linear models mentioned above (Fig. 1). We deal
mainly with the most diseriminating Pomset model and give only some hints about the
other two simpler models. In doing so we heavily rely on the careful exposition of
the subject in [Ma288|. The only significant deviation is in the definition of Synchroni-
zation, where we prefer a broader treatment of Concrete Pomsets (Labeled Posets - in
[Maz88]) as representatives of Abstract Pomsets (Qualified Pomsets - in [Maz88]).
This deviation is not necessary as far as the Pomset model is considered; its usefulness
will become evident later wrt the more discriminating model of Behavior Structures
{1.3-1.6).

Pomsets (Partial ordered multisets)
A Concrete Pomset (or a Labeled Poset) P is a quadruple
<V, <, 1, o>
where V is a set (of events), < is a partial order on V, ¥ is an alphabet (of actions),
and [ is a labeling function: V—X.

In this sequel we consider only finite concrete pomsets, i.e. V is finite or empty. But

note that the alphabet ¥ is never empty and may be even infinite; it is not required
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that each action from X should appear as a label of an event in V. The relevance of
the alphabet and its impact on synchronization will be illustrated later.

For a Concrete Pomset P its components are parametrized as Vp, <p, lp, alph(P). P
is sald to be autoconcurrent if for some incomparable events vy, vy In Vp it is the case
that Ip(v,)="p(v,y). Otherwise P is without autoconcurrency {or according to the ter-

minology in [Maz88], P has the self-dependence property).

Assume that U is an arbitrary downward closed subset of Vp, ie., u <pve U implies
u€U. Then, the concrete Pomset PU with Vpy=U and the other components inher-
ited from P is said to be a prefix of P. We write Q<P for "Q is a prefix of P”.

Concrete Pomsets P, R are dsomorphic iff there exists a bijection {:Vp— V5 which
respects ordering and labeling. P, R are said to be strictly isomorphic {potation
=p,,R) Ifl they are isomorphic and alph(P)=alph(R). Clearly, =p,, is an
equivalence relation; each =p,, equivalence class is said to be an Abstract Pomset,
whose representatives are the concrete Pomsets belonging to this class. [P] is the
notation for the Abstract Pomset represented by the Concrete Pomset P. For Abstract
Pomsets the property of being autoconcurrent is correctly defined through arbitrary
representatives. For Abstract Pomsets P and Q we say that P is a prefix of Q if there
exists a representative of P which is a prefix of some representative of Q. These
definitions are easily seen to be independent of the choice of representatives.
Assume that [P] <[Q]. If Q is without autoconcurrency then it has a unique prefix R
such that P=p,,,R. However if Q is autoconcurrent uniqueness cannot be guaranteed.
This situation is not relevant for the Pomset Model Theory as developed in |Maz88],
but must be taken into account when synchronization for more elaborate models ( say

for Behavior Structures) is considered.

Synchronization

Before we proceed to the definition let us emphasize two points. First, we consider
Synchronization as an operation upon finite or infinite sequence of operands. In
[Maz88] the infinite case is not mentioned explicitly though it emerges naturally {rom
the context. Second, we start with Synchronization of Concrete Pomsets which unlike
[M2z88] produces as a result a well-defined set of Concrete Pomsets. (In [Maz88],
Synchronization is defined directly on Abstract Pomsets.)
Definition. A sequence Emb

Emb=V, Vy, [y, Vo, fo,.. (¥)
is an embedding (of the sets V; into the set V via the embedding functions f;) if:

a) For each i, Jiis an injection of V; into V

b) V=U_ fi{(v)

We describe a construction, called concretization, which transforms an arbitrary

embedding (*) into an isomorphic embedding:
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ConcretEmb=V* V,° f,° Vo,° [f.°, ..
(i) V° consists of the following "concrete” codes for the elements of V:

code(v) =y vy, ¥, V3, ... Where

{Ui="i1 if vg fi( V)

vuEV; and [f(v;)=v, otherwise

(i) S (vi)=per code(fi( 7))
Finally, an embedding Emb is said to be concrete if Emb=ConcretEmb.

We are going to define the notion of Concrete Synchronized Embedding; this is a
sequence

PPy, f1,Py,fo,.. (*¥)
where P and P; are finite concrete pomsets <V, <, I, &>, <V,, <;, ;, £;>. and

the f; are embedding functions which fulfill the following conditions:

a) The sequence V, Vy, f|, Vs, fo,... is aconcrete embedding

b) The f; preserve labels: [(z)=(f;(2))

¢) The partial order < is inherited from the partial orders <;, i.e., p<g iff for some

sequence py, . . ., p, of elements of V,

p=p;, Pn=y¢ and for each j<n there is k such that f,,‘l(pj)s,,fk'l(pjﬂ)
d) 5= %

Now, with a sequence of concrete pomsets Py, P,,... associate the set (which may be
empty) of concrete pomsets Synch(P),Po,...), where PESynch(Py,Py,...), if for some
appropriate functions fy,f,,... <P,P,f1,Po,f5,...>> is a concrete synchronized embed-
ding. The sequence P;,P,,... is said to be synchronizable if Synch(P,,P,,...) is not
empty.

Remarks

(i) Let us illustrate the impact of the declared alphabet on synchronization. A concrete
pomset P is said to be empty if Vp=#. Empty concrete pomsets may still behave
differently depending on their alphabets. To make this point clear consider two con-
crete pomsets P), P, with alphabets E,, ¥, where P, is empty. Assume that P, is
also empty. Then P, P, are synchronizable and produce a unique concrete pomset
which is also empty; its alphabet is X,{_J £;. On the other hand assuming that P, is

not empty, there are two possibilities:
a) In P, there is an event with label from T,. Then P, P, are not synchronizable.

b)  Otherwise P;, P, are synchronizable and produce a unique pomset; it differs from
P, only through its alphabet which is X, J X,

(i1) If we restrict ourselves with concrete pomsets P, and P, without autoconcurrency,
then if they are synchrenizable there may be only one concrete pomset in their syn-

chronization. However in the general case many pomsets are possible; hence the syn-
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chronization of two pomsets may result in a set of pomsets. Synchronization becomes

nondeterministic.

Example: Synchronizing the pomsets
] .0 Q ., a
b I and J

we obtain two pomsets:

a .a a o]
/\ and j [
b b ¢
Fig. 2

(iii) It is easy to check that given a Concrete Synchronized Embedding (**) and an
arbitrary prefix P’ of P there exists a Concrete Synchronized Embedding

Pl: PII: f’l: P’?x fl2 (***)
such that for all 2:
a) PSP

b)  f'; is the restriction of f; to P/;

For any alphabet £ each set of Concrete Pomsets over the alphabet ¥ is a Concrete
Pomset Language over . The Concrete Pomset Languages L, L, are strictly iso-
motphic (notation L ==p,,,L,) iff for each concrete pomset in one of them there is a
strictly isomorphic concrete pomset in the other. Clearly =p,,, is an equivalence rela-
tion among Concrete Pomset Languages; each equivalence class is said to be an
Abstract Pomset Language, whose representatives are the Concrete Pomset
Languages. [L] is the notation for the Abstract Pomset Languages represented by the
Concrete Pomset Language L. An Abstract Pomset Language is said to be an Abstract
Pomset Process if it is prefix closed. Correspondingly a Concrete Pomset Language L
is said to be a Concrete Pomset Process iff [L] is an Abstract Pomset Process. These
notions of processes work quite well in the Pomset Model. However it is easy to see
that they do not capture a peculiarity which may bappen to be relevant in more
discriminating models. Namely, assume that the concrete pomset PEL has two

prefixes R, Q such that R=p,,,Q. We might be interested in a version of prefix clo-
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sure, which assures that both R and Q have their own counterpart in L. Considera-

tions of this sort become relevant in the Behavior Structures Model.

Finally, given a sequence of Concrete Pomset Languages Iy, Il,, ..
Synch(I1y, My,..) = D=y, {P : P is finite and PE Synch (P, Py,...) where P,€ll;}
with alph(IT)==|_J alph(I1;)
Important properties of synchronization are formulated and fully justified in [Maz88|
wrt abstract pomset languages. Let us emphasize the following facts which generalize

some of these properties for infinite sequences of Concrete Pomset Languages.

Claim 1. Synchronization of Concrete Pomset Languages has the following proper-
ties:

(i} It inherits the strict isomorphism relation =p,,,.

(ii) It inherits the property of being a process (i.e. of being a prefix closed language).

(iii) It is fully compositional.

In particular it follows that synchronization of Abstract Pomset Languages and
Processes is correctly defined via synchronization of Concrete Pomset Languages
which represent them. Note also, that the synchronization of Processes (unlike the
synchronization of languages in general) is never empty because it contains at least the

empty Pomset.

String Languages (Processes) and Step-Sequence Languages (Processes).

Let us briefly consider the other two linear time models (see Fig. 1) To this end in
addition to the Pomset version one has to deal with two more special versions which
arise when the underlying posets are in fact fosets (total ordered sets) or stosets (step
oriented set). A stoset P may be characterized as follows: P is the disjoint sum of
P, ..., P, (called steps) such that in each step F; the elements are pairwise incom-
parable, and for j<z there holds the implication: 2€P; and y€PF; imply y<z.

Accordingly, we have two more series of notions:

(i) Concerning Tosets: Concrete Tomset Languages (and Processes), Abstract Tomset

Languages (these are essentially string languages), Abstract Tomset Processes.

(i) Concerning Stosets: Concrete Stomset Languages (and Processes), Abstract Stom-

set Languages (these are step-sequence languages), Abstract Stomset Processes.

Hence there are three variants of linear time processes we have to deal with. For
each of them the basic equivalence between languages (respectively
=,0m> =tom, =atom) 15 DOthing but the strict isomorphism as defined above. However
for synchronization in the Toset and Stoset models things look different. The point is
that when applying the general definition of synchronization {for pomset processes to
tomset processes, the result will not necessarily be a tomset process. The same

remark holds for stomset processes. The direct definition for tomset processes is well
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known and quite simple; for stomset processes the direct definition is a bit more com-
plicated. Another (indirect) way to get the same result is to apply the general
definition for pomset processes and then to ccarsen the resulting pomset process P,
namely:

a) Tomset process: take all the linearizations of pomsets in P.

b)Stomset process: take all the step-linearizations of pomsets in P.

In this sequel we deal mainly with concrete pomsets, so we omit the adjective “con-

crete”.
1.2. Branching Time Processes: Automata and Multiautomata

A Milner Process over the action alphabet ¥ is a rooted transition diagram whose
edges are labeled by actions from X. In a Milner process a path from the root to a
node represents a sequential scenario - the string of actions labeling the edges leading
to the node. Thus the notion of a Milner process is a refinement of the notion of a
Tomset Process, since it represents a set of strings as well as a description of their
branching behavior. We use "Automaton” as synonym for "Milner Process”; at this
stage we consider automata as a particular case of multiautomata when only single

transitions are allowed.
A Concrete Multiautomaton M over I is given by:
) A set @ of states.

i)  An initial state ¢,€Q.

A
ili) Multitransitions of the form ¢—g¢’, where A is a finite multiset over Z.

A multiautomaton must satis{y the requirement:

A " .
iv) U g¢g—g¢' and if BCA is a partial multiset then there is some ¢ in @ such
B ,A-B
that ¢g—q — ¢’
In a multiautomaton a path from the root generates a stomset. Thus multiautomata

are related to stomset processes as automata are related to tomset processes.

A multiautomaton is called deterministic if for any state ¢ and any multiset A there is

A
at most one ¢’ such that g—g¢’

The notion of multiautomaton without autoconcurrency is defined in the same way as

the notion of multiautomalon except that in iii) "multiset” is replaced by “set”.

Isomorphisms of automata (multiautomata) are defined in an obvious way. What we
are interested in are strict isomorphisms which assume that the automata (multiauto-
mata) under consideration are isomorphic and have the same (declared) action-
alphabet.
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A relation R between the states @ of a multiautomaton M and the states Q' of
a multiautomaton M’ is an MM - bisimulation between M and M’ if:

i) gqoRq¢

A A
i) 1f gRq' and ¢—p then forsome p'in @' there hold : ¢’—p’ and pRp'.

A A
i) If gRq’ and ¢'—p’ then forsome p in @ there hold: ¢g—p and pRp’.

Multiautomata include automata as a special case when all the multitransitions are sim-
ple -- i.e. labeled by a singleton multiset. In this sense the well known notion of
bisimulation for automata [Mil] is included as a particular case of bisimulation for
multiautomata. Multiautomata (in particular - automata) M and M’ are MM-bisimular

- notation M==,.,, M’ - if there exists an MM-bisimulation between them.

The notion of M -bisimulation is defined by restricting a multiset A to a single action in

the definition of MM - bisimulation. It is clear that =, equivalence implies =,,.

Synchronization of Automata and Multiautomata,

Again we consider a sequence (perhaps infinite)

Ay Age (%)
If A; are concrete automata then there is a simple way to define an automaton
A==Synch(A,, Ag,..) with alph{A}={_J alph(A;}. This is done taking the Cartesian

product of their state sets with the [ollowing transition rules:
a

a
<Gy o - -y Qe —<g'y 9l oo, ¢l > Mf g —¢'y in each A, whose alpha-
bet contains a. Here we assume that for each k ¢, is a state in A, and that the "glo-

bal” initial state is the "vector” of the component initial states.

If the A; are multiautomata, the alphabet and the states of Synch(A;, A,,..) are
defined as above and the multitransition rules are as follows:
For a multiset S of actions let S; be the submultiset of S which contains all those

actions which are in alph(A;). Then the transition

s
<qy 92 - - -, Qs >—<q', 9'e, - .., q'g,...> is possible iff for each i with S;5£0
S,
the transition ¢;—¢q'; is in A;.

Remarks.

(i) Note that Synchy and Synchps have different meaning when applied to a sequence

of automata.
Al Ag, .

Using programming language jargon one would say that Synchy, operates on genuine

automata, whereas Synchysy operates on their conversions to multiautom ata.

(i) Formally we did not impose any restriction on neither the cardinality of the set of



368 A. Rabinovich, B.A. Trakhtenbrot | Behavior Structures and Nets

states of an automaton (multiautomaton) nor the branching degree (the cardinality of
arrows which exit {rom a state). Note, however, that up to bisimularity one can con-
sider only those states which are reachable from the initial state. Therefore if the
branching degree is finite {or even countable) one can deal with a countable set of
states. However, when synchronizing an infinite sequence of automata (multiauto-
mata) there may appear a uncountable set of reachable states even when for each of
the components the set of states is countable and the degree is finite. A simple way to
avoid non-desirable high cardinalities [or the set of states and for the branching degree

amounts to the following restriction:

Say that the sequence of processes

Al: AQ:"' (*)

has finite degree iff for each action a in alph=| ) alph(4;) there is only a finite
number of processes whose alphabet contains a.
It is an easy exercise to show that if (*) has finite degree and the A; are countable and
with finite or counlable branching degree then Synch(A,, A,,...) is bisimular to an
automaton(multiautomaton) with a countable set of states and with no more than
countable branching degree.
Claim 2 . Synchronization of Automata (Multiautomata) is fully compositional; it

inherits strict isomorphism and M-bisimulation (MM-bisimulation).

1.3. Configuration Structures, Behavior Structures, Event Structures

We are going to define the general notion of Concrete Behavior Structure (BS). First
we consider the particular case of BS-without autoconcurrency, and then we give the

general definition.

Below we use the following notations and terminology.

P<Q - Pis aprefix of Q.

P<AQ - P<Q and A is the multiset of labels in the "suffix” P Q.

P<<Q - Pis an immediate prefix of @, i.e. P- Q consists of one labeled event.
P<<®Q - P<<Q and a is the label in P- Q.

In all cases above when < (respectively <<) is replaced by <;,. (respectively

<<jgom) the intent is that P is isomorphic to a prefix (to an immediate prefix) in Q.

We have to consider also a special class of automata (call them standard automata)

which slightly generalize the notion of a tree-like automata, namely:
2)  Allstates (nodes) are reachable from the initial state (root).
b)  The diagram contains no oriented cycles.

¢) The diagram contains no parallel edges.
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Behavior Structures without autoconcurrency
A BS B without autoconcurrency over the alphabet ¥ is given by:
1) A standard automaton over &, designated by M(B) and called the Milnering of B.

2) A labeling of each node n in M(B) by a concrete pomset @ (designated in this

sequel as 7 or P,) without autoconcurrency which obeys the requirements:

a
(1) n—m in M(B) implies 7 << 0,0 7.

(i) If Q is an immediate prefix of 7, then there is a unique n such that
a
=..,m7 and n—m for some n. (This implies that the root (the initial state)

is labeled by the empty pomset.)

From the definition it follows that a BS without autoconcurrency has the following
important property.

The Unique embedding property. For any n<<m there is an unique isomorphism
between 7 and an immediate prefix of m. Moreover (due to the lack of autocon-
currency) for each n<<m there is induced an unique “embedding” ¢, ,:7—m of 7
onto a prefix of M. For these embeddings the following two nice properties hold.
First, for all m<n<k the diagrams (Fig. 3a) commute. Second, assuming that

¢k (F) Chom (), then n<<m and therefore there is an embedding ¢, -

Relying on the family of embeddings ¢,,, one can associate in a natural way with
each BS without autoconcurrency also a multiautormaton MM(B) which we call the
Multimilnering of B. Namely:

(1) The nodes of MM(B) are the same as the nodes of M(B).

(i) Consider nodes n<m; since ¢, ,(7) is a prefix in M for some multiset A, then

¢,,',,,(ﬁ)§’41"n". (Recall: A is the multiset of labels which appear in #i— ¢, .(7).)
A
A transition n—m appears in MM(B) iff all the events in i~ ¢, (%) are maxi-

mal in 7@ and hence incomparable with each other. (Intuitively, this means that

the actions from A may be performed simultaneously.)

We come to the general notion of a BS by removing the restriction that the pomsets
are not autoconcurrent. But then the unique embedding property would not be valid
any more, because if 7 is an autoconcurrent pomset there may be many embeddings
of ## onto unmediate prefixes in m. Hence, we cannot refer to the family of embed-
ding functions which are implicit in the case without autoconcurrency and which have

the nice properties mentioned above. The remedy is to require them by definition.

Definition. A Behavior Structure B is given by:
a) A standard automaton M(B) - the Milnering of B.

(b) A labeling that assigns to each node n a pomset P, (sometimes designated also as

7) over ©. Py is empty-(sometimes denoted by ).
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(¢) A setof embeddings ¢, , : P— Py for each pair n<m such that
(1) é, ., is aisomorphic injection of P, onto a prefix of P,. ( ¢, , is the iden-
tity).
(2) Every prefix Q of P, is obtained as ¢; ,(F;) for some k <n.

(3) All diagrams on Fig. 3a commute for m <n<k.

¢m,m1 ¢crm,0'm1 ¢m,k q)n,k
: P
» P

omy

h 4

f
m1

Fig. 3
(4) If ¢n,k(Pn)C¢m,k(Pm) then n<m.
The Multimilnering is defined as before (for BS without autoconcurrency).

We say that two Behavior Structures B and B’ are isomorphic if there exists the fol-
lowing family of isomorphisms:
a) An isomorphism ¢ between the diagrams of B and B’ (i.e. essentially isomor-

phism of automata).

b) For each node m€B an isomorphism f,, between the concrete pomsets P, and

P!, (m). Moreover the commutation of the diagram 3b is required.

Two isomorphic behavior structures are strictly isomorphic iff they have the same
action-alphabet. Note that the concrete pomsets which occur in a Behavior Structures
B inherit the alphabet of B.

Important warning: In order to deal appropriately with equivalences among BS and
with operations on BS (especially with synchronization ) we need to point explicitly on
the respective alphabets. In other words, when referring to a Behavior Structure B we
have in mind also alph(B).

Behavior Structures correlate with Pomset Processes as Milner Processes with Tom-
set Processes. A Behavior Structure exhibits a set of Pomsets (at the nodes), and it
describes how they fit together.
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Configuration Structures and the transformation CB

Definition: A (unlabeled) Configuration Structure (CS) is a collection B of partially

ordered sets (Posets) {X, <y} with the following properties:

i) Every X&B is finite

i) If X€B then every prefix of X is in B

i) If X,YEB and b€X(y Y then b determines the same prefix in X and Y (set and
order).

In particular - if Y,X€B and YCX then Y is a prefix of X and <y is the restriction

of <x. Thus B itself is partially ordered by the relation "Y' < X iff Y is a prefix of

X, hence it may be visualized as an acyclic directed graph whose nodes are identified

with the configurations X€B.

Each X€B is called a configuration of B.

Let E be | J {X| X€B}. E is called the set of events in B.

A labeled CSis a CS together with a set (of actions) ¥ and a labeling function
| E -%

For every X€B we denote by Py the corresponding pomset whereas alph(Py)=% (in
other words Py is over I). Each node X in the labeled CS is labeled by a pomset Py.

Clearly, the global labeling function induces two specific labelings in the acyclic graph
of the nodes. First, each node X is now labeled by a pomset Py where Vp =X and
alph( Py)=%.

Second, if X is an immediate prefix of Y, then the arrow from X to Y is labeled by

the action a {rom X which labels the only element in Y- X.

Summarizing we see that each LCS over £ may be visualized as a standard automaton
M over X, whose states are labeled by pomsets over L, where the following conditions

hold:

a
a) If in M there is a transition n—m then P, is an immediate prefix of P, and

P,— P, cousists of a single event labeled by a.

b) Assume @ is an immedijate prefix of P, and the event in P,— Q is labeled by a;

a
then there is a unique m such that m—n in M and P,,=Q.

The transformation CB: LCS—BS. Given an LCS C the transformation CB yields a
BS B, with the embedding ¢, ,, uniquely defined as [ollows: Let I(P,) and (P, ) be
the pomsets assigned to nodes n, m in C; then $, m identifies P, unambiguously as a

prefix of P,,.
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Event Structures and the transformation EC

A somewhat more compact description of an LCS (and indirectly also of a BS) is
through the set of events E and the order induced on it [W],[NPW].

Definition: An event structure (ES) is a triple <E, < ,#> where < is a finitary partial
order (every element has a finite prefix) and #(A) is the conflict predicate over P(E)

satisfying:
(1) If #(A) and for every a€A there is b€ B such that b >a, then #({B). (Mono-
tonicity).

(2) No singleton is in conflict.
Note that by (1) we have #(A) iff #(A) where A is the prefix determined by A.
A Labeled Event Structure {LES) is an ES with some labeling function ! : E — X.

Note : In [W80] different versions of the notion Event Structure are considered. In

this paper we refer only to the version above.

The transformation ES: ES—CS. Given an Event Structure E, we obtain a
Configuration Structure EC(E) as follows: take as configurations of EC(E) all conflict

free prefixes of E. In the labeled case the labels of the events are preserved.

Definition:

(i) A conflict predicate # is binary if there is some binary relation #, such that
#(A) iff a#t4b forsome a,b €4.

(ii) A CS B is coherent [NPW|, if for X,YERB either X[ J YER or {a,b g8 for
some ¢€X and bEY.

It is easy to check the lollowing:
Fact. # is binary on Eiff  EC(E) is coherent.
In [NPW]| only binary conflict is discussed.

Mutual Retrievability of BS, LCS, LES
One can consider more transformations between BS, LCS, LES.

Transformation CE: CS—ES. Given a Configuration Structure B, we obtain an Event
Structure CE(B) as follows: Let E be the set of events (E=_j {X |X€B}).
Define:

(i) e<fif e<yf forsome XEB.
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(i) #(A) if A¢B ,where A is the prefix determined by A in E.
(i) Finally -- CE(B)=< E, <,# >

Transformation BE: BS—LES. Given a Behavior Structure B, transformation BE
yields a Labeled Event Structure E as follows:

TFirst let us call a node of a BS prime if it has a unique immediate predecessor. From
the definition of BS it follows that a node n is prime iff it is labeled by a pomset P,
which has a maximal element.

Take as events of E all prime nodes of B and label an event n by the label of the max-
imal element in P,. The order of E is inherited from the order in B. A set of nodes

A is in conflict in E if it has no upper bound in B.

The following claim slightly extends a result in [NPW]. It shows that BS, LES and

LCS are retrievable from each other.

Claim 3: The following diagram commutes (see Fig. 4).

. isom
isom

Fig. 4

Proof: Follows directly from the definitions.

1.4. Coarsening and Refining Processes

It is quite evident what coarsening should mean for those kind of processes we have
considered. Let us look in more detail to the coarsening of the most discriminating

processes - Behavior Structures.
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Given a Behavior Structure B, it can be coarsened to a process P of lower level in

one of the following ways (where the alphabet of B is inkerited by P).
(a) Pom(B) is the collection of Pomsets in B (ignore the diagram).

(b) The string language Lin(B) is obtained by taking the strings of actions that lead
to nodes in B (note that such a string is always a linearization of the Pomset at

the node).

(¢) The Milnering M(B) is the automaton whose states are the nodes of B (ignore
the Pomsets). Together with the actions along the edges this turns the BS into a

transition diagram.

(d) The MultiMilnering MM(B) is the multiautomaton whose states are the nodes
of B and such that n i m if the events in P, — ¢, ,(P,) are maximal in P,
and A is the multiset of labels which decorate these events.

Example (see Fig 5). Consider the Behavior Structure B:

Its string language: Lin(B)= {a,ab,aa,ac,aab,aba,aac, aca,abac,acab,aabc,aach, aaca, acaa}.

Pom(B) and MM(B) are shown in Fig. 5.
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For processes Py, P, from models [,<ly say that P, is embeddable in P, iff there
exists a process Py’ of the same model {; as Py such that Py= P’ and P/’ is the result
of coarsening Pj. Accordingly, we consider the embedding relation Emb;;
Emby Py, Pa)=4; Py from model {; is embeddable in P, from model /,. Though

coarsening is always possible it is not immediately evident that embedding is always

possible. The following theorem shows that this is still the case.

Claim 4 {(Embedding Theorem). For arbitrary /; <!/, and given process Py [rom model
[, there exists a process Py from model {, such that Emb,1{2( Py, Py) holds.

Proof: As previously we confine here with the case when [y refers to behavior struc-
tures and omit the indexes {;, /5 because they are clear from the context. We consider
below the embeddings of Pomset Processes, Automata and Multiautomata.

a) For every Pomset Process P there is some Behavior Structure B such that
P=p,,,Pom(B).

Assume that for each p, ¢€P the sets of events V,, V, have empty intersection; oth-
erwise we would first replace P by some Q=p,,,P Tor which this condition holds. Let
us construct a labeled event structure E such that the corresponding BS will have the
desirable property.

FEuvents of E: For each pomset pEP put in E the events of p ordered and labeled exactly
as in p. For different pomsets p and ¢ of P the events of p are in binary conflict with
the events of ¢. Since P is prefix closed it follows that a pomset is in P iff it is iso-
morphic to a labeled configuration of E.

b) For every Automaton M there is some Behavior Structure B such that M is bisimu-
lar to M(B).

Construct a Behavior Structure B as follows:

Consider a tree like transition diagram T(M) which is bisimular to M; marking each
node of T(M) by the string from the root to this node we get a Behavior Structure B.
It is clear that M(B)=T(M); therefore M(B) is bisimular to M by the transitivity of

Milner Park bisimulation.

¢) For every Multiautomaton M there is some Behavior Structure B such that M is
bisimular to MM(B).

First we show how to construct for a multiautomaton without autoconcurrency M a
Behavior Structure without autoconcurrency B such that MM(B)==,,,, M.

An execution step-sequence o of the multiautomaton M has the form

T0A10142  * 9n_1ANY,
A,
where ¢; are states of M, ¢q is the initial state of M and ¢;_;—¢;.

Define B as follows:

As nodes of B take the execution sequences of M. As pomset which labels the node
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qoA19142 - ¢n-1A, ¢, take the corresponding stomsct it generates: namely, the
events labeled by A; are considered to precede the events labeled by A; for 1<j.
Note that this is a pomset without antoconcurrency.

Now let us define the order between the nodes. Node ¢ immediately precedes node 7

if one of the following conditions holds.

1) U=q0Alq1A2 S qn—lAnqn a.nd T‘_‘qOAlqlAQ e QnglAnqnaqn—H for some action

a.
2) o=qoA191As - @n.1Anqn and T==q0A 9 Ay - - - ¢, 1ALl ) aF, for some action
a
a such that ¢,—7,

[t is clear that for ¢ <7 the pomset p, assigned to ¢ is a prefix of the pomset p,
assigned to 7; moreover since this pomsets are without autoconcurrency there exists a

unique embedding of p, as a prefix of p,. This completes the definition of B.

The construction is illustrated by Fig. 6.

Fig. 6

We still have to check that there exists a MM bisimulation between MM(B) and M. It

is easy to see that the relation R,
R(eo,q) iff ¢ is the last state of the step sequence o,
1s such a bisimulation.

Finally, the validity ol the claim lor arbitrary multiautomata lollows from the valdity
for multiautomata without autoconcurrency and from two facts that are connected to

renaming of alphabets.

" A renaming ! of an action-alphabet T into an alphabet &’ is simply a mapping of T into
Y. Note that two different actions in £ may be mapped into one in &'. If N is a pro-
cess (automaton, BS, etc.) with alphabet X, the notation [(NN) is used for the process
one gets when the actions are everywhere renamed according to [,

Fact 1: If By=)s B, then for arbitrary renaming [, it is the case that [{ B )= {( Ba).

Fact 2: For every multiautomaton M there exists a multiautomaton without autocon-
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currency N and a relabeled version !(N) of N such that M=, [{N).

Claim 4 does not tell the full story. There is usually more than one candidate BS.
Sometimes the choice is very natural such as the choice above for automata, but in
general for Pomset Processes and Multiautomata a natural construction is not so obvi-

ous. We shall return to this topic later.

1.5. Equivalences among Behavior Structures

‘Warning: equivalent Processes are always assumed to have the same alphabet.
Definition: Let B and C be two Behavior Structures.

a) B and C are linear equivalent (B=,,, ') il Lin(B)=Lin(C).

b) B and C are Pomset equivalent { B=p,,, ) il Pom(B)=p,,,Pom(C).

c¢) B and C are M Bisimular ( B=4, C) if M(B) and M(C) are M - bisimular.

d) B and C are MM Bisimular (B= C) if MM(B) and MM(C) are MM - bisimu-

lar.

e) A BS-bisimulation between Behavior Structures B and C is a ternary relation

R(n,m,[) such that:
1) nisanodeof B, misanodeof Candfisan isomorphism between P, and P,,.

( n
(2) R(ee,8).
(3) It R(n,m,f) and n—n, then also R(n),my,f') for some m, with m—annl and for

some f'extending f.

(4) The dual requirement of (3) wrt B and C.

Fig. 7

B and C are BS Bisimular ( B=y;C) if there is a BS bisimulation between them.
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Claim 5 (Non retrievability of BS).
(1) =ps implies =py ,=p and =,,,.
(2) =ps is a strong refinement of the equivalences which arise via coarsing Behavior

Structures. It may happen that MM (B)==y, MM (B,) and Pom(B,)=Fom(B,)

but B, is not =ps equivalent to B,.

Proof: (1) From By;=pgB; it follows obviously that B,=,,, B,.

Let us show that B,=p¢B, implies Bi=pyBs. Given a BS bisimulation R(m,n,f)
between B, and B, consider the following relation EK(7n,m) between nodes of
MM(B,) and nodes of MM(B,):

E(m,n) iff there is f such that R(m,n,f).
Let us show that B is a MM - bisimulation between MM(B,) and MM(B,).
(i) Clearly, the initial nodes are related by R.

_ A
(ii) Assume that R(m,n) holds and that m—m for a multiset A={a,,...a;}. Then,
for some f R(m,n,f) holds and therefore there exist my, - - - m;_, such that
4y
m—m,
Gi41
my —my, fori=l, - - - k-2
L
my_ =M
Since R is a BS - bisimulation there exist ny, - - - mz_, and fy, - - - fi_,f such that
4
n—n,
6,41
n; —n;y for o= k-2
Gi
ng_ R
R(mi:ni:fi):
R(m,7.f)

Moreover, the following extensions hold:
Jivp extends f; for i==,...k~2
J extends f
T extends fi_,.

Therefore, by the definition of B it follows that B (#,7) holds. Since f is an isomor-

phism between the pomsets 7 and 7% and it maps a prefix m of m onto n it follows
A

that n—#%. This completes the proof of requirement (ii) from the definition of MM -

bisimulation (see 1.1). The dual requirement is proved in a similar way.

(2) Here is an example of two Behavior Structures B; and B, which are =,,, and

=,,n €quivalent but there is no BS - bisimulation between them.
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Fig. 8

1.8. Synchronization of Behavior Structures
This is the crucial operation and we aim at a careful and detailed definition.
We start with a sequence of Behavior Structures
By, By,... (%)

with typical notations m;, n;,... for the nodes of B; and #;, 7;,... for the pomset labels
of these nodes. The result B of the synchronization of the sequence (*) is defined in
the points (i)-(ii)-(iii) below.
(i) Nodes of B (typical notations: M, N, ...}
A node M is a concrete synchronized embedding (see 1.1):

M=<P, my, [, Mg, fq,...>

Next we have to describe the condition under which for a pair of nodes

h4=<P,77_21, fl: m‘Z: f2:"'> N=<Q: ﬁ]y g]y 7727 921-“>

it is the case that M immediately precedes N via a transition M—a>N and, when this
holds what is the function ¢y which embeds M into N. Before we proceed to these
important points of the definition let us choose more detailed notations for the pom-
sets m;, 7;, P, @, namely:
m= VY, <y 5 B > PV, < LT >
A=<V, <)y, U5 2 > Q=< V', < U B >

Actually we shall refer the elements of a pomset as labeled events, i.e. pairs <event,
label>.

Let us go on with the definition.

(ii) Immediate precedence in B

a
M—N iff there is aset [ of indices and an action a which satisfy two conditions:
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a
Condition 1. 1f j@I then m;=n; and egalph(B;) otherwise, if j€I then m;—n; and
e€alph(B;).
Before we formulate the other condition note that if €I there exists an embedding of
m; into 7;. We use the notation ¢; for this embedding and the notation <6, a; >
for the unique labeled event in #; which is notin ¢ ;( 7).

Condition 2. For each j€I the label o is just ¢ and the function g; is an extension of

the composition of ¢; and f;; for 7€1I the functions f; and g; coincide.

Now, we are going to describe the embedding function ¢,y (assumed that M
immediately precedes N); the general case follows via transitivity. Recall that since
M, N are identified with concrete synchronizing embeddings each element d€V is an
appropriate sequence and so is each element d'€ V' (see Section 1 for the definition

of concrete embeddings).
(1ii) Definition of the embedding function ¢ 4y:
Assume that M immediately precedes N then ¢ppn Is defined as follows. For
<ty by, ,...>EV define ¢ yn(<ty, by, ,..>)=<7q, Tg, ,...>E V' where
nd  if & 15 nd; otherwise
;=4 for gl
$i(t;) for del

-
(recall: ¢; embeds V; into V'; for i€1)

Now if M <N then there is a finite chain M, M,,... M, of nodes between M and N
such that M=M,;, M;<<M;,, and N==M,. Define ¢y as the composition of the
embeddings along this chain. It can be shown that ¢,y does not depend on the
choice of the chain between M and N. Moreover, relying on the fact that B; are
Behavior Structures, it is a routine task to check that the definition is correct, i.e., that

the embeddings behave properly.

The definition of Synchronization for Behavior Structure is completed.

Comment 1. Now, let us give some explanations which will help to see that the
definition is reasonable. Assume that M—D»N and let <6,a> be the unique labeled
event in N which is not covered by ¢4 n. Then, for the §; (j€T) defined earlier, the
following holds:

(1) 6;(8;)=5 and 6 (as well as §;) is labeled with the action a.

On the other hand, for each z€ V;,

(2) fi(z}eV, oun(fi(z))EV', ¢(2)EV', gi(bi(2))E V' and $yn(fi(2))=9:(8:(x))
Comment 2. As in the case of synchronization for automata (Section 1.2) it may hap-

pen that even starting with countable Behavior Structures, the construction described

above produces an uncountable set of nodes. Note that only nodes reachable from
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the root may be produced; that is because if some pomsets are synchronizable so are
their prefixes. Again as in the case for automata one can check that a countable set of
nodes will be produced if the finite degree condition holds: for each action a there is
only a finite set of B; for which a€alph(B;). In this case one can restrict oneself from
the very beginning to "finitary” nodes, that is with concrete synchronizing embeddings
<P, my, f1, mg, [3,...> where all the m; but finite numbers of them are roots of the
B;.
Now we are prepared to formulate the main theorems, which characterize the Syn-
chronization of Behavior Structures.

Claim 8. Synchronization of Behavior Structures is fully compositional.

Proof: omitted.

Claim 7 (Equivalence Inheritance Theorem).

Synchronization inherits all the equivalences (considered above) among

Behaviors Structures.

Proof: We show here that =,,,,, =y, =4, and =pg are congruences with respect to

synchronization of Behavior Structures.

(1) For =,,,, it is straightlorward.
(2) We consider now the equivalence ==s,,; the case of =, is essentially the same.

For simplicity, we consider only synchronization of two BS’s.

Assume that R is a MM-bisimulation between By, B/, and K, is a MM-bisimulation
between By, By

We use the notations

m,my, for nodes ol By,

m!, m!y,.. for nodes of B/

n,ny, for nodes of By,

n!, n'},.. for nodes of By

<P, m, f, n, [o> is a typical node of Synch(B,, By) and of MM (Synch(B, By))
<P m' f! n f/> is a typical node of Synch(B,, BY) and  of
MM (Synch( By, By"))

We define an MM-bisimulation R between Synch(B,, By) and Synch{B/', B,').
R{(<P, m, fy,n, fo>, <P, m!, f{, n, fo'>) iffl there following conditions hold:

(1) Ry(n,n')
(i) Ey(m,m')

It is straightforward, but tedious to check that R is a MM - bisimulation and we omit

this verification here.
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(3) Assume that R, is a BS-bisimulation between B), B/, and R, is a BS-bisimulation
between By, By

In addition to the notations above we use

6, for isomorphism between pomsets at nodes of By and By’

0, for isomorphism between pomsets at nodes of B, and By’

@ for isomorphism between pomsets at nodes of Synch(B;, Bsy) and Synch(B,, B,').
Now we define a BS-bisimulation R between Synch(B,, B,) and Synch{ B/, By).
R(<P, m, f1, n, o, <P',m', [, n, [J>), 0) ifl there are 8, and &, such that
the following conditions hold:

() Ry(n, n', 8))

(i) Ro{m, m!, 8y)

(iii) The following diagram commutes (see Fig. 9).

Pnl\ Aypml
f! o

Fig. 9

It is straightforward (but tedious) to check that R is BS - bisimulation and we omit

this verification here.

Claim 8 (Embedding Inheritance). The embedding relations are inherited by syn-

chronization.

Proof. Simplicity for we consider the synchronization of two operands. The embed-
ding of pomset processes is simple and is left as an exercise. The embeddings of mul-
tiautomata is similar (though much more tedious) to the embedding of automata. So
what we are going to check is the following (for automata M; and behavior structures
B;). Assume

M=y M(B,), M,=yM(B,) (1)
Then it should also hold
Synch (M, M o) =y M(Synch(B,, By)) (2)

First we note, that since synchronization of automata inherits M-bisimulation (see
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Claim 2) it follows from (1) that:
Synch (My, M) =y Synch (M (B,), M(B)) (3)
The comparison of (2) and (3) shows that what one actually has to check is
Synch (M (B)), M{Bs))=pM(Synch(B;, Bs)) (4)

To this end let us use the following notations for the nodes of the Behavior Structures
above and hence also lor the states of the respective automata:

my, ny,... nodes of B (states in M(B,;))

Mg, Ng,... nodes of By (states in M(By))

m, n,... nodes in B=y,; Synch(B, B,) (states in M(B))

Recall that actually m, n,... have the format
<P, my, [1, mg, [o>, <@, ny, g1, g q2>
for appropriate P, @, f;, g;,...
The states of Synch(M(B,), M(B,)) are pairs <m, my>, <n), ny>.
Recall that our goal is to prove (4). But the following relation R
<P, my, f1, mg, fo>R <my, moy,

between nodes of A=y, Synch(M(B,), M(By)) and N=,,, M (Synch(B,, By)) is a M-
def /

bisimulation.

Indeed, the initial nodes are refated by R. Note that for a tuple <m,, my> in A

there corresponds some tuple <P, my, f, my, f2> in N only if P, and P, are syn-

a
chronizable. Moreover in this case if <m;, my>—<nj, ny> then F, and P, are

synchronizable and there exists an extension @ of the pomset P and extensions g; of

J; such that <P, my, [, my, fo>— <@, ny, ¢y, ng, go> in Synch(B,, B,). There-

a
fore if there exists in A a transition <m;, my>—<ng, ny,> then in

a
M (Synch(B,, B,)) there exists a transition <P, myq, [1, ma, fo>—
<@, ny, g1, Ny, 92> to a state related by R with <<n), ng>. The dual condition

holds obviously.

2. Nets of Processes

2.1. Provisos and Terminology

Following the terminology of Petri Nets we use the term Net for a bipartite (not
necessary oriented) graph with nodes of two kinds, pictured respectively as circles and

boxes. The difference between the two kinds is relevant for the notion of subnet. A
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subgraph N/ of N is considered to be a subnet if the set of its nodes consists of some
circles and of all boxes which are adjacent to these circles. In particular an alomic sub-
net contains a single circle and all its neighboring boxes. This is to be contrasted with
an atomic bunch which contains a single box and all its neighboring circles. For techn-
ical reasons, that are not essential at this stage but may be convenient in applications
to Data Flow and Petri Nets, the following restrictions upon nets are assumed from
now on:
Lack of small loops: no atomic subnet may contain a loop.
Among the oriented nets, we first mention those which obey the additional restriction:
a)  There are no oriented loops in the net. Hence, the set of all nodes is partially
ordered.
For such nets, in addition to the partial order relation < among nodes, we also
consider two more binary relations:

(1) The binary conflict relation #

(2) The binary concurrency relation co

Since z co y is defined as the negation of "z <y or az#y” it remains to explain
only what z#y means.

The definition of conflict:

(a) boz,#box, are in (direct!) conflict in the situation

box1

box2

Fig. 10

b} if b #by and b;<<b’'; and b,<b', then b/ #b/,.
1 2

Now, an occurrence Net is an Oriented Net to which, in addition to restriction a) the

following restrictions also apply:

b)  Finilary partial order, i.e. each node may have only a finite number of box prede-

cessors. Hence there exist initial nodes (with no predecessors).

c)  All the initial nodes are circles

d} Each circle has at most one input arrow (an oriented arc from a neighboring box,
directed to this circle).
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Given an occurrence net H one associates with it an event structure Ev(H) with binary

conflict relation # as follows:
(1) FEwvents: the boxes of H.

(2) Partial order, conflict and concurrency - inherited from H.

Appropriately labeled nets provide a useful pictorial representation for processes.
Some of them, called also flow graphs, reflect the way complex processes are assem-
bled from “elementary” ones. For example, an elementary process (agent) P over the
action alphabet {a,b,c} is pictured as a circle labeled by P, [rom which there emerge

three lines to boxes, each labeled with one of the alphabet actions (see Fig. 11).

Fig. 11

Accordingly, when a set (which may be infinite) of agents are put together to evolve
concurrently, the resulting system may be pictured as a net in which equally labeled

boxes are identified. (Compare two nets from Fig. 11 with the net of Fig. 12.)

Fig. 12
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On the other hand Labeled Occurrence Nets, through the interpretation Ev mentioned

above, represent Labeled Event Structures and ultimately Behavior Structures as well.

In contrast with Flow Graphs, which reflect the spacial structure of processes,

Occurrence Nets record the temporal and causal structure of processes.

Nets of Processes

Fix some kind ) of processes (Automata, BS, etc. ...). A Net of l-processes is a Net IV

with an appropriate labeling ¢, l.e. formally a pair </NV,¢ >, where

(1)

¢ assigns to each box & an action and different boxes get different labels. In this

way each atomic subnet of N becomes qualified, i.e. associated with an action

alphabet.

(2) ¢ assign to each circle ¢ and hence to each atomic subnet a l-process ¢(c) with
the only restriction that the alphabet of ¢(¢) coincides with the alphabet of the
atomic subnet "around” ¢.

Notes

a)

b)

By abuse of notation we shall not distinguish the boxes in </N,¢> and their
labels. Due to (1) this is not dangerous.

The only situation when different circles ¢y, ¢, may be equally labeled by ¢ is
illustrated in the Fig. 13, where the atomic nets induced by ¢y, ¢ have the same

box neighbours.

In the literature about nets the circles are called places, whereas the boxes are

called transitions or events (for Petri Nets); we use also - ports.

Fig. 13

Finally, for the semantics (behavior) of a net <N, ¢ > one declares the process

(N, ¢)=y; Synch(¢(p) : p is a place in N)

where Synch is parametrized wrt the process model under consideration (Automata,

Multiautomata, Pomset Processes, Behavior Structures).
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2.2. Examples of Nets over Deterministic Automata

Recall that an automaton is called deterministic iff each node has at most one transi-

tion arrow with a given label a.
Data Flow Nets (DFN)

A DFN is a net over deterministic automata whose actions, called also communications
are described by pairs <c, v>>; here ¢ is the name of a channel on which the com-
munication take place and v is the value of a message which is passed through this
channel. In principle communications may be dealt as with ordinary actions and used
as labels of ports. But introducing the special notation is suggesstive of a more compact
and convenient representation of the flow graph. When drawing an agent the ports get
labels only from the alphabet CH of channels.

Nets over C/E automata.

C/E automata (C/E elementary agents) have the following simple form. (The relation
of C/E automata to C/E Petri Nets is discussed in Appendix.)

(1) An eclementary agent has only two states called full and empty.

(2) Actions are either input actions or output actions.

(3) An input action transforms the automaton from the empty state to the full
state; an output action transforms the automaton from the [ull state to the

empty state.

a b1

93

Fig. 14

Graphically a C/E automaton is represented by a circle and its ports by boxes. There
are arcs from the input ports of the automaton to the circle and arcs from the circle to

the output ports. The full state is represented by drawing a dot in the circle.
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2.3. Robust BS-embeddings

Assume a given assortment As={A;} of multiautomata agents and consider all possible
nets over As, i.e. all nets <N, ¥> in which ¥(p)€As or ¥(p) is result of 1-1 renam-
ing of actions for a process QEAs. According to the definition above each such net
<N, ¥> has a multiautomaton semantics MM(N, ¥). A BS - semantics Sem(N, )

for these nets is said to be robust if the following two conditions hold:
(a) (Consistency) MM(Sem( N, ¥))=——=yyMM(N, ¥ ).

(b) (Compositionality) Assume N is decomposed into disjoint subnets Ny, Ny, - - - ;
then Sem(N)=Synch(Sem (N}, ¥)), Sem(Nys),...), where the ¢; are the

respective restrictions of ¥ .

If these conditions hold we also say that the multiautomaton semantics MM( N, ¥) is
robustly embedded in the BS - semantics Sem( NV, ).

Claim 1:
(1) A robust BS - embedding is always possible.

(ii) If the agents in As are automata then the robust BS - embedding is unique (up to

BS - bisimulation).

Proof: As a direct consequence of the Embedding Inheritance Theorem, and the Full
Compositionality Theorem, (Claims 7,8 Section 1) in order to establish a robust BS-
semantics for nets over a given assortment As={A;} of agents one should proceed as

follows:

a)  Consistenl embedding of agents: Assign to each A;€As a Behavioral Structure B;
such that MM B)) =y A;.

This is possible according to the Embedding Theorem (claim 3 of Section 1). More-

over if A is an automaton then there is a unique (up to BS-bisimulation) Behavior

Structure By which MM-consistently embeds A. Namely, consider a tree-like transi-

tion diagram T(A) which is bisimular to A; marking each node of T(A) by the string

from the root to this node we get the unique Behavior Structure B,.

b)  Compositional extending on Nets:
Sem(N, $)=Synchps(y'(p): pEN)

where 9/(p) is a BS in which the agent (p) was embedded consistently accord-
ing to a).

Warning. In this sequel when we deal with nets <N, ¥)> over over automata under
BS(V, ¥) we have in mind just the unique robust BS-semantics Sem (N, %) as defined
above. But note that in the case of Nets over multiautomata there may be many

robust BS-semantics (see 3.2 below).
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2.4. Trace Semantics

Now let us return to nets over arbitrary automata. A pomset behavior of such a net
may be obtained lrom its linear behavior in the same way as Mazurkiewicz |Maz84]

obtained it in the case of Condition Event nets.

To this end first we define a dependency relation on the set of ports of a net N as fol-
lows:
Given an automaton A, we introduce a dependency relation between its ports, namely
all ports are considered to be pairwise dependent.
Further, the dependency relation for the net /N is defined to be the union of the
dependency relations of its components.
Now, for a given dependency relation D CE XS and string s over £ a pomset, Pp(s)
is defined inductively as follows.
(1) Pp(e) is the empty pomset over X .
(2) For s€Z®, and a€YX the pomset Pp(s.e) is obtained from the pomset
Pp(s)=<E, <, > by the following procedure:
(a) Add to E, anew event e,,, labeled by a.

(b) For each element e of E, labeled by a port which depends on a let e <eyy;
finally, let <, , be the transitive closure of <, | J < .

Let <N, ¥> be a net with dependency relation D and linear behavior L. Then, by

definition, the trace semantics Trace(N, ¥) of the net <N, %> is | J Pp(s) .
sel

Let BS(N, ¥) be the (unique) robust BS-semantics of the net under consideration.
The following claim shows that despite the fact that Trace(/N, ¥) and BS(N, ¥) are
defined in quite different ways they are consistent with each other.

Claim 2: Trace( N, ¥)=Pom(BS(N, ¢)).

Proof. Recall that BS(N, ) is obtained by embedding for each p the automaton A,
(assigned to the place p) into a unique (up to BS-bisimulation) Behavior Structure B,
which is MM-bisimular to A,, and then taking the synchronization of all B,:

B=Synch(B, : p€N)
In accordance with the Embedding Inheritance Theorem (Claim 8) it holds

Pom(B)=Synchp,,(Pom(B,) : pEN). But since the A, are automata, it follows that

Pom(B,) consists of strings (tomsets). And the claim now follows from the following

Fact. Assume that s,, s, -+ - are strings over alphabets ¥, respectively. Then

Sy“ChPam(sh 32:"'):LJ PD(s)
€L

where L =Synchy,meer( 51, 52,--) and the dependency relation D is |} Z;X%;
i
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2.5. Occurrence Semantics

Here we propose an occurrence net semantics for nets over automata, via a straight-
forward generalization of the occurrence net semantics for Petri Nets [NPW]. We
assign to a net <IV, ¥>> over automata an occurrence net N°° axiomatically and an
occurrence net N in an operational way. We prove that N**=N°?. Moreover, it
turns out that the Labeled Event Structure associated with them (as explained in Sec-
tion 2.1) is nothing but a description of the (unique!) robust BS - semantics. We use
the definitions of occurrence nets and of the relations < , #, and co on as defined
above in 2.1. We use also some Petri Net terminology according to which in a bunch
of a box (event), a place is called precondition if it precedes the box and postcondition

otherwise.

2.5.1. The Axiomatic Approach

Let <N, ¢¥>> be a net over automata . We are looking for an occurrence net N°®*
with places labeled by states of these automata and ports labeled by labels of ports in
<N, ¥>. The net N°* should satisfy the axioms A1-A3.

(A1) Assume that a port e€N°? is labeled by ¢ where in </V,%> the bunch of a is

labeled by the automata A, . . ., A;; then for the bunch of e in N%,
(¥) e has k preconditions labeled py,ps, ...,p and k postconditions
a
p'1,p's, ..., p's. Here for each i p; and p;’ are states of A; and p;—p'; in A;

(see Fig. 15).

(A2)To each place p€ <<V, ¥>> there corresponds in N* a place labeled with the ini-
tial state of ¥(p); these are the initial places in N%.

(A3)Assume that some k places pl|,ply,...ply are in co relation and that they are
labeled by states py,py, .. . ,pp of Ay, ..., A,. Assume also that a is a port in
<N, > whose bunch uses just these labels A;, ..., A;. Then for each tuple
of states p'y,p'y, . . .,p'y of Ay, ..., A; such that a leads lrom p; to p’; in A;
there is in N° exactly one bunch with port labeled by a with the preconditions

ply,ply,...ply and postconditions labeled p’|,p's, . . ., p' (see Fig. 15).
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a .
Py — L n 4

Fig. 15

2.5.2. The Operational Approach

Now we assign operationally to the net <N, ¥/> over automata an occurrence net

N° . First note that a linear behavior of <N, 1> is best given by a sequence of the

form o =MgaoM,a,..M,a,M, | where:

(1) M; for i<n+1is 2 global state of </N, ¥>, Le. afunction which assigns to each
place pl in <N, > astate of the automaton ¥(pl)

(2) a; are ports of N ;

{8) M, is the initial global state of N,

(4)

a; transforms the global state M; to the state M), i.e. for each place pl in the
a

bunch of a;, the transition /\/f,‘(pl)—‘vM,-H(pl) may be performed by the automa-
ton ¥(pl).
The construction of N heavily relies on an appropriate equivalence —; between linear
behaviors of NV, to be defined below. Namely, the ports of N? are identified with the

= equivalence classes.

First we define on linear behaviors three relations = = = as lollows.
2’ 3
We say that o =r if:
1
(1) o=Myag..M;_ya;_ \M;a;M; .. M, a, M, ., and

T=Mypag.. M;_1a;M";a; M .. Mpa, M, | and i<n
(2) there is no automaton which contains both ports a; ; and ¢;. (e;_; and a; do not

belong to an atomic subnet of <N, ¥>).
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We say that 0‘=2=T if

(1) o=Mgag...M,_1a,_1M,a,M,,, and r=Mgaq..M,_ya,M',
(2) there is no automaton which contains both a,_; and a,

(3) M', and M, coincide in the bunch of a,

Finally the relation =is defined to be the reflexive and transitive closure of 1=U =
3
Remark: if o=MgagM .. M,a,M, ., and r=Mga'oM'|. . M' a' M., are =

equivalent then:

(i) a,=a'y

(i) each p/ in the bunch of a, has the same local state in both M,,; and M

(Mu(ply=M'c . ((p!)); it has also the same local state in both M, and M,

(M, (pl)=M"i(p1)).

Let us return to the construction of N.

Ports of N°: For each o =MgagM ..M, a, M, there is a port associated with ¢ /=;.

This port is labeled a,. This is a correct definition due to Remark1 above.

Places: With the equivalence class of o=MgaoM ..M, a, M, , , where in <N, >
a, is the common port of A4;,4;, .. ., A, we associate a set Pl(c) of k places

labeled by the local states of A;,4;,, - . . ,4; in the global state M, ;. These places are

the postconditions of the port assigned to o /=;.

To each place p€ <N, ¢> there corresponds in N a place labeled with the initial

state of ¥(p); these are the initial places in V%,

To accomplish the definition of N°? we have still to explain when a place p in N7 is a

precondition of a port e. To this end assume that o =MgaghM,...a,_ M e, M, .

r=MoagM,.. M, ,a,_ M, , and that e,_,,a, are ports of an automaton Ay; then the

place of A, associated with 7 will be a precondition of the port assigned to o. If

o =Myay,M, then the preconditions of the port assigned to ¢ are those initial places of

the N which correspond to the automata containing aq.

Example: Consider the following net over C/E automata.

Fig. 16

the assigned occurrence net is in Fig 17.
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I = full temply
2-emply 2full . 2ampty

3 - full >emplY 4-ampty
4-amply O4-emply
5 -gmpty QO &-full

Fig. 17

Claim 3:
(1) The net N° constructed in the above procedure is an occurrence net.
(2) N°° is the unique occurrence net which satisfies the axiomatic definition.

Proof. Omited.

Below, we use for the Labeled Event Structure induced by N° and also for the
corresponding Behavior Structure the notation Occ( NV, ¥)

Claim 4 (Consistency).
For each net <N, ¥> over automata: BS{N, ¥)==pc Occ(N, ).

Prool. Postponed alter Claim 5 below.

2.6. Retrievability

Let us consider in more detail nets over automata. Note, that the uniqueness of
robust BS-semantics for such nets (in the sense of claim 1) does not mean that nets
with the same MM-semantics have also the same (up to bisimulation) BS-semantics.
Recall also the Non-Retrievability Theorem (Claim 5 Section 1.5). Nevertheless, in
some cases the full BS-semantics of a net may be still recovered from some partial

information as claimed in the following

Claim 5 :

Let <Ny, ¥,> and <N,, > be nets over automata and B,, B, their robust BS-

semantics, and let B be an arbitrary BS. Then

(1) If Pom(B1)=p,mPom(B,) and M(B)=p M (B;) then By=p¢B,.

(2) If Nyand N, are nets over deterministic automata and Pom(B,))=p,,, Pom(B,)
then B,=pgsB,.

(3) € Pom(B)=p,n,Pom(B)) and M(B)=pM(B,} then B=g¢B,.
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Proof. It is clear that (3) implies (1). Recall that the string language of a Behavior
Structure is equal to the linearization of its pomset process, and note that two deter-
ministic Behavior Structures with the same string languages are M-equivalent. Hence,
(1) implies (2). Below we give for (3) a proof which only relies on the following facts.
Fact 1. Assume that Behavior Structures (multiautomata or automata) B,, By are M-
bisimular. Then there exists also a special M-bisimulation R between them for which
the following holds:

If pRq then there exists in B; a path from the root to p and there exists in By a

path from its root to g, such that the same strings appear along these paths.
The next two facts are about pomsets in Pom(B)).
Fact 2. If two pomsets in Pom(B,) have a common string in their linearization then
they are isomorphic.
Fact 3. In Pom(B,) all the pomsets are not autoconcurrent.
We need two more facts about autoconcurrency:
Fact 4. For two pomsets without autoconcurrency there exist at most one isomor-
phism between them.
Fact 5. Assume that a M-bisimulation R between two Behavior Structures B, B,
without autoconcurrency relates only nodes with isomorphic pomsets. Then
By=psB;.
Having in mind this facts the proof proceeds as follows: Let R be a M-bisimulation
between B and BS(/V, ¥). By Fact 1 we may assume that if m, n are related by R
then they have paths from their roots which are labeled by the same string.
Therefore by Fact 2 and the assumption of the claim under consideration the pomsets
at the related nodes are isomorphic. Note that BS(N, ¢) is not autoconcurrent.
Hence by assumption of the claim the Behavior Structure B is not autoconcurrent.
Therefore the M-bisimulation R between B and BS(/N, %) satisfies the assumptions of

Fact 5. And finally, by Fact 5, the Behavior Structures B and BS(N, ) should be
BS-bisimular.

Proof of Claim { (Sketch).
First we mention without proof the following facts.

Fact 1. The automaton M(N, ¢) is M-bisimular to the Milnering of the Behavior
Structure Occ(N, ).

Fact 2. Pom(Occ(N, ¥)=—=,,, Trace(N, ¥).

On the other hand, according to the Embedding Inheritance Theorem (Claim 8, Sec-
tion 1) the automata M(N, ) is M-bisimular to the Milnering of BS(V, ). Hence,
Fact 3. Occ(N, ) and BS(N, 1) are M-bisimular.

Now, by Claim 2 (this section) Pom(BS(N, ¥))=p,, Trace( N, 1). Hence,
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Fact 4. Occ(N, 9) and BS(N, 9) are Pomset equivalent.
Finally, from Claim 5(3) and facts 3-4 above it follows that Occ(N, ¥)=psBS(N, ).

Comment. The semantics BS(N, ¢) is defined in a compositional way, whereas the
semantics Occ(V, ¢) is defined in an operational way. Reviewing the proof of their
consistency one could observe that the proof relies on pure operational arguments
(for example Facts 1-2) or pure compositional arguments {for example Claim 5) and
on the Claim 2, which is main bridge where both operational and compositional argu-

ments are relevant.

3. Appendix (Petri Nets)

Petri Nets present the essence of nondeterminism, asynchrony and concurrency in an
illuminating pictorial way. A Petri Net N has places (pictured as circles) in which
tokens may be located, the current global state of N being just the Cartesian product
of its current local states(i.e. of the numbers of tokens in the places). N has also fran-
sitions (pictured as boxes) which may fire according to specific rules. Though there
exists a well elaborated and established system of notations and terminology for Petri
Nets |BD|, [GR|, we mention below only the pure graph component N of the Petri
Net. So, in fact referring to a Petri Net /N, one has in mind also that to each place
pEN there is assigned a quadruple, called the kind of p:

m(p) - the number of input arrows (from boxes to this place)

n(p) - the number of output arrows (from the place to boxes)

k{p) - the initial number of tokens in the place.

r(p) - the capacity of the place (may be infinite).

The firings change the global states via lowing of tokens among places and in this way
one can assoclate with N an automaton M(N) (when only firing of single transitions is
allowed) or a multiautomaton MM(N) (when simultaneous firing of multisets of tran-

sitions is allowed).

Whereas M(N) and MM(N) reflect the interleaving” aspects of the behavior of N ,
much effort went (and is going) into describing causal semantics. According to Petri’s
view a run of a process should be a partial ordered multiset (pomset} of atomic
actions, reflecting the causal relation between action occurrences.

In general each place in a Petri Net appears with a preassigned capacity - the maximal
number of tokens it may contain. Actually, in Petri's original model only capacity 1
places were allowed; such nets are usually called C/E Petri nets.

Different definitions of causal semantics were considered in the theory of Petri Nets.

For C/E Petri Nets, in addition to Multiautomaton semantics, Pomset Semantics was
also proposed: by Petri [Petri] in terms of causal nets and by Mazurkiewicz |Maz84]
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in terms of Trace processes. Event Structure semantics was provided in [NPW] and
Labeled Configuration Semantics (Prefix Structure Semantics) in [Maz84], where

"Prefix Structure” is used as synonym for "Labeled Configuration Structure”.

Let N be a C/E Petri net. We use the notations: PS(/N) - Prefix Structure seman-
tics; NPW(N) - Event Structure semantics; Mirace(/N) - the Mazurkiewicz Trace

semantics; P(/V) - Petri’s pomset semantics.

For nets N whose places have infinite capacity, a pomset semantics was developed in
the Institute GMD: (BD], |[GR|. We use for it the notation GMD(N).

Surprisingly, the following questions about Petri Nets were never explicitly considered.

Question 1: (About C/E Petri nets) Are the causal semantics listed above consistent with

each other?

Question 2:(Aboul all kinds of Petri nets) Are the causal semantics listed above modular?
More precisely, is it the case that whenever a net N is transformed into N; through the
replacement of a subnet N' of N by a net N" the following holds:

N'=N" implies N=,,, N, ?

sem

3.1. Mazurkiewicz’s modular approach to C/E Nets

This approach was originally elaborated in [Maz84] for C/E Petri Nets and amounts to
a specific transformation of C/E Petri Nets into Nets over C/E automata (see Section
2.2). To this end with each possible kind <m, n, k, 1> of a place Mazurkiewicz asso-
ciates a C/E automaton P(m, n, k, 1) . The Mazurkiewicz Transform of a C/E Petri
net N is the net <N, ¢¥y>> over automata with the same bypartite graph as N; its
Jabeling function v assigns to each place a C/E automaton which fits the kind of the
place in the original Petri Net. The following fact {which is not mentioned explicitly in
[Maz84]) holds:

Claim 1. The multiautomaton MM (N) induced (operationally) by the token game
for a C/E Petri Net N is MM-bisimular to the multiautomaton MM (N, ¢¥) which is
defined compositionally (via synchronization) for the Mazurkiewicz Transform. More-
over, Mazurkiewicz Transform is the unique assignment of the multiautomata (to

kinds) for which each C/E Petri Net and the corresponding net over automata are
MM-bisimular.

Note that Nets over C/E automata make sense for arbitrary topology, including such
situations which usually are not regarded as legal for Petri Nets. For example an
atomic net is deemed "illegal” because in the token game each box is assumed to have
at least one precondition and one postcondition. In other words, MM (N, ¢) gives a

conservative extension of the operational token game for arbitrary topology.

A reasonable assumption is that whatever the causal semantics for a C/E Petri net N
might be, it should be consistent with the multiautomaton semantics produced by the

token game and, hence, also with MM (N, ¢), where <N, ¢ > is the corresponding
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Mazurkiewicz Transform. Finally, since in this case the agents in </V, ¢> happen to
be automata, consistency means that the unique robust BS-semantics should be con-

sidered.

On the other hand, for the net <N, ¢ > over C/E automata one can also consider the
semantics Trace(N, ¢) and Occ(NN, ¢) as defined in Sections 2.6. They may be easily
shown to coincide with Mtrace(N) and NPW(N) for the original C/E Petri Nets.
Here is our main result for C/E nets {from which in particular there follow affirmative

answers on Questions 1,2.

Claim 2. For C/E Nets all the semantics above are consistent with each other and
retrievable from BS semantics.

Formally: Let N be a C/E Petri Net and <N, ¢ > the corresponding net of automata.
Then

(1) BS(N, ¢)=psPS(N)=pgNPW(N)
(2) Pom(BS(N, ¢))=p,mMtrace(N)=p,n P(IN).

Remarks: NPW(N) and P(N) were originally described in an operational way and
were defined only for a restricted class of C/E nets. Two of the restrictions are: (1)
the net has no external ports, that is each port is an input port for at least one place
and an output port for at least one place; (2) the net should be "contact free”. BS, PS
and Mtrace semantics are given denotationally and do not impose restrictions on the

topology and the initial state of the nets.

The fact that in the case under consideration robust semantics is unique, is a substan-
tial message. Namely, there is not by chance that different definitions of causal seman-
tics turned out to be equivalent (or consistent); as a matter of fact they reflect the
genuine and unique causal semantics for C/E Petri nets. As we shall see below the
situation 1s quite different for the more general case of Petri Nets, that are known as
Place Transition (P/T) nets.

3.2. P/T Nets

[n a P/T Petri net places with arbitrary capacities are allowed. Though the token game
becomes a bit more complicated then in the particular case of C/E Petri nets, it still
yields a well-defined multiautomaton. In order to generalize Mazurkiewicz’s approach
to P/T Petri nets one has to start with an appropriate assignment of multiautomata to
kinds, along the lines it was done for C/E Petri nets. But the crucial difference is that
at this time the P/T assortment counsists of P/T Multiautomata, which are not
necessarily equivalent to automata. (see the definition of P(m, n, &k, r) below).
Further, Mazurkiewicz Transforms are defined as in the case of C/E Petri net and the

analogue of Claim 1 holds:
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Claim 1. The multiautomaton MM (N) induced (operationally) by the token game
for P/T Petri Net N is MM-bisimular to the multiautomaton MM(N, ¢) which is
defined compositionally (via synchronization) through the corresponding P/T multiau-
tomata P(m, n, k, r) . Moreover, there is a unique assignment of multiautomata to
kinds, for which Petri Nets and the corresponding nets over automata are MM-

bisimular.

Definition of the P/T multiautomata (agent) P(m, n, k, r) which corresponds to the
kind <m, n, k, r> of a place.

(1) A P/T agent with capacity r has states 0,1,2...r.

(2) The set of actions L of the agent consists of input actions ©™ and output

actions £,

(3) A multiset S of actions leads from a state m to a state £ if the number of output
actions in S does not exceed m and if k£ is computed according to the token game,;
in the case of finite capacity r, the sum of m with number of input actions in §
should not exceed the capacity r.

Formally: Sy #(2°)|<m and k=m- |SM) #(Z) [+|SM #(Z7)| and
m+ IS B(5") <.

An agent of capacity r with m input actions, n output actions and initial state £ will be

denoted by P(m;n;k;r).

(hl
GG

(C]

Fig. 18

Graphically the agent is represented by a circle and its ports by boxes. There are arcs
from the input ports of the agent to its circle and arcs from the circle to its output
ports. The state k is represented by drawing k dots(tokens) in the circle.

Let us address now the issue of causal behavior for P/T Petri nets; here the situation
looks quite different from the C/E case. Consider for example a P/T multiautomaton
P{m;n;k;00). In contrast to the case C/E where an agent is a C/E automaton, there
may be many BS which consistently embed a given P(m;n;k;00) ; these BS’s may
even be not Pomset equivalent. And we are faced with the problem: what BS embed-
ding should be provided for P(m;n;k;00)? No matter what embedding of
P(m;n;k;o00) into BS will be chosen the BS semantics for nets will be robust. Hence,

to choose BS semantics for P/T agents we must take into account considerations
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which are beyond the multiautomaton description of agent. In particular for a special
class of P/T Petri nets (whose places have only infinite capacity) Best and Deviller
[BD] proposed two ways how to define Pomset Semantics, an axiomatical one (via
causal nets) and an operational one; they proved that both these ways provide the

same Pomset Semantics, which we designated as GMD (N).

We provide a robust BS embedding for the P/T agents which will be consistent with
the semantics proposed by Best and Deviller (GMD-semantics) and extends it to nets
of arbitrary topology. Moreover this is the unique robust BS embedding which is
consistent with GMD-semantics. The consistency between ours and GMD-semantics
implies modularity for the latter.

Claim 3: There is a unique robust BS embedding of P/T agents with infinite capacity,

which is consistent with GMD-semantics . ({this embedding of P(m;n;k;c0) is
denoted by B(m;n;k,o0) ).

Below is depicted the Event Structure which corresponds to B(2,2,k,00) with input
ports a,b and output ports c,d.

5 daatg b @ b
¢ee_c -AJ\J\, A

ktimes k times ©d

Fig. 19

Its events are of three kinds: (1) minimal but not maximal; there are infinitely many
such events and they are labeled by a and b and there is no conflict between them;
each such event is followed by two event of the second kind labeled by ¢ and d. (2)
maximal but not minimal, labeled by ¢ and d ; for every such event e there is exactly
one event less than e. Two such eveunts are in conflict if there is an event of kind (1)
less then both of them. (3) events which are maximal and minimal; they are labeled
by ¢ and d; there are k labeled by ¢ and k labeled by d and each k+ 1 of these events

are in conflict.

Capacity oriented semantics: Let [V be a P/T Petri net and let p be one of its places.
The used capacity of p is the maximal number ¢ of tokens which may ocecur in p in
any play of the token game. It may happen that the used capacity ¢ of p is strictly less
then the capacity of p. The P/T Petri net N/ obtained from N by assigning to the
place p any capacity > is easily shown to be MM equivalent to N. A robust BS-
semantics is called capacity oriented if it is invariant under these transformations. For-

mally:
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A robust BS semantics for nets over P/T agents is said to be capacity oriented iff
the following holds: Assume the P/T Petri net Ny is obtained from the P/T Petri
net N, by only changing the original capacity assignment by capacities > the used
capacities. Then BS(N,)=gsBS(Ny).

Claim 4. There is no capacity oriented robust semantics for nets over P/T agents in

which for agents P(m;n;k;o00) the behavior structure B(m;n;k,c0) is assigned.

The claim shows that GMD-semantics cannot be extended naturally a capacity
oriented semantics. But there are many others capacity oriented semantics for P/T
nets and [or some of them we can provide a natural operational explanation ol causal-
1ty.

The P(m;n;k;c0) agents are deterministic multiautomata . The following question is
still open: let V and N’ be two P/T nets with the same GMD-semantics. Do they

have the same BS-semantics under the above embedding?

4. History and Concluding Remarks

The idea of combining causality and branching in one entity appeared first in [NPW],
where it was used to characterize semantics of C/E Petri Nets. In [NPW| the formali-
zation of this idea is through Event Structures, Occurrence Nets and Prime Algebraic
Coherent Posets (actually - Configuration Structures for Event Structures with binary
conflict), which are shown to be retrievable from each other (see Claim 3, Section 1).

The theory of Event Structures was extensively developed in [W80] and [W87].

A compositional way to define causal semantics for CCS, TCSP, etc. is through opera-
tions of the respective repertoire upon objects which take into account branching-
causality. In [W], {LG| this was achieved through operations on Event Structures,

among which Synchronization is the crucial operation.

Configuration Structures originated a series of notions which reflect in a more direct
way the dynamism of processes than the "static” notion of Event Structure. Actually,
Prefix Structures [Maz84|, Behavior Systems [Shi] and Behavior Structures (this

paper) are versions or slight extensions of Configuration Structures.

Our reasons to prefer Behavior Structures (BS) is that they are less restrictive. We
have the feeling that synchronization of BS’s is more natural and conceptually simpler
than Synchronization of Event Structures. One more argument in favor of Behavior
Structures has to do with formalization of ”Bisimulation between branching-causal
processes”. Note that this relation was never defined for Event Structures, whereas for
Behavior Structures it emerges naturally from the Milner-Park Bisimulation between

Automata. Our definition of bisimulation between BS’s comes close to the definitions
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elaborated independently in [GV] and [BC] but is more discriminating, and is shown
to be a congruence. [GV] deals with equivalences between Petri Nets and contains
also a result, which is similar to our theorem about nonretrievability of a BS (Claim 3,

Section 1).

Some implicit hints about Nets of Processes are already in the early works of Milner
and Hoare, but the first systematic treatment of the subject is in [Pr]. According to his
view on causality, Pratt considers only Nets of Pomset Processes, but clearly the idea
works for BS’s as well, and we adapted it in the most general setting. In doing so we
resigned from specific constructs and notions as utilization, fusion, etc. |Pr] which
implicitly assume restrictions (like closedness under augmentation) upon the underly-

ing Processes. Instead we use Synchronization and other standard notions.

Among Nets of Processes we distinguished as a specific area of investigation Nets over
Automata and Multiautomata. The reason to do so was to pursue Mazurkiewicz’s
modular approach to C/E Petri Nets and to clarify how far it can be promoted to other
models of concurrency based on net concepts. Incidently in this way we came also to
the compositional semantics of P/T Petri Nets, as developed in [M2az88] and [Win].
There are, however, some points where our investigation goes beyond these papers.
Namely, our concern is also about the consistency of the compositional approach with
the existing operational definitions of interleaving and causal semantics; our results in
Sections 2-3 show that consistency holds indeed. We investigate also the question
whether compositional semantics is unique or recoverable from partial information.
Our results are mainly about nets over automata and there is still much to do for the
more general case of nets over multiautomata. Finally, let us note that we use Nets of

Processes also in the study of Data flow Networks (see [RT]).
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