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ABSTRACT 

Behavior Structures integrate causality and branching. Nets of 

Behavior Structures provide a unifying approach to diffe rent net models 

o f Concurre ncy. The Theory is illustrated wrt Nets over automata in 

particu lar wrt Pe tri Nets. 

O. Introduction 

In the theory of Concurrency there is a proliferation o f m ode ls for describing con­

current processes. An eviden t source of this phenomenon lies in the co ntrovers ies: 

In te rleaving Semantics vs Parti al Order (causality) 

Linear Time vs Branching Time 

Yet another source of diversity is conne cted with the way a complex system is assem­

bled from elemen tary blocks. In Alge bras of Processes the assem bling proceeds in an 

explicit compositional way through the chosen repertoire of operations upon processes. 

At the other h and in Networks concurrently executing components are assumed to 

commun icate th ro ugh wired channe ls. In these models (like Petri Nets, D ata Flow 

Networks), no compositionality seems to be assumed explicitly. Indeed, for a long 

time in the the ory of Petri Nets the question of modularity did not even arise. In its 

s im plest form this question deals with a sub net N I of a given net N. Assume that NI 

is re placed in N by a ne t Nil which behaves like NI; is it the case that the new net pro­

duced as resul t of the replacing be haves lik e the original net N? Note originally 

[Milner, Hoare] Alge bras (and co mposition ality) were oriented on interleav ing 

models, whereas Nets were deemed to be more appropriate for the revealing of causal­

ity. 

Our main concern in this paper is about Nets of Processes, which are expe cte d to 

bridge between these original views on algebras and networks. The underlyin g idea 

may be traced to Mazurkiewicz [Maz84] and Pratt [Pr]; it adnowledges that sync hron­

ization of processes is a suffi cient too l for co mposing complex nets from appropr iate 

"blocks". Th e construct "Net of Processes" m ay be parametrized wrt a favorite m ode l 

© 1988 , Polish Mathematical Society 

357 



358 A. R abinov ich, B. A. Trakhtenbrot ! Behavior Structures and Ne ts 

of processes. M az urkiewicz and Pratt considere d Nets of Pomset Process es , wh ere as 

in this pape r we deal with Nets of Behavior Structures. Unlike Po mset Processes, 

which reflect causality but igno re branching, Behavior Stru ctures (BS) inte grate caus al­

ity with bran chin g. Actually , Beh avior Structures are o ne more versio n in the se ries 

o f models, beginning with Event Structures [NPW] , which includes Configuration 

Structures [NPW], Prefix S tructures [Maz84]' and Behav ioral Syste m s [Shi] . Howe ver 

we find Behavior Structures more appropriate for our purpose an d we say about this 

mo re in this seque l. 

Throu gh Nets of Beh av ior Stru ctures we aim at a unifyin g approach to different Net 

m odels of Concurrency. In this way we hope to explain phenomena which may be 

blurred by more co mmon ad hoc approaches . We illustrate th e s itu atio n for Nets N 

over automata (multiauto m ata), which cover as particular cases both Pe tri Nets and 

D ata Flow Netwo rks. Usually, th ere is a strong intuition (and a general consensus) 

that N beh aves glo bally as an automaton (multiautoma ton); yet the inherent causal 

a.<!pects o f this interleaving - branchin g beh av ior are still to be discerned. For exam­

ple , in a Petri Net the multiautomaton beh av ior is convincingly ex hibited by th e token 

game. But starting with Petri's se min al work mu ch e ffo rt went (and is still goin g on) 

into defi ning th e "genuine" causal behavior of such nets. We believe that our results 

fro m A ppendix explain why for the case of Petri's original mod el (CIE Ne ts), all th e 

kn own an d appare ntly different approaches result in esse nti ally th e same causal se man­

tics . This is in full co ntras t with the generalized models (PIT Nets) for which 

different tre atmen ts of cau sality are possible and it is up to personal responsibility to 

choose the appropriate one. 

In this seque l our exposition is organized as follows: 

Section 1 is dedicated to the Behavior Structure (BS) machinery, including as a co ncep­

tual contribution carefully elaborated definitions of BS, BS- bisimulation, embedding 

in to BS, and synchronization of BS. The main technical result abo ut synchro nizatio n 

is that it is fully compositional an d also inh erits bisimulation and emb ed din gs. 

Section 2. The notion s and results of Se ction 1 m ay be used to formulate and investi­

gate in a very general se tting Nets o f Processes . M ore specifically we conce n trate o n 

Ne ts over Autom ata (M ultiautom ata) an d introduce the crucial notio n of robust BS­

semantics for su ch nets. Then we show that rob ust BS-semantics ac tually coincides 

with or refi nes se m an tics provided by other existin g no n co mpos itio n al appro aches 

(Occurre nce Semantics, Traces , etc.) . We clarify also conditions under which th e 

robus t BS-semantics may be recovered from partial info rm ation. 

Finally, th e Appendix illustrates the theory wrt Petri Ne ts. Here we follow and 

improve in som e re spects the modular approach M azurkiewicz e labo rated for C/E 

Petri Nets. Relying on the techniques o f robus t BS-semantics we characterize the de ep 

differen ce between Pe tri's original m ode l (C/E ne ts) and its gen eralization s kn o wn as 

PIT nets. At th e same time we claim that th e modu lar approach is consiste nt with 
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earlier established o perational semantics. This material is presented without proofs. 

'We use also Nets of Processes in the investigation of Data Flow Netwo rks . T he se 

results will appear in [RT]. 

Our work was stro ngly influenced by Mazurkiewicz's appro ach [Maz84] , where one 

can already find the m am ideas abo ut co m positio n al se m an tics for nets. 

Mazurkiewicz's e legant theory covers fully the case o f fini te C/E Nets. Ro ughly 

speakin g o ur aim was to examin e how far the methodology can be advanced in to the 

realm of more gene ral nets. 

As usu ally for texts in sem antics there is the pain ful dilemma between the need to be 

very carefu l and the desire to keep the paper at an acceptable size and level of inte lli­

gibility. We try to avoid s lippin g down in to cum bersome details; in particular, ofte n we 

provide on ly sketches of proofs, co unting on the co llaboration of the reade r. 

1. Processes 

Preliminary Remarks 

Figure 1 schematically represents the "refin ing" order between six mod els of processes, 

wh ich differ from each othe r by the way they do or do not re fl ect branch ing and 

caus ality. 

Automata Multiautomata Behaviou r Structures 

L .1 .7 
t t t 

string languages step sequence pomset processes 

Fig. 1 

The lowe r lev el co ntains the linear tim e mod e ls whereas the u ppe r lev el con tains the 

correspond ing branching versions. Beh avior Structures (defined in 1.3) are the most 

discriminating model we know and the main object of in te rest in this section (1.3 -

1.6). We include also in 1.1 - 1.2 a rathe r curso ry surv ey of o ther models. In each 

model 7r one distinguishes in a standard way th e concrete and abstract approaches to 

the objects und er co nsid eration. For concre te objec ts one d efines the most discrim­

inating equ ivalence relation, called strict isomorphism and designated as == ;"om; one 
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should always have in mind that strict isomorphisms differ from (standard) isomor­

phism through the addition al requirement tha.t th e compared objects h ave the same 

declared alphabet. Equivalence classes wrt = isom are abstract objects, each element P 

of the class being a represe ntative of th e abstract object [Plo For each of the three 

branching models , of great importance is a weaker equivalen ce than = isom called 

bis imulation: =M is the Milner-Park bisimulation for automata, =MM , =BS the 

respective bisimulations for Multiautomata and Beh avior Structures. When referring 

to the basic equivalence ==7r in the model 7r we have in mind s trict isomorphism in 

th e case of linear mode ls and bisimulation in the case of branchin g m ode ls. Fin ally, 

fo r each pair of comparable models 7r <p there is also an em bedd ing relation "process 

PI from model 7r is embeddable into process P2 from model p". Through appropriate 

co mbination of embeddings and basic equivalences many other equivalences may be 

de fin ed. 

We can now characterize the format of two tasks (parametrized wrt diff erent models) 

we conside r in this section. 

Task 1. For a given m odel compare diff erent equivalences between processes in this 

model. 

Task 2. For two corn parable models 7r, P prove that each process in 7r is em beddable 

in some process in p. Find out when the embedding is ulllqu e (up to some favorite 

equivalence) . 

The next task has to do with Synchronization , which is the crucial operation on 

processes. Synchronization is also param etriz ed with respe ct to the model 7r; the most 

relevant for us is synchronization of BS (Sectio n 1.6). 

Let R be one of the relations considered above: it may be an equivalence in some 

m ode l 7r, or an em bedding from 7r in to p. We say th at synchronization (in model 7r) 

inherits the relation R if: 

implies 

Synch(PI , P 2,···)RSynch(P'J, P'z,···) 

Task 8. For a given relation prove that it is inherited by synchronization. 

In all models Synchronization has the following basic properties: 

(i) Synchronization inherits isomorphism . Hence , synchronization of abstract objects 

is correctly defined through arbitrary representatives. 

(ii) Synchron ization is fully cornpositional. In m o re detail: 

a) Up to isomorphism th e result of Synch(P1, P 2, ... ) do es not depend on the 

order of the operands. 

b) Given any disjoint partition of the set {Pd into sequences seql,seQ2, 

Synch (Pj,PZ, "')==isomSyncl! (Synch (seqIl ,Synch (seq 2)"") 
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Our mam results for Behavior Structures are in 1.5 (Task 1), 1.4 (Task 2) and 1.6 

(Task 3). 

We want to finish the short survey of this section with som e explanation why we 

prefer to deal with Be havior Structure despite the already existing notions of Event 

Structures and Co nfi guratio n Structures, which essentially capture the same en tity. 

(Unfortunately we were not aware about Events Structures, when we started this 

work. We are thankful to R. Milner and U. Montan ari who called our attention to this 

omission.) It seems enough clear that ultimately the objects to be conside red in Pro­

cess Theory are Con figuration Structures (CS) or Behavior Structures (BS), wh e reas 

Event Structures (ES) are only a compact way to represent CS or BS. The comparison 

with matrices as a tool to represent linear function als suggests itself. And indeed it is 

diffi cult to reflect the crucial equivalence, namely BS-bisimulation, in terms of ES. 

Actually the only difference between labeled CS and BS is that in an LCS all 

co nfiguratio ns refer to a global set of events, whereas in a BS each co nfi guration uses 

its local set of even ts; th at is why a BS shou ld be equipped with a fam ily of appropriate 

embeddings betwe en different configurations. Th ough BS's form a broader class of 

con crete objects than LCS's it is the case that every BS is strictly isomorphic to an 

LCS . Hence , when synchron izing abstract BS's o ne could manage with LCS­

representatives. But we prefer to de al directly with Concrete BS 's to avoid transfor­

m ations to LCS's. 

1.1. Linear Tillle Processes 

We co nsider in this section the three linear models mentio ned above (Fig. 1). We deal 

mainly with the most discriminating Pomset model and give only some hints about the 

other two simpler m ode ls. In doing so we heavily rely on the careful exposition of 

the subject in [Maz88). The only significant deviation is in the definition of Synchroni­

zation, where we prefer a broader treatment of Concrete Pomsets (Labe led Posets - in 

[Maz88)) as represen tatives of Abstract Pomsets (Qualified Pomsets - in [Maz88)) . 

This deviation is not necessary as far as the Pom set model is conside red; its usefuln ess 

will become evident late r wrt the more discriminating model of Behavior Structures 

( 1.3-1.6) . 

Pomsets (Partial ordered multisets) 

A Concrete Pomset (or a Labeled Poset) P is a quadruple 

<v, ~,t, 2: > 

where V is a set (of events), ~ is a partial order on V, 2: is an alph abe t (of actions), 

and I is a labeling function: V-.2:. 

In this sequel we consider o nly finite co ncrete pomsets , i.e . V is finite or empty. But 

note that the alphabet 2: is never empty and may be eve n infinite; it is not required 
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that each action from I: should appear as a label of an event in V. The relevance of 

the alphabet and its impact on synchroniz ation will be illustrated later. 

For a Concrete Pomset P its co mpo nents are parametrized as Vp , Sp, lp, alph(P). P 

is said to be autoconcurrent if for some incomparable events VI> Vz in Vp it is the case 

that lp( Vl)=lp( vz). Otherwise P is without autoconcurrency (or according to the ter­

minology in IM az88]' P has the self-dependence property). 

Assume that U is an arbitrary downward closed subset of Vp , i.e ., u SpVE U implies 

uE U . Th en , the concrete Pomset PU with Vpu =U an d the other components inhe r­

ited from P is said to be a prefix of P. We write QSP for "Q is a pre fix of P". 

Concrete Pomsets P, R are isomorphic iff th ere exists a bijection f: Vp -+ VR which 

respects o rdering and labeling. P , R are said to be strictly isomorphic (notatio n 

P='=PomR) iff they are iso morphic and alph(P)=alph(R). Clearly, =Pom is an 

equivalence re latio n ; each ==Pom equiv ale nce class is s aid to be an Abstract Pomset, 

whose representatives are the con crete Pomsets belo ngin g to this class. IF] is the 

notation for th e Abstract Pom set represen te d by the Co ncre te Pom se t P. For Abstract 

Pomse ts the property of being autoconcurren t is correctly defined thro ugh arbitrary 

represen tatives. For Abstract Pomse ts P and Q we say that P is a prefix of Q if there 

exists a represe ntativ e o f P which is a prefix of some representative of Q . These 

definitions are easily see n to be ind ependent of the ch o ice of represe ntativ es. 

Assume that [P] S I Q]. If Q is wi tho u t au toconcurrency th en it h as a unique prefix R 

such that P='=Pom R. H o wev e r if Q is autoconcurrent uniqueness can not be gu aranteed . 

This situation is not relevant for th e Pomset Model Theory as developed in IMaz88 j, 

but must be taken into acco unt when synchronization for more elaborate models ( say 

for Behavio r Structures ) is considered. 

Synchronization 

Before we pro cee d to th e definition let us emphasize two points. First, we consider 

Synchronization as an o peratio n upon finite o r infinite sequen ce of operands. In 

[Maz88] the infinite case is not m ention ed explicitly though it em erges naturally from 

th e con text. Se co nd , we start with Synchronization of Concrete Pomsets which unlike 

IMaz88] produces as a result a well-defined set of Concrete Pomsets. (In [Maz88] , 

Synchronization is defined directly on Abstract Pomsets.) 

Definition. A sequence Em b 

Emb=V, Vb J I, V2, J2,' " (*) 

is an embedding (of the sets Vi into the set V via the embedding functio ns J;) if: 

a) For each i, Ji is an injection of Vi in to V 

b) V=u !;(V;) 

We describe a co nstru ction , called concretization, which transforms an arbitrary 

em bedding (*) in to an isomorphic e m bedding: 



A . Rabinovich, B.A. Trakhtenbrot / Belzavior Structures and Nets 

(i) Vc consists of the following "co ncrete" codes for the elements of V: 

coder V) - l1el vVv2,v3 ,'" wh e re 

{
Vi =nil 

viE Vi 

(ii) Ji C
( Vi) ael code( J;( Vi)) 

if Vtl-Ji( Vi) 

and Ji( Vi)=!!, otherwise 

Finally, an embedding Emb is said to be concrete if Emb = ConcretEmb. 

We are going to de fine the notion of Concrete Synchronized Embedding; this IS a 

se qu ence 

P ,PI.! I ,P2.! 2, ... (H) 

where P and Pi are finite concrete pomsets < V, ~, I, L:>, < Vi, ~i' li ' L: i >· and 

the Ji are embedding fun ctions which fulfill the following conditions: 

a) The se quence V, Vv J I, V2, J 2,'" is a concrete embedding 

b) The Ji preserve labels: li(x)==l(Ji(x)) 

c) The partial order ~ is inherited from the partial orders ~i' i.e., p~q iff for some 

sequen ce PI , ... ,Pn of elements of V , 

p=pj, Pn=q and for each j<n the re is k such that h -I(pj) ~kh -I(pj+l) 

Now, with a sequence of concrete pomsets P b P 2, ... associate the set (which may be 

empty) of concrete pomsets Synch(PI ,P2, ... ), where PESynch(Pl>P2,"')' if for some 

appropriate fun ctions J I.! 2, ... < P,PI.! l>P2.! 2,"' > is a concrete synchronized embed-

ding. The sequence Pj,P2, ... is said to be synchronizable if Synch(Pb P 2, ... ) is not 

empty . 

Remarks 

(i) Let us illustrate the impact of the declared alphabet on synchronization. A concrete 

pomse t P is said to be empty if Vp =0. Empty concrete pomsets may still behave 

differently depending on their alphabets. To make this point clear consider two con­

crete pomsets PI' P2 with alphabets L: I , L:2, where PI is empty. Assume that P 2 is 

also empty. Then PI' P2 are synchronizable and produce a unique concrete pomset 

which is also e mpty; its alphabe t is ~IU ~2' On the other h an d assuming that P 2 is 

not empty, there are two possibilities: 

a) In P 2 there is an event with label from L: I . Then Pv P 2 are not synchronizable. 

b) Otherwise PI' P 2 are synchronizable and produce a unique pomset; it differs from 

P2 only through its alphabet which is ~IU L:2. 

(ii) If we restrict ourselves with concrete pomsets PI and P 2 without autoconcurrency, 

then if they are synchronizable there may be only one concrete pomset in their syn­

chronization. However in the general case many pomsets are possible; hen ce the syn-
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chronization of two pomsets may result in a set of pomsets. Synchronization becomes 

nond eterm inistic. 

Example: Synchron izing the pomsets 

0 

I 
.0 0J • 0 

b and 
c 

we obtain two pomsets: 

bOA 
.0 0 

J I 
0 

and 
b c 

Fig. 2 

( iii) It is easy to check that given a Concrete Synchronized Em bedding (**) and an 

arbitrary prefix pI of P there exists a Concrete Synchronized Em bedding 

such that for all i: 

a) 

b) 

pl.<p . . - . 
1'; is the restriction of li to pI; 

For any alph abet L; each se t of Con cre te Pomsets ove r th e alphabet L; is a Concrete 

Pomset L anguage over L;. The Concrete Pomset Languages Ll1 L2 are strictly iso­

morphic (notatio n Lj==PomL 2) iff for each concrete po mset in one o f them there is a 

strictly isomorphic concrete pomset in the other. C learly ==Pom is an equivalence rela,­

tion among Concrete Pomset Languages; each equivalence class is said to be an 

Abstract Pomset Langu age, whose represen tativ es are the Concrete Pomset 

Languages. [L ] is the notation for the Abstract Pomset Languages represented by the 

Concrete Pomset Langu age L. An Abstract Pomset Language is said to be an Abstract 

Pomset Process if it is prefix closed . Co rrespondin gly a Concrete Pomset Language L 

is said to be a Concrete Pom set Process iff [L] is an Abstract Pomset Process. These 

notion s of processes work quite well in the Pomset Model. Howev e r it is easy to see 

that they do not capture a peculiarity which may happen to be re levant In more 

discriminating models. Name ly, assume that the co ncrete pomset PE L has two 

prefixes R, Q s uch that R =Pom Q. We might be in terested in a version of prefix clo-
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sure , which assures that both Rand Q have th e ir own coun te rpart in L. Conside ra­

tions of this sort become relevant in the Behavior Structures Model. 

Finally , given a sequence o f Concrete Pom se t Languages Db D z,· . 

Synch(Dl ' DZ" ")-de/D = de/{P: P is finite andPESynch(Pb P 2, . . ) where PiEll;} 

with alph(D)=U alph(Di) 

Important pro perties of synchronization are formulated and fully justified in [M az 88J 

wrt abstract pomse t languages. Let us emphasize the fo llowing facts which generalize 

some o f these propertie s for infinite sequen ces of Concrete Pomset Langu ages. 

Claim 1. Synchro nizatio n of Co ncrete Pomset L angu ages has the following proper­

ties: 

(i) It inherits the s trict isomorphism relation =Pom ' 

(ii) It inherits the property of being a process (i.e. of be ing a prefix closed langu age). 

(iii) It is fully compositional. 

In particular it follows that synchronization of Abstract Pomset Languages and 

Processes is correctly defined via synchro nization of Concre te Pomset Languages 

which represent them. Note also, th at the synchroniz ation of Processes (unlike the 

synchronization of languages in general) is never empty because it co ntains at least the 

empty Pomset. 

String Languages (Processes) and Step-Sequence Languages (Processes). 

Let us briefly consider the other two linear time models (se e Fig. 1) To this end in 

addition to the Pomset version one has to deal with two more special versions which 

arise when the und erlying posets are in fact losels (total ordered sets) or slosets (step 

o riented set). A stoset P may be characterized as follows: P is the disjo int sum of 

PI> ... , Pn (called steps ) such that in each step Pi the elements are pairwise in com­

parable , and for j < i there holds the implication: xEPi and yEPj imply y < x. 

Accordingly , we have two more series of no tions: 

(i) Concerning Tosets: Concrete Tomset Languages (and Processes) , Abstract Tomset 

Languages (these are essentially string languages), Abstract Tomset Processes . 

(ii) Concerning Stosets: Concrete Stom set Langu ages ( and Processes) , Abstract Stom­

se t Languages (these are s tep-sequence langu ages), Abstract Stomset Processes. 

Hence there are three variants of linear time processes we have to deal with. For 

each of them the basic equivalence betwee n languages (respectively 

=poml =tom l =8tom) is nothing but th e strict isomorphism as defined abov e . However 

for synchronization in the Toset and Stoset models things look different. The point is 

that when applying the general definition of synchronization for pomset processes to 

tomset processes , the res ult will no t ne cessarily be a tomse t process. The s ame 

remark holds for stomset processes. The direct de finitio n for tomset processes is well 
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known and quite simple; for stomset processes the direct definition is a bit more com­

plicated. Another (indirect) way to get the same result is to apply the general 

definition for pomset processes and then to coarsen the resulting pomset process P , 

namely: 

a) Tomset process: take all the linearizations of pomsets in P. 

b)Stomset process: take all the step-linearizations of pomsets in P. 

In this sequel we deal mainly with concrete pomsets, so we omit the adje ctive "con -

crete ", 

1.2. Branching 'Ihne Processes: Automata and Multiautomata. 

A Milner Process ove r the action alphabet ~ is a rooted transition diagram whose 

edges are labe Jed by actio ns from ~. In a Milner process a path from th e root to a 

node represents a sequential scenario - the string of actions labeling the edges leading 

to the node. Thus the notion o f a Milner process is a refinement of the notion of a 

Tomset Process, since it represe nts a set of str ings as well as a description of their 

branching behavior. We use "Automaton" as synonym for "Milner Process"; at this 

stage we conside r automata as a particular case of multiautomata when on ly sin gle 

transitions are allowed. 

A Concrete Multiautomaton M over ~ is given by: 

i) A set Q of states. 

ii) An initial state qoEQ. 

A 
iii) Multitransitions of the form q-+ q', wh ere A is a finite multiset over ~. 

A multiautomaton must satisfy the requirement: 

A 
iv) If q-+q' an d if BCA is a partial multiset th en there is som e q III Q such 

B A-B 
that q-+q" -+ q' . 

In a multiautomaton a path from the root ge nerates a stomset. Thus mul tiautom ata 

are related to stomset processes as automata are related to tomset processes. 

A mul tiautom aton is called deterministic if for any state q and any multiset A there is 
A 

at most one q' such that q-+q' 

The notion of multiautomaton without autoconcurrency is defined in the same way as 

the notion of muLtiautomaton except that in iii) "multiset" is replaced by "set". 

Isomorphisms of automata (multiautomata) are defin ed in an obvious way. What we 

are interested in are strict isomorphisms which assume that the automata (multiauto­

mata) under consideration are isom o rphic and have the same (declared) action­

alphabet. 
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A relation R between the states Q of a m ultiau tomaton M and the states Q' of 

a multiautomaton M' is an MM - bisimulation between M and M' if: 

A A 
ii) If qRq' and q-tp then for some p'in Q' there hold: q'-tp' and pRp'. 

A A 
iii) If qRq' and q'-tp' then for some p in Q there hold: q-tp and pRp'. 

Multiautomata include automata as a special case when all the multitransitions are sim­

ple -- i.e . labeled by a singleton multiset. In this sense the well known notion of 

bisimulation for automata [Mill is included as a particular case of bisimulation for 

multiautomata. Multiautomata (in particular - automata) AI and NI' are MM-bisimular 

- notation M==MMM' - if there exists an MM-bisimulation between them. 

The notion of !vI -bisimulation is defined by restricting a multiset A to a single action in 

the definition of MM - bisimulation. It is clear that =MM equivalence implies =M' 

Synchronization of Automata and Multiautomata 

Again we consider a sequence (perhaps infinite) 

Al. A 2 , ·.. (*) 

If Ai are concrete automata then there is a simple way to de fine an automaton 

A==Synch(A[, A 2 , ... ) with alph(A)=U alph(Ai)' This is done taking the Cartesian 

product of their state sets with the following transition rules: 
a a 

<qj, q2,' ., qk> ... > -t < q'j , q'2, ... , q'., .. > iff qk-tq'k in each Ak whose alpha-

bet contains a. Here we assume th at for each k qk is a state in Ak and that the "glo­

bal" initial state is the "vector" of the component initial states. 

If the Ai are multiautomata, the alphabet and the states of Synch(A[, A2"" ) are 

defined as above and the m ultitransition rules are as follows: 

For a multiset S of actions let Si be the submultiset of S which contains all those 

actions which are in alph(Ai) ' Then the transition 
s 

<q], Q2, ... , qk, ···> -> < q'r , q'z, ... , q'k,"'> is possible iff for each i with Si~0 
s, 

the transition qj->q'i is in Ai' 

Remarks. 

(i) Note that SynchM and SynchMM have different meaning when applied to a sequence 

of automata 

Using programming language jargon one would say that SynchM operates on genuine 

automata, whereas SynchMM operates on their conversions to multiautomata. 

(ii) Formally we did not impose any restriction on neither the cardinality of the set of 
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states of an automaton (multiautomaton) nor the branching degre e (the cardinality o f 

arrows which exit from a state). Note, however , that up to bisimularity on e can con­

sider only those states which are reachable from the initi al state. Therefore if the 

branching degree is finite (or even co untable ) one can deal with a countable set of 

states. Howev e r, wh en synchronizing an infinite sequence o f automata (multiauto­

mata) there may appear a un countable set of reachable states even when for each of 

the components the set of states is countable and the degree is finite. A simple way to 

avoid non-desirable high cardinalities for the set of states and for the branching degree 

amounts to the following restriction: 

Say t.hat the sequ ence of processes 

AI' A 2, (*) 

has finite degree iff for each action a in alph = U alph(A;) there is on ly a finite 

number of processes wh ose alph abe t contains a. 

It is an easy exercise to show that if (*) has finite degree and the Ai are countable an d 

with finite or countable branching degree th e n Synch(AI' A z, ... ) is bisimular to an 

automaton(multiautomaton) with a cou ntable set of states and with no more than 

countable bran ching degree. 

Claim 2 . Synchronization o f Automata (Multiautomata) is fully compositional; it 

inherits strict isomorphism and M-bisimulation (MM-bisimulation). 

1.3. Configuration Structures, Behavior Structures, Event Structures 

We are going to define the general notion of Concrete Beh avior Structure (BS). First 

we consider the particular case of BS-without autoconcurrency, and then we give the 

general definition. 

Below we use the following notations and terminology. 

P~Q - P is a prefix of Q. 

p~AQ _ P~Q and A is the multisetof labe ls in the "suffi x" P- Q. 

P«Q - P is an immediate prefix of Q, i.e. P - Q consists of one labe led event. 

p«aQ _ P « Q and a is the label in P- Q. 

In all cases above when ~ (respe ctively « ) IS replaced by ~isom (respectively 

«,;.,om) the intent is thatP is isomorphic to a prefix (to an immediate prefix) in Q. 

We have to consider also a special class of autom ata (call them standard automata) 

which slightly generalize the notion of a tree-like automata, namely: 

a) All states (nodes) are reachable from th e initial state (root). 

b) The diagram contains no oriented cycles. 

c) The diagram contains no parallel edges. 
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Behavior Structures without autoconcurrency 

A BS B with o ut autoco ncurrency over the alph abet E is given by: 

1) A standard automaton ov e r E, de signated by M(B) an d called the Milnering of B. 

2) A labeling of each node n in M(B) by a co ncre te pomset n (des ignated in this 

sequel as nor P,,) without autoconcurrency which obeys the requirem e nts : 

• 
(i) n-+m in M(B) implies n «o .,amm. 

(ii) If Q is an immediate prefix of m, then th ere is a unique n su ch that 
a 

Q=isamn an d n-+m for so m e n. (This im plies that the root (the initial state ) 

is labeled by the empty pomset.) 

Fro m the definition it fo llows th at a BS without autoconcurrency has the following 

important property. 

The Unique embedding property. For any n«m there is an unique isomorphism 

between n and an immediate prefix of m. Moreover (due to the lack of au to con­

currency) for each n<m th ere is induced an unique "embedding" r/>",m:n-+m of n 
onto a prefix of m. For these embeddings the fo llowing two nice properties hold. 

First, for all m<n<k the diagrams (Fig. 3a) commute . Second, assuming t,hat 

r/>" ,d n)Cr/>m,k(m), then n<m and therefore there is an embedding r/>",m' 

Relying on the family of embeddings r/>m ,,, one can associate in a natural way with 

each BS without autoconcurrency also a multiautomaton MM(B) which we call the 

Multimilnering of B. N ame ly : 

(i) The nodes of MM(B) are the same as the nodes of M(B). 

(ii) Consider nodes n<m; since r/>" ,m(n) is a prefix in m for some multiset A, then 

r/>",m(ii')SA m . (Recall: A is the multiset of labels which appear in m- r/>",m (n) .) 
A 

A transition n-+m appears in MM(B) ill' all the events in m- r/>n.m(ir) are maxi-

m al in m and hence incomparable with each other. (Intuitively, this me ans that 

the actions from A may be performed sim ultaneously.) 

We come to the general notion of a BS by removing the restriction th at the pomsets 

are not autoconcurrent. But then the unique embedd ing property would not be valid 

any more, because if m is an autoconcurrent pomset th ere may be many embeddings 

of IT onto immediate prefixes in m. Hence, we cannot refer to the family of embed­

ding fun ctions which are implicit in th e case without autoconcurrency and which have 

the nice properties m e ntioned above. The remedy is to require them by definition. 

Definition. A Behavior Structure B is given by: 

a) A standard automaton M(B) - the Milnering o f B. 

(b) A labeling that assigns to each node n a pomset Pn (sometimes designated also as 

n) over E. Po is empty (sometimes denoted by E). 
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(c) A setof embeddings 4>n,m : Pn -+Pm fo r each pair n::;m such that 

(1) 4>n,m is a isomorphic injection of Pn onto a prefix of Pm' ( 4>n,n is the iden­

tity) . 

(2 ) Every prefi x Q of Pn is obtained as 4>k,n( Pk) for some k ::;n. 

(3) All diagrams on F ig. 3a co m mu te for m < n <k. 

P f p I P $m,n m m <Jm m 

~m,m 1 j I rrm, rrm, 

P' 
f • O"' m1 
m1 

a) b) 

Fig. 3 

( 4) If 4>n ,dPn)C4>m,k(Pm) then n::;m. 

T he Mu ltim ilnering is defined as before (for BS without au toco ncurrency) . 

P n 

1 kk 
Pk 

W e say th at two Be h avio r Structures Band B ' are isomorphic if there exists the fo l­

lowing fami ly of isomorphisms: 

a) An isomorph ism (T between the diagrams of Band B ' (i.e . essentially isomor­

phism of automata). 

b) F or each no de m EB an isomo rphis m fm between th e concrete pom sets Pm and 

plu(m)' Moreover the commutation of the diagram 3b is required. 

Two isomo rph ic be h avior structures are strictly isomorphic iff they have the same 

action- alph abet. Note that the concrete pomsets wh ich occur in a Behavio r Structu res 

B inherit the alph abet of B. 

Important w arning: In order to deal appropriate ly with equivalcnces among BS and 

with operations on BS (especially with synchron ization) we need to point explicitly on 

the respec tive alphab ets. In other wo rds, whe n refe rring to a Behav ior Structu re B we 

have in mind also alph(B). 

Be havior Structures corre late with Pomset Processes as Milner Processes with Tom­

set Processes. A Be h avior Structure exh ibits a set of Pomsets (at the nodes), and it 

describes how they fit together . 
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Configuration Structures and the transformation CB 

Definition: A (unlabeled) Configuration Structure (CS) is a collection B of partially 

ordered sets (Posets) {X, < x} with the following properties: 

i) Every XEB is finite 

ii) If XEB then every prefix of X is in B 

iii) If X , YEB and bEXn Y then b determines the same prefix in X and Y ( se t and 

order) . 

In particular - if Y,XEB and YCX then Y is a prefix of X and < y is the restriction 

of <x. Thus B itself is partially ordered by the relation "Y ::; X ill Y is a prefix of 

X" ; h ence it may be visualized as an acyclic directed graph whose nodes are identified 

with the configurations XEB. 

Each XEB is called a configuration of B. 

Let E be U {XI XEB}. E is called the set of events in B. 

A labeled CS is a CS together with a set (of actions) ~ and a labeling function 

I :E-~ 

For every XEB we denote by Px the corresponding pomset whereas alph(Px)==E (in 

other words Px is over L:). Each node X in the labeled CS is labeled by a pomset Px . 

Clearly, the global labeling function induces two s pecific labe lings in the acyclic graph 

of the nodes. First, each node X is now labeled by a pomset Px where VPx=ir and 

alph(Px) ==E. 

Second, if X is an immediate prefix of Y. then the arrow fro m X to Y is labeled by 

th e action a from L: which labels the only element in Y-X. 

Summarizing we see that each LCS over L: may be visualized as a standard automaton 

M over L:, whose states are labeled by pomsets over ~, where the following conditions 

hold: 

a) If III M there is a transition n- m then Pn is an immedia te prefix of Pm and 

P m- Pn co nsists of a single even t labe led by a. 

b) Assume Q is an immediate prefix of Pn and th e event in Pn - Q is labe led by a; 
a 

then there is a unique m such that m-n in M and Pm=Q. 
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The transformation CB: LCS-BS. Given an LCS C the transformation CB yields a 

BS B, with the embedding <l>n.m uniquely defined as follows: Let I(P.) and I(Pm ) be 

th e pomsets assigned to nodes n, m in C; th e n <l>n.m identifies Pn unambiguously as a 

prefix of Pm. 
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Event Structures and the transformation EC 

A so mewh at m o re compact descriptio n of an LCS (an d indirectly also of a BS) is 

through th e set o f ev en ts E an d the o rder induced on it [Wj , [NPWj. 

Definition: An event structure (ES) is a triple < E, ~ ,# > where ~ is a finitary par tial 

order (every element has a finite prefix) an d #(A) is the conflict predicate over P(E) 

satisfyin g: 

(1) If #(A) and for every aEA. there is bE B such that b'2,a, then #(B). (Mon o­

to nicity) . 

(2) No singleton is in conflict. 

Note that by (1) we h ave #( A) iff #(if) where if is th e pre fix dete rmin ed by A. 

A L abe led Event Structure (LES) is an ES with some labeling fun ction I : E -+ L;. 

Note: In [W80j diff erent versions of the notio n Ev ent Structu re are co nsidere d. In 

this paper we refer o nly to the version above. 

The transformation ES: ES-+CS . Given an Event Structure E , we obtain a 

Configuratio n Structure EC(E) as fo llows: take as con fi guratio ns of EC(E) all co nflict 

free prefixes of E. In the labe led case the labels o f th e events are preserved. 

Definition: 

(i) A con flict predicate # is binary if the re is some bin ary relation # 2 such that 

#(A) iff a#2b for so m e a ,b EA.. 

(ii) A CS B is coherent [NPW ], if for X , YEB eith er X U YEB o r ~B for 

some aEX and bE Y. 

It is easy to che ck the following: 

Fact, # is binary on E iff EC(E) is cohe ren t. 

In [NPW] only bin ary co nflict is discussed . 

Mutual Retrievability of BS, LCS, LES 

On e can cons ider more transformations between BS, LCS, LES. 

Transformation CE: CS-+ES. Giv en a Co nfiguration Structure B, we obtain an Event 

Structure CE(B) as fo llows: Let E be the setof events (E=u {XIXEB}). 

Define: 

(i) e<f if e<xi for so m e XEB. 



A. RabinoviciL , B. A. Traklztellbrot / Behavior Structures alld Nets 

(ii) #(A) if A r:.B ,where A is the prefix determined by A in E . 

(iii) Finally -- CE(B)= < E, <,# > 

Transformation BE: BS-LES. Given a Beh avior Structure B, transfo rm ation BE 

yields a L abeled Eve nt Structure E as follows: 

Firs t let us call a node of a BS prime if it has a unique immediate prede cessor. From 

the definition of BS it fo llows that a node n is prime iff it is labe led by a pomse t Pn 

wh ich h as a m ax im al e leme nt. 

Take as eve nts of E all prime nodes of B and labe l an ev ent n by the labe l of th e max­

im al element in Pn . Th e o rder o f E is inh e ri ted from the order in B. A set of nodes 

A is in con flict in E if it has no upper bound in B. 

The following claim slightly extends a resu lt in [NPWj . It s hows that BS, LES and 

L OS are retriev ab le from each othe r. 

Claim 3: The fo llowing diagram co mmutes (se e Fig. 4). 

3 
isom 

Fig. 4 

Proof: Fo llows directly from th e de finitions. 

1.4. Coarsening and Refining Processes 

3. 
lsom 

It is qui te ev ide nt what coarsenin g should mean for those kind o f processes we hav e 

co nsidered. Let us look in more detail to th e coarse ning of the most discrim inatin g 

processes - Beh avior Stru ctures . 
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Given a Behavior Stru cture B, it can be coarsened to a process P o f lowe r leve l in 

one of the followin g ways (where the alph abet of B is inh erited by P). 

(a) Pom(B) is the collection o f Pomsets in B (ignore the diagram ) . 

(b) The string language Lin(B) is obtained by taking the strings of actions that lead 

to nodes in B (note that such a string is always a lin eariz ation of the Pomse t at 

the node) . 

(c) The MiInering M(B) is th e autom ato n whose states are the n odes o f B (ignore 

the Pomse ts). Toge ther with the actions along the edges this turns the BS into a 

transition diagram. 

(d) The MultiMilnering MM(B) is the mu Itiautomaton whose states are the nodes 
A 

of B and s uch that n -+ m if th e eve n ts in Pm - c/; n,m (Pn) are maxim al in Pm 

and A is the m ultise t of labels wh ich decorate these ev en ts. 

Example (see Fig 5). Consider the Behavior Structure B: 

I ts string language: Lin(B)= {a,ab, aa,ac, aab, aba, aac, aca,abac, acab,aabc, aacb, aaca, acaa}. 

Pom(B) and MM(B) are s hown in Fig. 5. 

B 

or 
J 

POm{Bl~~a U Q ea ([)a (0a O(D~ b~ ~ J ~ It l l 
bee c 

Cl 

Fig. 5 
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For processes PI, P 2 from models 11<12 say that PI is embeddable in P 2 iff there 

exists a process PI' of the same model II as PI such that PI"PI' and PI' is the result 

of coarsening P 2. Accordingly, we consider the embedding relation Emb l,1z; 

Embl,1z(PJ, P 2)=def PI from model II is embeddable in P z from model 12 . Though 

coarsening is always possible it is not immediately evident that embedding is always 

possible. The following theorem shows that this is still the case. 

Claim 4 (Embedding Theorem). For arbitrary II <12 and given process PI from model 

II there exists a process P 2 from model 12 such that Embi,iz(PI, P 2) holds. 

Proof: As previously we confine here with the case when 12 refers to behavior struc­

tures and omit the indexes 11> 12 because they are clear from the context. We consider 

below the embeddings of Pomset Processes, Automata and Multiautomata. 

a) For every Pomset Process P there is some Behavior Structure B such that 

P=PomPom(B). 

Assume that for each p, qEP the sets of events Vp, Vq have empty intersection; oth­

erwise we would first replace P by some Q-PomP for which this condition holds. Let 

us construct a labeled even t structure E such that the corresponding BS will have the 

desirable property. 

Events afE: For each pomset pEP put in E the events of p ordered and labeled exactly 

as in p. For different pornsets p and q of P the events of p are in binary conflict with 

the events of q. Since P is prefix closed it follows that a pomset is in P iff it is iso­

morphic to a labeled configuration of E. 

b) For every Automaton M there is some Behavior Structure B such that M is bisimu­

lar to M(B). 

Construct a Behavior Structure B as follows: 

Consider a tree like transition diagram T(M) which is bisimular to M; marking each 

node of T(M) by the string from the root to this node we get a Behavior Structure B. 

It is clear that M(B)=T(M); therefore M(B) is bisimular to M by the transitivity of 

Milner Park bisimulation. 

c) For every Multiautomaton M there IS some Behavior Structure B such that M IS 

bisimular to MM(B). 

First we show how to construct for a multiautomaton without autoconcurrency M a 

Behavior Structure without autoconcurrency B such that MM(B)=MMM. 

An execution step-sequence (J of the multiautomaton M has the form 

A, 

where qj are states of M, qo is the initial state of M and qi-I--+qi. 

Define B as follows: 

As nodes of B take the execution sequences of M. As pomset which labels the node 
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qoA Iq IA 2 · . q"_ IA"q,, take the co rrespo nding stomsct it gen e rates: nam ely, the 

events lab e led by Ai are cons idered to precede the events labe led by Aj for i<J. 

No te that this is a pomse t without autoconcurrency. 

Now let us define the order betwe e n the nodes. Node (T immediate ly precedes no de 1" 

if one of the follo wing conditio ns holds. 

a. 

a su ch that qn-+qn 

It is clear that for (T < 1" the po mse t Pu ass igned to eT is a prefix of the pomset PT 

assigned to 1"; moreover since this pomsets are without auto concurrency there exists a 

unique embedding of Pu as a prefix of PT' This co mple tes the definitio n o f B. 

Th e construction is illustrate d by Fig. 6. 

Fig. 6 

We still h ave to check that there ex ists a MM bisimulation between MM(B) and M. It 

is easy to see that the relation R, 

R( (T , q) iff q is the last state of the step sequence (T, 

is such a bisim ulation. 

Fin ally, th e validity of the claim for arbitrary multiautomata follows from the validity 

for multiautomata without autocon cu rren cy and from two facts that are co nn ecte d to 

ren am ing o f alph abets . 

A renaming I of an action-alphabet E in to an alphabet E' is simply a mapping of E in to 

El Note that two different actio ns in E m ay be mapped into o ne in E'. If N is a pro­

cess (au tomaton, BS, e tc.) with alphabet E, th e notation I(N) is used for the process 

one gets when the actio ns are everyw he re renamed acco rdin g to I . 

Fact 1: If B 1==MMB 2 then for arbitrary renamin g I, it is the case th at I( B l)=MMI(B2)' 

Fact 2: For every mul tiautom aton M there exists a multiautomaton without autocon -
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currency N and a relabe led version I(N) of N such thatM==MMI(N). 

Claim 4 does not tell the full story. There is usually more than one candidate BS. 

Sometimes the choice is very natural s uch as the cho ice above for automata, but in 

general for Pomset Processes and Mu ltiautomata a natural construction is not so obvi­

ous. W e s hall return to this topic later. 

1.5. Equivalences among Behavior Structures 

Warning: equivalent Processes are always assumed to have the same alphabet. 

Definition: Let Band C be two Behavior Structures. 

a) B and C are linear equivalent (B==L in C) if Lin(B) = Lin(C). 

b) Band Care Pomset equivalent (B==PomC) if Pom(B)=pomPom(C). 

c) Band C are M Bisimular (B=M C) if M(B) and M( C) are M - bisimular. 

d) Band C are MM Bisimular (B==MM C) if MM(B) and MM(C) are MM - bisimu­

lar. 

e) A BS-bisirnulation between Beh av ior Structures Band C is a ternary relation 

R(n ,m,f) such that: 

(1) n is a node of B , m is a node of C and f is an isomorphism between Pn and Pm' 

(2) R(£ ,£,0). 

(3) If R(n,m,f) and n-+n) then also R(nl>m),J') for some m ) with m-+m) and for 

some f' extending f. 

(4) The dual require ment of (3) wrt Band C. 

Pm i .. 

r ~n.n, ~m.mlj -p' 
~ 

Pm, Pn I 

Fig. 7 

Band Care BS Bisimular (B-BSC) if there is a BS bisimu lation between them. 
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Claim 5 (Non retrievability of BS). 

(1) '=BS implies =MM ,-M and -pom· 

(2) =BS is a stro ng refinement of the equivalences which arise via coarsing Behavior 

Structures. It may happen that MM(B 1)'=MMMM(B2) and Pom(B 1)=Pom(B2) 

but BI is not =BS equivalent to B 2· 

Proof: (1) From B 1= BS B 2 it follows obviously that BI=pomB2· 

Let us show that B 1= BSB 2 implies BI'=MMBz. Given a BS bisimulation R(m,n,!) 

between Bland B z, consider the following relation R( n, m) between nodes of 

MM(Bd and nodes of MM(B z): 
R(m,n) iff there is f such thatR(m,n,!). 

Let us show that R is a MM - bisimulation between MM(Bd and MM(B z). 

(i) Clearly, th e initial nodes are related by R. 
A 

(ii) Assume that R(m,n) holds and that m-m for a multiset A={al, ... a.}. Then , 

for some f R (m, n,j) holds an d therefo re th ere exist ml, ... mk_1 such that 

6 1+1 

m,-mi+1 for i=l., .. k-2 

Since R is a BS - bisimulation there exist ni, . .. nk_1 an d f I, ... h-I>T such that 

6, + 1 

nj-nj+1 for i=l.,k-2 
0, 

nk_l-n 
R (m" niJi), 

R(m,n,J) 

Moreover, the following extensions hold: 

1'+1 extends fi for i=l., ... k- 2 

f 1 extends f 
T ex tends h-I· 

Therefore, by the definition of R it fo llows that R( m,n) holds. Since T is an isomor­

phism between the pomsets m and n and it maps a prefix m of m onto n it follows 
A 

that n-n. This completes the proof of requirement (ii) from the definition of MM -

bisimulation (see l.1). The dual requirement is proved in a sim ilar way. 

(2) Here is an example of two Beh av ior Structures B1 and B2 which are '=MM and 

'=pom equivalent but there is no BS - bisimulation betwee n them. 
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Fig. 8 

1.6. Synchronization of Behavior Structures 

This is the crucial operation and we aim at a careful and detailed definition. 

We start with a sequence of Behav ior Structures 

BI> B 2, .. · (*) 

with typical notations 17li, ni,'" for the nodes of Bi and mi, ni ,'" for the pomset labels 

of these nodes. The re su lt B o f the synchronization of the sequence (*) is defined in 

the poin ts (i)-( ii)-( iii) below. 

(i) Nodes of B (typical no tation s: M, N, ... ) 

A node M is a con crete synchronized em bedd ing (see 1.1): 

M=<P, ml,! 1, m2, J 2,''' > 

Next we have to describe the condition under which for a pair of nod es 

M= < P ,mv Iv mz, 1 2,· .. > N= < Q, nv 91, nz, 92,''' > 
a 

it is the case that M immediate ly precedes N via a transition M-+N and, when this 

holds what is the function q;MN which embeds M into N. Befo re we proceed to these 

important points of the definition let us choose more detailed notations fo r the pom­

sets mi, ni, P , Q, namely: 

mi=<Vi, :::;i, li , Ei > ; P=< V, :::;, I, E > 

ni=< Vii, :::;/ j, /I j , E/
j >; Q=< V', :::;/, 1', E' > 

Actually we sh all refer the elements of a pomset as labeled eve nts, i.e . pairs <event, 

label > . 

Let us go on with the definition. 

(ii) Immediate precedence in B 
a 

M-+N iff there is a set I of indices and an action a which satisfy two conditions: 
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Condition 1. If j€j.I then mj=lj and a€j.alph(Bj) otherwise, if JEI then Tni-->ni and 

aEalph(Bi )· 

Before we formulate the other condition note that if JEI there exists an embedding of 

mj into ni' We use the notation 1» for this embedding and the notation <8 j , 0:j > 
for the unique labe led event in nj which is not in 1> j( mj). 

Condition 2. For each JEI the label 0:j is just a and the function gj is an extension of 

the composition of 1> j and Ij; for jF/:.I the functions Ij and gj coincide. 

Now, we are going to describe the embedding function 1>MN (assumed that M 

immediately precedes N); the general case follows via transitivity . Recall that since 

]\11, N are identifi ed with concrete synchronizing embeddings each e lement dE V is an 

appropriate sequence and so is each element d'E V' (see Section 1 for the definition 

of concrete embeddings). 

(iii) Definition of the embedding function 1> MN: 

Assume that M immediately precedes N then 1> MN is defi ned as follows. For 

<t1, t2, , ... >EVdefine 1>MN«t1, t2, , ... » =< 71' 72, , ... >EV'where 

(recall: 1>; embeds Vi into VIi for iE f) 

t; is n/l; otherwise 

iF/:. I 
for iEI 

Now if M <N then there is a finite chain M 1, 1'1'/ 2"" Mk of nodes between M and N 

such that M==A1 1, Mi«Mi+l and N==A1k . D efi ne 1>MN as the composition of the 

embeddings along this chain. It can be shown that 1>MN do es not depend on the 

choice of the chain between M and N. Moreove r, relying on the fact that Bi are 

Behavior Structures, it is a routine task to check that the definition is correct, i.e., that 

the embeddings behave properly. 

The definition of Synchronization for Behavior Structure is completed. 

Comment 1. Now, let us give some explanations which will help to see that the 
a 

definition is reasonable. Assume that M-->N and let <8,01.> be the unique labeled 

event in N which is not covered by 1>MN' Then , for the 8 j (jEI) defined earlier, the 

following holds: 

(1) 1»(8)) ==8 and 8 (as well as 8 j ) is labe led with the action a. 

On the other hand, for each xE Vi, 

(2) Ji(x)E V, rPMN(Ji(X))E V', <pi(x)E V', 9i(rPi(X))E V' and rPMN(Ji(X))=Yi(<Pi(X)) 

Comment 2. As in the case of synchronization for automata (Section 1.2) it may hap­

pen that even starting with countable Behavior Structures, the construction described 

above produces an uncountable set of nodes. Note that only nodes reach able from 
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the roo t may be produced ; that is because if some pomsets are synch ron izable so are 

the ir prefixes. Again as in the case for au tomata one can check th at a co untable se t of 

no des will be produced if the finite degree condition ho lds: for each action a there is 

o nly a finite set of Bi for which aEalph(Bd. In this case one can restrict oneself from 

the very beginning to "finitary" nodes, that is with concre te syn chronizing embeddings 

<P, ml> J I, m2, J 2,"' > where all the mi but finite numbe rs of them are roots o f the 

Bj . 

Now we are pre pared to formulate (,he m am theorems , which char acte rize the Syn­

chronizatio n of Behavior Structu res. 

Claim 6. Synchro nization of Behav ior Structures is fully co mpositional. 

Proof: omitted. 

Claim 7 (Equiv ale nce Inheritan ce Theorem). 

Syn chroniz ation in herits all th e equivalences (considered above) am ong 

Beh aviors Structures . 

Proof: We show here that =pom, ==MM , =u , and ==BS are co ngrue nces with respect to 

synchron ization of Behavior Structures. 

(1) For ==pom it is straigh tfo rward. 

(2) We co nsider now the equiv alence =MM; the case of =111 is essentially th e same. 

For simplicity, we consid er only synchronization of two BS's. 

Assume that RI is a MM-bisimulation between B I , Bl" and R2 is a MM-bisimulation 

between B 2, B{ 

We use the notatio ns 

m,mb fo r nodes o f BI , 

m', m'l>" for nodes o f BI' 

n , ni, for nodes of B2 , 

n' , n'l," for nodes of B 2' 

<P, m, J I, n, J 2> is a typical node of Synch(B I , B 2) an d of MM(Syn ch(B I , B 2)) 

<P' , m', J I' , n , J 2'> 
MM(Synch(B I ', B 2')) 

IS a typical node of and 

W e defin e an MM-bisimulation R between Synch(BJ> B 2) and Synch(B/, B2') ' 

R «P, m, J I , n, J 2>' <P', m' , f I', n, J 2' » iff th ere following conditions ho ld: 

(i) R 1( n,n ') 

(ii) R 2( m, m') 

of 

It is straightforward, but ted ious to check that R is a MM - bis imulatio n and we o mi t 

this verification he re, 
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(3) Assume that RI is a BS-bisimulation betwee n BI> BI', and R2 is a BS-bisimulation 

betwee n B 2, B{ 

In addition to the notations above we use 

0\ for isomorphism between pomsets at nodes of Bl and El' 

O2 for isomorphism between pomsets at nodes of B2 and E 2' 

o for isomorphism between pomsets at nodes of Synch( BI> B 2) and Synch(B\', B 2'). 

Now we define a BS-bisimulation R between Synch(BI' B 2) and Synch(El', B2')' 

R«P, m, 1\1 n, 12>, <P', m', 1/, n, 12'» ' 0) iff there are 0] and 82 such that 

the following conditions hold: 

(i) RI(n,n',Ol) 

(ii) R 2( m, m', 82) 

(iii) The following diagram commutes (see Fig. 9). 

Fig. 9 

It is straightforward (but tedious) to check that R is BS - bis imulation and we omit 

this verification he re. 

Claim 8 (Em bedding Inheritance ) . The em bedding relations are inherited by syn­

ch ron ization. 

Proof. Sim plicity for we consider the synchronization of two operands. The em bed­

ding of pomset processes is simple and is left as an exercise. The em beddings of mul­

tiautomata is similar (though much more tedious) to the embedding of automata. So 

what we are going to check is the following (for automata M; and behavior structures 

B;). Assume 

(1 ) 

Then it should also hold 

(2) 

First we note, that since synchronization of automata inherits M-bisimulation (see 
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C laim 2) it follows from (1) th at: 

( 3) 

The comparison o f (2) and (3) shows that what one actually has to check is 

( 4) 

To this end let us use the following no tations for the no des of the Behavior Structures 

above and hence also for the states of the respe ctive automata: 

nil , nl , ' " nodes o f BI (states in M(BIl) 

nl2, n2,'" nodes of B2 ( s tates in M(B2)) 

ni, n, ... nodes in B=de,Synch(Bl> B 2) ( states iri M(B)) 

Recall that actually ni, n , ... hav e the format 

fo r appropriate P, Q, fi' gi,'" 

The states of Synch(M(BIL M(B2)) are pairs < nil, m2 > , <ni' n2>' 

Recall that our goal is to prove (4). But the following relation R 

between nodes o f A-de,Synch(M(Bd , M(B 2)) and N=de,M(Synch(B I, B 2)) is aM­

bisim ulatio n. 

Indeed, the initial nod es are re lated by R. Note th at for a tuple < ml' mz> in A 

there corresponds some tuple < P, m l , f I, nlz , f 2> in N only if Pm, and Pm, are syn-

chronizable. Moreover in this case if < ml> m2>-+ < nl, n2> then Po, and po. are 

synchronizable and there exists an extension Q of the pomset P and extensions gi of 

a 
fo re if there exists III A a transition < ml> m2> -+ < nl , n2> then III 

a 
M(Synch(BI> B 2)) there exists a transition < P, ml, f I, m2, f 2>-+ 

< Q , ni' gl , n2, 92> to a state related by R with <ni , nz>. The dual condition 

ho lds obviously. 

2. Nets of Processes 

2.1. Provisos and Terminology 

Following the terminology of Petri Nets we use th e term Net for a bipartite (not 

necessary oriented) graph with nodes of two kinds, pictured respe ctively as circles and 

boxes. The difference between the two kinds is relevant for the notion of subnet. A 
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s ubgraph N' of N is considered to be a subnet if the set of its nodes consists of some 

circles and of all boxes which are ad jace nt to thes e circles. In particular an atomic sub­

net contains a single circle and all its neigh boring boxes. This is to be contras ted with 

an atomic bunch which contains a single box and all its neighboring circle s. For techn­

ical reaso ns , that are not essential at this stage but may be convenient in applicatio ns 

to Data Flow and Petri Nets, the following restrictions upon nets are assum ed from 

now on: 

Lack of small loops: no atomic subnet may contain a loop. 

Among the oriented ne ts , we first mention those which obey the additional restriction: 

a) There are no oriented loops in the net. H ence, the set of all nodes is partially 

ordered. 

For such nets, III addition to the partial order relation < among nodes, we also 

consider two more binary relations: 

(1) The bin ary co nflict relation # 

(2) The binary concurrency relation co 

Since x co y is defined as th e negation of "x:5,y or x#y" it remains to explain 

o nly what x#y means. 

The definition o f conflict: 

(a) boxl#box2 are in (direct!) conflict in the situation 

Fig. 10 

Now, an occurrence Net is an Oriented Net to which, in addition to restriction a) the 

following restrictions also apply: 

b) Finitary partial order, i.e. e ach node may have o nly a fini te number of box prede­

cessors. H ence there exist initial nodes (wi th no predecessors). 

c) All the initial nodes are circles 

d) Each circle has at most one input arrow ( an orie nted arc fro m a neighboring box, 

directed to this circle). 
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Given an occurrence net H one associates with it an event structure Ev(H) with binary 

conflict relation # as follows: 

11 

(1) Events: the boxes of H. 

(2) Partial order, conflict and con currency - inherited from H. 

Appropriately labe led nets provide a useful pictorial representation for processes. 

Some of them, called also flow graphs, reflect the way complex processes are assem­

bled from "e lemen tary" ones. For exam pie, an elementary process (agen t) P over the 

action alphabet {a,b,c} is pictured as a circle labele d by P, from which there emerge 

three lines to boxes, each labeled with one o f th e alphabet actions (see Fig. 11). 

b 

°1 
c 

Fig. 11 

Accordingly , when a set (which may be infinite) of agents are put together to evolve 

concurrently, the resulting system may be pictured as a net in which equally labeled 

boxes are identified. (Compare two nets from Fig. 11 with the net of Fig. 12.) 

Fig. 12 
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On the other hand Labeled Occurrence Nets , through the interpretation Ev mentioned 

above, represent Labeled Event Structures and ultimately Behavior Structures as well. 

In contrast with Flow Graphs, which reflect the spacial structure of processes, 

Occurrence Nets record the temporal and causal structure of processes. 

Nets of Processes 

Fix some kind I of processes (Automata, BS, etc .... ). A Net of I-processes is a Net N 

with an appropriate labeling </J, i.e. formally a pair < N,</J> , where 

(1) </J assigns to each box b an action and different boxes get different labels. In this 

way each atomic subnet of N becom es qualified, i.e. associated with an action 

alphabet. 

(2) </J assign to each circle c and hen ce to each atomic subnet a I-process </J( c) with 

the only restriction that the alphabet of </J( c) coincides with the alphabet of th e 

atomic subnet "around" c. 

Notes 

a) By abuse of notation we shall not distinguish the boxes III <N,</J> and their 

labels. Due to (1) this is not dangerous. 

b) The only situation when different circles Cb C2 may be equally labeled by </J is 

illustrated in the Fig. 13, wh ere the atomic nets induced by Cl, c2 hav e the same 

box neighbours. 

c) In the literature about nets the circles are called places, whereas the boxes are 

called transitions or events (for Petri Nets); we us e also - ports. 

Fig. 13 

Finally, for the seman tics (behavior) of a net < N, </J> one declares the process 

I(N, </J)=d"Synchl(</J(p) : p is a place in N) 

where Synch is parametrized wrt the process model under consideration (Automata, 

Multiautomata, Pomset Processes , Behavior Structures). 
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2.2. Examples of Nets over Deterministic Automata 

Recall that an automaton is called deterministic iff each node has at most one transi­

tion arrow with a gi ven label a. 

Data Flow Nets (DFN) 

A DFN is a net over deterministic automata whose actions, called also communications 

are described by pairs <c , v > ; here c is the name of a channel on which the com­

munication take place and v is the value of a message which is passe d through this 

chann e l. In principle communications may be dealt as with ordinary actions and used 

as labe ls of ports. But introducing the s peci al notation is suggestive of a more compact 

an d convenient representation of the flow graph. When drawing an agent the ports get 

labels only from the alphabet CH of chann els. 

Nets over CjE automata 

CjE automata (CjE elementary agents) hav e the fo llowing simple form. (The relation 

o f CjE automata to CjE Petri Nets is discussed in Appendix.) 

(1) An elementary agent has on ly two states called full and empty. 

(2) Actions are either input actions or output actions. 

(3) An input action transforms th e automaton from the empty state to the full 

state; an ou tput action transforms the automaton from the full state to the 

em pty state. 

Fig. 14 

Graphically a CjE automaton is represented by a circle and its ports by boxes. There 

are arcs from the input ports of the automaton to the circle and arcs from the circle to 

the output ports. The full state is represented by drawing a dot in the circle. 
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2.3. Robust BS-embeddings 

Assu me a given asso rtment As={A;} of multiautomata agents and consider all possible 

nets over As, i.e. all nets <N, 1/; > in which l/;(p) EAs or I/;(p ) is result of 1-1 renam­

ing of actions for a process QEAs. According to the definition above each s uch net 

<1'1,1/;> has a multiautomaton semantics MM(N, 1/;). A BS - semantics Sem(N, 1/;) 

for these nets is said to be robust if the following two condi tions hold: 

(a) (Consisten cy) MM(Sem(N, I/;))------MMMM(N, 1/;). 

(b) (Com positionality) Assume N is decomposed in to disjo int su bnets NI,Nz,· , 

then Sem(N)=Synch(Sem(NI, 1/;1)) , Sem(Nz,l/;z) , ... ), where the 1/;. are the 

respective res trictio ns of I/; . 

If these conditions hold we also say that the multiautomaton semantics MM(N, 1/;) is 

robustly embedded in the BS - semantics Sem(N, 1/;). 

Claim 1: 

(i) A robust BS - embedding is always possible. 

(ii) If the agen ts in As are auto m ata then the robust BS - embedd ing is uniqu e (up to 

BS - bisimulation). 

Proof: As a direct consequence of the Em bedding Inheritance Theorem , and the Full 

Compositionality Theore m , (Claims 7,8 Section 1) in order to establis h a robust BS­

semantics for nets over a given assortment A s={Ai} of agen ts one should proce ed as 

follows: 

a) Consistent embedding of agents: Assign to eac h AiEAs a Beh av ioral Structure Bi 

such that MM(B;}==MMAi . 

This is possible according to the Embedding Theo rem (claim 3 of Section 1). More­

over if A is an au tom aton then there is a unique (up to BS- bisim ulation) Behavior 

Structure BA which MM-consistently embeds A. Namely, consid er a tree-like transi­

tion diagram T(A) which is bisimular to A; m arking each node of T(A) by the string 

from the root to this node we get the unique Behavior Stru cture BA-

b) Compositional extending on Nets: 

Sem( N, 1/;)==SynchBS ( I/;'(p): 'p EN) 

where I/;'(p) is a BS in which the age nt I/;(p) was embedded consistently accord­

ing to a). 

Warning. In this sequel when we deal with nets <N, 1/;> over over automata und e r 

BS(N, 1/;) we have in mind just the uniqu e robu s t BS-se mantics Sem(N, 1/;) as defined 

above. But note that in the case of Nets over multiautomata there may be many 

robust BS-sem an tics (see 3.2 below). 
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2.4. Trace Semantics 

Now let us return to nets over arbitrary automata. A pomset be havior of s uch a net 

may be obtained from its lin ear behavior in the same way as Mazurkiewicz [Maz84] 

obtained it in the case of Condition Event nets. 

To this end first we de fin e a dependency re lation on the set of ports of a net N as fol­

lo ws: 

Given an automaton A, we introduce a dependency re lation between its ports, n am e ly 

all ports are considered to be pairwise dependent. 

Further, the dependency relation for th e net N IS defined to be the unio n o f the 

dependency relations of its components. 

Now, for a given dependency relation D CL;)Q; an d string saver L; a pomset, PD ( s) 

is defined inductively as fo llows. 

(1) PD(E) is the empty pomsetover L;. 

(2) For sEL;' , and aEL; the pomset PD(s.a) IS obtained from th e pomset 

PD(s)=<E,,<, > by the fo llowing pro cedure: 

(a) Add to E, a new even t enew labeled by a. 

(b) For each element e of E, labeled by a port which depends on a let e<en,w; 

finally , let < •.• be the transitive closure of <.U < . 

Let < N, 1/;> be a net with dependency relation D and linear behavior L . Th e n, by 

definition, the trace semantics Trace(N, 1/;) of th e net <N, 1/;> is U PD(S) 
BEL 

Let BS(N, 1/;) be the (unique) robust BS-semantics of the net under consideration. 

The following claim shows that despite the fact that Trace(N, 1/1) and BS(N, 1/1) are 

defined in quite different ways they are consistent with each other. 

Claim 2: Trace(N , 1/;)=Pom(BS(N, 1/;)) . 

Proof. R ecall that BS(N, 1/;) is obtained by embedding for each p the automaton Ap 

(assigned to the place p) into a unique (up to BS- bisimulation) Behavior Structure Bp 

which is MM- bisim ular to A p , and the n taking th e synchronization of all Bp: 

B=Bynch(Bp : pEN) 

In accordance with the Embedding Inheritance Theorem (Claim 8) it holds 

Pom(B) =Bynchp.m( Pom(Bp) : pEN). But since th e Ap are automata, it follows that 

Pom( Bp) consists of strings (tom sets). And the claim now follows from the following 

Fact. Assume that SI' s2, are strings over alphabets L;i respectively . Then 

SynchPom (SI' S2,"')=U PD( S) 
'E L 

where L =Bynch/omae/( SI, 82,"') and th e depe nden cy re latio n D is U L;i )Q;j 
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2 .5. Occurrence Semantics 

Here we propose an occurren ce ne t se mantics for nets over automata, via a straightr 

fo rward generalization of the occurre nce net seman tics for Petri Nets [NPWj. We 

assign to a net < N , '1/;> over automata an occurrence net N ax ax iomatically and an 

occurre nce net N°P in an operatio nal way. We prove that N ax =l'I°P. Moreover, it 

turns o ut that the L abe led Event Structure associated with them (as explained in Sec­

tion 2 .1) is nothin g but a description of the (uniqu e !) robust BS - se mantics. We use 

th e definitions of occ urrence nets and of the relations < ,#, and co on as defined 

above in 2.1. Vve use also some Petri Net terminology according to which in a bun ch 

of a box (even t), a place is called precondition if it precedes the box and postcondition 

otherwise. 

2.5.1. The Axiomatic Approach 

Let < N, '1/;> be a net over au tom ata . We are looking for an occurrence n et N ax 

with places labeled by states of the se automata and ports labeled by labels of ports in 

< N , '1/;>. The net N ax should satisfy the axioms AI-A3. 

(Al)Assume th at a port eENaz is labeled by a where in <N,'I/;> the bunch o f a IS 

labe led by the automata Av ... ,Ak ; then for the bunch of e in N ax , 

(*) e has k preconditions labeled Pl,P2, "" Pt and k postcon ditio ns 
a 

P\ ,P'2 , .. , P'k' H ere for each i Pi and p/ are states of Ai and Pi->P' i in Ai 

( se e Fig. 15). 

(A2)To each place pE < N, '1/;> there co rresponds in N ax a place labele d with the Illl­

tial state o f 'I/;(p); these are the initial places in N ax . 

(A3 )Assume that some k places pi1,pi2, ... pik are III co relation and that they are 

labe led by states pj , P2, .. . , Pk of Av· . ,Ak · Assume also that a is a port in 

< N, '1/;> whose bunch uses just these labels Av ... ,At. Then for each tuple 

o f states P\,P'2, ... ,P'k of Ab ' . ,Ak such that a leads from Pj to p'j in Aj 

there is in N ax exac tly one bun ch with port labeled by a with the pre conditions 

pi j , pi2, .. ·pik and postcondition s labeled P' j,P '2, ' . , p\ (see Fig. 15) . 
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a 
----t.~ P ~ in A. 

1- 1-

Fig. 15 

2.5.2. The Operational Approach 

Now we assign operationally to the net <N, 1/;> over automata an occurrence net 

N°P. First note that a linear behavior of <N, 1/;> is best given by a sequence of the 

form u=MoaoMlal ... MnanMn+l where: 

(1) Mi for is;n+l is a global state of <N, 1/;>, i.e. a function which assigns to each 

place pi in <N, 1/;> a state of the automaton 1/;(pl) 

(2) aj are ports of N ; 

(3) kfo is the initial global state of lV. 

(4) aj transforms the global state M j to the state Mj+l> i.e. for each place pi in the 

bunch of aj, the transition Mj(pl)--+Mj+l(pl) may be performed by the automa­

ton 1/;(pl). 

The construction of N°P heavily relies on an appropriate equivalence --:3 between linear 

behaviors of N, to be defined below. Namely, the ports of N°P are identified with the 

=:J equivalence classes. 

First we define on linear behaviors three relations ==j ==j 
1 2 

We say that u==!' if: 
1 

(1) u =M oaO .. ·Mj_laj_lMjajMj+l ... Mn anMn+l 

r=MoaO ... Mj_lajM'jaj_lMj+l ... MnanMn+l and i<n 

as follows. 

and 

(2) there is no au tomaton which contains both ports aj_l and ai' (ai_l and aj do not 

belong to an atomic subnet of <N, 1/;». 
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We say th at I:T =- if 
2 

(1) 1:T==Aloao ... M"_ la"_lM,,a,,AI"+l and r==Aloao···M,,_ la,,!v['n 

(2) there is no autom aton which contains both a,,_l and a" 

(3) AI'" and M,,+l coincide in the bunch of a" 

Finally the relation =is defined to be the reflexive and transitive closure of 4J =; 
3 1 2 

Remark: if I:T ==A1 oaoM 1 .. . lv!" a"A!,,+l and r==Al oa 'oM\ ... M' k a' k AI' k+1 are 

equivalen t then: 

(i) a,,='k 

(ii) each pi in the bunch of an has the same local state in both M,,+l an d M'k+1 

(Mn+1(pl)=M'k+l(pl)); it has also the same local state in both M" and M'k 

(Mn(pl)=M' k(pl)). 

Let us return to the construction of N°P. 

Ports of Nap: For each l:T==A1oaoAI1 ... M na"M"+1 there is a port associated with (J /=s. 
This port is labeled a,.. This is a correct definition due to Remark 1 abov e . 

Places: With the equivalence class of I:T =M oaoM j ... M"a"M"+l , where in <N, 1/1 > 

a" is the common port of A i"A i2, . ,Ai, we associate a set PI( I:T) of k places 

labeled by the local states of A i"Ai2,. . ,Ai, in the global state Mn+l. Th ese places are 

the postconditions of the port assigned to a A . 

To each place pE < N , 1/1> there corresponds in N°P a place labeled with the initial 

state of 1/1(p); these are the initial places in N °'. 

To accomplish the definition of Nap we h ave still to explain when a place p in N ap is a 

precondition of a port e. To this end assume that a=MoaOMj ... a"_IM,,anMn I1 , 

r=MOaoMl .. M"_la"_lM,, , and that a,,_ l ,an are ports of an automaton Ak; then the 

place of Ak associated with T will be a precondition of the port assigned to a. If 

a=MoaoMj then the preconditions of th e port assigned to a are those initial places of 

the Nap which correspond to th e automata containing ao. 

Example: Consider the following net over C/E autom ata. 

\ 0-UiJ-:0--GLl 
2 

3~ 
5 

Fig. 16 

the assigned occurrence net is in Fig 17. 
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Claim 3: 

1 - full 

2-emply 

;!) • fu 11 

4 -emply 

~ -emply 

~
~empIY 

• :!-full 
. 2-emply 

~
c ~·emply 4-emply 

• 1'/"1/ 4-emp I y 

• 6-lull 

Fig. 17 

(1) The net Nap constructed in th e abov e procedure is an occurre nce ne t. 

(2) Nap is the uniqu e occurren ce net which satisfies the axiomatic definition. 

Proof. Omited. 

Belo w, we use for the Labeled Event Structure indu ce d by Nap and also for th e 

corresponding Behavior Structure the notation Occ(N, 1/; ) 

Claim 4 (Consistency). 

For each net < N, 1/;> over autom ata: BS ( N, 1/;)=Bs Occ(N, 1/;). 

Proof. Postpone d after Claim 5 be low. 

2.6. Retrievability 

Let us co nside r in m o re detail ne ts over au tom ata. Note, th at the unique ness of 

robust BS-semantics fo r s uch nets (in the sense of claim 1) do es not m ean that n ets 

with the same MM- semantics have also the same (up to bisimulation) DS-se mantics . 

R ecall also the Non-Re trievabi li ty T heo rem ( C laim 5 Section 1.5). Nev e rtheless, in 

some cases the full BS-se mantics of a net may be sti ll recovered from some partial 

in formation as claimed in the follo wing 

Claim 5 : 

Let <Nv 'ljJ l > and < Nz, 'ljJz> be ne ts ove r autom ata and B l , B z their robust BS­

semantics, and let B be an arbitrary BS. Th en 

(1) If Pom (Bl) =Pam Pom(B2) and M(Bd==MM(B z) then B 1=B S B z. 

(2) If NI and N2 are n ets over dete rminis tic au tomata and Pom(Bd=PamPom(Bz) 

then B 1= BS B 2. 
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Proof. It is clear that (3) implies (1). R ecall that the string langu age of a Beh av ior 

Structure is equal to the line arization of its pomset process, and no te that two deter­

ministic Beh avior Structures with the same string languages are M- equivale n t. H e nce, 

(1) im plies (2) . Below we give for (3) a proo f which only relies on the following facts. 

Fact 1. Assume that Behavior Structures (multiautomata o r automata) Bb B2 are M­

bisimular. The n there exists also a special M-bis imulation R between them for which 

the fo llo wing ho lds: 

If pRq th en there ex ists in B 1 a path from the root to p and there exists in B2 a 

path from its root to q , such that the same strings appear alo ng these paths . 

The next two facts are about pomsets in Pom (B 1)· 

Fact 2. If two po msets in Pom (Bl) h ave a common string in their line arization then 

they are isomorphic . 

Fact 3. In Pom(BIl all th e pomsets are not autoconcurrent. 

W e need two more facts about auto concurrency: 

Fact 4. For two po msets withou t au toconcurren cy there exist at most one isomo r­

phism betwee n them. 

Fact 5. Ass ume that a M-bisimulation R betwee n two Be hav io r Structures B l , B2 

without autoconcurren cy re late s o nly nodes with isomorphic pomsets . Th en 

B 1==BS B 2 · 

H av ing in mind this facts the proof proceeds as follo ws: Let R be a M-bisimulation 

between Band BS(N, '1/;) . By F act 1 we may assume that if m, n are related by R 

then they have paths from th eir roo ts which are labeled by the same string. 

Therefore by Fact 2 and the ass umptio n o f the claim under consid eration the pomsets 

at the relate d nodes are isomorphic. Note that BS(N, '1/;) is not autocon cu rrent. 

Hen ce by assumption of the claim the Behavio r Structure B is not autoconcurrent. 

Therefore the M-bisimulatio n R be twee n Band BS(N, '1/;) satis fies the assumptions of 

Fact 5. And fin ally, by F act 5, the Behavior Structures Band BS (N , '1/;) s ho uld be 

BS-bis imular. 

Proof of Claim -4 (Sketch). 

First we men tio n withou t proof th e following facts. 

Fact 1. The automaton M(N , '1/;) is M-bisimular to the Milnering of the Behavior 

Structure Occ( N , 1/;). 

Fact 2. Pom( Occ( N, 1/;) -pom Trace( N , 1/;). 

On the other hand , according to th e Em bedding Inheritance Th eorem (Claim 8, Sec­

tion 1) th e automata M(N , 1/;) is M-bisimular to th e Milnering of BS( N, 1/;). H ence, 

Fact 3. Occ(N, 1/;) and BS(N, 1/;) are M-bisimular . 

Now, by Claim 2 (this section) Pom( BS(N, 1/;))===Pom Trace(N, 1/;). H ence , 
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Fact 4. Oee(N,,p) and BS(N, ,p) are Pomset equivalent. 

Finally, from Claim 5(3) and facts 3-4 above it follows that Oce(N, ,p)=BsBS(N, ,p). 

Comment. The semantics BS(N, ,p) is defined in a compositional way, whereas the 

semantics Oee(N, ,p) is defined in an operational way. Reviewing the proof of their 

consistency one could observe that the proof relies on pure operational arguments 

(for example Facts 1-2) or pure compositional arguments (for example Claim 5) and 

on the Claim 2, which is main bridge where both operational and compositional argu­

men ts are relevan t. 

3. Appendix (Petri Nets) 

Petri Nets present the essence of nondeterminism, asynchrony and concurrency in an 

illuminating pictorial way. A Petri Net N has places (pictured as circles) in which 

tokens may be located, the current global state of N being just the Cartesian product 

of its current local states(i.e. of the numbers of tokens in the places). N has also tran­

sitions (pictured as boxes) which may fire according to specific rules. Though there 

exists a well elaborated and established system of notations and terminology for Petri 

Nets [BD], [CR], we mention below only the pure graph component N of the Petri 

Net. So, in fact referring to a Petri Net N, one has in mind also that to each place 

pEN there is assigned a quadruple, called the kindof p: 

m(p) - the number of input arrows (from boxes to this place) 

n(p) - the number of output arrows (from the place to boxes) 

k(p) - the initial number of tokens in the place. 

rep) - the capacity of the place (may be infinite). 

The firings change the global states via flowing of tokens among places and in this way 

one can associate with N an automaton M(N) (when only firing of single transitions is 

allowed) or a multiautomaton MM(N) (when simultaneous firing of multisets of tran­

sitions is allowed). 

Whereas M(N) and MM(N) reflect the "interleaving" aspects of the behavior of N , 

much effort went (and is going) into describing causal semantics. According to Petri's 

view a run of a process should be a partial ordered multiset (pomset) of atomic 

actions, reflecting the causal relation between action occurrences. 

In general each place in a Petri Net appears with a preassigned capacity - the maximal 

number of tokens it may contain. Actually, in Petri's original model only capacity 1 

places were allowed; such nets are usually called CIE Petri nets. 

Different definitions of causal semantics were considered in the theory of Petri Nets. 

For CIE Petri Nets, in addition to Multiautomaton semantics, Pomset Semantics was 

also proposed: by Petri [Petri] in terms of causal nets and by Mazurkiewicz [Maz84] 
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in te rm s o f Trace processes. Ev ent Structure semantics was provided in [NP\Vj an d 

Labeled Configuration Se mantics (Prefix Struc ture Semantics) in [M az84]' wh e re 

"Prefix Structure" is used as synonym fo r "Labeled Configuration Structure". 

Let N be a C/ E Petri ne t. We use th e no tations : PS(N) - Prefix Stru cture se m an ­

tics; NPW(N) - Ev ent Structure semantics; l'Vftra ce (N) - th e Mazurkiewicz Trace 

se mantics; P(N) - Petri 's po mset semantics. 

Fo r nets N whose places have infinite capacity, a po mset se m antics was developed in 

the Ins titu te GMD: [BD ], [GR). We use for it the notation GMD(N). 

Surprisingly, the following questions about Petri Nets were nev er explicitly co nsi dered. 

Question 1 : (About G/E Petri nets) Are th e causal semantics listed above consistent with 

each other? 

Qu estion 2:(About all kinds oJ Petri nets} Are the causal semantics listed above modular? 

More precisely, is it the case that whenever a net N is transformed into Nl through the 

replacement oJ a subnet N' of N by a net Nil th e following holds: 

N'-eem N " implies N-.em N l ? 

3.1. Mazurkiewicz's Inodular approach to C/E Nets 

This appro ach was origin ally elaborated in [M az84] fo r C/E Petri Ne ts and amounts to 

a specific transformation of C/E Pe tri Nets into Nets over C/E automata (s ee Section 

2.2). To this end with each possible kind < m , n , k , 1 > of a place M azurkiewicz asso­

ciates a C/ E automaton P(m, n, k, 1) . The M azurkiewicz Transform of a C /E Petri 

net N is the net <N, 1f;> over automata with th e same bypartite graph as N; its 

labe ling functio n 1f; assigns to each place a C/E automaton which fits the kind of the 

place in th e original Petri Net. The following fact (which is not m e ntio ned explicitly in 

[Maz84)) holds: 

ClaiIn 1. The multiautom aton MM(N) induced (operationally) by th e token game 

for a C/E Petri Net N is MM-bisimular to the multiautomato n MM(N , 1f;) which is 

defined compositio nally (via synchronization) for th e Mazurkiewicz Transform. M o re­

ov er, Mazurkiewicz Transfo rm is th e uniq ue assign m ent of th e m ulti au to mata (to 

kinds) for which each C/E Petri Net and the correspo nding net over au to m ata are 

MM-bisimular. 

Note that Nets over C/ E automata m ake sense for arbitrary to po logy, includin g such 

s itu ations which usually are no t regard ed as legal for Petri Nets. For example an 

atomic net is deemed "illegal" because in the token game each box is assumed to h ave 

at leas t on e precondition and o ne postcon dition . In other words, MM(N , f/J ) gives a 

conservative extension of th e operational to ke n gam e fo r arbitrary topology. 

A reaso nable assumption is that whatever the causal se mantics fo r a C/E Petri net N 

might be, it should be co nsis ten t with the multiautomaton se mantics produced by th e 

toke n game and, hence , also with MM( N, f/J ), where < N, f/J> is the co rrespo nding 
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M az urkiewicz Transform. Finally, since in this case th e agents in < N, 1» happen to 

be automata, consis tency means th at the unique robust BS-semantics should be con­

sidered. 

On the other hand, for the net < N, 1> > over C/E automata on e can also consider the 

semantics Trace(N, 1» and Occ(N, <1» as defined in Sections 2.6. They m ay be easily 

shown to coincide wi th Mtrace(N) and NPW(N) for the original C/E Petri Ne ts. 

Here is our main result for C/E nets from which in particular there follow affi rmativ e 

answers on Questions 1,2. 

Claim 2, For C/E Nets all the semantics above are consistent with each other and 

retrievable from BS semantics. 

Formally: Le t N be a C/ E Petri Net and <N, 4» the corresponding net of automata. 

Then 

(1) BS(N,4»==BS PS(N)==BS NPW(N) 

(2) Pom(BS(N , 4» )=PDmMtrace (N)=PDmP( N). 

Remarks: NPW(N) and P(N) were originally described in an operational way and 

were defin ed o nly for a res tricted class of C/ E nets. Two of the restrictions are: (1) 

the net has no external ports, that is each port is an input port for at least one place 

and an output port for at least one place; (2) the net should be "contact free". BS, PS 

and Mtrace semantics are given denotationally and do not impose restrictio ns on the 

topology and the initial state of the nets. 

The fact that in the case under consideration robust semantics is unique , is a substan­

tial message. Namely, there is not by chance that different definitions of causal seman­

tics turned o ut to be equivalent (or consis ten t); as a matter of fact they reflect the 

genuine and unique causal semantics for C/E Petri nets. As we shall see below the 

situation is quite different for the more general case of Petri Nets, that are known as 

Place Transition (P/T) nets. 

3.2. P /T Nets 

In a P / T Petri net places with arbitrary capacities are allowed. Though the token game 

beco mes a bit more complicated then in the particular case of C/E Petri nets, it still 

yields a well-de fined multiautomaton. In order to generalize Mazurkiewicz's approach 

to PI T Petri nets one has to start with an appropriate assignment o f multiauto mata to 

kinds, along the lines it was done for C/E Petri nets. But the crucial difference is that 

at this tim e the PIT assortment consists of PIT Multiautomata, which are not 

necessarily equivalent to automata. (see the definition of P( m, n, k, r) below). 

Further, Mazurkiewicz Transforms are defin ed as in the case of C/E Petri net and the 

analogue of Claim 1 holds: 
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Claim I'. The multiautomaton MM(N) indu ced ( o perationally) by the token game 

for PIT Petri Net N is MM-bisimular to the multiautomaton MM(N, 'if;) which is 

defined compositionally (via synchronization) through the co rrespond ing PIT multiau­

tomata P(m , n , k , r) . Moreover, there is a unique assignment of multi autom ata to 

kinds, for which Petri Nets and the co rresponding nets over automata are MM­

bisimular. 

Definition of the PIT multiautom ata (agent) P(m, n , k, r) which corresponds to the 

kind <m, n, k , r> of a place. 

(1) A PIT agent with capacity r has states 0,1,2 ... r. 

(2) The set of actions l: of the agent consists of input actions :sin and output 

actions :sout. 

(3) A multiset S of actions leads from a state m to a state k if the numbe r of output 

actions in S does not exceed m and if k is computed according to the token game; 

in the case of finite capacity r , the s um of m with numbe r of input actions in S 

should not exceed the capacity r. 

Formally: ISn 1l(:soUI) I::;: m and k=m- ISn Il(:soul) 1+ISn Il(:sin) 1 and 

m+ISn 1l(:Si") I::;:r. 
An agent of capacity r with m input actions, n output actions and ini tial state k will be 

denoted by P(m;n;k;r). 

Fig. 18 

Graphically the agent is represented by a circle and its ports by boxes. There are arcs 

from the input ports of th e agent to its circle and arcs from the circle to its output 

ports. The state k is represented by drawing k dots(toke ns) in the circle. 

Let us address now the issue o f causal behavior for PIT Pe tri nets; here the situation 

looks quite different from the C/E case. Consider fo r example a PIT multiautomaton 

P(m;n;k;oo). In contrast to th e case C/E where an agent is a C/ E automaton, th ere 

may be many BS which consistently embed a given P(m;n;k;oo) ; these BS's may 

even be not Pomset equivalent. And we are faced with th e problem: what BS embed­

ding should be provided for P( m; n;k ;oo)? No m atter what em bedding of 

P(m;n;k;oo) into BS will be chosen the BS semantics fo r nets will be robust. Hence , 

to choose BS semantics for PIT agents we must take into account considerations 
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which are beyond the multiautomaton description of agent. In particular for a special 

class of PIT Petri nets (whose places have only infinite capacity) Best and D eviller 

[BD) proposed two ways how to define Pomset Semantics, an axiomatical one (via 

causal nets) and an operation al one; they prov ed that both these ways provide the 

s ame Pomset Sem antics , which we designate d as GMD(N). 

We provide a robust BS embedding for the PIT agents which will be consistent with 

the semantics proposed by Best and Deviller (GMD-semantics) and extends it to nets 

of arbitrary topology. Moreover this is the unique robust BS embedding which is 

consiste nt with GMD-sem antics . The consistency between ours and GMD-sem antics 

implies modularity for the latter . 

Claim 3: There is a unique robust BS embedding of PIT agents with infinite capacity, 

which is consistent with GMD-sem antics . (this embedding of P(m ;n ;k ;oo) is 

de noted by B(m;n ;k,oo) ). 

Below is depicted the Event Structure which corresponds to B(2,2 ,k ,oo) with input 

ports a, band outpu t ports c,d . 

'0 
, 

b 'b . . . ... d d d • 'd 0 
CC C C ·fah /\ j\ 

k times k times 

Fig. 19 

Its ev e nts are of three kinds: (1) minimal but not maximal; there are infinitely many 

such e vents and th ey are labeled by a and b and there is no conflict between th em; 

each s uch event is fo llowed by two event o f the second kind labeled by c and d . (2) 

maximal but not minim al, labe led by c and d ; for every such event e there is exactly 

o ne event less th an e. Two such events are in co nflict if there is an event of kind (1) 

less then both of them. (3) ev e nts which are maximal and minimal; they are labeled 

by c and d ; there are k labeled by c and k labeled by d and each k+ 1 of th ese even ts 

are in conflict. 

Capacity oriented semantics: Le t N be a PIT Petri net and let p be one of its places. 

The used capacity of p is the maxim al number t of tokens which may occur in p in 

any play of the tok e n game . It may happen that the used capacity t of p is strictly less 

then the capacity of p. The PIT Petri net N' obtained from N by assigning to the 

place p any capacity ?t is easily shown to be MM equivalent to N . A robust BS­

semantics is called capacity oriented if it is invariant under these transform ations. For­

mally : 
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A robust BS semantics for nets over PIT agents is said to be capacity oriented iff 

the following holds: Assume the PIT Petri net N2 is obtained from th e PIT Petri 

net NI by only changing the original capacity assignment by capacities> the used 

capacities. Then BS( NI)o=.BsBS( N2)' 

Claim 4. There is no capacity oriented robust semantics fo r nets over PIT agents In 

which for agents P(m;n;k;oo) the behavior structure B(m;n;k ,oo) is assigned. 

The claim shows that GMD-semantics cannot be extended naturally a capacity 

oriented semantics. But there are many others capacity oriented semantics for PIT 

nets and for some of them we can provide a natural operational explanation of causal­

ity. 

The P(m;n;k ;oo) agents are deterministic multiautomata. The fo llowing question is 

still open: let N and N' be two PIT nets with the same GMD-semantics. Do they 

have the same BS-sem an tics under the above ern bedding? 

4. History and Concluding Remarks 

The idea of corn bining causality and branching in one en tity appeared first in [NPWj , 

where it was used to characterize semantics of C IE Petri Nets. In [NPW] the formali­

zation of this idea is through Event Structures, Occurrence Nets and Prime Algebraic 

Coherent Posets (actually - Configuration Structures for Ev ent Structures with binary 

co nflict), which are s hown to be retr ievable fro m each other (see Claim 3, Section 1). 

The theory of Event Structures was extensively developed in [W80] and [W87] . 

A compositional way to define causal semantics for CCS, TCSP, etc. is through opera­

tions of the respective repertoire upon objects which take into account branching­

causality. In [W] , [LG] this was achieved through ope rations on Event Structures, 

among which Synchronization is the crucial operation. 

Configuration Struc tu res originated a series o f notions which reflect in a m o re direct 

way the dynamism of processes than the "static" notion of Event Structure. Actually, 

Prefix Structures [Maz84]' Behavior Systems [Shi] an d Behavior Structures (this 

paper) are versions or sligh t extensions of Configuration Structures. 

Our reasons to prefer Behavior Structures (BS) is that they are less restrictive. We 

hav e the feeling that syn chronization of BS's is more n atural and conceptually simpler 

than Sync hronization of Event Structures. One more argument in favo r of Behavior 

Structures has to do with formalization of "Bisimulation betwe e n branching-causal 

processes". Note that this relation was never defined for Event Structures, whereas for 

Behavior Structures it emerges naturally from the Milner-Park Bisimulation betwe en 

Automata. Our definition of bisimulation between BS's comes close to the definitions 
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elaborated independen tly in [CV] and [BC] but is more disc rimin ati ng, and is s ho wn 

to be a congruence. [CV] deals with equivalences between Petri Nets and con tains 

also a result, which is similar to our theorem about no nretrievability o f a BS (Claim 5, 

Section 1). 

Some implicit hints abo ut Nets of Processes are already in the early works of Milner 

and Hoare, but the first systematic trcatmcnt of thc subject is in [Prl. According to his 

view o n causality, P ratt considers on ly Nets of Pomset Processes, but clearly th e id ea 

works for BS's as we ll , and we ad apted it in th e most general settin g. In doin g so we 

resign ed fro m specifi c constructs and notions as utiliz atio n , fusio n , etc. [Pr] which 

implicitly assume res trictions (lik e closedness unde r augm entatio n) upon the underly­

ing Proce sses. Ins tead we use Syn chron ization and o th er standard notions. 

Am o ng Nets of Processes we distin guished as a specific area of inv estigation Nets ove r 

Au to mata and Multiautomata. Th e reaso n to do so was to pursue Mazurkiewicz's 

modular appro ach to C/E Pe tri Nets and to clarify how far it can be promoted to other 

mod e ls of concurrency based on net concepts. In cidently in this way we came also to 

th e co mpositional semantics of PIT Petri Nets, as developed in [Maz88] and [Win]. 

Th ere are, howeve r, some points where our inv es tigation goe s beyo nd these papers. 

Nam ely , o ur concern is also about th e co ns istency o f the co mpos itio nal approach with 

th e existing operational definitions of inte rle avin g and causal seman tics; our resu lts in 

Se ctions 2-3 show that consisten cy holds inde ed. We investigate also the qu estion 

wh e th er compositional semantics is unique or recoverable from partial inform atio n . 

Our results are mainly about nets ove r automata and there is still much to do for the 

more ge neral case of nets over mul tiautomata. Fin ally, let us note that we use Nets of 

Processes also in the study of Data flow Networks (see [RT]). 
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