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Institute of Informatics

University of Warsaw

Poland

bojan@mimuw.edu.pl, niwinski@mimuw.edu.pl

Alexander Rabinovich
The Blavatnik School of Computer Science

Tel Aviv University

Israel

rabinoa@post.tau.ac.il
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1. Introduction

It is well known that a great part of automata theory extends quite well from words to trees. But, not
surprisingly, the analogous results become often more difficult in the tree case, as trees have a richer
structure than words. A celebrated example is decidability of SkS, i.e., the monadic second order (MSO)
theory of the full k-ary tree tk = 〈{1, . . . , k}∗, succ 1, . . . , succ k〉, where succ i(w) = wi. Rabin’s
proof [11] for k ≥ 2 needed an essentially new insight into the subject, although it built on an idea
of reducing formulas to automata, previously used by Büchi in his proof of decidability of S1S. The
increase of conceptual difficulty is also reflected by the computational complexity of the related decision
problems. For example, the non-emptiness problem for automata with the Rabin acceptance criterion
over infinite words is in P, while the analogous problem for trees is NP-complete [4].

A good context where the two kinds of objects can be compared is topology. Indeed both trees and
words can be naturally represented as elements of the Cantor discontinuum {0, 1}ω. Then the complexity
of respective concepts is compared in the frame of the classical hierarchies of set-theoretic topology. For
instance, finite-state recognizable sets of infinite words are known to be on the 3rd level of the Borel
hierarchy, more precisely they are Boolean combinations of sets in Σ0

2 [7] (see also [15]). In contrast,
finite-state automata on infinite trees can recognize some Borel sets on any finite level [13], as well as
some non-Borel sets in ∆1

2 [10].

In this context, we consider the following question. Since an infinite word α over an alphabet
{1, . . . , k} can be represented as a branch in a k-ary tree, it is possible to define a language of infi-
nite words by an MSO formula with one free set variable interpreted in the structure tk as the set of
prefixes of α. It is easy to see that a language definable that way must be ω-regular, i.e., recognizable
by a Büchi automaton. This of course need not be the case if we extend the tree structure tk by some
additional monadic predicates. Recently, Bárány, Kaiser, and Rabinovich [1] considered languages de-
finable in that way in context of an uncountability quantifier over trees, and discovered that they are
always Borel. In the present paper we show that these languages of infinite words have the same Borel
complexity as ω-regular languages, that is, they are in the class Boole

(
Σ0

2

)
of the Boolean combinations

of sets in Σ0
2. Moreover, if we range over all possible predicates, the languages in consideration exhaust

the whole class Boole
(
Σ0

2

)
.

To this end, we observe that our languages can be captured by non-deterministic automata with the
Büchi acceptance condition, additionally equipped with an advice telling which transitions are recom-
mended after reading a finite prefix of an infinite word. We note that a similar concept of automata
recognizing languages of finite words has been recently considered by Fratani [5] who showed an anal-
ogous characterization for languages of finite words definable in tree structures. A useful property is
the determinization result which, for infinite words, is analogous to the McNaughton Theorem [9] for
the ordinary Büchi automata: the automata with advice can be made deterministic if we replace Büchi
condition by some more general acceptance criteria, like the parity acceptance condition (see also [15]).

To complete the proof we note that the languages recognized by automata with advice are closed
under continuous reductions. As they also form a Boolean algebra and contain Σ0

2-complete sets (which
is well-known already for the ordinary ω-regular languages), we obtain the desired characterization.

Finally we note that the MSO definability of sets of infinite words in a k-ary tree with predicates
cannot be reduced to definability in the structure 〈ω, succ 〉 (i.e., the underlying structure of S1S) with
additional predicates; we exhibit a language definable in the former sense but not in the latter.
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In this paper, we usually present our proofs for binary trees; an extension to k-ary trees, for k ≥ 2,
is routine. We note that another approach to the MSO definability is possible which, instead of tree au-
tomata, uses the Composition Theorem by Lifsches and Shelah [8]. This approach has capacity to extend
to more general structures, like trees with infinite branching, in order to estimate the Borel complexity
of sets of paths there. It will be the subject of further research.

2. Borel complexity of Büchi automata with advice

In this section, we consider an extension of non-deterministic Büchi automata on infinite words by the
concept of advice, and show that the topological complexity of the recognized languages is the same as
for ordinary Büchi automata.

Topological preliminaries Throughout the paper, ω denotes the set of natural numbers which we iden-
tify with the first infinite ordinal. (Thus the writings n < ω and n ∈ ω are equivalent.) For a set X , X∗

denotes the set of finite words over X , including the empty word ε, and Xω the set of infinite words, i.e.,
mappings ω → X . When applied to words, the symbol ≤ denotes prefix ordering. The length of a finite
word w is denoted by |w|. The m-th letter of a word u ∈ Xω is denoted u(m) or um interchangeably.
The prefix of length m of a word u will be denoted u � m, that is

u � m = u(0)u(1) . . . u(m− 1) = u0u1 . . . um−1,

(in particular, u � 0 = ε). determined by the context. We consider Xω with a topology induced by the
metric given by the distance function

d(u, u′) =

{
0 if u = u′

2−n with n = min{i : u(i) 6= u′(i)} otherwise.
(1)

Note that the open sets are of the form WXω, for some set of finite words W ⊆ X∗. It is easy to see that
if X is finite and contains at least two elements then Xω is homeomorphic with the Cantor discontinuum
{0, 1}ω. (For the concepts of set-theoretic topology, see, e.g., [6].)

We use the notation Σ0
n and Π0

n, with 1 ≤ n < ω, for finite levels of the Borel hierarchy over
{0, 1}ω. That is, Σ0

1 and Π0
1 are classes of open and closed sets, respectively. Next, Σ0

n+1 consists of
countable unions of sets in Π0

n, and Π0
n+1 consists of countable intersections of sets in Σ0

n. Note that
the sets in Π0

n are complements of the sets in Σ0
n.

2.1. Advised automata

A Büchi automaton on infinite words over an input alphabetA can be presented byB = 〈A,Q, qI , F,Tr〉,
where Q is a finite set of states with an initial state qI and a subset of accepting states F ⊆ Q, and
Tr ⊆ Q × A × Q is a set of (non-deterministic) transitions. We write q a→ p to mean 〈q, a, p〉 ∈ Tr .
A run of B on a word u ∈ Aω is a word r ∈ Qω such that r0 = qI , and, for m < ω, rm

um→ rm+1. It
is accepting if rm ∈ F , for infinitely many values of m. The language L(B) recognized by B consists
of those words u ∈ Aω which have an accepting run. Languages of infinite words recognized by Büchi
automata are called ω-regular.
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We now generalize the above concept of automata, so that the transition relation will depend on the
prefix of a word read so far. We note that a similar concept of automata running on finite words has been
considered by Séverine Fratani [5] (called automates à oracles there) in the context of automata with
nested pushdown stores.

A non-deterministic Büchi automaton with advice (or advised automaton) can be presented by B =
〈A,Q, qI , F, ρ〉, where Q, qI , and F are as above, and ρ : A∗ → ℘(Q × A × Q) is the advice function
which associates a set of transitions with each finite word over A. We write v, q a→ p to mean 〈q, a, p〉 ∈
ρ(v). A run of B on a word u = u0u1 . . . ∈ Aω is a word r ∈ Qω such that r0 = qI , and, for m ∈ ω,

u0 . . . um−1, rm
um−→ rm+1.

The concept of acceptance is defined similarly as in the previous case. An ordinary Büchi automaton as
presented above can be viewed as an automaton with advice defined by

ρ(w) = Tr , for w ∈ A∗.

Parity automata An ordinary (non-deterministic) parity automaton1 differs from a Büchi automaton
only by the acceptance condition which, instead of F , takes form of a ranking function rank : Q → ω.
A run r is considered accepting if the highest rank occurring infinitely often is even, in other words,
lim supn→∞ rank(rn) is even. Note that a Büchi automaton can be viewed as a parity automaton with
rank(q) = 2, for q ∈ F , and rank(q) = 1 otherwise.

A parity automaton with advice is defined analogously to the Büchi automaton, with the acceptance
given in terms of the ranking function.

It is well known that non-deterministic parity automata accept only ω-regular languages. We note
that a straightforward transformation from parity to Büchi automata applies also to automata with advice.

Lemma 2.1. For any parity automaton with advice, there exists a Büchi automaton with advice accepting
the same language.

Proof:
Let B = 〈A,Q, qI , rank , ρ〉, and suppose that rank takes the values in {0, 1, . . . ,m}. We construct a
Büchi automaton B′ with the set of states

Q ∪
⋃

2i≤m

{q : rank(q) ≤ 2i} × {i}.

The initial state remains qI , and the accepting states are F = {(q, i) : rank(q) = 2i}. The advise of B′
is given by the following rules:

• v, p a→ q, whenever it was the case in B,

• v, p a→ (q, i), whenever v, p a→ q in B, and rank(q) ≤ 2i,

• v, (p, i) a→ (q, i), whenever v, p a→ q in B, and rank(q) ≤ 2i.
1Currently most frequently used in the literature, the parity acceptance criterion is well-known to be equivalent to the historically
previous Muller and Rabin criteria, see [15].



M. Bojańczyk et al. / On the Borel complexity of MSO definable sets of branches 1005

Intuitively, in some moment of the computation, the automaton “decides” that the highest rank to occur
infinitely often should be 2i. Since that moment on, the automaton cannot enter the states with higher
rank, and it accepts if the rank 2i occurs infinitely often. The equivalence of B and B′ follows readily
from the definition. ut

Determinization An ordinary Büchi automaton is deterministic if Tr represents a function fromQ×A
toQ; that is, for each q and a, there is exactly one p, such that q a→ p. It is easy to see that Büchi automata
cannot, in general, be determinized, but from the celebrated McNaughton Theorem [9], we know that
any Büchi automaton is equivalent to a deterministic automaton with parity condition; an elegant and
optimal construction has been provided by Safra [12] (see also [15]).

By analogy, an advised automaton is deterministic if each ρ(v) is a function from Q × A to Q;
consequently, for each q, a, and v, there is exactly one p, such that v, q a→ p. As for the ordinary
automata, this guarantees that the automaton has exactly one run on each word u ∈ Aω. In particular,
for each v ∈ A∗, there is exactly one state, say ρ′(v), which the automaton reaches after reading v,
starting from the initial state. This leads to a simpler presentation of deterministic automata: instead
of ρ : A∗ → ℘(Q × A × Q), we can consider the function ρ′ : A∗ → Q defined above that we call
state-advice. Indeed, the function ρ′ fully determines the language recognized by the automaton, as a
word u is accepted if and only if the sequence ρ′(u � n), n < ω, forms an accepting run. On the other
hand, any function f : A∗ → Q is a state-advice of some automaton, it is enough to let

v, f(v) a→ f(va)

(transitions for q 6= f(v) may be defined arbitrarily). Since now on, we usually present deterministic
automata by state-advices.

We now show that the determinization result carries over to automata with advice. A similar results
for languages of finite words has been shown by Fratani [5].

Proposition 2.1. For any advised Büchi automaton, there is a deterministic advised parity automaton
accepting the same language.

Proof:
Let B = 〈A,Q, qI , F, ρ〉 be a non-deterministic Büchi automaton with advice. We say that an infinite
word α ∈ ℘(Q×A×Q)ω favours an infinite word u = u0u1 . . . ∈ Aω, whenever there exists a sequence
of states q0, q1, . . ., such that

1. q0 = qI ,

2. 〈qn, un, qn+1〉 ∈ αn, for all n < ω,

3. qn ∈ F , for infinitely many n’s.

For any u ∈ Aω, let ρ(u) be an infinite word over the alphabet ℘(Q×A×Q), defined by

ρ(u)(n) = ρ(u � n).

Note that u is accepted by B if and only if ρ(u) favours u.
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For any u ∈ Aω and α ∈ ℘(Q×A×Q)ω, let u?α be the word over the product alphabetA×℘(Q×
A×Q), defined by

u ? α(n) = 〈u(n), α(n)〉.

The crucial property is that the set
{u ? α : α favours u}

is ω-regular in the usual sense. Indeed, a suitable non-deterministic Büchi automaton (over the alphabet
A× ℘(Q×A×Q)ω) can borrow Q,F , and qI from B, and assume the transitions

q
〈a,R〉−→ p,

whenever 〈q, a, p〉 ∈ R. By the McNaughton Theorem, there is an equivalent deterministic automaton
with parity condition, sayM. We are ready to define a deterministic advised parity automaton recogniz-
ing L(B). Its set of states and ranking function are the same as inM. The state-advice sends each finite
word u0u1 . . . un on the unique state that the automatonM reaches after reading the word

〈u0, ρ(ε)〉, 〈u1, ρ(u0)〉, 〈u2, ρ(u0u1)〉, . . . , 〈un, ρ(u0u1 . . . un−1)〉

(the empty word ε is sent on the initial state ofM). Hence the run this automaton assumes on an infinite
word u ∈ Aω coincides with the run of the automatonM on u ? ρ(u). ButM accepts u ? ρ(u) if and
only if B accepts u. ut

Note that, by the above proof, the increase of the number of states induced by determinization is the
same as in the classical construction.

Borel complexity We first note that automata with advice are not more powerful than ordinary au-
tomata as far as the Borel complexity is concerned. Indeed, let B be a deterministic parity automaton
with a state-advice ρ : A∗ → Q, and a ranking function rank : Q → {0, 1, . . . ,m}. Let us abbrevi-
ate m = {0, 1, . . . ,m}. We can simplify the automaton further, by taking m as the set of states with
rank(i) = i, and the state-advice given by rank ◦ ρ; clearly the new automaton is equivalent to the
previous one. This further induces a continuous (even Lipschitz) mapping from Aω to mω

u 7→ rank(ρ(u � 0)), rank(ρ(u � 1)), rank(ρ(u � 2)), . . .

Clearly the set L(B) is an inverse image under this mapping of the set of strings satisfying the parity
criterion

Paritym = {α ∈ mω : lim sup
n→∞

αn is even }.

The last set is a Boolean combination of sets defined by the conditions “i occurs only finitely often”, and
hence is in the Boolean closure of the Borel class Σ0

2. (This also follows from the Landweber bound on
the ω-regular languages [7].) Hence, any set of infinite words recognized by a non-deterministic parity
automaton with advice has at most this Borel complexity.

It turns out that the converse is also true.
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Theorem 2.1. A language L ⊆ Aω is presentable as a Boolean combination of sets in Σ0
2 if and only

if it is recognized by a deterministic parity automaton with advice, and consequently also by a (non-
deterministic) Büchi automaton with advice.

Proof:
The if implication has been observed above. To show the only if part, we will use deterministic automata
with the states coinciding with their ranks (see page 1006). A state-advice of the form ρ : A∗ → m may
be viewed as a coloring of the tree A∗ by the ranks in m. Therefore, for the sake of this proof, we call
the set recognized an automaton a rainbow. The strategy of the proof is to show that rainbows comprise
the whole class Σ0

2 and are closed under Boolean operations.
We first show that each continuous reduction induces a rainbow.

Lemma 2.2. Let f : Aω → mω be a continuous function and K = f−1(Paritym). Then K is a
rainbow.

Proof:
For w ∈ A∗, let f̂(w) be the largest common prefix of the words in {f(wu) : u ∈ Aω}. Note that it can
be finite or infinite (if the prefix w determines the value of f ). It follows from continuity of f that, for
any u ∈ Aω, the sequence of lengths |f̂(u � n)| diverges to infinity (it may also reach it, for some n).
Hence there is a unique infinite word having all f̂(u � n)’s as prefixes, which must be f(u).

To define a state-advice ρ for an automaton recognizing K, we proceed by induction on the length of
an argument w. Let ρ(ε) = 0. For w > ε, we consider two cases. If f̂(w) is an infinite word, we let

ρ(w) = lim sup
n→∞

f̂(w)(n).

Otherwise let w = w′a, with a ∈ A. Clearly f̂(w) = f̂(w′)∆, for some ∆ ∈ m∗. If ∆ = ε, we let
ρ(w) = ρ(w′). Otherwise, if ∆ = δ1 . . . δk, for some k ≥ 1, we let

ρ(w) = max{δ1, . . . , δk}.

Now it is enough to show that, for each u ∈ Aω,

lim sup
n→∞

ρ(u � n) = lim sup
n→∞

f(u)(n).

If, for some n, f̂(u � n) is infinite then it must equal f(u). Then the sequence on the left-hand side
stabilizes on the value that equals precisely to the right-hand side. Otherwise, f(u) can be decomposed

f(u) = ∆0∆1 . . .

where f̂(u � n + 1) = f̂(u � n)∆n. Then the claim follows from a simple observation that if in a
sequence α ∈ mω we replace any number of (pairwise disjoint) subwords by their maxima, the lim sup
remains the same. ut

It follows from the above lemma that rainbows are closed under continuous reductions, i.e., if f : Aω →
Aω is a continuous mapping and K ⊆ Aω a rainbow then f−1(K) is also a rainbow. Indeed, if ρ : A∗ →
m is an advice recognizing K then the mapping

u 7→ ρ(f(u) � 0), ρ(f(u) � 1), . . .
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is a continuous reduction of f−1(K) to Paritym, hence f−1(K) is a rainbow by Lemma 2.2. Hence, to
show that rainbows comprise the whole class Σ0

2, it is enough to exhibit a rainbow complete in this class
(w.r.t. continuous reductions). It is well known that there are (ordinary) ω-regular languages complete
in Σ0

2. For concreteness, suppose that A contains letters 0, 1, and consider the set Parity1 which is
then included in Aω. It is straightforward to see that Parity1 cannot be recognized by a deterministic
Büchi automaton and hence, by Landweber’s characterization [7] (see also [14], Theorem 5.3) belongs
to Σ0

2 −Π0
2. By the result of Wadge (see [6], Theorem 22.10), this implies that Parity1 is complete in

Σ0
2. (A direct proof of this fact is also not difficult.)

To conclude the proof of the theorem, it is enough to show that rainbows form a Boolean algebra.
It is easy to see that if ρ : A∗ → m is an advice for an automaton recognizing K then the formula
ρ̃(w) = ρ(w) + 1 gives an advice ρ : A∗ → m recognizing the complement of K. Next it suffices to
show that rainbows are closed under binary union. If K1 and K2 are rainbows, it is straightforward to
construct a non-deterministic automaton with advice recognizing K1 ∪K2. By Proposition 2.1, it can be
determinized, hence K1 ∪K2 is a rainbow. This remark completes the proof. ut

3. Defining words in trees

In this section, we show that a set of infinite words is MSO definable in a k-ary tree if and only if it
is recognizable by a parity automaton with advice. Together with Theorem 2.1, this yields the desired
topological characterization.

We restrict our considerations to binary trees; extension of the results to k-ary trees, for k ≥ 2, is
routine. (For k = 1 the result is trivial.)

Monadic second-order logic A (relational) signature is a finite set τ of relation symbols; each R in τ
given with a (finite) arity ar(R) ≥ 1. The formulas of monadic second order (MSO) logic over signature
τ use two kinds of variables : individual variables x0, x1, . . ., and set variables X0, X1, . . .. Atomic
formulas are xi = xj , R(xi1 , . . . , xiar(R)

), and Xi(xj). The other formulas are built using propositional
connectives ∨,¬, and the quantifier ∃ ranging over both kinds of variables.

Formulas are interpreted in relational structures over the signature τ , which we present by A =
〈A, {RA : R ∈ τ}〉, where A is the universe of A, and RA ⊆ Aar(R) is an ar(R)-ary relation on A. A
valuation is a mapping v from the set of variables (of both kinds), such that v(xi) ∈ A, and v(Xi) ⊆ A.
The satisfaction relation of a formula ϕ in a structure A under the valuation v is defined by induction on
ϕ in the usual manner and denoted A, v |= ϕ (see, e.g., [3]).

A variable (of any kind) is free in ϕ if it has an occurrence not bound by a quantifier. We write
ϕ(ξ1, . . . , ξk) to indicate that the free variables of ϕ are among ξ1, . . . , ξk. Clearly, the satisfaction of a
formula depends only on the valuation of its free variables. We write A |= ϕ[α1, . . . , αk] to mean that
A, v |= ϕ, for a valuation v, such that v(ξi) = αi, for i = 1, . . . , k.

A (binary) tree with predicates is a structure with the universe {1, 2}∗, over the signature consisting
of binary symbols succ 1, succ 2, and unary symbols P1, . . . , Pm, for some m < ω. It can be presented

t = 〈{1, 2}∗, P t
1 , . . . , P

t
m, succ t

1, succ t
2〉.
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We further assume that the symbols succ i are interpreted as the successor relations succ t
i = {(w,wi) :

w ∈ {1, 2}∗}, whereas the symbols Pi are interpreted as arbitrary sets P t
i ⊆ {1, 2}∗, which we usually

call predicates.

We refer to finite words over the alphabet {1, 2} as to nodes of the tree, with the empty word ε
coinciding with the root. An infinite word u ∈ {1, 2}ω can be viewed as a path in the tree. As far as
MSO definability is concerned, it is convenient to identify it with the set of nodes

û = {u � n : n ∈ ω}.

Definition 3.1. A set L ⊆ {1, 2}ω is MSO definable in t, if there exists an MSO formula ϕ(X), such
that, for any set Z ⊆ {1, 2}∗,

t |= ϕ[Z] iff Z = û, for some u ∈ L.

Automata on trees A non-deterministic (binary) tree automaton with a parity acceptance condition is
presented by D = 〈A,Q, qI ,Tr , rank〉, where A is a finite alphabet of input symbols, Q is a finite set
of states with an initial state qI , Tr ⊆ Q×A×Q×Q is a set of transitions, and rank : Q→ ω is the
ranking function. A transition (q, a, p1, p2) is usually written q a→ p1, p2.

An input to an automaton is an infinite (binary) A–valued tree, which can be presented as mapping
t : {1, 2}∗ → A. We let TA denote the set of all such trees. A run of D on a tree t ∈ TA is itself a Q–

valued tree r : {1, 2}∗ → Q such that r(ε) = qI , and, for each w ∈ dom (r), r(w)
t(w)→ r(w1), r(w2) is

a transition in Tr . A path P = p0p1 . . . ∈ {1, 2}ω in r is accepting if lim supn→∞ rank(r(p0p1 . . . pn))
is even.

A run is accepting if so are all its paths. The tree language L(D) recognized by D consists of those
trees in TA which admit an accepting run.

The correspondence between MSO formulas and automata constitutes a key step in Rabin’s proof
of decidability of S2S ([11], see also [14]). For a set Z ⊆ {1, 2}∗, a characteristic mapping χZ :
{1, 2}∗ → {0, 1} is given by χZ(v) = 1 if v ∈ Z, and χZ(v) = 0, otherwise. For a vector of sets
Z1, . . . , Zk ⊆ {1, 2}∗, a characteristic tree t~Z : {1, 2}∗ → {0, 1}k is given by

t~Z(v) = 〈χZ1(v), . . . , χZk
(v)〉.

Rabin proved [11] that, for an MSO formula ϕ without predicate symbols and with the free variables
among X1, . . . , Xk, one can always construct an automaton Dϕ over the input alphabet {0, 1}k, such
that, for all Z1, . . . , Zk ⊆ {1, 2}∗,

t2 |= ϕ[Z1, . . . , Zk] iff t~Z ∈ L(Dϕ), (2)

where t2 is the full binary tree without predicates (see also [14]).
Now, let us replace some variables in ϕ, say X1, . . . , Xm (m ≤ k), by the monadic relation symbols

P1, . . . , Pm, thus obtaining a new formula ϕ′ over an extended signature. Then, for a tree t, where the
new symbols are interpreted by predicates P t

1 , . . . , P
t
m, we have

t |= ϕ′[Zm+1, . . . , Zk] iff t2 |= ϕ[P t
1 , . . . , P

t
m, Zm+1, . . . , Zk]. (3)
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The equivalences (2) and (3) allow us to rephrase Definition 3.1 in terms of automata. Namely, a set
L ⊆ {1, 2}ω is MSO definable in a tree t (with predicates P t

1 , . . . , P
t
m) iff there exists a tree automaton

D over the alphabet {0, 1}m+1, such that, for any set Z ⊆ {1, 2}∗,

tP t
1 ,...,P t

m,Z ∈ L(D) iff Z = û for some u ∈ L. (4)

This last characterization is useful to prove the following characterization. We note that a similar results
for languages of finite words has been shown by Fratani (see chapter 4 in [5]).

Proposition 3.1. A set L ⊆ {1, 2}ω is MSO definable in a tree with predicates if and only if it is
recognized by a parity automaton with advice.

Proof:
Only if. SupposeL is definable in a tree t = 〈{1, 2}∗, P t

1 , . . . , P
t
m, succ t

1, succ t
2, 〉, and let an automaton

D = 〈A,Q, qI ,Tr , rank〉 witness this definability in the sense of (4). The automaton B recognizing L
will have the same set of states as D, the same initial state and the rank function. The advice function
will depend on the values of the predicates P t

i . At first, for each node v ∈ {1, 2}∗, we fix the set of states
from which the automaton D would accept the subtree of tP t

1 ,...,P t
m,û rooted in v, provided that the path

û did not enter this subtree. More specifically, let t∅v : {1, 2}∗ → {0, 1}k be a tree defined by

t∅v(w) = 〈P t
1 (vw), . . . , P t

m(vw), 0〉,

where P t
i (x) equals 1 if x ∈ P t

i , and 0 otherwise. LetDq, with q ∈ Q, be an automaton which coincides
with D, except for that its initial state is q. We let

acc (v) = {q : t∅v ∈ L(Dq)}.

The advice function ρ of the automaton B is defined by the following rule:

• v, p 1→ q, whenever the automaton D has a transition p
〈P t

1 (v),...,P t
m(v),1〉

→ q, q′, for some q′ ∈
acc (v2),

• v, p 2→ q, whenever the automaton D has a transition p
〈P t

1 (v),...,P t
m(v),1〉

→ q′′, q, for some q′′ ∈
acc (v1).

Intuitively, for an input u, the automaton B follows a hypothetical run of D on the characteristic tree
tP t

1 ,...,P t
m,û, along the path û. Note that the input letters for the automaton B correspond to directions in

the tree (not to labels). For a transition p → q, q′ of D, the automaton B “chooses” one direction: left
or right, depending on its actual input letter: 1 or 2, respectively. The advice makes sure that the run
corresponds indeed to an accepting run of D.

We now show that B accepts an infinite word u if and only if D accepts the tree tP t
1 ,...,P t

m,û. Let r be
an accepting run of D on this tree. Consider the sequence of states

r(ε), r(u0), r(u0u1), r(u0u1u2), . . .

It follows directly from the definitions that this is an accepting run of B on u.
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Conversely, let s = s0s1s2 . . . be an accepting run of B on a word u. By assumption, s0 = qI
and u � n, sn

un→ sn+1, for n < ω. We construct a run r of D on tP t
1 ,...,P t

m,û, as follows. We first let
r(u � n) = sn, for n < ω. That is, the states assumed along the path u are the same as in the run s. Note
that, whenever un = 1, there is a transition

sn
〈P t

1 (u�n),...,P t
m(u�n),1〉

−→ sn+1, q,

for some q ∈ acc ((u � n)2). Hence, we can define an accepting run starting from q on the subtree of
tP t

1 ,...,P t
m,û rooted in (u � n)2, which coincides with the tree t∅(u�n)2. Similarly, if un = 2 then we can

extend the run on the subtree rooted in (u � n)1. Thus we obtain an accepting run of D on tP t
1 ,...,P t

m,û,
as desired.

If. By Proposition 2.1 and the subsequent considerations, we may assume that L is recognized by
a deterministic automaton with a state-advice ρ : {1, 2}∗ → m, for some m. Consider a tree t with
predicates P t

1 , . . . , P
t
m, defined by

v ∈ P t
i iff ρ(v) = i.

Clearly, u ∈ L if and only if the highest i, such that P t
i (u � n) holds for infinitely many i’s, is even. This

last property is readily expressible by an MSO formula over t. ut

Remark Note that, in the proof of the implication If of the above proposition, the model t depends
on the advice ρ, but the actual MSO formula depends only on m. Hence, we have in fact a sequence
of formulas ϕm (expressing the parity condition), such that each MSO definable set of infinite words is
definable by some ϕm.

By combining Proposition 3.1 with Theorem 2.1, we obtain the following.

Corollary 3.1. A set L ⊆ {1, 2}ω is MSO definable in a tree with predicates if and only if it is pre-
sentable as a Boolean combination of sets in Σ0

2 w.r.t. the Cantor topology on {1, 2}ω.

As we have mentioned above, the extension of this result to the alphabet {1, 2, . . . , k}, for any k < ω, is
completely routine.

We complete our considerations by an observation that definability in binary trees with extra predi-
cates in nevertheless more powerful than definability in ω with extra predicates, in the following sense.

Consider the structure
N = 〈ω, PN

1 , . . . , PN
m , succ N〉,

where succ N = {(n, n+ 1) : n < ω}, and PN
i ⊆ ω, for i = 1, . . . ,m, are arbitrary monadic predicates

over ω. We are now interested in definability of languages of infinite words in this structure in the usual
sense, i.e., by viewing words as characteristic functions of tuples of sets. More specifically, for a vector
of sets Z1, . . . , Zk ⊆ ω, its characteristic word is an infinite word u~Z : ω → {0, 1}k, defined by

u~Z(n) = 〈Z1(n), . . . , Zk(n)〉,

where Zi(n) = 1 if n ∈ Zi, and Zi(n) = 0 otherwise.
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Definition 3.2. A language L ⊆
(
{0, 1}k

)ω is MSO definable in N if there exists an MSO formula
ϕ(X1, . . . , Xk)), such that, for any sets Z1, . . . , Zk ⊆ ω,

N |= ϕ[Z1, . . . , Zk] iff u~Z ∈ L.

Let ω denote the structure N without any predicates. We use the correspondence between MSO
formulas over ω and Büchi automata analogous to (2), originally established by Büchi [2] in his proof of
decidability of S1S (see also [14]). We then have the following analogue to the equivalence (4) above.
For a language L ⊆

(
{0, 1}k

)ω definable by a formula ϕ(X1, . . . , Xk) interpreted in a structure N with
predicates PN

1 , . . . , PN
m , we can find a non-deterministic Büchi (or deterministic parity) automaton B

over the alphabet {0, 1}m+k, such that, for any Z1, . . . , Zk ⊆ ω,

uPN
1 ,...,PN

m ,Z1,...,Zk
∈ L(B) iff u~Z ∈ L. (5)

Note that the topological complexity of L is not higher than that of L(B), as the mapping u~Z 7→
uPN

1 ,...,PN
m ,Z1,...,Zk

(for fixed PN
i ’s) is a continuous reduction. Hence, by Corollary 3.1, any language

definable in the sense of Definition 3.2, is also definable in the sense of Definition 3.1, adapted, if neces-
sary, to `-ary trees, for sufficiently large ` < ω.

We note that the converse is not true. Let

L0 = {(0n1)ω : n < ω}.

Proposition 3.2. The language L0 is definable in the sense of Definition 3.1 (up to a renaming), but not
in the sense of Definition 3.2.

Proof:
For the first part of the claim, we rename L0 to the language {(1n2)ω : n < ω}. It is easily definable,
e.g., in a tree with one predicate P holding precisely in the nodes v ∈ (1n2)∗, for n < ω. The defining
formula ensures that the predicate holds infinitely often on the path.

For the second part, suppose the contrary and let B be a deterministic parity automaton satisfying
(5). Like in the proof of Proposition 2.1, we use notation u ? α for the product of words u ∈ ({0, 1}m)ω

and α ∈ {0, 1}ω. Let u~P be the characteristic word of the tuple PN
1 , . . . , PN

m . Then B accepts u~P ? α iff
α = αn =def (1n2)ω, for some n. But then we can easily fool the automaton by swapping the prefixes
of equal length of two different accepted words. More specifically, let K be greater than the number of
states of B. Then there are 0 ≤ i < j ≤ K, such that the automaton assumes the same state q after
reading the prefix of length 2K of the words u~P ? αi and u~P ? αj . Decompose αi = (αi � 2K)βi. Then
the automaton would also accept the word u~P ? (αj � 2K)βi, violating (5). ut
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