
Information and Computation 204 (2006) 1023–1044

www.elsevier.com/locate/ic

BTL2 and the expressive power of ECTL+

Alexander Rabinovich a, Philippe Schnoebelen b,∗
aDepartment of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

bLab. Spécification et Vérification (LSV), ENS de Cachan and CNRS, France

Received 20 February 2003; revised 11 April 2005
Available online 5 June 2006

Abstract

We show that ECTL+, the classical extension of CTL with fairness properties, is expressively equivalent
to BTL2, a natural fragment of the monadic logic of order. BTL2 is the branching-time logic with arbitrary
quantification over paths, and where path formulae are restricted to quantifier depth 2 first-order formulae
in the monadic logic of order. This result, linking ECTL+ to a natural fragment of the monadic logic of order,
provides a characterization that other branching-time logics, e.g., CTL, lack. We then go on to show that
ECTL+ and BTL2 are not finitely based (i.e., they cannot be defined by a finite set of temporal modalities)
and that their model-checking problems are of the same complexity.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Expressivity of branching-time temporal logic; Model checking

1. Introduction

Temporal Logic. Temporal logic is a popular formalism for reasoning about “reactive” systems,
i.e., systems with (potentially) non-deterministic and non-terminating behavior [13,27,28,6]. What
makes temporal logic attractive is its combination of good expressive power with feasible model
checking [14].

∗ Corresponding author.
Email addresses: rabino@math.tau.ac.il (A. Rabinovich), phs@lsv.ens-cachan.fr (P. Schnoebelen).

0890-5401/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.07.006

1024 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

In temporal logic, the properties of the system are described by atomic propositions that hold
at some points in time but not at others. More complex properties are obtained by using Boolean
connectives and temporal modalities that build up a statement on the current point by combining
statements on points temporally related to it.

With a set {M1,M2, . . .} of modalities, one obtains a temporal logic denoted by TL(M1,M2, . . .).
Choosing different modalities yields different temporal logics and the literature contains a large
number of different proposals.

Expressivity. When it comes to arguing in favor of a given set of modalities, an important crite-
rion is the expressive power of the resulting logics (see the survey [34]). It is nice when a small set of
modalities is provably sufficient for expressing all the properties from a natural and robust class.

For example, one of the most important results in the field is Kamp’s theorem [23,16], stating
that TL(U,S), the temporal logic having only the modalities “Until” and “Since,”1 has the same
expressive power over natural linear structures (e.g., 〈�,�〉, called discrete time, or 〈�,�〉, called real
time, or their positive segments) as FOMLO , the first-order logic of order with monadic predicates.
If one replaces the binary U and S by the unary F and F− (“Future” and “Past”), then TL(F,F−)
has the same expressive power as the two-variable fragment of FOMLO [15].

Branching time. Kamp’s theorem is about temporal logics over linear structures, called linear-
time logics, but many popular temporal logics, called branching-time logics [24,10], view time as
a tree-like set of time points, and are correspondingly interpreted over tree-like partially ordered
structures.

Many branching-time logics have been proposed, starting with [24,4,32,2,9,10,12]. The basic
modalities of these logics are obtained by combining a path quantifier “E” or “A” with a formula
in TL(U). The formula E� (respectively, A�) holds at time point t0 if for some path (respectively,
for every path) � starting at t0 the TL(U) formula � holds along �. For example, a commonly used
branching-time logic is CTL [4,5], based on the two binary modalities EU and AU.

Two extensions of CTL, namely ECTL and ECTL+, have been proposed to deal with fairness
properties [10]. ECTL is TL(EU,AU,EF∞)where F∞p reads “p holds infinitely often in the future.”
ECTL+ is more expressive since it allows E� for any formula � in TL(U,F∞) where modalities
cannot be nested.

Finally, the logic CTL∗, from [10], is obtained by considering an infinite set of modalities: E� for
any formula � in TL(U).

Expressive completeness. In contrast to Kamp’s theorem and the canonical linear models, we
are not aware of any existing work proposing a natural predicate logic that corresponds to CTL,
ECTL or ECTL+ over trees.

RegardingCTL∗, a recent result [29] is that this logic has the same expressive power as the bisim-
ulation-invariant fragment of monadic path logic [18,21]. Thus, at least CTL∗ represents some ob-
jectively quantified expressive power (indeed,CTL∗ is very close to the full monadic path logic [29]).

Finite bases. A temporal logic TL has a finite basis if it is built using only a finite set of modali-
ties (such as CTL, ECTL, and TL(U)). For temporal logics such as CTL∗ which are defined via an
infinite, albeit “regular,” set of modalities, a natural question is whether they could be defined with
just finitely many modalities.

1 These are the strict versions of “Until” and “Since,” for which the present is not included in the future. These versions
allow expressing “Next” and agree with classical notions [23,17,16].

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1025

For example, CTL+ is a temporal logic which is traditionally defined via an infinite set of mo-
dalities; however, it is expressively equivalent to CTL [9] so that the infinite set of modalities only
provides syntactic sugar (and succinctness [39]) but is not strictly necessary. On the other hand, no
finitely based temporal logic is expressively equivalent to the mu-calculus over (linear) discrete time
[3], or equivalent to the future fragment of FOMLO over (linear) real time [19].

Regarding CTL∗, it was shown that its expressive power cannot be captured by a finite set of
modalities, thus providing a partial explanation of why there is no general agreement as what
should be the preferred set of modalities for branching-time logics [35]. In this paper, Rabinovich
and Maoz introduce a sequence BTL1, BTL2, . . . of temporal logics (where BTLk has modali-
ties E� for any FOMLO formula � of quantifier depth at most k) and show that there exists an
infinite hierarchy (w.r.t. expressive power) among the sequence BTL1, BTL2, . . . Since CTL∗ is
exactly as expressive as BTL

def= ⋃
k BTLk , and since any CTL∗ modality is a BTLk modality for

some k , the existence of an infinite hierarchy among {BTLk}k=1,2,... entails that CTL∗ has no finite
basis.

Our contribution. We prove that ECTL+ is exactly as expressive as BTL2. This indicates that
ECTL+ corresponds to a natural level in expressive power. However, BTL2 can be exponentially
more succinct than ECTL+.

Additionally, we prove thatECTL+ andBTL2 have no finite basis (unlikeBTL1 [35]). This shows
that the definition of ECTL+ via an infinite family of modalities is unavoidable, and partially
answers the conjecture from [35] that no BTLk for k > 1 admits a finite basis.

Finally, we show that the model-checking problem for BTL2 is �p
2
-complete. This shows that

model checking is no harder for the more versatile BTL2 than for ECTL+, and gives a new example
of a temporal logic for which model checking is �p

2
-complete.

Plan of the article. In Section 2, we recall the necessary notions from Monadic logic of or-
der (MLO). Section 3 recalls how temporal logics can be seen as fragments of MLO and de-
fines the logics we study: {BTLk}k=1,2,..., ECTL+, etc. Section 4 proves that ECTL+ and BTL2
have the same expressive power but are not equally succinct. Finally, Section 5 proves that these
two logics have no finite basis, and Section 6 studies the complexity of their model-checking
problems.

2. Preliminaries

In this section, we review basic definitions and known results about computation trees, the
monadic logic of order, and Kripke structures.

2.1. Computation trees and paths

A tree T = (|T |,�) is a partially ordered set |T | of nodes (sometimes also called states, or time
points) in which the predecessors of any given element a ∈ |T | constitute a finite total order with a
common minimal element εT , referred to as the root of the tree. A computation tree is a structure
(|T |,�, P1, P2, . . .), where (|T |,�) is a tree, and P1, P2, . . . are subsets of |T |. We say that a node s ∈ |T |
is labeled by Pi if s ∈ Pi .

1026 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

When s is a node in a computation tree T , we write T�s to denote the subtree of T rooted at s.
Formally, the nodes of T�s are |T�s| def= {t : t ∈ |T | and t � s}, and its relations are the corresponding
restrictions of �, P1, P2, . . . from T .

A path through T starting at s1 ∈ |T | is a maximal linearly ordered sequence of successive nodes
� = 〈s1, s2, s3, . . .〉 through the tree, ordered by �. A path � through T induces a substructure,
denoted T�, that is still a computation tree (where only the nodes occurring in � are kept).

2.2. Second-order monadic logic of order

The syntax of MLO , the second-order monadic logic of order, has in its vocabulary individu-
al first-order variables x0, x1, x2, . . . (representing nodes), second-order set variables X0,X1,X2, . . .
(representing sets of nodes), and set constants (monadic predicates) P1, P2, . . . Formulae �, , . . .
are built up from atomic formulae of the form x = x′, x ≤ x′, x ∈ X and x ∈ P , using the Boolean
connectives ∧ and ¬, and the quantifiers ∃x and ∃X . As usual, we use ⊥, �, � ∨ , � ⇒ , � ⇔ ,
∀x �, ∀X � as abbreviations for, respectively, ∃x (x ∈ P1 ∧ x �∈ P1), ¬⊥, ¬(¬� ∧ ¬), (¬�) ∨ ,
(� ⇒) ∧ (⇒ �), ¬∃x¬�, ¬∃X¬�, and we write �(x1, . . . , xk ,X1, . . . ,Xm) when we want to stress
that the free variables of � are among x1, . . . , xk , X1, . . . ,Xm.

Thequantifier depthof a formula�, denotedbyqd(�), is definedasusual: qd(�) = 0 for atomic for-
mulae; qd(� ∧ �′) = max(qd(�), qd(�′)); qd(¬�) = qd(�); and qd(∃x�) = qd(∃X�) = 1 + qd(�).

The semantics of MLO follows classical lines: if T is a computation tree, s1, . . . , sm ∈ |T | are
nodes of T and S1, . . . , Sn ⊆ |T | are sets of nodes, we write

T , s1, s2, . . . , sm, S1, S2, . . . , Sn |= �(x1, x2, . . . , xm,X1,X2, . . . ,Xn)

if the formula � is satisfied in the tree T with xi interpreted as si (i = 1, . . . ,m) and Xj interpreted as
Sj (j = 1, . . . , n).

2.3. Future formulae

Definition 2.1 (Future formula).AnMLO formula �(x0,X1, . . . ,Xk)with one free first-order variable
x0, is a future formula, if for every computation tree T and node s ∈ |T |, and every subsets S1, . . . , Sk
of |T |, the following holds:

T , s, S1, . . . , Sk |= � iff T�s, s, S ′
1, . . . , S

′
k |= �,

where, for i = 1, . . . , k , S ′
i

def= Si ∩ |T�s| is the restriction of Si to T�s.

In other words, a future formula is a formula with one free node variable x0 whose value only
depends on nodes higher than x0 in the tree.

Observe that this is a semantic notion, not a syntactic one. However, it is possible to give a syn-
tactic condition ensuring that a formula is a future formula. For this purpose it is convenient to
extend the syntax of first-order monadic logic of order by the relativized (or bounded) quantifiers
(∃x)�x0 and (∀x)�x0 . The relativized quantification (∃x)�x0� (respectively, (∀x)�x0�) is a shorthand
for ∃x. x � x0 ∧ � (respectively, ∀x. x � x0 ⇒ �).

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1027

Definition 2.2 (Syntactic future formula). An MLO formula �(x0,X1, . . . ,Xk) is a syntactic future
formula if all its quantifiers are of the form (∃x)�x0 and (∀x)�x0 .

The following is immediate.

Lemma 2.3. Every syntactic future formula is a semantic future formula.

With �(x0,X1, . . . ,Xk), we associate a variant �′ obtained by replacing all first-order quantifiers
“∀x” and “∃x” in �with relativized versions “(∀x)�x0” and “(∃x)�x0 .” Then, for any �, the relativized
�′ is a syntactic (and hence semantic) future formula. Moreover,

T , s, S1, . . . , Sk |= � iff T�s, s, S ′
1, . . . , S

′
k |= �′,

where, for i = 1, . . . , k , S ′
i is the restriction of Si to |T�s|. Hence, � is a future formula iff � and �′ are

equivalent over trees, i.e., iff � ⇔ �′ is valid over trees. Incidentally, this implies that being a future
formula is decidable since the validity of MLO formulae over trees is decidable [33]. To sum up we
have

Lemma 2.4.

1. Every future formula is equivalent to a syntactic future formula.
2. It is decidable whether a formula is a future formula.

Since any future formula � can be replaced by its relativized variant at no cost (same meaning,
same free variables, linear increase in size), we assume that future formulae are syntactic future, i.e.,
have relativized quantifications, whenever we describe an algorithm that has “future formulae” as
input.

2.4. Fragments of MLO

We denote by FOMLO the subset of first-order formulae of MLO , i.e., formulae where the
second-order quantifier ∃X does not occur.

We also consider MPL, the monadic path logic [21]: its syntax is the same as that of monadic
second-order logic but the set variables X1, X2, . . . range over paths rather than over arbitrary sets
of nodes. Semantically MPL is very closely related to first-order logic [29].

Since “X is a path” can be expressed in FOMLO , MPL can be seen as a fragment of MLO .

2.5. Kripke structures

A Kripke structure is a structure M = 〈|M|,R, P1, P2, . . .〉 where |M| is a set of nodes, the Pi are
subsets of |M|, and R ⊆ |M|2 is a binary transition relation. When (s, s′) ∈ R, we say it is possible
to move from s to s′ in one step. A path � in M starting from s0 is a maximal sequence s0, s1, . . .
s.t. (si, si+1) ∈ R for all i. Maximality implies that a path is either infinite, or ends in a node with no
R-successor.

For our purposes, Kripke structures are mainly another way of presenting computation trees:
for a node s0 of some M, the tree TM,s0 (obtained by unfolding M) is 〈|T |,�, P ′

1 , P
′
2, . . .〉 where |T | is

1028 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

the set of all finite prefixes of paths from s0, � � �′ iff � is a prefix of �′, and � ∈ P ′
i if the last node

of � is in Pi . Hence, εTM,s0
is the sequence “s0.” A path starting from s in M directly yields a path

in TM,s starting from the root.
Given a future FOMLO formula �, we writeM, s |= � when TM,s, s |= �, agreeing with the stan-

dard interpretation of temporal logics over Kripke structures. We do not use these notions until
section 5.

3. Temporal logics

In this section, we recall the syntax and semantics of temporal logics and how temporalmodalities
are defined using MLO truth tables, with notations adopted from [16,35,20].

3.1. Temporal logics and modalities

The syntax of Temporal Logic (TL) has in its vocabulary a countably infinite set of proposi-
tions {q1, q2, . . .} and a possibly infinite set B = {Hl11 ,Hl22 , . . .} of modality names (sometimes called
“temporal connectives” or “temporal operators”) with prescribed arity indicated as superscript (we
usually omit the arity notation). TL(B) denotes the temporal logic based on modality-set B (and B
is called the basis of TL(B)). Temporal formulae are built by combining atoms (the propositions
qi) and other formulae using Boolean connectives and modalities (with prescribed arity). Formally,
the syntax of TL(B) is given by the following grammar:

� ::= qi|�1 ∧ �2|¬�1|Hi(�1,�2, . . . ,�li).

The nesting depth (or modal rank) of a temporal formula �, denoted by nd(�), is defined as
usual: nd(qi) = 0; nd(� ∧ �′) = max(nd(�), nd(�′)); nd(¬�) = nd(�); and nd(Hi(�1,�2, . . . ,�li))= 1 + max

1�j�li
(nd(�j)).

Temporal formulae are interpreted over partially ordered sets with monadic predicates and, in
particular, over computation trees, the only models we consider here. For this, every modality H
comes with its semantics given in every tree T by a mapping HT : 2|T | × · · · × 2|T | → 2|T | which
associates a set of nodes with any tuple of l sets of nodes. The idea is that if the Si’s are the sets of
nodes where the �i’s hold in T , then HT (S1, . . . , Sl) is the set of nodes where H(�1, . . . ,�l) holds in
T .

Formally, we define when a temporal formula � holds at a node s of a computation tree
T = (|T |,�, P1, P2, . . .), written T , s |= �, by the following inductive clauses:

T , s |= qi
def⇔ s ∈ Pi

T , s |= H(�1,�2, . . . ,�l)
def⇔ s ∈ HT (S�1 , S�2 , . . . , S�l),

where S�
def= {t|T , t |= �}. The usual clauses for Boolean connectives are omitted.

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1029

For a class C of computation trees, we say two temporal formulae �1 and �2 are equivalent over
C, written �1 ≡C �2, when T , s |= �1 iff T , s |= �2 for all T ∈ C and s ∈ |T |. Given two temporal logics
TL1 and TL2, we say TL1 is as expressive as TL2 over C, written TL2 �C TL1, when every formula
�2 in TL2 has a C-equivalent in TL1. When both TL1 �C TL2 and TL2 �C TL1 hold, we say that the
two logics are expressively equivalent over C, written TL1 ≡C TL2. We usually omit mentioning C
when we consider the class of all computation trees.

When a TL1 formula � is equivalent to some TL2 formula �′, we say that � can be expressed in
TL2. If � has the form H(q1, . . . , ql), we say that the modality H can be expressed in TL2.

Remark 3.1.A common situation is that two temporal logics TL1 and TL2 are expressively equiva-
lent (they can express the same properties) but one ismore succinct than the other (e.g.,TL1 formulae
donot admit equivalent formulae inTL2 whose size is boundedby a linear, or a polynomial, function
of the size of the TL1 formula).

However, if TL1 only uses a finite set of modalities, then TL1 � TL2 implies that there exists an
effective polynomial-time translation from TL1 to TL2. Indeed, for every modality Hi in TL1, let i
be a TL2 formula equivalent to Hi(q1, . . . , qli). We now define a translation []′ from TL1 to TL2 by
structural induction:

[qi]′ def= qi [�1 ∧ �2]′ def= [�1]′ ∧ [�2]′
[¬�]′ def= ¬[�]′ [Hi(�1, . . . ,�li)]′ def= i{q1 !→ [�1]′, . . . , qli !→ [�li]′}

where the notation “ {q !→ �, . . .}” is used to denote variants where all occurrences of q in have
been replaced by �. The length of [�]′ can be exponential in the length of � but if we store formulae
as dags,2 then the size of [�]′ is linear in the size of �, the expansion factor being bounded by the
size of the largest i .

3.2. Defining modalities in MLO

In practice, most temporalmodalities are defined inMLO . A truth table for an l-placemodalityH
is an MLO formula H(x0,X1, . . . ,Xl) with one free first-order variable x0 (and l free second-order
variables) that defines HT , i.e., such that for every tree T and subsets S1, . . ., Sl of |T |:

HT (S1, . . . , Sl)
def= {s|T , s, S1, . . . , Sl |= H(x0,X1, . . . ,Xl)}.

Abusing notation, we say that H has quantifier depth k if H has.

Example 3.2 (Some common modalities and their truth tables). The 1-place modalities F, G, X, F∞
and the 2-place modalitiesU andS appear in many temporal logics. Informally, F� reads “eventual-
ly �,” G� reads “globally �,” X� reads “in the next state �,” F∞� reads “infinitely often �,” U(�1,�2)
reads “�1 until �2” and S(�1,�2) reads “�1 since �2.” They all have FOMLO truth tables:

 F(x0,X) ≡ ∃y(y > x0 ∧ y ∈ X),
 G(x0,X) ≡ ∀y(y > x0 ⇒ y ∈ X),

2 This amounts to defining the size of a formula as the number of its distinct subformulae.

1030 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

 X(x0,X) ≡ ∃y(y > x0 ∧ y ∈ X ∧ ∀z(z > x0 ⇒ z � y)),

 F∞(x0,X) ≡ ∀y(y > x0 ⇒ ∃z(z > y ∧ z ∈ X)),
 U(x0,X , Y) ≡ ∃y(y > x0 ∧ y ∈ Y ∧ ∀z(x0 < z < y ⇒ z ∈ X)),
 S(x0,X , Y) ≡ ∃y(y < x0 ∧ y ∈ Y ∧ ∀z(x0 > z > y ⇒ z ∈ X)).

Notice that all these truth tables have quantifier depth at most 2 and, except for S, they are all
future formulae.

Remark 3.3. We adopted a “strict” definition of the until modality, where the present is not tak-
en into account. In practical applications, a “non-strict” definition is often preferred for the until
modality3: the “non-strict until” Uns modality has truth table

 Uns(x0,X , Y) ≡ ∃y(y � x0 ∧ y ∈ Y ∧ ∀z(x0 � z < y ⇒ z ∈ X)).

Clearly, Uns can be defined using U: Uns(�1,�2) ≡ �2 ∨ (�1 ∧ U(�1,�2)
)
. The nice thing with the

strict definition of U is that it allows to express X by X� ≡ U(⊥,�).

Definition 3.4 (First-order future modality).A temporal modality H is a first-order future modality if
its truth table is a future formula of FOMLO .

Second-order future modalities are defined similarly. The modalities defined in the above exam-
ple, F, G, X, U and F∞ are first-order future modalities; S is not a future modality.

The famous PLTL logic for linear time is TL(Uns,X), or equivalently TL(U), interpreted over
linear orders (of ω-type) with monadic predicates.

For reasoning about the branching structure of computation trees, so-called branching-time tem-
poral logics have been introduced, with CTL and CTL∗ as main representatives. These temporal
logics use special modalities whose truth table starts with a path quantifier, as we now explain.

Definition 3.5 (Path modality).Given a first-order future formula �(x0,X1, . . . ,Xl), E� is the l-place
modality such that for all trees T and node n, T , n |= E�(X1, . . . ,Xl) if and only if there is a path �
from n in T with T�, n |= �(x0,X1, . . . ,Xl).

E� is said to be the path modality which corresponds to �.
Note that if �(x0,X1, . . . ,Xl) is a first-order future formula, the truth table of the path modality

E� is the MPL formula ∃Y.x0 ∈ Y ∧ �′(x0,X1, . . . ,Xl) where �′ is obtained from �(x0,X1, . . . ,Xl), by
relativizing all its quantifiers to Y . Thus, path modalities have MPL truth tables.

When H is a first-order future modality with truth-table H, we write EH for the path modality
E H. Another modality is AH, defined by the equivalence

AH(�1, . . . ,�l) ≡ ¬E¬ H(�1, . . . ,�l).

Example 3.6.CTL is usually defined as TL(EUns,AUns,EX,AX), which is expressively equivalent to
TL(EU,AU).

3 Similarly, there exist non-strict F, G and S.

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1031

In the following, we use some special modalities Z1, Z2, . . . Informally, Zl(�,�′,�1, . . . ,�l)means
that � holds at the present state, �′ holds at a future state, all states in-between satisfy

∨l
i=1 �i, and

every �i is satisfied at least once. This is formalized by the following truth table:

 Zl (x0,X , Y ,X1, . . . ,Xl)
def= ∃y


 x0 < y ∧ x0 ∈ X ∧ y ∈ Y

∧∀z(x0 < z < y ⇒ ∨l
i=1 z ∈ Xi

)
∧∧l

i=1 ∃z
(
x0 < z < y ∧ z ∈ Xi

)

 .

Thus, Zl is a first-order future modality.
Observe that EU(�1,�2) can be expressed as EZ1(�,�2,�1). More generally, the EZls can be seen

as abbreviations for complicated EU modalities:

Proposition 3.7. Any formula in TL({EZl}l=1,2,...) is equivalent to a TL(EU) formula.

Proof.We adapt the translation fromCTL+ intoCTL that appears in [9]. The difficulty when trans-
lating EZl(, ′,�1, . . . ,�l) into TL(EU) is that we have to consider all the possible orderings of the
witnesses for the “every �i is satisfied at least once” part. Write! for the set of all permutations of
{1, . . . , l}. Then, EZl(, ′,�1, . . . ,�l) is equivalent to

∨
"∈!



 ∧ EU

(
⊥, �"(1) ∧ EU

(
�"(1), �"(2) ∧ EU

(
· · · ,

. . . ∧ EU
(l−1∨
i=1

�"(i), �"(l) ∧ EU
(l∨
i=1

�"(i), ′
))

· · ·
)))


 . �

Observe that aTL({EZl}l=1,2,...) formula of size n is translated into an equivalentTL(EU) formula
of size 2n

O(1)
.

3.3. ECTL+ and TL(EU, {EMl}l=1,2,...)

ECTL+ was introduced in [10].4 Its importance comes from the fact that it extends CTL with a
rich set of fairness properties.

Definition 3.8. ECTL+ is the temporal logic where we allow all path modalities E� s.t.
�(x0,X1, . . . ,Xl) is a Boolean combination of the F∞(x0,Xi)’s and the U(x0,Xi,Xj)’s.

For our purposes, we introduce a fragment ofECTL+. This fragment is built on specialmodalities
M1, M2, . . . defined as follows: for any l = 1, 2, . . ., Ml is an l-place modality s.t.

Ml(�1, . . . ,�l) ≡ F∞�1 ∧ · · · ∧ F∞�l ∧ G(�1 ∨ · · · ∨ �l).
Thus, Ml is a (first-order future) modality for a kind of fairness constraint: EMl(�1, . . . ,�l) states
that there is a path along which every �i is satisfied infinitely often and where only nodes satisfying
some of the �is are encountered.

4 But it is very similar to the logic CTF used in [8].

1032 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

Observe that EM1� is very close to EG�: the difference is that EM1� requires that there exists an
infinite path along which G� holds. Thus,

EM1� ≡ EG
(
� ∧ EX�),

showing that CTL is at least as expressive as TL(EU,EM1). In the other direction, one can define
AU in terms of EU and EM1:

AU(�1,�2) ≡ EX� ∧ ¬EM1¬�2 ∧ ¬EU
(¬�2,¬�2 ∧ (¬�1 ∨ ¬EX�)).

Thus, TL(EU,EM1), TL(EU,AU) and CTL are expressively equivalent.
Note that for l′ > l, EMl(�1, . . . ,�l) is equivalent to EMl′(�1, . . . ,�l,�l, . . .). Therefore,

TL(EU,EMl) is expressively equivalent to TL(EU,EM1, . . . ,EMl).

3.4. The temporal logics BTLk

Definition 3.9. [35]. For k = 1, 2, . . ., BTLk is the temporal logic defined as TL(Bk), where

Bk
def= {E�|�(x0,X1, . . . ,Xl) is a first-order future formula with qd(�) � k}.

Note that, while any BTLk modality is defined by a formula of bounded quantifier depth, it
is possible to nest these modalities in BTLk formulae. Hence, BTLk is not defined as a bounded
quantifier-depth fragment in the usual sense.

We write BTL for the union BTL1 ∪ BTL2 ∪ · · · A corollary of Kamp’s theorem is that the well-
known temporal logic CTL∗ (from [10]) has exactly the same expressive power as BTL. We refer to
[35] for more motivations and results on these temporal logics, including a proof that the sequence
{BTLk}k=1,2,... contains an infinite hierarchy w.r.t. expressive power. Here, we are interested in the
links between BTL2 and ECTL+.

4. ECTL+ and BTL2 are expressively equivalent

In this section, we investigate the expressive power of ECTL+. Our main result is the following
theorem, providing a characterization in terms of a natural fragment of the monadic logic of order.

Theorem 4.1. BTL2, ECTL+ and TL(EU, {EMl}l=1,2,...) have the same expressive power.

The proof of Theorem 4.1 has two main steps. First, we provide a new characterization of when
paths satisfy the same first-order future formulae of quantifier depth 2 (Sections 4.1 and 4.2). This
allows translating BTL2 formulae into equivalent TL(EU, {EMl}l=1,2,...) formulae (Corollary 4.9).

One completes the proof by observing that TL(EU, {EMl}l=1,2,...) is defined as a fragment of
ECTL+, and that ECTL+ can be seen as a fragment of BTL2 since the path modalities it uses have
truth-tables of quantifier depth at most 2 (Definition 3.8 and Example 3.2).

A final section considers succinctness issues and shows that BTL2 is exponentially more succinct
than TL(EU, {EMl}l=1,2,...) or ECTL+.

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1033

4.1. Games on chains

For the sake of brevity, linearly ordered sets with monadic predicates will be called labeled chains
or just chains. Hence, if � is a path in some T , then T� is the chain that corresponds to �.

Definition 4.2 (≡k equivalence).Given two chainsC andC ′, and nodes n ∈ |C| and n′ ∈ |C ′|, we write
(C , n) ≡k (C

′, n′) iff for any first-order future formula �(x0) with qd(�) � k we have C , n |= �(x0)

iff C ′, n′ |= �(x0).

In other words, (C , n) ≡k (C
′, n′) when the two structures cannot be distinguished by FOMLO

future formulae of quantifier depth at most k . Clearly, the ≡k ’s are equivalence relations.
The equivalences ≡k can be characterized in terms of the following Ehrenfeucht–Fraïssé game.

Consider two chains C and C ′, and two nodes n ∈ |C| and n′ ∈ |C ′|. Below, n is called the reference
node inC (and n′ is the reference inC ′). The game has k rounds and is played by two players, Spoiler
and Duplicator. Spoiler plays first. He chooses, in one of the two chains, a node which is greater
than or equal to the reference node, after which Duplicator responds by choosing a node in the
other chain, greater than or equal to the reference node, which she believes “matches” the node
chosen by Spoiler. The game continues for k rounds: at every round Spoiler chooses in one of the
two chains a node which is greater than or equal to the reference node, and Duplicator responds
by choosing a node in the other chain.

After k rounds the game is completed. For i = 1, . . . , k , let si and s′i be the nodes selected in the
ith round in chain C (resp. C ′). Duplicator is deemed the winner if the mapping [s1 !→ s′1, . . . , sk !→
s′k , n !→ n′] respects the relations ≤, ∈ P1, ∈ P2, . . . Note that if k = 0, no moves are played and
Duplicator wins iff the reference nodes n and n′ have the same labeling.

We say that (C , n) and (C ′, n′) are k-game equivalent, and we write (C , n) ∼g
k (C

′, n′), when
Duplicator has a strategy that ensures she wins any k-round game played on (C , n) and
(C ′, n′).

Since the game only involves nodes greater than or equal to the reference nodes, one clearly has
(C , n) ∼g

k (C�n, n) for any C and n.
The following is a variant of Ehrenfeucht’s theorem [11]:

Theorem 4.3. [35]. Given two chains C and C ′, and elements n ∈ |C| and n′ ∈ |C ′|,

(C , n) ∼g
k (C

′, n′) iff (C , n) ≡k (C
′, n′).

4.2. A characterization of ≡2

From now on, we consider chains C = (|C|,�, P1, . . . , Pm, n) with only m predicates and where
the reference node is the first node. It is convenient to view such a chain as a linearly ordered set
labeled by letters from the alphabet A def= 2{1,...,m}, i.e., a node s ∈ |C| carries a letter as ∈ A that tells
for i = 1, . . . ,m, whether Pi labels s. Formally, as

def= {i|s ∈ Pi}.
Additionally, if C has order type at most ω, we call it a path, since paths in computation trees

give rise to such chains.
Assume','′ ⊆ A are two sub-alphabets, and a ∈ A is a letter.We say that the triple (= (', a,'′)

is realized at node s in chain C if a = as, ' = {at|t < s} and '′ = {at|t > s} or, in other words, when

1034 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

a is the label of s and ' (resp. '′) is the set of letters that occur before s (resp. after s) in the chain.
We say that a triple occurs in C if it is realized at some s in C .

Since A is finite, there is only a finite number of possible triples. We let ((C) denote the set of
all triples occurring in C , and call it the �-type of C . The importance of �-types comes from the
following result.

Lemma 4.4. C ∼g
2 C

′ iff ((C) = ((C ′).

Proof. (⇒:) We prove that ((C) �= ((C ′) implies C �∼g
2 C

′. Assume, w.l.o.g., that ((C) contains a
triple (= (', a,'′) that is not in ((C ′). Then, Spoiler has a winning strategy for 2-round games: he
picks a node s ∈ C that realizes (. When Duplicator answers and picks a s′ ∈ C ′, s′ realizes some
(′ = ('2, a2,'′

2). Now (�= (′ and there are several cases: if a �= a2 then Spoiler wins. If ' �= '2,
then there must exist a node on the left of s or s′ carrying a letter that does not appear on the same
side of the other node: Spoiler picks it and wins. Finally, if '′ �= '′

2, the same reasoning applies
with a letter this time on the right of s or s′.

(⇐:) We assume ((C) = ((C ′) and show that Duplicator has a winning strategy for 2-round
games. Let Spoiler pick some s1 in C or C ′. The node s1 realizes some triple (= ('1, a1,'′

1) and
Duplicator answers by picking in the other chain a node s′1 that also realizes (. Such a node must
exist because ((C) = ((C ′). (Observe that if s1 is the initial node of its chain, then Duplicator must
pick the initial node of the other chain since the initial nodes are the only nodes that realize a triple
with empty '.)

When Spoiler picks a second node s2, its label is in '1 or '′
1 depending on whether s2 lies to the

left or the right of s1 or s′1. Then, Duplicator can pick in the other chain an s′2 with the same label
and on the same side of s1 or s′1. Additionally, if s2 is the initial node, and only then, Duplicator
picks the initial node in the other chain. Finally, the game is won by Duplicator. �

Now let C be a path (i.e., a chain of order type ω or less). We say a node s of C is limiting if it
is the first or the last occurrence (in C) of the letter as it carries. We consider the limiting nodes in
the order they occur in C: they are s1 < s2 < · · · < sp . Note that s1 is the initial node, and that p is
at most twice the number of letters in A. For example, if C is the infinite word abbabda(cb)ω, then
underlying its limiting nodes gives abbabdacb(cb)ω.

With C we associate the sequence ,(C), of the form a1,'1, a2,'2, . . . , ap ,'p , where every ai is
the letter carried by si, the ith limiting node, and every 'i is the set of letters that occur at least
once between si and si+1 ('p is the set of letters that occur after sp , which must each occur infinitely
often). Continuing our previous example, the path C seen above is associated with

,(C) = a, {}, b, {a, b}, d , {}, a, {}, c, {b, c}.
Note that ,(C) is entirely determined by C: we call it the �-type of C .

Lemma 4.5. The �-type of a path can be computed from its �-type.

Proof. Assume ,(C) is a1,'1, . . . , ap ,'p . Then, for i = 1, . . . , p , there is a triple (i realized by si, and
for every a ∈ 'i there is a triple (ai realized by the non-limiting nodes:

(i =
(

{aj|j < i}, ai, {aj|j > i} ∪ ⋃
j�i
'j

)
,

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1035

(ai =
(

{aj|j � i}, a, {aj|j > i} ∪ ⋃
j�i
'j

)
.

Finally, ((C) contains no other triples. �
In the other direction, ((C) contains enough information to reconstruct ,(C), but explaining this

requires some notations. We say a triple (', a,'′) is limiting if a �∈ ' ∩'′: a node s in C is limiting
iff it realizes a limiting triple.

For two triples (1 = ('1, a1,'′
1) and (2 = ('2, a2,'′

2), we write (1 % (2 when '1 ⊆ '2 and '′
1 ⊇

'′
2: observe that% is only a quasi-ordering in general (sincewemay have a1 �= a2 while (1 % (2 % (1).
If now s1 and s2 are two nodes ofC that realize (1 and (2, respectively, then s1 � s2 implies (1 % (2.

Lemma 4.6. The �-type of a path can be computed from its �-type.

Proof (Idea). Assume ((C) is known. The limiting triples in ((C) are linearly ordered by %, so
that we get a sequence (1 % (2 % · · · % (p . W.r.t. %, a non-limiting triple in ((C) falls between two
consecutive limiting triples (or to the right of (p). We obtain a list of the following general form

(1, {(11 , . . . , (n11 }, (2, {(12, . . . , (n22 }, . . . , (p , {(1p , . . . , (npp }.
Given such a list, one obtains ,(C) by replacing every triple (', a,'′) by the letter a it
witnesses. �

Summing up Theorem 4.3 and Lemmas 4.4–4.6 we get

Corollary 4.7. For any two paths C and C ′, C ≡2 C
′ iff C ∼g

2 C
′ iff ((C) = ((C ′) iff ,(C) = ,(C ′).

4.3. From BTL2 to TL(EU, {EMl}l=1,2,...)

The nice thing with �-types is that having a path with a given �-type can be written in
TL(EU, {EMl}l=1,2,...):

Lemma 4.8. For any �-type ,, there exists a formula , in TL(EU, {EMl}l=1,2,...) s.t. for any tree
T = (|T |,�, P1, . . . , Pm) and node n of T , T , n |= , iff there exists a path � in T starting from n such
that ,(T�) = ,. Furthermore, , has size 2|,|O(1) .

Proof. For , having the form a1,'1, . . . , ap ,'p , we express what it means to have �-type , with

EZ(a1,EZ(a2, . . .EZ(ap ,EM('p)) . . . ,'2),'1), (-,)

where, for ' = {a1, . . . , al}, EZ(a, b,') and EM(') are short for, respectively, EZl(a, b, a1, . . . , al)
and EMl(a1, . . . , al).

Now Proposition 3.7 entails that -, can be expressed by some , in TL(EU, {EMl}l=1,2,...). Since
-, has size O(|,|), we end up with | ,| in 2|,|O(1) . �

Corollary 4.9. Every BTL2 modality can be expressed in TL(EU, {EMl}l=1,2,...).

Proof.LetE� be aBTL2 pathmodality, induced by some first-order future formula �(x0,X1, . . . ,Xl),
and let ,(�) be the set {,(C)|C |= �}. Since there are only a finite number of possible �-types for

1036 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

a given set of letters, ,(�) is finite and, by Lemma 4.8, there exists a TL(EU, {EMl}l=1,2,...) formula
 (e.g., def= ∨

,∈,(�) ,) such that T , n |= iff T has a path starting from n with �-type in ,(�).
Now if � has quantifier depth 2, a path having �-type in ,(�) satisfies � (by Corollary 4.7). Hence,
 ≡ E�(q1, . . . , ql). �

Hence, BTL2 is not more expressive than TL(EU, {EMl}l=1,2,...).

4.4. The succinctness of BTL2

Here, we investigate succinctness issues for the translations that underlie our proof that BTL2,
ECTL+ and TL(EU, {EMl}l=1,2,...) are expressively equivalent.

We start with upper bounds. Let �(x0,X1, . . . Xm) be a first-order future formula. The corre-
sponding alphabet ' has size |'| = n = 2m so that the number of �-types over ' is bounded
by r = (2n)! × 2n(2n+1) which is 2n

O(1)
. In Corollary 4.9 we constructed a TL(EU, {EMl}l=1,2,...)

formula which is equivalent to theBTL2 pathmodalityE�. The size of is bounded by 2r . Hence,
when translating from BTL2 to ECTL+, an upper bound on the size of resulting formulae

is 22
2O(|�|)

.
Regarding lower bounds, BTL2 can be exponentially more succinct than ECTL+. Indeed, con-

sider the following first-order future formula:

�n(x0,X1, . . . ,Xn, Y)
def= ∀y , y ′ > x0

(
n∧
i=1

y ∈ Xi ⇔ y ′ ∈ Xi
)

⇒ (y ∈ Y ⇔ y ′ ∈ Y)

stating that all future states that agree on X1, . . . ,Xn agree on Y as well. It has quantifier
depth 2. The BTL2 formula E�n(q1, . . . , qn, q0) can be expressed by the following ECTL+
formula

def= E

∧
v⊆{0,1,...,n}

G

([
n∧
i=1

qi ⇔ (i ∈ v)
]

⇒ [q0 ⇔ (0 ∈ v)]
)
,

where all possible valuations for the atomic propositions have been accounted for by the outermost
conjunction. (The “i ∈ v” subformulae in stand for the Boolean constants � or ⊥, depending on
i and v.)
 has exponential size but this is essentially the best possible: Etessami et al. [15] prove that the

TL(U,S) formulae that are equivalent to �n over chains have size 20(n). Since removing the path
quantifiers in anECTL+ formula yields a linear-sizedTL(U) formula that is equivalent over chains,
the smallest ECTL+ formulae equivalent to E�n must have size 20(n).

There also exists an exponential succinctness gap betweenECTL+ andTL(EU, {EMl}l=1,2,...): the
ECTL+ formulae n

def= E(Fq1 ∧ · · · ∧ Fqn) can be expressed by TL(EU, {EMl}l=1,2,...) formulae of
size O(n!) (along the lines of the proof of Proposition 3.7). Wilke [39] (see also [1]) proved that CTL
formulae expressing n have size 20(n) and his proof applies even if one considers “equivalence over
finite trees” as the equivalence criterion. Assume a TL(EU, {EMl}l=1,2,...) formula � is equivalent
to n. � can be transformed into a shorter CTL formula �′ that is equivalent over finite trees: one

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1037

simply replaces any EMl(�1, . . . ,�l) by ⊥. We deduce that �′, and therefore �, must have size in
20(n).

We do not know whether these last two results add up to a doubly exponential succinctness
gap between BTL2 and TL(EU, {EMl}l=1,2,...), nor how one can reduce the gap between these lower
bounds and the triply exponential upper bound.

5. No finite bases for BTL2 and ECTL+

We say that a temporal logic L has (or admits) a finite basis if there is a finite set of modalities
H1, . . . ,Hk such that L is expressively equivalent to TL(H1, . . . ,Hk).

Example 5.1 (Some temporal logics with a finite basis).

• CTL is defined as TL(EUns,AUns,EX), and is expressively equivalent to TL(EU,AU). Hence, it
has a finite basis.

• BTL1 is expressively equivalent to TL(EY), where Y(�1,�2) ≡ (F�1 ∧ G�2) [35]. Hence, it has a
finite basis.

• ECTL is defined as TL(EUns,AUns,EX,EF∞) and hence has a finite basis.

Finding bases answers questions about which temporal modalities are essential and which are
just convenient abbreviations. For temporal logics like CTL∗ that are defined via an infinite set of
modalities, finding a finite basis is a way of providing a simpler definition.

A major result from [35] is that BTL, and thus CTL∗, do not admit a finite basis. The same
article also conjectures that no BTLk logic for k > 1 admits a finite basis. In the rest of this section,
we partially prove this conjecture by showing that BTL2, and thus ECTL+, do not admit a finite
basis.

5.1. An infinite hierarchy inside TL(EU , {EMl}l=1,2,...)

Wealreadymentioned thatTL(EU,EM1) is expressively equivalent toCTL. The fact thatE(G� ∧
F∞) cannot be expressed in ECTL [25, p. 34] shows that TL(EU,EM2) is already strictly more
expressive than ECTL.

In this subsection we prove that, for any n, EMn(q1, . . . , qn) cannot be expressed with only EU
and EMn−1, so that TL(EU,EMn) is strictly more expressive than TL(EU,EMn−1).

Let P be a family {q1, . . . , qn} of n � 2 atomic propositions, and let S = {P0, . . . , Pn} be the
set of all subsets of P with at least n− 1 elements, defined by P0

def= P and, for i > 0, Pi
def=

{q1, . . . , qi−1, qi+1, . . . , qn}.
We now define a Kripke structure M: the nodes in |M| are all 〈q,',m〉 with ' ∈ S , q ∈ ' and

m ∈ �. In M, every node 〈q,',m〉 is labeled with q, called the visible value of the node (' is the
support, m is the level).

The transitions in M are all 〈q,',m〉 → 〈q′,'′,m′〉 s.t. (1) ' = '′ and m = m′, or (2) m′ = m− 1
and '′ �= P0. Transitions of type (1) create cliques where ' and m do not change. Inside a (',m)-
clique, each of the n− 1 nodes (or n if ' = P0 = P) carries a different visible value from '.

1038 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

Fig. 1. The transitions between cliques in M.

Transitions of type (2) connect the cliques as illustrated by Fig. 1: from level m > 0 one can
move to any clique at level m− 1 except (P0,m− 1). Hence, the cliques are also strongly connected
components.

Observe that the (P0,m)-cliques are the only ones that carry all n different propositions from P ,
and the only ones that cannot be reached from any other clique. Hence, we have:

Fact 5.2. 〈q,',m〉 |= EMn(q1, . . . , qn) iff ' = P0 = P.

In the following, we study how TL(EU,EMn−1) formulae are satisfied in M in order to prove
that they cannot express EMn(q1, . . . , qn).

The next lemma states that whether 〈q,',m〉 satisfies � ∈ TL(EU,EMl−1) does not depend on
',m if m is greater than or equal to nd(�), the nesting depth of �:

Lemma 5.3.Let� be aTL(EU,EMn−1) formula.For all k � nd(�), for all','′ ∈ S , for all q ∈ ' ∩'′,
we have

〈q,', k〉 |= � iff 〈q,'′, k + 1〉 |= �. (∗)
Proof.First observe that if Lemma 5.3 holds for a given �, then for all k , k ′ � nd(�), for all','′ ∈ S ,
for all q ∈ ' ∩'′, 〈q,', k〉 |= � iff 〈q,'′, k ′〉 |= �.

We write s0 for 〈q,', k〉, s′0 for 〈q,'′, k + 1〉, and prove (∗) by induction on the structure of �. The
cases where � is an atomic proposition, or a Boolean combination of subformulae are obvious and
there remain two cases.

1: � is EU(�1,�2):
(⇒:) If s0 |= � then there is a path � = s0, s1, . . . and an r � 1 s.t. sr |= �2, and si |= �1 for
0 < i < r. We write 〈qi,'i,mi〉 for si .

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1039

1a: If mr � k − 1 then, by ind. hyp., 〈qr ,'′′, k〉 |= �2 for any'′′ containing qr . Pick a'′′ different
from P0 and there is a transition s′0 → 〈qr ,'′′, k〉, proving s′0 |= �.

1b: If mr < k − 1 then r > 1 and mi = k − 1 for some 0 < i < r. si |= �1 and, by ind. hyp.,
〈qi,'i, k〉 |= �1. Since 'i �= P0, we can construct a path �′ = s′0, 〈qi,'i, k〉, si, si+1, . . . proving
s′0 |= �.
(⇐:) If s′0 |= � then there is a path �′ = s′0, s

′
1, . . . and an r � 1 s.t. s′r |= �2, and s′i |= �1 for

0 < i < r. We write 〈qi,'i,mi〉 for s′i .
1c: Ifmr � k then, by ind. hyp., 〈qr ,'′′, k − 1〉 |= �2 for any'′′ containing qr . If we pick'′′ �= P0,

we have a transition s0 → 〈qr ,'′′, k − 1〉 proving s0 |= �.
1d: If mr � k − 1 then mi = k − 1 for some 0 < i � r and s0, s′i, s′i+1, . . . is a path proving s0 |= �.

2: � is EMn−1(�1, . . . ,�n−1):
(⇒:) If s0 |= � then there is an infinite path� = s0, s1, . . .witnessing s0 |= �. Wewrite 〈qi,'i,mi〉
for si .
2a: Ifmr = k − 1 for some r, then �′ = s′0, 〈qr ,'r , k〉, sr , sr+1, . . . is a path proving s′0 |= � since, by

ind. hyp., 〈qr ,'r , k〉 |= ∨
i �i .

2b: Otherwisemr = k for all r and � stays inside one clique. Let r1, . . . , rn−1 be indexes s.t. sri |= �i
(and ri > 0). Let'′′ ∈ S be some support containing all qri ’s. We can pick'′′ �= P0 since there
are at most n− 1 values to accommodate. Defining s′′i = 〈qri ,'′′, k〉, we have s′′i |= �i (ind.
hyp.) so that s′0, s

′′
1 , s

′′
2, . . . , s

′′
n−1, s

′′
1 , . . . is a path proving s′0 |= �.

(⇐:) If s′0 |= � then there is an infinite path�′ = s′0, s
′
1, . . .witnessing s

′
0 |= �.Wewrite 〈qi,'i,mi〉

for s′i .
If mr = k − 1 for some r, then s0, s′r , s′r+1, . . . is a path proving s0 |= �.

Otherwise mr � k for all r and we proceed as in case 2b. With si
def= 〈qri ,'′′, k − 1〉, we build a

path s0, s1, . . . , sn−1, s1, . . . proving s0 |= �. �
Lemma 5.4. EMn(q1, . . . , qn) cannot be expressed in TL(EU,EMn−1).

Proof. Assume EMn(q1, . . . , qn) is equivalent to some � ∈ TL(EU,EMn−1) and let k � nd(�).
Then, for any ' ∈ S and for all q ∈ ', 〈q,', k〉 |= � iff 〈q,'0, k〉 |= � (Lemma 5.3), contradicting
Fact 5.2. �

This can be seen as a generalization of the result (from [10]) that E(F∞q1 ∧ F∞q2) cannot be
expressed in ECTL. Our Kripke structure shows that E(F∞q1 ∧ · · · ∧ F∞qn) cannot be expressed
in a fragment of ECTL+ where only n− 1-ary conjunctions of F∞ modalities are allowed under an
existential path quantifier.

5.2. BTL2 and ECTL+ have no finite basis

A corollary of Lemma 5.4 is:

Corollary 5.5. With regards to their expressive power, the logics TL(EU,EM1),
TL(EU,EM2), . . . ,TL(EU,EMn), . . . form an infinite hierarchy inside TL(EU, {EMl}l=1,2,...).

We can now conclude with the following result.

1040 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

Theorem 5.6. BTL2, ECTL+, and TL(EU, {EMl}l=1,2,...) have no finite basis.

Proof. Assume H1, . . . ,Hk are ECTL+ (or, equivalently, BTL2) modalities. Then, every Hi can be
defined as some TL(EU,EMni) formula (Theorem 4.1) so that TL(H1, . . . ,Hk) is not more expres-
sive than TL(EU,EMmax(ni)). Thus, by Corollary 5.5, TL(H1, . . . ,Hk) is strictly less expressive than
TL(EU, {EMl}l=1,2,...) and, by Theorem 4.1, than BTL2 and ECTL+. �

6. Model checking

In this section, we study the model-checking problem for BTL2 and TL(EU, {EMl}l=1,2,...).
Recall that themodel-checking problem for a temporal logic L is as follows: Given a finite Kripke

structure M, a node s of M, and a formula � ∈ L, determine whether TM,s, s |= �, where TM,s is the
tree obtained by unfolding M from its node s (see Section 2.5).

While it is well known that model checking is P-complete for CTL and PSPACE-complete for
CTL∗, the precise complexity of model checking ECTL+ has only been recently characterized.

Theorem 6.1. [26] The model-checking problem for ECTL+ is �p
2
-complete.

Here �p
2
, from the polynomial-time hierarchy, is the class of decision problems for which there

is an algorithm in PNP . It lies “between” NP ∪ coNP and PSPACE [38,31].
Considering themodel-checking problem forBTL2 allows to further compareECTL+ andBTL2.

Indeed, ECTL+ and BTL2 have the same expressive power but BTL2 can be (at least) exponentially
more succinct than ECTL+. Hence, model checking could well be thought to be harder for BTL2
than for ECTL+. Recall that, in the case of CTL+ and CTL, the succinctness gap translates into a
complexity gap for model checking and satisfiability [26,22].

6.1. Periodic paths and BTL2 modalities

Throughout this section we consider a given finite Kripke structure M = 〈|M|,R, P1, . . .〉 and
write n for the number of nodes in M.

A path � = s0, s1, . . . in M is ultimately periodic (or succinctly periodic) if there are some k and k ′
s.t. si+k ′ = si for every i � k (assuming si+k ′ exists, hence finite paths are periodic). Thus, a periodic
path consists of a finite prefix followed by a repeated loop (if the path is infinite). We define |�|, the
size of �, as k + k ′ since, computationally, � can be described by a sequence of k + k ′ nodes.

(Small) periodic paths are what we are looking for when model checking BTL2 path modalities:

Lemma 6.2 (Small witnesses forBTL2).Let E� be a BTL2 path modality with arity l. If there exists in
M a path � starting from s0 s.t. T�, s0 |= �(x0, P1, . . . , Pl), then there exists such a path that is periodic,
and has size O(n3).

Proof. Assume � is s0, s1, . . . and let , = a1,'1, . . . , ap ,'p be its �-type. Since M has n states, only
n different letters can appear in ,, and thus p � 2n.

We build a periodic path �′ out of � by keeping s0, all si’s that are limiting occurrences in �, and
for each letter b ∈ 'i one state witnessing that b occurs at least once between the corresponding

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1041

limiting occurrences. Between these selected states, we keep additional states from � ensuring the
connectivity of the sequence (and ensuring a final loop visiting the witnesses from 'p). The result
is a periodic path �′ with the same �-type as �, hence T�′ , s0 |= �(x0, P1, . . . , Pl) by Corollary 4.7.
Because we only selected O(n2) states and because at most n− 1 states are needed to ensure the
connectivity between any two states along �, the path �′ has size O(n3). �

Model checking periodic paths is easy:

Lemma6.3 (Model checking over periodic paths).Given a periodic path� starting from s0 inM, and a
first-order future formula �(x0,X1, . . . ,Xl) with qd(�) � 2, checking whether T�, s0 |= �(x0, P1, . . . , Pl)
can be done in deterministic time O(|�|2 × |�|).
Proof. Assume � = s0, s1, . . . is such that si+k ′ = si for i � k and let m : � → {0, 1, . . . , k + k ′ − 1}
project every position i ∈ � to its representative: we havem(i) = i if i < k + k ′ andm(i) = m(i − k ′)
otherwise (we assume k > 0 so that m(i) = 0 iff i = 0).

For every subformula (x0, x, y ,X1, . . . ,Xl) of quantifier depth 0 that occurs inside �, we build
a table T that says, given i and j, whether T�, s0, si, sj |= (x0, x, y , P1, . . . , Pl). Observe that is a
Boolean combination of atoms of the form z ∈ X or z < z′ so that knowing m(i), m(j) and the
position of j relative to i (j can be before, at, or after i) is enough to say whether T�, s0, si, sj |=
 (x0, x, y , P1, . . . , Pl). Therefore, it is enough to build tables T ’s with (less than) 3 × (k + k ′)2 en-
tries and all these tables can be filled in time O(|�|2 × |�|).

Then, for every subformula ′(x0, x,X1, . . . ,Xl) of quantifier depth 1 that occurs inside �, we build
a table T

′
that says, given i, whether T�, s0, si |= ′(x0, x, P1, . . . , Pl). This only depends on m(i) and

the position of i relative to k + k ′. To see this, imagine that ′ is ∃y : knowingm(i) and the position
of i relative to k + k ′ allows to enumerate all m(j) for j before i, and all m(j) for j after i. The table
T is then used to check if T�, s0, si, sj |= (x0, x, y , P1, . . . , Pl) for one of these cases (the case i = j

must be also be considered), that is to check whether T�, s0, si |= ′(x0, x, P1, . . . , Pl). Therefore, the
tables for the T

′
’s only need to have k + 2k ′ entries and they can be filled in time O(|�|2 × |�|).

Finally, once the T
′
’s tables are built, evaluating whether T�, s0 |= �(x0,X1, . . . ,Xl) can be done

with additional time O(|�| × |�|). �
Remark 6.4.More generally, model checking periodic paths with an arbitrary FOMLO formula �
can be done in deterministic time O(|�|qd(�) × |�|), and is PSPACE-complete [30].

6.2. Model checking BTL2

Proposition 6.5. The problem of deciding, for a finite Kripke structure M, a node s0 ∈ |M|, and a
BTL2 path modality E�, whether s0 |= E�(q1, . . . , ql) is NP-complete.

Proof.Membership in NP is shown by the following non-deterministic algorithm: guess a periodic
path � of size O(n3) and check � |= �(q1, . . . , ql) in polynomial time (Lemma 6.3). This algorithm
is correct by Lemma 6.2.

NP-hardness is well known and already appears with BTL1 modalities, e.g., with formulae of the
form E

∧
i(
∨
j Fqni,j) [36,7]. �

The important corollary is

1042 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

Theorem 6.6. The model-checking problem for BTL2 is �p
2
-complete.

Proof. Since ECTL+ can be seen as a fragment of BTL2, �
p
2
-hardness follows from Theorem 6.1.

Membership in �p
2
is a corollary of Proposition 6.5: given a Kripke structure M with n nodes

and a BTL2 formula � with m path quantifiers, a model-checking algorithm along the lines of [13,
Theorem 6.26] will compute, for each node n inM and each subformula of �, whetherM, n |= .
By considering subformulae in order of increasing size, the algorithm only needs nm invocations of
an NP-oracle for BTL2 path modalities and then belongs to PNP . �

6.3. Model checking TL(EU, {EMl}l=1,2,...)

Theorem 6.7. The model-checking problem for TL(EU, {EMl}l=1,2,...) is P-complete.

Proof (Idea). The classic algorithm for model checking CTL with fairness [5, Section 4] is easily
adapted to deal with EMn modalities, yielding a O(|M| × |�|) running time.

That P-hardness already appears with TL(EX) is a folk result (for a proof, see the
survey [37]). �

Thus, it seems that TL(EU, {EMl}l=1,2,...) is a good compromise between high expressive power
and low model-checking complexity.

7. Conclusion

We proved that ECTL+ and BTL2 are expressively equivalent. Since BTL2 is a natural fragment
ofMLO , the second-order monadic logic of order, our result provides an informative characteriza-
tionof the expressive power ofECTL+. The lackof similar results forCTLandother branching-time
logics is one of the reasons why there is no clear consensus on what should be the branching-time
logics of choice.

Then we proved that ECTL+ and BTL2 do not admit a finite basis. This negative result com-
plements a similar result for CTL∗ [35], explaining why these temporal logics are not presented in
the usual form TL(H1, . . . ,Hk) of a logic built with a finite set of natural and independent modal-
ities.

A side result of our study is that the fragment TL(EU, {EMl}l=1,2,...) is enough to express all
ECTL+ formulae, but has a much lower model-checking complexity.

References

[1] M. Adler, N. Immerman, An n! lower bound on formula size, in: Proceedings of the 16th IEEE Symposium on Logic
in Computer Science (LICS 2001), Boston, MA, USA, June 2001, IEE Computer Society Press, Silver Spring, MD,
2001, pp. 197–206.

[2] M. Ben-Ari, A. Pnueli, Z. Manna, The temporal logic of branching time, Acta Inform. 20 (1983) 207–226.
[3] D. Beauquier, A. Rabinovich, Monadic logic of order over naturals has no finite base, J. Logic Comput. 12 (2) (2002)

243–253.

A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044 1043

[4] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic,
in: Proceedings of the Logics of Programs Workshop, Yorktown Heights, New York, May 1981, Lecture Notes in
Computer Science, vol. 131, Springer, Berlin, 1981, pp. 52–71.

[5] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state concurrent systems using temporal logic
specifications, ACM Trans. Progr. Lang. Syst. 8 (2) (1986) 244–263.

[6] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.
[7] S. Demri, Ph. Schnoebelen, The complexity of propositional linear temporal logics in simple cases, Inform. Comput.

174 (1) (2002) 84–103.
[8] E.A. Emerson, E.M. Clarke, Characterizing correctness properties of parallel programs using fixpoints, in: Proceed-

ings of the 7th Colloquium on Automata, Languages and Programming (ICALP ’80), Noordwijkerhout, NL, July
1980, Lecture Notes in Computer Science, vol. 85, Springer, Berlin, 1980, pp. 169–181.

[9] E.A. Emerson, J.Y. Halpern, Decision procedures and expressiveness in the temporal logic of branching time, J.
Comput. Syst. Sci. 30 (1) (1985) 1–24.

[10] E.A. Emerson, J.Y. Halpern, “Sometimes” and “Not Never” revisited: on branching versus linear time temporal
logic, J. ACM 33 (1) (1986) 151–178.

[11] A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fundam. Math. 49
(1961) 129–141.

[12] E.A. Emerson, Chin-Laung Lei, Modalities for model checking: branching time logic strikes back, Sci. Comput.
Progr. 8 (3) (1987) 275–306.

[13] E.A. Emerson, Temporal and modal logic, in: in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science,
vol. B, Elsevier Science, Amsterdam, 1990, pp. 995–1072, Chapter 16.

[14] E.A. Emerson, Automated temporal reasoning about reactive systems, in: Logics for Concurrency: Structure Versus
Automata, Lecture Notes in Computer Science, vol. 1043, Springer, Berlin, 1996, pp. 41–101.

[15] K. Etessami, M.Y. Vardi, T. Wilke, First order logic with two variables and unary temporal logic, Inform. Comput.
179 (2) (2002) 279–295.

[16] D.M.Gabbay, I.M.Hodkinson,M.A.Reynolds, in: Temporal Logic:Mathematical Foundations andComputational
Aspects, vol. 1, Oxford Logic Guides, vol. 28, Clarendon Press, Oxford, 1994.

[17] D.M. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of fairness, in: Proceedings of the 7th ACM
Symposium on Principles of Programming Languages (POPL ’80), Las Vegas, NV, USA, January 1980, 1980, pp.
163–173.

[18] Y. Gurevich, S. Shelah, The decision problem for branching time logic, J. Symbolic Logic 50 (3) (1985) 668–681.
[19] Y. Hirshfeld, A. Rabinovich, Future temporal logic needs infinitely many modalities, Inform. Comput. 187 (2003)

196–208.
[20] Y. Hirshfeld, A. Rabinovich, Logics for real time: decidability and complexity, Fundam. Inform. 62 (2004) 1–28.
[21] T. Hafer, W. Thomas, Computation tree logic CTL* and path quantifiers in the monadic theory of the binary tree,

in: Proceedings of the 14th International Colloquium on Automata, Languages, and Programming (ICALP ’87),
Karlsruhe, FRG, July 1987, Lecture Notes in Computer Science, vol. 267, Springer, Berlin, 1987, pp. 269–279.

[22] J. Johannsen, M. Lange, CTL+ is complete for double exponential time, in: Proceedings of the 30th International
Colloquium on Automata, Languages, and Programming (ICALP 2003), Eindhoven, NL, July 2003, Lecture Notes
in Computer Science, vol. 2719, Springer, Berlin, 2003.

[23] J.A.W. Kamp, Tense Logic and the Theory of Linear Order, PhD thesis, UCLA, Los Angeles, CA, USA, 1968.
[24] L. Lamport, “Sometimes” is sometimes “Not Never”, in: Proceedings of the 7th ACM Symposium on Principles of

Programming Languages (POPL ’80), Las Vegas, NV, USA, January 1980, 1980, pp. 174–185.
[25] F. Laroussinie, Logique temporelle avec passé pour la spécification et la vérification des systèmes réactifs, Thèse de

Doctorat, I.N.P. de Grenoble, France, November 1994.
[26] F. Laroussinie, N. Markey, Ph. Schnoebelen, Model checking CTL+ and FCTL is hard, in: Proceedings of the

4th International Conference on Foundations of Software Science and Computation Structures (FOSSACS 2001),
Genova, Italy, April 2001, Lecture Notes in Computer Science, vol. 2030, Springer, Berlin, 2001, pp. 318–331.

[27] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer,
Berlin, 1992.

[28] Z. Manna, A. Pnueli, Temporal Verification of Reactive Systems: Safety, Springer, Berlin, 1995.

1044 A. Rabinovich, P. Schnoebelen / Information and Computation 204 (2006) 1023–1044

[29] F. Moller, A. Rabinovich, Counting on CTL∗: on the expressive power of monadic path logic, Inform. Comput. 184
(1) (2003) 147–159.

[30] N. Markey, Ph. Schnoebelen, Model checking a path (preliminary report), in: Proceedings of the 14th International
Conference on Concurrency Theory (CONCUR 2003), Marseille, France, September 2003, Lecture Notes in Com-
puter Science, vol. 2761, Springer, 2003, pp. 251–265.

[31] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[32] J.-P. Queille, J. Sifakis, Fairness and related properties in transition systems. A temporal logic to deal with fairness,

Acta Inform. 19 (3) (1983) 195–220.
[33] M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Am. Math. Soc. 141 (1969)

1–35.
[34] A. Rabinovich, Expressive power of temporal logics, in: Proceedings of the 13th International Conference on Con-

currency Theory (CONCUR 2002), Brno, Czech Republic, August 2002, Lecture Notes in Computer Science, vol.
2421, Springer, Berlin, 2002, pp. 57–75.

[35] A. Rabinovich, S. Maoz, An infinite hierarchy of temporal logics over branching time, Inform. Comput. 171 (2) (2001)
306–332.

[36] A.P. Sistla, E.M. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (3) (1985) 733–749.
[37] Ph. Schnoebelen, The complexity of temporal logic model checking, in: Advances in Modal Logic, vol. 4, selected

papers from 4th Conference on Advances in Modal Logic (AiML 2002), September to October 2002, Toulouse,
France, King’s College Publication, 2003, pp. 437–459.

[38] L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1) (1976) 1–22.
[39] T. Wilke, CTL+ is exponentially more succinct than CTL, in: Proceedings of the 19th Conference on Foundation of

Software Technology and Theoretical Computer Science (FST&TCS ’99), Chennai, India, December 1999, Lecture
Notes in Computer Science, vol. 1738, Springer, Berlin, 1999, pp. 110–121.

