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Abstract. We study an extension of monadic second-order logic of orderwith the uncountability
quantifier “there exist uncountably many sets”. We prove that, over the class of finitely branching
trees, this extension is equally expressive to plain monadic second-order logic of order.

Additionally we find that the continuum hypothesis holds forclasses of sets definable in monadic
second-order logic over finitely branching trees, which is notable for not all of these classes are
analytic.

Our approach is based on Shelah’s composition method and uses basic results from descriptive set
theory. The elimination result is constructive, yielding adecision procedure for the extended logic.
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1. Introduction

Monadic second-order logic of order,MLO, extends first-order logic by allowing quantification over
subsetsof the domain. The binary relation symbol< and unary predicate symbolsPi are its only non-
∗Address for correspondence: Mathematische Grundlagen derInformatik RWTH Aachen, Germany
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logical relation symbols.MLO plays a very important role in mathematical logic and computer science.
The fundamental connection betweenMLO and automata was discovered independently by Büchi, Elgot
and Trakhtenbrot [7, 9, 23, 24] when the logic was proved to bedecidable over the class of finite linear
orders and over(ω,<). Moving away from linear orders, Rabin proved that the monadic second-order
theory of the full binary tree,S2S for short, is decidable [17]. This celebrated theorem, obtained using
the notion of tree automata, is often referred to as “the mother of all decidability results”.

First-order cardinality quantifiers, studied by Mostowski and also by Magidor and Malitz in a topo-
logical setting, count the number of elements satisfying a given property inside a structure. Extensions
of first-order logic with these quantifiers have been widely investigated over various natural classes of
structures with respect to both decidability and the possibility of elimination. See for instance [2].

Second-order cardinality quantifiersin MLO, which we study in this paper, have been mostly con-
sidered in the context of automata and automatic structures[18]. The first observation of this nature,
made in [5], was that the quantifier “there exist infinitely many words such that” can, in a certain sense,
be eliminated on all automatic structures. More precisely,via the standard correspondence of automata
with MLO, this amounts to eliminating the quantifier “there exist infinitely many (finite) sets such that”
from weakMLO over (ω,<). The case of fullMLO and the quantifier “there exist uncountably many
sets such that” over(ω,<) corresponds to injectively presentedω-automatic structures and was solved
in [13]. The structural properties ofω-regular languages identified in the latter work and its sequels have
provided important insights intoω-automatic structures.

Motivated by previous work on(ω,<) that used word automata, we investigate second-order cardi-
nality quantifiers over finitely branching trees, in particular, over the binary tree with arbitrary labelings,
which corresponds to tree automata with additional parameters [8]. The parameterless question was pre-
viously studied by Niwiński, who in [15] proved that a regular language of infinite trees is uncountable
if and only if it contains a non-regular tree.

We investigate over trees the expressive power of the extension of MLO by cardinality quantifiers
∃κX, with the interpretation “there exist at leastκmany subsetsX such that”, forκ ∈ {ℵ0,ℵ1, 2

ℵ0}. We
denote this logic asMLO(∃ℵ0 ,∃ℵ1 ,∃2ℵ0 ) and throughout the paper bytreeswe mean finitely-branching
trees every branch of which is either finite or of order typeω. Our main results are summarized in the
next two theorems.

Theorem 1.1. For everyMLO(∃ℵ0,∃ℵ1 ,∃2ℵ0 ) formulaϕ(Y ) there exists anMLO formulaψ(Y ), com-
putable fromϕ, that is equivalent toϕ(Y ) over trees.

In addition to the above, the reduction will show that over trees the quantifiers∃ℵ1X and∃2ℵ0X

are equivalent, i.e. that the continuum hypothesis holds for MLO-definable families of sets. Though not
surprising, this is not obvious for it is known that inMLO one can define non-analytic classes of sets [16]
and that CH is independent of ZFC already for co-analytic sets [14].

Theorem 1.2. On trees∃ℵ1Xϕ(X,Y ) is equivalent to∃2ℵ0Xϕ(X,Y ) for everyMLO formulaϕ(X,Y ).

Our results trivially extend to cardinality quantifiers∃ℵ0X , ∃ℵ1X and∃2ℵ0X counting (finite) tu-
ples of sets using the simple fact that∃κ (U, V ) ϕ ≡ ∃κU

(

∃V ϕ
)

∨ ∃κ V (∃U ϕ) for any cardinal
κ ≥ ℵ0. Our theorems also supersede the previously mentioned results from [13] and generalize the
theorem of Niwiński [15], which states that over the full binary tree the validity of∃ℵ1X ϕ(X) is decid-
able and equivalent to that of∃2ℵ0X ϕ(X) for everyMLO-formulaϕ(X). Niwiński’s theorem follows
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form the parameterless instances of our theorems. Certain structural insight gained from some of our
intermediate lemmas might be of independent interest. Morespecifically we show that counting sets
of nodes satisfying anMLO-formula on a tree can be effectively reduced to a combination of counting
branches satisfying a certainMLO-formula, and counting chains with certainMLO-definable properties
on individual branches. While the latter essentially amounts to dealing with the special case treated in
[13], relying on basic results from descriptive set theory we show that counting of branches can also be
formalized inMLO. An extended abstract of this paper was published in [3].

Organization

We begin by noting in Section 2 some observations regarding the second-order infinity quantifier∃ℵ0X.
In Section 3 we fix terminology and notation on trees and recollect some essentials of Shelah’s compo-
sition method forMLO. The rest of the paper is devoted to the proof of Theorems 1.1 and 1.2.

In Section 4 we start by reducing the question of the existence of uncountably many setsX satisfying
a givenMLO formulaϕ(X,Y ) with parametersY over a tree to a disjunction of three conditions:A, B
andC. ConditionA deals withMLO-properties of antichains; ConditionC deals with a simpler version
of the uncountability quantifier, namely with the quantifier“there exist uncountably many branches”.
Ultimately, conditionB is concerned with the cardinality of chains with a specificMLO property on
individual branches. It is postulated first in a broader formfor deductive advantages.

In Section 5, we show that ConditionB can be significantly weakened assuming that conditions
A andC are not satisfied. Relying on the elimination results on(ω,<) from [13], we formalize this
weakened form of ConditionB in MLO and prove, that it guarantees the existence of continuum many
sets satisfyingϕ.

In Section 6 we consider ConditionC in the special case of the complete binary tree. The key theorem
that we prove there, which might be of independent interest,is thatMLO-definable sets of branches of
the binary tree are Borel. This opens the way to formalizing Condition C in plain MLO, first over the
binary tree and finally, in Section 7, over arbitrary trees.

The proofs of our main theorems are summarized in Section 8.

2. Infinity quantifier

With regard to the second-order infinity quantifier∃ℵ0X the following observations are worth making.
While it clearly cannot be eliminated over all structures, it is easily expressible in monadic second-order
logic (MSO) with the auxiliary predicateInf(Z) asserting that the setZ is infinite, or equivalently, with
the help of the first-order infinity quantifier∃ℵ0x.

Proposition 2.1. For everyMSO(∃ℵ0) formulaϕ(Y ) there exists anMSO(Inf) formulaψ(Y ) equiva-
lent toϕ(Y ) over all structures.

Proof:
Observe that the following are equivalent:

(1) There are only finitely manyX which satisfyϕ(X,Y ).
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(2) There is a finite setZ such that any two distinctX1,X2 which both satisfyϕ(Xi, Y ) differ onZ, i.e.

∃Z
(

¬Inf(Z) ∧ ∀X1X2

(

ϕ(X1, Y ) ∧ ϕ(X2, Y ) ∧X1 6= X2 → ∃z ∈ Z (z ∈ X1 ↔ z 6∈ X2)
))

.

Item (2) implies (1) as a collection of sets pairwise differing only on a finite setZ has cardinality at
most2|Z|. Conversely, ifX1, . . . ,Xk are all the sets that satisfyϕ(Xi, Y ), then choose for every pair of
distinct setsXi,Xj an elementzi,j in the symmetric difference ofXi andXj and defineZ as the set of
these chosen elements. ⊓⊔

Over finitely branching trees,Inf(Z) can of course be expressed inMLO. Indeed, with König’s
Lemma in mind,Z is infinite iff there is no downward closed set which includesZ and does not include
an infinite, i.e., unbounded branch.

Corollary 2.1. MLO(∃ℵ0) collapses effectively toMLO over (finitely branching) trees.

Observe that the converse of Proposition 2.1 holds as well. In fact, the predicateInf(Z) can be
defined over all structures by the formula∃κY (Y ⊆ Z) for anyℵ0 ≤ κ ≤ 2ℵ0 . Therefore, by Propo-
sition 2.1, any of the quantifiers∃κY with ℵ0 < κ ≤ 2ℵ0 can be used to define∃ℵ0X over arbitrary
structures.

3. Preliminaries

For a given setA we denote byA∗ the set of all finite sequences of elements ofA, by Aω the set
of all infinite sequences of elements ofA (i.e. functionsω → A), andA≤ω = A∗ ∪ Aω. For any
sequences = s0s1s2 . . . ∈ A≤ω we denote by|s| the length ofs (either a natural number orω) and by
s|n = s0 . . . sn−1 the finite sequence composed of the firstn elements ofs, with s|0 = ε, the empty
sequence. We writes[n] for the(n+1)st element ofs (we count from0), sos[n] = sn for n ∈ N. Given
a finite sequences and a sequencet ∈ A≤ω we denote bys · t (or justst) the concatenation ofs andt.
Moreover, we writes � t if s is a prefix oft, i.e. if there exists a sequencer such thatt = sr. A subset
B of A≤ω is said to be prefix-closed if for everyt ∈ B ands � t it holds thats ∈ B.

3.1. Trees

For a numberl ∈ N, l > 0, an l-tree is a structureT = (T,<,P1, . . . , Pl), where thePi’s are unary
predicates and< is the irreflexive and transitive binaryancestorrelation with a least element called the
root of T and such that for everyv ∈ T the set{u ∈ T | u < v} of ancestors ofv is finite and linearly
ordered by< and the number ofv ∈ T with at mostn ancestors is finite for every naturaln. Elements
of a tree are referred to asnodes, maximal linearly ordered sets of nodes are calledbranches, ancestor-
closed and linearly ordered sets of nodes are calledpaths, whereaschainsare arbitrary linearly ordered
subsets. Anantichain is a set of pairwise incomparable nodes. Given a nodev, the subtree ofT rooted
in v is obtained by restricting the structure to the domainTv = {u ∈ T | u ≥ v} and is denotedTv.

Given a finite setA, we denote byT(A) the full tree overA, which is a structure with the universeA∗,
unary predicatesPa = A∗a for eacha ∈ A, and< interpreted as the prefix ordering. For finiteA with
|A| = n, this structure is axiomatizable inMLO and itsMLO theory is essentially the same as SnS, the
monadic second-order theory ofn successors (modulo trivialMLO-interpretations). We identify a path
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B of T(A) with the sequenceβ = a0a1a2 . . . ∈ A≤ω such thatB = {a0 . . . as | s ≤ |β|}. Conversely,
given a sequenceβ ∈ A≤ω we writePref(β) for the corresponding pathB.

Ordered sums of trees are defined as follows.

Definition 3.1. (Tree sum)
Let l > 0, I = (I,<I) be an unlabeled tree and letTi = (Ti, <

i, P i1, . . . , P
i
l ) be anl-tree for eachi ∈ I.

Thetree sumof (Ti)i∈I, denoted
∑

i∈I
Ti, is thel-tree

T =
(

⋃

i∈I

{i} × Ti , <
T,
⋃

i∈I

{i} × P1
i, . . . ,

⋃

i∈I

{i} × Pl
i
)

,

where(i, a) <T (j, b) for i, j ∈ I, a ∈ Ti, b ∈ Tj iff:

i <I j anda is the root ofTi, or i = j anda <i b .

Unless explicitly noted, we will not distinguish betweenTi and the isomorphic subtree{i} × Ti of T.

A particular special case of the sum we will be using is when the index structureI consists of a
single branch. Let(I,<) be a linear order, which is finite or isomorphic toω, and let〈Ti | i ∈ I〉 be an
I-indexed sequence ofl-trees. Then the sumT =

∑

i∈I Ti is well defined, and(I,<) forms a path (not
necessarily maximal) inT.

3.2. MLO and the composition method

We will work with labeled trees in the relational signature{<,P1, . . . , Pl} where< is a binary rela-
tion symbol denoting the ancestor relation of the tree, and thePi’s are unary predicates representing a
labeling.

Monadic second-order logic of order,MLO for short, extends first-order logic by allowing quantifi-
cation oversubsetsof the domain.MLO uses first-order variablesx, y, . . . interpreted as elements, and
set variablesX,Y, . . . interpreted as subsets of the domain. Set variables will always be capitalized to
distinguish them from first-order variables. The atomic formulas are of the form “x < y”, “ x ∈ Pi” or
“x ∈ X”. All other formulas are built from the atomic ones by applying Boolean connectives and the
universal and existential quantifiers for both kinds of variables. Concrete formulas will be given in this
syntax, taking the usual liberties and short-hands, such asX ∪ Y,X ∩ Y,X ⊆ Y , guarded quantifiers
and relativization of formulas to a set.

The quantifier rank of a formulaϕ, denotedqr(ϕ), is the maximum depth of nesting of quantifiers
in ϕ. For fixedn andl we denote byFormn,l the set of formulas of quantifier depth≤ n and with free
variables amongX1, . . . ,Xl. Letn, l ∈ N andT1,T2 bel-trees. We say thatT1 andT2 aren-equivalent,
denotedT1 ≡n T2, if for everyϕ ∈ Formn,l, T1 |= ϕ iff T2 |= ϕ.

Clearly,≡n is an equivalence relation. For anyn ∈ N andl > 0, the setFormn,l is infinite. However,
it contains only finitely many semantically distinct formulas, so there are only finitely many≡n-classes
of l-structures. In fact, we can compute representatives for these classes as follows.

Lemma 3.1. (Hintikka Lemma [11])
Forn, l ∈ N, we can compute afinite setHn,l ⊆ Formn,l such that:

– For everyl-treeT there is auniqueτ ∈ Hn,l such thatT |= τ .
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– If τ1, τ2 ∈ Hn,l andτ1 6= τ2 thenτ1 ∧ τ2 is unsatisfiable.

– If τ ∈ Hn,l andϕ ∈ Formn,l, then eitherτ |= ϕ or τ |= ¬ϕ. Furthermore, there is an algorithm
that, given suchτ andϕ, decides which of these two possibilities holds.

Elements ofHn,l are called(n, l)-Hintikka formulas.

Given anl-treeT we denote byTpn(T) the unique element ofHn,l satisfied inT and call it the
n-typeof T. Thus,Tpn(T) effectively determines which formulas of quantifier-depth≤ n are satisfied
in T. We sometimes speak of then-type of a tuple of subsetsV = V1, . . . , Vm of a givenl-treeT. This is
synonymous with then-type of the(l +m)-tree(T, V ) obtained by expansion ofT with the predicates
Pl+1, . . . , Pl+m interpreted as the setsV1, . . . , Vm. This type will be denoted byTpn(T, V ) and often
referred to as ann-type inm variables, whereby then-type of the(l + m)-tree(T, V ) is understood.
To denote then-type ofV restricted to a substructureT′ ⊆ T we simply writeTpn(T′, V ) instead of
Tpn(T′, V ∩ T′).

The essence of the composition method is that certain operations on structures, such as disjoint union
and certain ordered sums, can be projected ton-types. A general composition theorem forMLO from
which most others follow is due to Shelah [19]. In this paper we use the following form of composition,
a more detailed presentation of the method can be found in [10, 21].

Theorem 3.1. (Composition Theorem for Trees)
For everyMLO-formulaϕ(X) in the signature ofl-trees havingm free variables and quantifier rankn,
and given the enumerationτ1(X), . . . , τk(X) of Hn,l+m, there exists anMLO-formulaθ(Q1, . . . , Qk)
computable fromϕ and such that for every treeI = (I,<I) and family{Ti | i ∈ I} of l-trees and
subsetsV1, . . . , Vm of

∑

i∈I Ti,

∑

i∈I

Ti |= ϕ(V ) ⇐⇒ I |= θ(Q1, . . . , Qk)

whereQr = Q
I;V
r = {i ∈ I | Tpn(Ti, V ) = τr} for each1 ≤ r ≤ k.

4. D-nodes versus U-nodes and relevant branches

A tree segment, or interval, of anl-tree is a connected and convex setI of nodes, i.e. such that for every
u,w ∈ I if u andw are incomparable, then their greatest common ancestor is inI, and ifu < w then for
everyu < v < w alsov ∈ I. Every tree segment has a minimal element and every subtreeTz of a tree
T is a tree segment. More generally, the summandsTi of any tree sumT =

∑

i∈I Ti are tree segments
of T. The terms ‘interval’ and ‘tree segment’ are used interchangeably.

We denote byT|I the restriction of anl-treeT to the intervalI. Alternatively, given a nodez and a set
Z of nodes ofT we use the notationTz\Z for the restriction ofT to the tree segmentTz\(

⋃

w∈Z,z<w Tw).
Any intervalI with a minimal elementz can be written in the formTz\Z , whereZ = {u | u ≥ z∧u 6∈ I}.
In particular, ifB is a branch,v,w ∈ B such thatw is the immediate successor ofv on B, then
Tv\B = Tv \ Tw. These notations are schematically depicted in Figure 1.
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Figure 1. A subtreeTv and tree segmentsTv\{u,w} andTv\B.

Consider anMLO formulaϕ(X,Y ) of l-trees. To eliminate a single occurrence of the uncountability
quantifier from∃ℵ1X ϕ(X,Y ) over l-treeT we will make extensive use of the following notions for
intervals. For the rest of this section we fixϕ(X,Y ): an MLO formula of l-trees with1 + m free
variables – of whichY = (Y1, . . . , Ym) will often be regarded as parameters – and of quantifier rankn.

Definition 4.1. Let T be anl-tree,X,Y subsets such thatT |= ϕ(X,Y ), and letI be an interval ofT.

(1) We say thatI is aU-interval for ϕ, X, Y wheneverX ∩ I is the unique subset of its type onT|I .
More precisely, ifT|I |= ∀Z τ(Z, Y ) → Z = X, whereτ(X,Y ) is then-type of(T,X, Y )|I .

(2) I is aD-interval for ϕ,X, Y iff it is not a U-interval.

(3) In the special case ofI = {u | u ≥ z} we say that the subtreeTz is aU-treeor D-tree, respectively,
and further say thatz is aU-nodeor D-nodefor ϕ,X, Y .

(4) The set of D-nodes forϕ,X, Y is denotedD(X).

(5) An infinite pathP is called aD-path for ϕ,X, Y if every v ∈ P is a D-node forϕ,X, Y . That is if
P ⊆ D(X).

The name “U-interval” attests to the fact that the setX in question isuniquelydetermined by its
type on a given interval, as opposed to “D-intervals” offering two (or more) distinct choices forX with
the same type on the interval, thus (at least)doubling the total number of choices forX over the entire
domain. Wheneverϕ andY are clear from the context we will write e.g. “D-interval forX” instead of
“D-interval for ϕ,X, Y ”, and similarly for the other notions above.

It is worth noting that each setD(X) is prefix-closed since wheneverTv is a D-tree andu < v, then
Tv is a subtree ofTu and hence, by composition,Tu is a D-tree as well. ThusD(X) induces a tree
whose infinite paths are precisely the D-paths forX.

Each of the notions introduced in Definition 4.1 can be formalized in MLO. Let us start by con-
structing the formulaDINTϕ(I,X, Y ), expressing thatI is a D-interval forϕ,X, Y . By Lemma 3.1,
the set ofn-typesHn,l+m+1 is finite and can be computed. Take the formula

ψeqtp(X,Z, Y ) =
∧

τ∈Hn,l+m+1

τ(X,Y ) ↔ τ(Z, Y )
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expressing thatX andZ have the samen-type (on the tree at large), and letψrel
eqtp(X,Z, Y , I) be the

relativization ofψeqtp(X,Z, Y ) to an intervalI, thus asserting thatX andZ have the samen-type onI.
DINTϕ(I,X, Y ) can now be written as

ϕ(X,Y ) ∧ ∃Z(ψrel
eqtp(X,Z, Y , I) ∧ X ∩ I 6= Z ∩ I) .

Using DINTϕ(I,X, Y ) one can build formulasDNODEϕ(v,X, Y ) andDPATHϕ(P,X, Y ) express-
ing, respectively, thatv is a D-node and thatP is a D-path forϕ,X, Y ; and alsoDSETϕ(D,X, Y )
which holds iffD = D(X).

The following lemma is the first step in eliminating the∃ℵ1 quantifier fromMLO over trees. The
three cases are depicted in Figure 2.

Lemma 4.1. Let T be anl-tree andϕ(X,Y ) an MLO-formula in the signature ofl-trees. Then, for
every tuple of subsetsV of T,

T |= ∃ℵ1X ϕ(X,V )

if and only if one of the following conditions is satisfied.

A. There is a setU satisfyingT |= ϕ(U, V ) and there is an infinite antichainA of D-nodes forϕ,U, V .

B. There is an infinite branchB, which is a D-path for uncountably manyU satisfyingT |= ϕ(U, V ).

C. There are uncountably many branchesB in T, each of which is a D-path for someU satisfying
T |= ϕ(U, V ).

Figure 2. The three conditions

Proof:
Note that over finitely branching trees, where König’s Lemma applies, conditionA implies conditionB
and is enlisted here for deductive reasons only.

On the one hand,A is arguably the most natural and easily expressible condition sufficient for the
existence of continuum many setsU satisfyingT |= ϕ(U, V ). To see that, letU andA be as inA and let
I = {w ∈ T | ¬∃v (v ∈ A ∧ v < w) } be the set of all nodes which are not below any of the nodes of
A. ThenT can be decomposed with(I,<) as index structure asT =

∑

w∈I\A[w]+
∑

w∈ATw. Here[w]
denotes a tree consisting of a single node bearing the same labels asw in T. We apply the Composition
Theorem to this decomposition. Given thatT |= ϕ(U, V ) using Theorem 3.1 we can ascertain that
T |= ϕ(U ′, V ) for everyU ′ such thatU ′∩ (I \A) = U ∩ (I \A) andTpn(Tw, U

′, V ) = Tpn(Tw, U, V )
for all w ∈ A. By the choice ofA such aU ′ can be independently chosen either to coincide or not to
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coincide withU on each subtreeTw with w ∈ A without changing its type. Hence there are continuum
many different suchU ′ andA is an antichain of D-nodes for every suchU ′. In a (finitely branching)
tree withU andA fulfilling condition A there is also, by König’s Lemma, an infinite branchB such that
Tv ∩ A is infinite for all v ∈ B. In particular,B is a D-path for eachU ′ obtained fromU as above,
implying conditionB.

On the other hand,¬A amounts to saying that for eachU satisfyingϕ(U, V ) the setD(U) induces
a tree comprised of only finitely many branches. In particular, that there are only finitely many infinite
D-paths for each suchU .

ConditionB explicitly requires the existence of uncountably many setssatisfyingϕ(X,V ), so it too
is sufficient for∃ℵ1X ϕ(X,V ) to hold. Hence it remains to be shown that whenB fails thenC is both
sufficient and necessary hereto.

AssumingB does not hold in someT then, as we have seen,A fails too and therefore there are
only finitely many infinite D-paths for eachU satisfyingT |= ϕ(U, V ). Also by the failure ofB every
branch is a D-path for at most countably manyU satisfyingT |= ϕ(U, V ). It follows that for every
such setU the collection{U ′ | D(U ′) = D(U) , T |= ϕ(U ′, V )} is finite or countable. Indeed, this
is clear from the above wheneverD(U) contains an infinite D-path. If on the other handD(U) is finite
thenU is fully determined byU ∩ D(U) and then-types of all those U-nodes that are successors of
some D-node,which only allows for a finite number of choices of U given thatT is finitely branching.
Thus we have established that wheneverB fails in someT then there are uncountably manyU satisfying
T |= ϕ(U, V ) iff there are uncountably many setsD(U) with T |= ϕ(U, V ) if and (because now each
relevantD(U) contains only finitely many branches) only if conditionC holds. ⊓⊔

We remark that Lemma 4.1 fails for infinitely branching trees. Consider a tree of depth one with
the rootr having countably many successor nodes and the formulaϕ(X,Y ) = X ⊆ Y and fix a setV
of successor nodes. ThenD(X) ⊆ {r} for everyX satisfyingϕ(X,V ), hence conditionsA, B andC
all fail. Note that over infinitely branching trees even the predicateInf(X) cannot be expressed in pure
MLO. To extend our results to infinitely branching trees (reducing toMLO(Inf) instead of pureMLO)
thus requires a fourth condition addressing such cases while making use of theInf predicate.

Let us note again that if conditionA holds then there are in fact continuum many setsX satisfying
the formulaϕ(X,Y ). The description of ConditionA can be directly formalized inMLO(Inf), hence,
over (finitely branching) trees, also inMLO as follows:

ψA(Y ) = ∃U ∃A
(

ϕ(U, Y ) ∧ Inf(A) ∧ antichain(A) ∧
(

∀w ∈ A DNODEϕ(w,U, Y )
) )

,

where antichain(A) = ∀x, y ∈ A ¬(x < y ∨ y < x).

5. Condition B

In this section, we show that a branchB is a witness for ConditionB if and only if this branch satisfies
a disjunction of three sub-conditions:Ba, Bb andBc. Moreover, if both ConditionA and ConditionC
fail, then already the sub-conditionsBa andBc are sufficient. Finally, we express bothBa andBc in
MLO and show, that in fact both these sub-conditions guarantee the existence of continuum many sets
X satisfying the formulaϕ(X,Y ) in consideration. As in the previous section, we fix anMLO-formula
of l-treesϕ(X,Y ) in 1 +m many free variables and of quantifier rankn.
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Consider the formulaψ(X,Y , P ) stating thatP is an infinite D-path forX and thatϕ(X,Y ) holds.

ψ(X,Y , P ) = DPATHϕ(P,X, Y ) ∧ Inf(P ) ∧ ϕ(X,Y )

Note that a branchB witnesses ConditionB in anl-treeT if and only if T |= ∃ℵ1U ψ(U, Y ,B). To break
up ConditionB for a given branchB we therefore apply the Composition Theorem for the formulaψ

with the decompositionT =
∑

w∈B Tw\B along that branch. To that end letr be the number ofqr(ψ)-
types inl +m + 2 variables, which we enumerate asτ1, . . . , τr. Then Theorem 3.1 yields a formulaθ
such that

T |= ψ(X,Y ,B) ⇐⇒ (B,<) |= θ(P1, . . . , Pr) (1)

with Pi = {w ∈ B | (Tw\B ,X, Y , {w}) |= τi} for each1 ≤ i ≤ r. Note that we use the expansion of
Tw\B by {w} asw is the only element ofTw\B that belongs toB.

With this reformulation it is clear that a branchB witnesses ConditionB in an l-treeT if and only
if there are uncountably many differentP satisfyingθ, or someP satisfyingθ has uncountably manyX
corresponding to it. Taking advantage of the fact that, by virtue of the Composition Theorem,θ merely
depends onψ but not onT nor the chosen branchB, we obtain the following breakdown of conditionB.

Lemma 5.1. Let T be anl-tree andB an infinite branch inT. There are uncountably manyX ⊆ T

satisfying the formulaψ(X,Y ,B) in T iff one of the following sub-conditions holds.

(Ba) There exists a setX such thatTw\B is a D-interval forϕ,X, Y for infinitely manyw ∈ B.

(Bb) There exists a setX satisfyingψ and aw ∈ B so that

Tw\B |= ∃ℵ1X ′ τi(X
′, Y ∩ Tw\B , {w}),

whereτi = Tpqr(ψ)(Tw\B,X, Y , {w}) for all 1 ≤ i ≤ r.

(Bc) It holds that

(B,<) |= ∃ℵ1P

(

θ(P ) ∧

r
∧

i=1

Pi ⊆ Qi ∧ ∀x

r
∨

i=1

(

x ∈ Pi ∧
∧

j 6=i

x 6∈ Pj

))

,

where for each1 ≤ i ≤ r, Qi is the set of nodes on the branchB in which the typeτi is satisfied
by some setX, i.e.

Qi = {w ∈ B | Tw\B |= ∃X τi(X,Y ∩ Tw\B, {w})}.

Proof:
Recall that by (1) we haveT |= ψ(X,Y ,B) iff (B,<) |= θ(P1, . . . , Pr). We consider two cases.

Case 1: There exists a tupleP such that(B,<) |= θ(P ) and there are uncountably many setsX for
whichPi = {w ∈ B | (Tw\B,X, Y , {w}) |= τi} for each1 ≤ i ≤ r.
In this case the branchB witnesses ConditionB, so we only need to show that one of the sub-conditions
holds. Consider a setX0 satisfyingψ(X0, Y ,B) and havingqr(ψ)-types onTw\B for all w ∈ B as de-
scribed byP . Assume that sub-condition(Ba) does not hold. Then the segmentTw\B is a U-interval for
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ϕ,X0, Y for all but finitely manyw ∈ B. Observe thatqr(ψ) ≥ qr(ϕ). Therefore all of the uncountably
many setsX that induceP , i.e. have the sameqr(ψ)-type asX0 on each segmentTw\B, must be equal
toX0 on all but finitely manyTw\B. So there is aw ∈ B for which there are uncountably many different
X having the sameqr(ψ)-type asX0 onTw\B , and thus Condition(Bb) is satisfied.

Case 2: For each tupleP such that(B,<) |= θ(P ) there are only countably many setsX for which
Pi = {w ∈ B | (Tw\B,X, Y , {w}) |= τi}.
In this case, we show that Condition(Bc) is both necessary and sufficient for the existence of uncountably
many setsX satisfyingψ.

Necessity of Condition(Bc).
As a direct consequence of (1) and the condition of this case,if there are uncountably many setsX
satisfyingψ then there are uncountably many corresponding tuplesP for which (B,<) |= θ(P ). Each
Pi induced by someX as in (1) is, by definition, the set ofw’s for which (Tw\B,X, Y , {w}) |= τi. So
for everyw ∈ Pi we have, in particular, thatTw\B |= ∃X τi(X,Y ∩ Tw\B, {w}). ThusPi ⊆ Qi for
everyi. Since Hintikka formulas are mutually exclusive thePi’s are pairwise disjoint. This guarantees
that the remaining conjunct∀x

(
∨r
i=1(x ∈ Pi ∧

∧

s 6=r x 6∈ Ps
)

of Condition (Bc) is also satisfied, and
therefore Condition(Bc) holds.

Sufficiency of Condition(Bc).
By definition of the setsQi, for eachw ∈ Qi there is a subsetXw,i ⊆ Tw\B such thatTw\B |=

τi(Xw,i, Y , {w}). Assuming that Condition(Bc) holds, letP be the uncountable set of tuplesP that
witness this condition. For each such tupleP and eachw ∈ B the last conjunct of Condition(Bc)
guarantees that there is a uniquei = i(w,P ) for whichw ∈ Pi. Let XP =

⋃

w∈BXw,i(w,P ). Since

Pi ⊆ Qi, the tupleP describes indeed the types of the setXP on the tree segmentsTw\B. According
to (1) from(B,<) |= θ(P ) we can infer thatT |= ψ(XP , Y ,B). Clearly, for distinct tuplesP 1 andP 2

the setsXP1
andXP2

are also distinct. Therefore{XP | P ∈ P} constitutes an uncountable family of
sets satisfyingψ. ⊓⊔

Observe that(Ba) already subsumesA in the sense that if conditionA holds then there is a branch
satisfying(Ba). Also observe that Condition(Bb) is itself just another instance of our initial problem. It
is important to note, however, that the above cases classifyconditions under which anindividual branch
may satisfyB. At closer inspection we find that if no branch satisfies either (Bc) or (Ba) (so that in
particularA fails) and moreover conditionC fails too, then(Bb) cannot hold either.

Lemma 5.2. If over a treeT both ConditionsA andC fail, then ConditionB implies that some branch
of T satisfies Condition(Ba) or Condition(Bc).

One intuitive way to see this is that if all the conditionsA, (Ba), (Bc) andC fail on a tree, and thereby
also on every tree segment of that tree, then for(Bb) to hold for a proper tree segment that tree segment
would have to contain a proper tree segment on which(Bb) holds, and so on indefinitely. This would
ultimately trace an infinite branch witnessing(Ba) contrary to the initial assumption.

Proof:
It is easy to see that if conditionsA andC fail thenD = {D(X) | T |= ϕ(X,Y )} is countable. Indeed,
in the proof of Lemma 4.1 we have already remarked that the failure of A implies that eachD ∈ D is a
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union of finitely many paths and, by definition,C holds unless there are only countably many potential
D-paths in total.

If Condition B holds then there are uncountably many setsX satisfyingϕ(X,Y ) and thus, asD is
countable, there is a setD such thatD = D(X) for uncountably manyX satisfyingϕ. Fix such aD
and consider the set of labelingsL = {λX : D → Hn,l+m+1 | D(X) = D, T |= ϕ(X,Y )}, where
λX(w) = Tpn(Tw\D,X, Y ) for all w ∈ D. We distinguish two cases.

Case 1:L is uncountable.Then, given thatD contains only finitely many infinite paths and finitely
many additional nodes, there is an infinite branchB in D such that{λ|B | λ ∈ L} is uncountable.
Observe thatλX(w) = Tpn(Tw\B,X, Y ) for all but finitely many nodesw ∈ B. Also observe that,
sinceqr(ψ) ≥ n, eachqr(ψ)-type on the variablesX,Y ,B induces a uniquen-type on the variables

X,Y . So there are necessarily uncountably many different partitionsP
X

= 〈PX1 , . . . PXr 〉 of B

PXj = {w ∈ B | Tpqr(ψ)(Tw\B,X, Y , {w}) = τj} (1 ≤ j ≤ r)

withD(X) = D andX satisfyingϕ. Using (1) we can check that Condition(Bc) is met for the branchB.

Case 2:L is countable.Then there is a type labelingλ : D → Hn,l+m+1 such thatλ = λX for
uncountably manyX satisfyingϕ and havingD(X) = D. Suppose that Condition(Ba) is not satisfied
for any infinite branchB inD. Thenλ(w) uniquely determinesX∩Tw\D for all but finitely manyw ∈ D

and allX satisfyingϕ andD(X) = D. Thus, there exists aw ∈ D such that there are uncountably
manyX as above pairwise differing on the tree segmentTw\D. However, by definition, every subtree of
Tw\D is a U-tree relative to each of theseX, becauseD(X) = D. BecauseT is finitely branching, i.e.
Tw\D \ {w} is a finite union of such U-trees, there can be only finitely many X as above and pairwise
differing onTw\D, which is a contradiction. Therefore Condition(Ba) must hold. ⊓⊔

Next we will constructMLO formulasψBa(B,Y ) andψBc(B,Y ) formalizing sub-conditions(Ba)
and(Bc), respectively. By the above, we can then use the formulaψB(Y ) = ∃B(ψBa(B,Y )∨ψBc(B,Y ))
in place of ConditionB in Lemma 4.1.

5.1. Formalization of Condition Ba

Much like conditionA, (Ba) is naturally expressible inMLO(Inf) and thus, over trees, in pureMLO as
well by the formula

ψBa(B,Y ) = ∃X ∃ℵ0w DINT(Tw\B ,X, Y ),

whereTw\B is just a notation for the set defined by

x ∈ Tw\B ⇐⇒ w ≤ x ∧ ¬∃b ∈ B (b > w ∧ b ≤ x).

The fact that Condition(Ba) is sufficient for the existence of continuum many setsU satisfying
ϕ(U, V ) can be arrived at by appealing to the Composition Theorem in the same manner as for Condition
A in the proof of Lemma 4.1, because the setX can be left intact or changed to another one with the
same type on any of the infinitely many treesTw\B which are D-intervals forX.



V. Bárány et al. / Expressing Cardinality Quantifiers in MLO over Trees 13

5.2. Formalization of Condition Bc

In order to eliminate the explicit use of the uncountabilityquantifier in Condition(Bc) over (B,<) ∼=
(ω,<), we make use of Proposition 2.5 from [13], which states that cardinality quantifiers can be elimi-
nated over(ω,<), cf. also [4]. In [13] it was stated in automata theoretic language, we reformulate it in
logical terms.

Proposition 5.1. For everyMLO formula ϕ(X,Y ) there exists an effectively constructible formula
ψ(Y ) such that over(ω,<) the following equivalence holds:

ψ(Y ) ≡ ∃ℵ1X ϕ(X,Y ) ≡ ∃2ℵ0
X ϕ(X,Y ).

Applying this result to the formula on the right hand side of Condition (Bc), with Q as parameters,
we obtain a formulaϑ(Q) such that Condition(Bc) holds iff (B,<) |= ϑ(Q), withQ as specified there.
By Proposition 5.1, ifϑ(Q) holds, then there are even continuum many setsP satisfying Condition(Bc).
This in turn ensures the existence of continuum many setsX satisfyingϕ(X,Y ), because for eachP
accounted for inϑ(Q) a correspondingX satisfyingψ(X,Y ,B) can be found and this association is
necessarily injective.

To formalize Condition(Bc) in MLO over the treeT, we first define the setsQi on T. As the set
of types is computable, we can compute eachτi and thus effectively construct the formulaαi(w,B, Y )
expressing thatw is a node on the branchB such thatTw\B |= ∃X τi(X,Y ∩ Tw\B, {w}), i.e.w ∈ Qi.
Using this formula we can express Condition(Bc) as

ψBc(B,Y ) = ∃Q

(

r
∧

i=1

(

w ∈ Qi ↔ αi(w,B, Y )
)

∧ ϑB(Q)

)

whereϑB is a relativization ofϑ to the branchB.

6. The full binary tree and the Cantor space

In order to formalize ConditionC in MLO over trees, we first analyze the problem only on the full binary
tree and identify and prove the following key topological property that distinguishes counting branches
from counting arbitrary sets.

On the full binary treeT(2) = ({0, 1}∗,≺, S0, S1) where≺ is the prefix-order andSi = {0, 1}∗i,
we show that the set of branches satisfying any givenMLO formula is a Borel set in the Cantor topology
and hence it has theperfect set property: it is uncountable iff it contains a perfect subset iff it hasthe
cardinality of the continuum. Aperfect setis a closed set without isolated points.

Overview of topological notions

The argument we present is based on basic results of descriptive set theory and the theory of finite
automata on infinite words in connection with monadic second-order logic and the Borel hierarchy of
the Cantor space. Let us recall a few basic notions from descriptive set theory. A thorough introduction
to descriptive set theory can be found in [14], we only mention a few basic facts.
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The Cantor space is the topological space with the product topology on{0, 1}ω . It is a Polish space
with the topology generated by basic neighborhoodsw{0, 1}ω with the prefixw ∈ {0, 1}∗. Alternatively,
it can be defined by the metricd(α, β) = 2−min{n : α[n] 6=β[n]}.

The hierarchy of Borel sets is generated starting from open sets, i.e. unions of basic neighborhoods,
denotedΣ0

1, and closed sets, which are complements of open sets and denoted Π
0
1. Further on by

transfinite induction for any countable ordinalα, Σ
0
α is defined as{

⋃

i∈ω Ai | ∀i ∃βi < α Ai ∈ Π
0
βi
}

and theΠ0
α-sets are the complements ofΣ

0
α-sets. Each classΣ0

α andΠ
0
α is closed under taking inverse

images by continuous functions. In fact there are complete languages in each class with respect to
continuous reductions. The projective hierarchy is built on top of the Borel hierarchy, starting with
Σ

1
0 = Π

1
0 as the class of Borel sets. On the first level one has the classΣ

1
1 of analytic sets, which are

projections of Borel sets, and the classΠ
1
1 of co-analytic sets, whose complements are analytic. The

hierarchy is built in this manner with sets inΣ1
α+1 being projections ofΠ1

α-sets, andΠ1
α+1 sets being

complements ofΣ1
α sets.

The connection between the topological complexity ofMLO-definable tree languages and the com-
plexity of tree-automata recognizing them is well understood [22, 16]. By Rabin’s complementation
theorem, allMLO-definable tree languages are inΣ1

2 ∩ Π
1
2. There areΣ1

1-complete as well asΠ1
1-

complete regular tree languages. For instance, the set of{a, b}-labeled binary trees, which have on every
path only finitely manya’s, is Π

1
1-complete [1, 16]. There are regular tree languages on arbitrary finite

levels of the Borel hierarchy [20]. There also exist regulartree languages not contained inΣ1
1 ∪ Π

1
1,

however, languages accepted by deterministic tree automata do belong toΠ1
1.

This is in stark contrast to the situation ofω-regular languages, i.e.MLO-definable sets ofω-words,
which are, by McNaughton’s theorem, Boolean combinations of Π

0
2 sets [22].

The Cantor-Bendixson Theorem states that closed subsets ofa Polish space have theperfect set
property: they are either countable or contain a perfect subset and thus have cardinality continuum. A set
P is perfectif it is closed and if it has no isolated points, i.e. if every open neighborhood of every point
p ∈ P contains another point ofP . We shall rely on the following fundamental result on Borel sets.

Proposition 6.1. ([12, Theorem 13.6])
Every uncountable Borel subset of a Polish space contains a perfect subset.

In fact, Souslin has proved that all analytic sets have the perfect set property [14]. It is, however,
independent of ZFC whether all co-analytic sets, or all setson higher levels of the projective hierarchy,
satisfy the continuum hypothesis [14]. A key observation that our formalization will exploit is that, even
though there are non-analytic sets of trees definable inMLO, sets of definable paths are Borel. Recall
that for a sequenceπ ∈ {0, 1}ω we denote byPref(π) the path through the full binary treeT(2) that
corresponds to this sequence, which formally is the set of prefixes ofπ.

Theorem 6.1. (MLO definable sets of branches are Borel)
LetU1, . . . , Um be subsets ofT(2) and letψ(X,Y ) be anMLO formula overT(2). Then the set

X = {π ∈ {0, 1}ω | T(2) |= ψ(Pref(π), U ) }

of branches of the binary tree satisfyingψ(X,U ) is on the third level of the Borel hierarchy, in particular,
it has the perfect set property.
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Proof:
Given a pathπ ∈ {0, 1}ω let B = Pref(π) be the corresponding infinite branch and consider the
labeled treeTπ = (T(2),Pref(π), U ), and its decomposition as a tree sum alongπ : Tπ =

∑

v∈B Tπ
v\B .

Applying the Composition Theorem toTπ andϕ we findθ such that

T(2) |= ϕ(Pref(π), U ) ⇐⇒
∑

v∈B

T
π
v\B |= ϕ ⇐⇒ (B,<) |= θ(Qπ1 , . . . , Q

π
k)

whereQπr = {v ∈ B | Tpn(Tπ
v\B) = τr} for each1 ≤ r ≤ k in the enumeration of appropriate types,θ

does not depend onπ and(B,<) ∼= (ω,<).
By the well-known correspondence ofMLO and finite automata there is anω-regular languageLθ ⊆

({0, 1}k)ω consisting of precisely thoseω-words representing the characteristic sequences of predicates
Q onω for which (ω,<) |= θ(Q). In particular, by McNaughton’s theorem,Lθ ∈ Σ

0
3 [22].

Consider now the mappingf assigning to eachπ ∈ {0, 1}ω the sequenceρ ∈ ({0, 1}k)ω with
ρ[n] = 〈Qπr (π|n) | 1 ≤ r ≤ k〉. Note that ifπ|n+1 = π′|n+1 thenQπr (π|n) ↔ Qπ

′

r (π′|n) for all
1 ≤ r ≤ k, in other words,ρ|n = ρ′|n. Thereforef is continuous with respect to the Cantor topology.
By the above,X = f−1(Lθ) and therefore alsoX ∈ Σ

0
3 as claimed. ⊓⊔

Theorem 6.1 was recently strengthened in [6].

7. Formalizing Condition C

The perfect set property established in Theorem 6.1 provides anMLO-definable characterization of
ConditionC of Lemma 4.1 over the full binary tree (with arbitrary labeling). Via interpretations, this can
be extended to all (finitely branching) trees to yield the following characterization.

Proposition 7.1. (Eliminating uncountably-many-branches quantifier)
For everyMLO formulaϕ(X,Y ) the assertion “∃ℵ1B branch(B)∧ϕ(B,Y )” is equivalent over all trees
to the existence of a perfect set of branchesB, each satisfyingϕ(B,Y ). The latter ensures that there are
in fact continuum many such branches.

Proof:
Perfect sets of branches are of continuum cardinality, hence the condition is clearly sufficient. Con-
versely, Theorem 6.1 shows that over the full binary tree with arbitrary additional unary predicates this
condition is also necessary. We can transfer this result to all trees as follows.

Every l-treeT is isomorphic to some(T,≺, P1, . . . , Pl) whereT ⊆ N
∗ is a prefix-closed subset

of finite sequences of natural numbers and≺ is the prefix relation. Consider the following encoding
µ : N

∗ → {0, 1}∗

(n0, n1, . . . , ns) 7→ 0n010n11 . . . 0ns1,

and setS = µ(T ) andQi = µ(Pi) for eachi = 1 . . . l. Given thatv ≺ w in T iff µ(v) ≺ µ(w) in T(2),
this defines an interpretation ofT inside(T(2), S,Q1, . . . , Ql). In particular, for everyMLO-formula
ϑ(X) of l-trees

T |= ϑ(U) ⇐⇒ (T(2), S,Q1, . . . , Ql) |= ϑ∗(µ(U )),
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whereϑ∗ is obtained fromϑ by interpreting eachPi with Qi and relativizing all quantifiers to sub-
sets/elements ofS.

The embeddingµ induces an injective mappingµ∗ of the set of infinite branches ofT to infinite
branches ofT(2). It is easy to check thatµ∗ is continuous.

Consider the formulaϕ(B,Y ) defining an uncountable setD of branchesB of T with parametersV .
ThenD∗ = {µ∗(B) | B ∈ D} is an uncountable set of branches ofT(2), which is defined by the formula
“branch(B) ∧ ∃ infinite P ⊆ B ϕ∗(P, µ(V ))” over (T(2), S,Q1, . . . , Ql). Hence, by Theorem 6.1,D∗

contains a perfect set of branches, the inverse image of which under the continuous mappingµ∗ is a
perfect set of branches inD. ⊓⊔

Towards anMLO formulation, note that the collection of nodes of a perfect set of branches induces
a perfect tree, and vice versa. Let perfect(P ) be a formula that expresses thatP is a perfect subset, i.e.
thatP is prefix closed and for everyu ∈ P there are incomparablev,w > u such thatv ∈ P andw ∈ P .

Corollary 7.1. Over trees ConditionC is expressible inMLO as

ψC(Y ) = ∃P perfect(P ) ∧ ∀B ⊂ P branch(B) → ∃X ϕ(X,Y ) ∧ DPATHϕ(B,X, Y ) .

In particular, ConditionC entails the existence of continuum many D-paths of setsX satisfyingϕ(X,Y ).

8. Summary

As we have shown above, each of the conditions of Lemma 4.1 canbe formalized inMLO over trees.
Thus we can again state the conclusion of this Lemma:T |= ∃ℵ1X ϕ(X,Y ) holds if and only if

T |= ψA(Y ) ∨ ∃B (ψBa(B,Y ) ∨ ψBc(B,Y ) ) ∨ ψC(Y ).

Using the above, we can reduce any formula ofMLO(∃ℵ1) to anMLO formula equivalent over the class
of trees by inductively eliminating the inner-most occurrence of a cardinality quantifier. Theorem 1.1 fol-
lows. Moreover, as we have shown in the corresponding sections, each of the conditions of Lemma 4.1
implies the existence of continuum many setsX satisfyingϕ(X,Y ), whence Theorem 1.2.

We remark that the same technique employed here can be adapted to obtain similar results on elimi-
nating cardinality quantifiers over several classes of linear orders, such as on the class of all ordinals and
on the class of countable linear orders. These findings will appear in [4].
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