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Abstract. We study an extension of monadic second-order logic of ondir the uncountability
guantifier “there exist uncountably many sets”. We prové, theer the class of finitely branching
trees, this extension is equally expressive to plain mansetiond-order logic of order.

Additionally we find that the continuum hypothesis holds étasses of sets definable in monadic
second-order logic over finitely branching trees, which asable for not all of these classes are
analytic.

Our approach is based on Shelah’s composition method asdhasé results from descriptive set
theory. The elimination result is constructive, yieldindexision procedure for the extended logic.
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1. Introduction

Monadic second-order logic of orday]L.O, extends first-order logic by allowing quantification over
subsetof the domain. The binary relation symbaland unary predicate symbal$ are its only non-
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logical relation symbolsMLO plays a very important role in mathematical logic and corapstience.
The fundamental connection betweadih.O and automata was discovered independently by Biichi, Elgot
and Trakhtenbrot [7, 9, 23, 24] when the logic was proved tddxdable over the class of finite linear
orders and ovefw, <). Moving away from linear orders, Rabin proved that the manadcond-order
theory of the full binary tree$2S for short, is decidable [17]. This celebrated theorem, iobthusing

the notion of tree automata, is often referred to as “the eradhall decidability results”.

First-order cardinality quantifiersstudied by Mostowski and also by Magidor and Malitz in a topo
logical setting, count the number of elements satisfyingvargproperty inside a structure. Extensions
of first-order logic with these quantifiers have been widelestigated over various natural classes of
structures with respect to both decidability and the pdgsilof elimination. See for instance [2].

Second-order cardinality quantifieis MLO, which we study in this paper, have been mostly con-
sidered in the context of automata and automatic struc{®s The first observation of this nature,
made in [5], was that the quantifier “there exist infinitelympavords such that” can, in a certain sense,
be eliminated on all automatic structures. More precisglythe standard correspondence of automata
with MLO, this amounts to eliminating the quantifier “there existriitély many (finite) sets such that”
from weakMLO over (w, <). The case of fulMLO and the quantifier “there exist uncountably many
sets such that” ovefw, <) corresponds to injectively presentegautomatic structures and was solved
in [13]. The structural properties af-regular languages identified in the latter work and its séghave
provided important insights into-automatic structures.

Motivated by previous work ofw, <) that used word automata, we investigate second-order-cardi
nality quantifiers over finitely branching trees, in parlécuover the binary tree with arbitrary labelings,
which corresponds to tree automata with additional parara¢8]. The parameterless question was pre-
viously studied by Niwinski, who in [15] proved that a regulanguage of infinite trees is uncountable
if and only if it contains a non-regular tree.

We investigate over trees the expressive power of the erterns MLO by cardinality quantifiers
3% X, with the interpretation “there exist at leasinany subset&” such that”, fors € {X, ¥, 2%}, We
denote this logic adILO (IR0, I 32%) and throughout the paper ligeswe mean finitely-branching
trees every branch of which is either finite or of order typeOur main results are summarized in the
next two theorems.

Theorem 1.1. For everyMLO (3%, 3% 32°%) formulay(Y) there exists adLO formulaw(Y), com-
putable fromyp, that is equivalent te(Y") over trees.

In addition to the above, the reduction will show that oveles the quantifier§N1X and 32 X
are equivalent, i.e. that the continuum hypothesis hold3#bO-definable families of sets. Though not
surprising, this is not obvious for it is known thatdilLO one can define non-analytic classes of sets [16]
and that CH is independent of ZFC already for co-analytis Ekt].

Theorem 1.2. Ontreesi™ X (X, Y) is equivalent ta? ° X (X, Y) for everyMLO formulag(X,Y).

Our results trivially extend to cardinality quantifief& X, 3% X and32°X counting (finite) tu-
ples of sets using the simple fact th#t (U, V) ¢ = 3°U (V) v IF°V (3U ¢) for any cardinal
k > Ng. Our theorems also supersede the previously mentionettsdésam [13] and generalize the
theorem of Niwihski [15], which states that over the fulhaiy tree the validity oB®' X ¢(X) is decid-
able and equivalent to that & °X (X)) for everyMLO-formulay(X). Niwihski's theorem follows
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form the parameterless instances of our theorems. Cettaictiwal insight gained from some of our
intermediate lemmas might be of independent interest. Mpeifically we show that counting sets
of nodes satisfying abMLO-formula on a tree can be effectively reduced to a combinatfocounting
branches satisfying a certaiil.O-formula, and counting chains with certdifi.O-definable properties
on individual branches. While the latter essentially anteta dealing with the special case treated in
[13], relying on basic results from descriptive set theosy stiow that counting of branches can also be
formalized inMLO. An extended abstract of this paper was published in [3].

Organization

We begin by noting in Section 2 some observations regardiegécond-order infinity quantifiefo X .
In Section 3 we fix terminology and notation on trees and tecbkome essentials of Shelah’s compo-
sition method foMLO. The rest of the paper is devoted to the proof of Theoremsrid1 .

In Section 4 we start by reducing the question of the exigt@ficncountably many sef§ satisfying
a givenMLO formula (X, Y) with parametery” over a tree to a disjunction of three conditiods:B
andC. ConditionA deals withMLO-properties of antichains; Conditidd deals with a simpler version
of the uncountability quantifier, namely with the quantifiérere exist uncountably many branches”.
Ultimately, conditionB is concerned with the cardinality of chains with a specMi€.O property on
individual branches. It is postulated first in a broader féomdeductive advantages.

In Section 5, we show that Conditidd can be significantly weakened assuming that conditions
A and C are not satisfied. Relying on the elimination results(en<) from [13], we formalize this
weakened form of ConditioB in MLO and prove, that it guarantees the existence of continuuny man
sets satisfyingp.

In Section 6 we consider Conditi@hin the special case of the complete binary tree. The key ¢éimeor
that we prove there, which might be of independent inteisshatMLO-definable sets of branches of
the binary tree are Borel. This opens the way to formalizimgpdition C in plain MLO, first over the
binary tree and finally, in Section 7, over arbitrary trees.

The proofs of our main theorems are summarized in Section 8.

2. Infinity quantifier

With regard to the second-order infinity quantifigio X the following observations are worth making.
While it clearly cannot be eliminated over all structureéss easily expressible in monadic second-order
logic (MSO) with the auxiliary predicaténf(7) asserting that the sét is infinite, or equivalently, with
the help of the first-order infinity quantifiefoz.

Proposition 2.1. For everyMSO(3%°) formula(Y') there exists abISO(Inf) formula«(Y') equiva-

lent top(Y") over all structures.

Proof:
Observe that the following are equivalent:

(1) There are only finitely many which satisfyp(X,Y).
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(2) There is afinite se¥ such that any two distincX;, X» which both satisfyp(X;,Y) differ on Z, i.e.

3Z (-Inf(Z) A VXiXe (o(X1,Y)A (X0, Y)AX1 #Xo — F2€Z(2€ X1 - 2¢ Xa))).

Item (2) implies (1) as a collection of sets pairwise differing only on a finite £&ehas cardinality at

most2l%l. Conversely, ifX;, ..., X}, are all the sets that satisfy(X;,Y’), then choose for every pair of
distinct setsX;, X; an element; ; in the symmetric difference ok; and X; and defineZ as the set of
these chosen elements. O

Over finitely branching treednf(Z) can of course be expressedNfLO. Indeed, with Kdnig’s
Lemma in mind,Z is infinite iff there is no downward closed set which includeand does not include
an infinite, i.e., unbounded branch.

Corollary 2.1. MLO(3%) collapses effectively tdILO over (finitely branching) trees.

Observe that the converse of Proposition 2.1 holds as wellfadt, the predicaténf(Z) can be
defined over all structures by the form&Y (Y C Z) for any®y < x < 2% Therefore, by Propo-
sition 2.1, any of the quantifier3"Y with X, < x < 2% can be used to defing° X over arbitrary
structures.

3. Preliminaries

For a given setd we denote byA* the set of all finite sequences of elementsAfby A the set
of all infinite sequences of elements df(i.e. functionsw — A), andAS¥ = A* U A¥. For any
sequence = sgs1sy ... € AS“ we denote bys| the length ofs (either a natural number ar) and by
Sln = s0...sn—1 the finite sequence composed of the fitstlements ofs, with sy = ¢, the empty
sequence. We write[n] for the (n + 1)st element o (we count fronD), sos[n] = s, for n € N. Given
a finite sequence and a sequencec A=“ we denote bys - ¢ (or justst) the concatenation of andt.

Moreover, we writes < ¢ if s is a prefix oft, i.e. if there exists a sequengesuch that = sr. A subset
B of A= is said to be prefix-closed if for evetyce B ands < t it holds thats € B.

3.1. Trees

For a numbei € N, [ > 0, anl-tree is a structur& = (7,<, Py, ..., P), where theP;’s are unary
predicates ang is the irreflexive and transitive binagncestorrelation with a least element called the
root of 7 and such that for every € T the set{u € T | u < v} of ancestors of is finite and linearly
ordered by< and the number of € T with at mostn ancestors is finite for every natural Elements
of a tree are referred to amdes maximal linearly ordered sets of nodes are cable@mhches ancestor-
closed and linearly ordered sets of nodes are caligbls whereashainsare arbitrary linearly ordered
subsets. Arantichainis a set of pairwise incomparable nodes. Given a ngdhe subtree of rooted
in v is obtained by restricting the structure to the dom&jn= {u € T' | u > v} and is denoted,,.

Given afinite setd, we denote by (A) the full tree over4, which is a structure with the universg,
unary predicate®’, = A*a for eacha € A, and< interpreted as the prefix ordering. For finidewith
|A| = n, this structure is axiomatizable MLO and itsMLO theory is essentially the same asS the
monadic second-order theory ofsuccessors (modulo triviAllL.O-interpretations). We identify a path
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B of T(A) with the sequencg = apajas ... € AS¥ suchthatB = {ag...a, | s < |3|}. Conversely,
given a sequencé € A=* we write Pref((3) for the corresponding patB.
Ordered sums of trees are defined as follows.

Definition 3.1. (Tree sum)
Letl! > 0,7 = (I, <?) be an unlabeled tree and {&t = (T}, <, P}, ..., P}) be anl-tree for each € I.
Thetree sumof (T;);c5, denoted .~ T;, is thel-tree

S:(U{i}XTi,<T, U{i}xPli,..,,U{i}xplz‘)’

iel iel iel
where(i,a) <* (j,b) fori,j € I,a € T}, b € Ty iff:

i <7 j anda is the root of%;, or i = j anda <’ b.
Unless explicitly noted, we will not distinguish betwe®nand the isomorphic subtrde} x <; of <.

A particular special case of the sum we will be using is whenitidex structurey consists of a
single branch. Let/, <) be a linear order, which is finite or isomorphicagand let(¥; | i € I) be an
I-indexed sequence oftrees. Then the sufi = ) ,_; T; is well defined, and/, <) forms a path (not
necessarily maximal) iff.

3.2. MLO and the composition method

We will work with labeled trees in the relational signature, P, ..., P} where< is a binary rela-
tion symbol denoting the ancestor relation of the tree, &ied?}’s are unary predicates representing a
labeling.

Monadic second-order logic of ordé&L.O for short, extends first-order logic by allowing quantifi-
cation oversubsetf the domain.MLO uses first-order variables y, . .. interpreted as elements, and
set variablesX, Y, ... interpreted as subsets of the domain. Set variables wikhydvibe capitalized to
distinguish them from first-order variables. The atomiarfalas are of the form# < y”, “z € P;” or
“r € X". All other formulas are built from the atomic ones by applyiBoolean connectives and the
universal and existential quantifiers for both kinds of ahles. Concrete formulas will be given in this
syntax, taking the usual liberties and short-hands, sucki asY, X N Y, X C Y, guarded quantifiers
and relativization of formulas to a set.

The quantifier rank of a formula, denotedyr(y), is the maximum depth of nesting of quantifiers
in . For fixedn andl we denote byForm,, ; the set of formulas of quantifier depth » and with free
variables among(y, ..., X;. Letn,l € Nand%, T, bel-trees. We say th&; and¥, aren-equivalent
denoted?; =" Ty, if for every ¢ € Form,, ;, T1 |= ¢ iff T3 = .

Clearly,=" is an equivalence relation. For any= N and! > 0, the seorm,, ; is infinite. However,
it contains only finitely many semantically distinct forrag| so there are only finitely mansy’-classes
of [-structures. In fact, we can compute representatives éseticlasses as follows.

Lemma 3.1. (Hintikka Lemma [11])
Forn,l € N, we can compute finite setH,, ; C Form,,; such that:

— For everyi-tree¥ there is auniquer € H,,; such thatt = 7.
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— If 7, » € Hy; andry # 1 then; A 7 is unsatisfiable.

— If 7 € H,; andy € Form,,, then eitherr |= ¢ or 7 |= . Furthermore, there is an algorithm
that, given such- andy, decides which of these two possibilities holds.

Elements offf,, ; are calledn, [)-Hintikka formulas

Given anl-tree ¥ we denote byI'p”(¥) the unique element off,,; satisfied inT and call it the
n-typeof . Thus, Tp" (%) effectively determines which formulas of quantifier-depth. are satisfied
in T. We sometimes speak of thetype of a tuple of subselg = Vi, ..., V,, of a giveni-tree¥. This is
synonymous with the-type of the(l + m)-tree(Z, V) obtained by expansion & with the predicates
Pii1,..., P, interpreted as the sets, ..., V,,. This type will be denoted b{'p"(T,V) and often
referred to as am-type inm variables, whereby the-type of the(l + m)-tree (%, V) is understood.
To denote thex-type of V' restricted to a substructu® C T we simply writeTp"(T', V) instead of
Tp™"(T,VNT).

The essence of the composition method is that certain épesatn structures, such as disjoint union
and certain ordered sums, can be projected-tgpes. A general composition theorem tdil.O from
which most others follow is due to Shelah [19]. In this paperuse the following form of composition,
a more detailed presentation of the method can be found ir2fj0

Theorem 3.1. (Composition Theorem for Trees)

For everyMLO-formula (X)) in the signature of-trees havingn free variables and quantifier ramk
and given the enumeration (X), ..., 7x(X) of H, i1, there exists abMLO-formulad(Qy, ..., Q)
computable fromp and such that for every trée = (I, <’) and family {%; | i € I} of I-trees and
subsetd/, ...,V of Y. %,

YT V) = T E 6Qu....Q)

el

whereQ, = Q{?V ={iel|Tp"(%;,V)=r.}foreachl <r <k.

4. D-nodes versus U-nodes and relevant branches

A tree segmenor interval, of ani-tree is a connected and convex seif nodes, i.e. such that for every
u,w € I if wandw are incomparable, then their greatest common ancestor jsaimd ifu < w then for
everyu < v < w alsov € I. Every tree segment has a minimal element and every subtreéa tree
T is a tree segment. More generally, the summafidsf any tree sun = ). _; T; are tree segments
of T. The terms ‘interval’ and ‘tree segment’ are used intergeably.

We denote byg|; the restriction of ai-tree to the intervall. Alternatively, given a node and a set
Z of nodes off we use the notatioR ., ; for the restriction off to the tree segmefit, \ (U ¢ 7 < Fw)-
Any interval I with a minimal element can be written in the for,\ ,, whereZ = {u | u > zAu & I}.
In particular, if B is a branch,v,w € B such thatw is the immediate successor ofon B, then
Ty = Ty \ Tw. These notations are schematically depicted in Figure 1.
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Figure 1. A subtre&, and tree segments, (,,,.,,} andT,\ 5.

Consider aMLO formulap(X,Y) of i-trees. To eliminate a single occurrence of the uncouritybil
quantifier from3*1 X (X,Y) overi-tree T we will make extensive use of the following notions for
intervals. For the rest of this section we fiX,Y): an MLO formula of i-trees with1 + m free
variables — of whici” = (Y7, ..., Y,,) will often be regarded as parameters — and of quantifier rank

Definition 4.1. Let T be ani-tree, X, Y subsets such that = ¢(X,Y), and letl be an interval off.

(1) We say that’ is aU-interval for ¢, X, Y wheneverX N I is the unique subset of its type @;.
More precisely, iff|; =VZ7(Z,Y) — Z = X, wherer(X,Y) is then-type of (%, X,Y)|;.

(2) I is aD-intervalfor ¢, X, Y iffit is not a U-interval.

(3) Inthe special case df= {u | u > z} we say that the subtreg, is aU-tree or D-tree, respectively,
and further say that is aU-nodeor D-nodefor ¢, X, Y.

(4) The set of D-nodes fap, X,Y is denotedD(X).

(5) An infinite pathP is called aD-pathfor ¢, X,Y if everyv € P is a D-node forp, X, Y. That is if
P C D(X).

The name “U-interval” attests to the fact that the &ein question isuniquelydetermined by its
type on a given interval, as opposed to “D-intervals” ofigriwo (or more) distinct choices foY with
the same type on the interval, thus (at leastyiblingthe total number of choices fo¥ over the entire
domain. Whenevep andY are clear from the context we will write e.g. “D-interval f&f” instead of
“D-interval for p, X, Y”, and similarly for the other notions above.

It is worth noting that each sé?(.X) is prefix-closed since wheneVvgy, is a D-tree and: < v, then
%, Is a subtree oft,, and hence, by compositioft,, is a D-tree as well. Thu®(X) induces a tree
whose infinite paths are precisely the D-pathsXor

Each of the notions introduced in Definition 4.1 can be foizeal in MLO. Let us start by con-
structing the formuleDINT (1, X,Y"), expressing thaf is a D-interval forp, X, Y. By Lemma 3.1,
the set ofn-typesH,, ;1,1 is finite and can be computed. Take the formula

Yeap(X. Z,Y) = N\ 1(X,Y)or(ZY)

TeHn,l+m+1
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expressing thak and Z have the same-type (on the tree at large), and r@;gltp(x ,Z,Y 1) be the
relativization ofyeqt, (X, Z,Y) to an intervall, thus asserting that andZ have the same-type onl.
DINT, (I, X,Y) can now be written as

e(X,Y) A IZ(Wi, (X, Z2,Y, 1) A XNI#ZNI).
Using DINT,(1, X,Y) one can build formula®NODE,,(v, X,Y) and DPATH,, (P, X,Y) express-
ing, respectively, that is a D-node and thaP is a D-path fory, X,Y; and alsoDSET (D, X, Y)
which holds iff D = D(X).

The following lemma is the first step in eliminating tB& quantifier fromMLO over trees. The
three cases are depicted in Figure 2.

Lemma 4.1. Let T be ani-tree andp(X,Y) an MLO-formula in the signature dktrees. Then, for
every tuple of subsefg of T, B
TEIX p(X,V)

if and only if one of the following conditions is satisfied.
A. Thereis a sdl/ satisfyingT = (U, V') and there is an infinite antichaiof D-nodes forp, U, V.
B. There is an infinite brancB, which is a D-path for uncountably magysatisfyingZ = (U, V).

C. There are uncountably many brancti¢sn ¥, each of which is a D-path for sonié satisfying
TEU,V).

Figure 2. The three conditions

Proof:
Note that over finitely branching trees, where Konig's Leaapplies, conditio implies conditionB
and is enlisted here for deductive reasons only.

On the one handA is arguably the most natural and easily expressible camdgufficient for the
existence of continuum many séfssatisfyingT = (U, V). To see that, let/ and A be as inA and let
I={we¥ | -JvveAAv<w)} bethe set of all nodes which are not below any of the nodes of
A. ThenT can be decomposed witlh, <) as index structure a& = >, e\ 4[w] +2_,,c 4 T Here[w]
denotes a tree consisting of a single node bearing the sémls sw in T. We apply the Composition
Theorem to this decomposition. Given that= (U, V) using Theorem 3.1 we can ascertain that
T = (U, V) foreveryU’ such that/’ N (I'\ A) = UN(I\ A) andTp™ (%, U’, V) = Tp"(ZTw,U,V)
for all w € A. By the choice ofd such al’ can be independently chosen either to coincide or not to
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coincide withU on each subtre€,, with w € A without changing its type. Hence there are continuum
many different suci/’ and A is an antichain of D-nodes for every suth. In a (finitely branching)
tree withU and A fulfilling condition A there is also, by Konig’s Lemma, an infinite branBrsuch that

T, N A is infinite for allv € B. In particular, B is a D-path for eacli/’ obtained fromU as above,
implying conditionB.

On the other handzA amounts to saying that for eaéhsatisfyingy(U, V) the setD(U) induces
a tree comprised of only finitely many branches. In partiGutzat there are only finitely many infinite
D-paths for each such.

ConditionB explicitly requires the existence of uncountably many satssfyingo (X, V), so it too
is sufficient for3¥1 X ¢(X, V) to hold. Hence it remains to be shown that wigfails thenC is both
sufficient and necessary hereto.

AssumingB does not hold in som& then, as we have seeA, fails too and therefore there are
only finitely many infinite D-paths for eadii satisfyingT |= (U, V). Also by the failure of8 every
branch is a D-path for at most countably maiysatisfyingT |= ¢(U, V). It follows that for every
such setU the collection{U’ | D(U’") = D(U), T = ¢(U’,V)} is finite or countable. Indeed, this
is clear from the above whenevBx(U) contains an infinite D-path. If on the other habdU) is finite
thenU is fully determined by N D(U) and then-types of all those U-nodes that are successors of
some D-node,which only allows for a finite number of choicéé/agiven that¥ is finitely branching.
Thus we have established that whend®dails in somet then there are uncountably mabiysatisfying
T = (U, V) iff there are uncountably many se¥U) with T |= (U, V) if and (because now each
relevantD (U) contains only finitely many branches) only if conditi@holds. O

We remark that Lemma 4.1 fails for infinitely branching tre€Xonsider a tree of depth one with
the rootr having countably many successor nodes and the forpla Y) = X C Y and fix a set/
of successor nodes. Thén(X) C {r} for every X satisfyingp (X, V'), hence condition#, B andC
all fail. Note that over infinitely branching trees even thedicatelnf(X') cannot be expressed in pure
MLO. To extend our results to infinitely branching trees (redgdo MLO(Inf) instead of pur&ILO)
thus requires a fourth condition addressing such caseg wtdking use of thénf predicate.

Let us note again that if conditioA holds then there are in fact continuum many setsatisfying
the formulap(X,Y'). The description of ConditioA can be directly formalized iMLO(Inf), hence,
over (finitely branching) trees, also MLO as follows:

Ya(Y) = 3U3A((U,Y) A Inf(A) A antichain(A) A (Vw € ADNODE,(w,U,Y)) ),

where antichaifd) = Vz,y € A—-(z <yVy < z).

5. ConditionB

In this section, we show that a branéhis a witness for ConditioB if and only if this branch satisfies
a disjunction of three sub-conditionBa, Bb andBc. Moreover, if both ConditiorA and ConditionC
fail, then already the sub-conditiofga and Bc are sufficient. Finally, we express bd8a andBc in
MLO and show, that in fact both these sub-conditions guarahteexistence of continuum many sets
X satisfying the formula,(X,Y") in consideration. As in the previous section, we fix\hO-formula

of I-treesp(X,Y) in 1 +m many free variables and of quantifier ramk
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Consider the formula)(X,Y, P) stating thatP is an infinite D-path forX and thatp(X,Y") holds.
Y(X,Y,P) = DPATH,(P, X,Y) A Inf(P) A ¢(X,Y)

Note that a branci witnesses ConditioB in ani-tree< if and only if T = 31U (U, Y, B). To break
up ConditionB for a given branchB we therefore apply the Composition Theorem for the formula
with the decompositioff =}, 5 T, p along that branch. To that end lebe the number ofir(v))-
types inl + m + 2 variables, which we enumerate &s. .., .. Then Theorem 3.1 yields a formufa
such that

TEY(X,Y,B) <= (B,<)E0P,....P) (1)
with P; = {w € B | (%,\5,X, Y, {w}) = 7;} for eachl < i < r. Note that we use the expansion of
T\ B by {w} asw is the only element of,,\ 5 that belongs td3.

With this reformulation it is clear that a brandh witnesses ConditioB in ani-tree if and only
if there are uncountably many differeRtsatisfyingd, or someP satisfyingd has uncountably many

corresponding to it. Taking advantage of the fact that, Iokugiof the Composition Theorerfi,merely
depends om but not onT nor the chosen branch, we obtain the following breakdown of conditid@h

Lemma5.1. Let ¥ be ani-tree andB an infinite branch in€. There are uncountably many C ¥
satisfying the formulay(X,Y, B) in ¥ iff one of the following sub-conditions holds.

(Ba) There exists a set such thatt,,, g is a D-interval forp, X, Y for infinitely manyw € B.

(Bb) There exists a seX satisfyingy and aw € B so that
Tovp E IX 75X, Y N Ty 5. {w)),
wherer; = Tp®¥)(T,,\ 5, X,V {w}) forall 1 <i <r.
(Bc) It holds that

(B,<) =3P (9(?) A N\ P CQi AV \/(meﬂ/\ /\xgzpj)),
i=1 i=1 j#i
where for eachl < i < r, Q; is the set of nodes on the branghin which the typer; is satisfied
by some sefX, i.e.

Qi = {w €B ’ Tw\B ': EIXTZ(X,? N Tw\Bv {w})}

Proof:
Recall that by (1) we hav& = +(X,Y, B) iff (B,<) | 0(P,..., P.). We consider two cases.

Case 1: There exists a tuple such that( B, <) = 6(P) and there are uncountably many séfsfor
whichP; = {w € B | (Ty\5, X, Y, {w}) |= 7} foreachl <i <r.
In this case the branch witnesses ConditioB, so we only need to show that one of the sub-conditions
holds. Consider a seX; satisfyingy(X,Y, B) and havinggr(«)-types o, g forallw € B as de-
scribed byP. Assume that sub-conditiqia) does not hold. Then the segmént,  is a U-interval for
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v, Xo, Y for all but finitely manyw € B. Observe thatr(¢)) > qr(y). Therefore all of the uncountably
many setsX that induceP, i.e. have the samer(1))-type asX, on each segmert,,, g, must be equal
to Xy on all but finitely manyz 5. So there is a € B for which there are uncountably many different
X having the samer(y)-type asX, onT,,\ g, and thus ConditioiiBb) is satisfied.

Case 2: For each tupl@ such that B, <) = 0(P) there are only countably many seXsfor which
Pi={weB|(Typ X,V {w}) 7).
In this case, we show that Conditi¢Rc) is both necessary and sufficient for the existence of unadint
many setsX satisfying.

Necessity of Conditio(Bc).
As a direct consequence of (1) and the condition of this dédbere are uncountably many seks
satisfyingy then there are uncountably many corresponding tuplésr which (B, <) = 6(P). Each
P; induced by someX as in (1) is, by definition, the set af's for which (T, g, X, Y, {w}) E 7. So
for everyw € P; we have, in particular, th&,,\ g = 3X (X, Y N Tu\B, {w}). ThusP; C Q; for
everyi. Since Hintikka formulas are mutually exclusive tRgs are pairwise disjoint. This guarantees
that the remaining conjunstz (\/;_, (z € P; A Nspr @ & P,) of Condition(Bc) is also satisfied, and
therefore Conditior{Bc) holds.

Sulfficiency of ConditiofBc).
By definition of the set«);, for eachw € Q; there is a subseX,,; C %, p such that¥,, p =
7:(Xwi, Y, {w}). Assuming that ConditiofBc) holds, let? be the uncountable set of tuplé&sthat
witness this condition. For each such tugteand eachw € B the last conjunct of ConditioBc)

guarantees that there is a unigue- i(w, P) for whichw € P,. Let X = U,cp5 X, i(w,P)- Since

P; C @, the tupleP describes indeed the types of the &gt on the tree segments,,\ . According
to (1) from (B, <) |= 6(P) we can infer thaf = ¢(X5,Y, B). Clearly, for distinct tuples®>; and P
the setsX5- and Xz, are also distinct. ThereforeX5 | P € P} constitutes an uncountable family of
sets satisfying). O

Observe tha{Ba) already subsumeA in the sense that if conditioA holds then there is a branch
satisfying(Ba). Also observe that ConditiofBb) is itself just another instance of our initial problem. It
is important to note, however, that the above cases classifglitions under which amdividual branch
may satisfyB. At closer inspection we find that if no branch satisfies eiif8c) or (Ba) (so that in
particularA fails) and moreover conditio@ fails too, then(Bb) cannot hold either.

Lemma 5.2. If over a tree¥ both ConditionsA andC fail, then ConditionB implies that some branch
of ¥ satisfies ConditiorjBa) or Condition(Bc).

One intuitive way to see this is that if all the conditiohg(Ba), (Bc) andC fail on a tree, and thereby
also on every tree segment of that tree, ther(Btr) to hold for a proper tree segment that tree segment
would have to contain a proper tree segment on wkigll) holds, and so on indefinitely. This would
ultimately trace an infinite branch witnessi(ia) contrary to the initial assumption.

Proof:
It is easy to see that if conditioms andC fail thenD = {D(X) | T = »(X,Y)} is countable. Indeed,
in the proof of Lemma 4.1 we have already remarked that tteréaof A implies that eactD € Dis a
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union of finitely many paths and, by definitio@, holds unless there are only countably many potential
D-paths in total.

If Condition B holds then there are uncountably many sétsatisfyingp(X,Y) and thus, a9 is
countable, there is a sé such thatD = D(X) for uncountably manyX satisfyingy. Fix such aD
and consider the set of labelings= {A\* : D — H, ;ym1 | D(X) = D, T = »(X,Y)}, where
M (w) = Tp™(Ty\p, X, Y) for all w € D. We distinguish two cases.

Case 1:£ is uncountableThen, given thaiD contains only finitely many infinite paths and finitely
many additional nodes, there is an infinite brari¢hn D such that{A\|p | A € L} is uncountable.
Observe that™ (w) = Tp"™ (T, 5, X,Y) for all but finitely many nodess € B. Also observe that,
sinceqr(y) > n, eachqr(vy)-type on the variables(, Y, B induces a unique-type on the variables

X,Y. So there are necessarily uncountably many differenttjparsiP - — (PX,...PX)of B
P ={we B|Tp™ ) (Typ, X, Y {w}) =7;} (1<j<r)
with D(X) = D andX satisfyingy. Using (1) we can check that ConditigBc) is met for the branci.

Case 2: L is countable. Then there is a type labeliny : D — H,, ;1,,+1 such that\ = XX for
uncountably manyX satisfyinge and havingD(X) = D. Suppose that ConditiofBa) is not satisfied
for any infinite branchB in D. Then\(w) uniquely determineX'NT,,\ p for all but finitely manyw € D
and all X satisfyingy and D(X) = D. Thus, there exists @ € D such that there are uncountably
many X as above pairwise differing on the tree segngpt,. However, by definition, every subtree of
T\ p is a U-tree relative to each of thesg becauseD(X) = D. BecauseX is finitely branching, i.e.
Tu\p \ {w} is afinite union of such U-trees, there can be only finitely ynAhas above and pairwise
differing on‘t,,\ p, which is a contradiction. Therefore Conditi@®a) must hold. O

Next we will constructMLO formulasyg,(B,Y) andyg.(B,Y) formalizing sub-conditiongBa)
and(Bc), respectively. By the above, we can then use the formpld”) = 3B(vga(B,Y )Vig(B,Y))
in place of ConditiorB in Lemma 4.1.

5.1. Formalization of Condition Ba

Much like conditionA, (Ba) is naturally expressible iNLO(Inf) and thus, over trees, in puMLO as
well by the formula
¥ga(B,Y) = 3X 30w DINT(T,\ 5, X, Y),

whereT,, g is just a notation for the set defined by
r€Tpnp = w<r A-FeBOB>wAb< ).

The fact that Conditior(Ba) is sufficient for the existence of continuum many sEtsatisfying
©(U, V) can be arrived at by appealing to the Composition Theorefmeisame manner as for Condition
A in the proof of Lemma 4.1, because the &tan be left intact or changed to another one with the
same type on any of the infinitely many treggs, p which are D-intervals forX .
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5.2. Formalization of Condition Bc

In order to eliminate the explicit use of the uncountabitityantifier in Condition(Bc) over (B, <) =
(w, <), we make use of Proposition 2.5 from [13], which states thadioality quantifiers can be elimi-
nated overw, <), cf. also [4]. In [13] it was stated in automata theoreticgiaage, we reformulate it in
logical terms.

Proposition 5.1. For everyMLO formula ¢(X,Y’) there exists an effectively constructible formula

¥ (Y") such that ovefw, <) the following equivalence holds:
W) = XX, Y) = 32X ¢(X,Y).

Applying this result to the formula on the right hand side @in@ition (Bc), with Q) as parameters,
we obtain a formulal(Q) such that ConditiofBc) holds iff (B, <) |= 9(Q), with Q as specified there.
By Proposition 5.1, i#)(Q) holds, then there are even continuum many gesatisfying Conditior(Bc).
This in turn ensures the existence of continuum many Zesatisfyingo(X,Y), because for eack
accounted for ind(Q) a corresponding¥ satisfying+(X,Y, B) can be found and this association is
necessarily injective.

To formalize Condition(Bc) in MLO over the treeg, we first define the setQ; on €. As the set
of types is computable, we can compute eacand thus effectively construct the formula(w, B,Y)
expressing thab is a node on the branch such thatt,\ g = 3X (X, Y N To\pr {w}), i.e.w € Q.
Using this formula we can express Conditi@t) as

YBe(B,Y) =3Q (/\ (w e Q; < a;(w,B,Y)) A 793@)>

i=1

whered? is a relativization of9 to the branchB.

6. The full binary tree and the Cantor space

In order to formalize Conditio in ML O over trees, we first analyze the problem only on the full hinar
tree and identify and prove the following key topologicabperty that distinguishes counting branches
from counting arbitrary sets.

On the full binary treeg(2) = ({0,1}*, <, So, S1) where< is the prefix-order and; = {0, 1}*¢,
we show that the set of branches satisfying any gMgrO formula is a Borel set in the Cantor topology
and hence it has thgerfect set propertyit is uncountable iff it contains a perfect subset iff it lthe
cardinality of the continuum. Aerfect sets a closed set without isolated points.

Overview of topological notions

The argument we present is based on basic results of désergat theory and the theory of finite
automata on infinite words in connection with monadic seemmi#r logic and the Borel hierarchy of
the Cantor space. Let us recall a few basic notions from giser set theory. A thorough introduction
to descriptive set theory can be found in [14], we only mantdew basic facts.
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The Cantor space is the topological space with the prodpaiagy on{0,1}“. Itis a Polish space
with the topology generated by basic neighborhoed8, 1}~ with the prefixw € {0, 1}*. Alternatively,
it can be defined by the metritf«, ) = 2~ ™in{n : aln]#6nl}

The hierarchy of Borel sets is generated starting from opé&s) 8e. unions of basic neighborhoods,
denotedX!, and closed sets, which are complements of open sets andeddi§. Further on by
transfinite induction for any countable ordinal X, is defined agJ;.,, Ai | Vi 36, < o 4; € H%i}
and thelT? -sets are the complements Bf -sets. Each class? andIT? is closed under taking inverse
images by continuous functions. In fact there are completguages in each class with respect to
continuous reductions. The projective hierarchy is builttop of the Borel hierarchy, starting with
3} = II} as the class of Borel sets. On the first level one has the Blasyf analytic setswhich are
projections of Borel sets, and the cldds of co-analytic setswhose complements are analytic. The
hierarchy is built in this manner with sets ¥, ; being projections ofI}-sets, andI}_ sets being
complements oE! sets.

The connection between the topological complexitydiO-definable tree languages and the com-
plexity of tree-automata recognizing them is well undesdt¢22, 16]. By Rabin’s complementation
theorem, allMLO-definable tree languages aredi} N IIL. There arexi-complete as well a$I}-
complete regular tree languages. For instance, the get bf-labeled binary trees, which have on every
path only finitely many’s, is TI}-complete [1, 16]. There are regular tree languages ornrarpifinite
levels of the Borel hierarchy [20]. There also exist regutae languages not contained Xt U IT1,
however, languages accepted by deterministic tree autodaebelong td1;.

This is in stark contrast to the situationwfregular languages, i.811.O-definable sets af-words,
which are, by McNaughton’s theorem, Boolean combinatidrHsets [22].

The Cantor-Bendixson Theorem states that closed subsetsPofish space have thperfect set
property they are either countable or contain a perfect subset arschidve cardinality continuum. A set
P is perfectif it is closed and if it has no isolated points, i.e. if evegyen neighborhood of every point
p € P contains another point d?. We shall rely on the following fundamental result on Boretiss

Proposition 6.1. ([12, Theorem 13.6])
Every uncountable Borel subset of a Polish space contairgf@gb subset.

In fact, Souslin has proved that all analytic sets have thiegieset property [14]. It is, however,
independent of ZFC whether all co-analytic sets, or all eathigher levels of the projective hierarchy,
satisfy the continuum hypothesis [14]. A key observatiaat thur formalization will exploit is that, even
though there are non-analytic sets of trees definabMi®, sets of definable paths are Borel. Recall
that for a sequence € {0,1}* we denote byPref(7) the path through the full binary treg(2) that
corresponds to this sequence, which formally is the setedffyas ofr.

Theorem 6.1. MLO definable sets of branches are Borel)
LetUy, ..., U, be subsets ¢f(2) and lety)(X,Y) be anMLO formula overZ(2). Then the set

X ={me{0,1}* | T(2) | $(Pref(r),U) }

of branches of the binary tree satisfyinngX, U) is on the third level of the Borel hierarchy, in particular,
it has the perfect set property.
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Proof:

Given a pathr € {0,1}¥ let B = Pref(m) be the corresponding infinite branch and consider the
labeled tree€€™ = (T(2), Pref(w),U), and its decomposition as a tree sum alen€™ = >, 5 LB
Applying the Composition Theorem ©" andy we findd such that

T(2) F oPref(m),U) <= Y Thg kv < (B,<) F 0Q],...,Qp

veEB

whereQ! = {v € B | Tp”(Sg\B) = 71,.} for eachl < r < k in the enumeration of appropriate typés,
does not depend onand(B, <) & (w, <).

By the well-known correspondence ®If.O and finite automata there is anregular languagéy C
({0,1}¥)« consisting of precisely those-words representing the characteristic sequences ofqatedi
Q onw for which (w, <) | 6(Q). In particular, by McNaughton’s theorerh, € 9 [22].

Consider now the mapping assigning to eachr ¢ {0,1}* the sequence < ({0,1}*)~ with
pln] = (Q7(xln) | 1 < r < k). Note that ifr|,s1 = 7|ps1 thenQT (x|,) — QF («'|,) for all
1 < r <k, in other wordsyp|,, = p/|,. Thereforef is continuous with respect to the Cantor topology.
By the aboveX = f~(Ly) and therefore als& € X as claimed. O

Theorem 6.1 was recently strengthened in [6].

7. Formalizing Condition C

The perfect set property established in Theorem 6.1 prevadeMLO-definable characterization of
ConditionC of Lemma 4.1 over the full binary tree (with arbitrary lalpgj). Via interpretations, this can
be extended to all (finitely branching) trees to yield théoiwing characterization.

Proposition 7.1. (Eliminating uncountably-many-branches quantifier)

For everyMLO formulap(X,Y) the assertion ¥t B branc{ B) A (B, Y )" is equivalent over all trees
to the existence of a perfect set of brancig®ach satisfying(B,Y). The latter ensures that there are
in fact continuum many such branches.

Proof:

Perfect sets of branches are of continuum cardinality, éi¢he condition is clearly sufficient. Con-
versely, Theorem 6.1 shows that over the full binary trednaibitrary additional unary predicates this
condition is also necessary. We can transfer this result teeas as follows.

Every [-tree ¥ is isomorphic to soméT, <, P, ..., P;) whereT C N* is a prefix-closed subset
of finite sequences of natural numbers axds the prefix relation. Consider the following encoding
w:N*—{0,1}*

(no,n1,...,ng) — 0"°10™1...0"1,

and setS = u(T) andQ; = p(P;) foreachi = 1...1. Given thatv < w in Tiff u(v) < p(w) in (2),
this defines an interpretation @f inside (%(2), S, Q1,...,Q;). In particular, for evenMLO-formula
9(X) of [-trees
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where9* is obtained from by interpreting eachP; with @; and relativizing all quantifiers to sub-
sets/elements .

The embedding: induces an injective mapping™ of the set of infinite branches & to infinite
branches of(2). It is easy to check that* is continuous.

Consider the formula(B, YY) defining an uncountable sBtof branches3 of T with parameters’.
ThenD* = {u*(B) | B € D} is an uncountable set of branchesig®), which is defined by the formula
“branch(B) A Finfinite P C B ¢*(P,u(V))” over (2(2),5,Q1, ..., Q). Hence, by Theorem 6.1)*
contains a perfect set of branches, the inverse image ofhwdnider the continuous mapping is a
perfect set of branches . O

Towards arMLO formulation, note that the collection of nodes of a perfetta$ branches induces
a perfect tree, and vice versa. Let perfétt be a formula that expresses thais a perfect subset, i.e.
that P is prefix closed and for every € P there are incomparable w > u such that € P andw € P.

Corollary 7.1. Over trees Conditiol€ is expressible iMLO as
Yc(Y) = 3P perfec{P) A VB C P branchB) — 3X ¢(X,Y) ADPATH,(B, X.,Y).

In particular, ConditiorC entails the existence of continuum many D-paths of Zesatisfyingo(X,Y).

8. Summary

As we have shown above, each of the conditions of Lemma 4.bedgrma|ized inMLO over trees.
Thus we can again state the conclusion of this Lenfg: 3% X (X, Y) holds if and only if

T Ya(Y) V 3B (Yga(B,Y) V ¢pc(B,Y)) V ¢c(Y).

Using the above, we can reduce any formuladfO(3*) to anMLO formula equivalent over the class
of trees by inductively eliminating the inner-most occawe of a cardinality quantifier. Theorem 1.1 fol-
lows. Moreover, as we have shown in the corresponding sesteach of the conditions of Lemma 4.1
implies the existence of continuum many s&tsatisfyingo(X,Y), whence Theorem 1.2.

We remark that the same technique employed here can be ddabtain similar results on elimi-
nating cardinality quantifiers over several classes o#lirders, such as on the class of all ordinals and
on the class of countable linear orders. These findings wilear in [4].
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