The Church Problem for expansions of (N, <) by unary predicates

Alexander Rabinovich

The Blavatnik School of Computer Science
Tel Aviv University, Tel Aviv, Israel 69978

Abstract

For a two-variable formula B(X,Y) of Monadic Logic of Order (MLO) the Church Synthesis Problem concerns
the existence and construction of a finite-state operator Y=F(X) such that B(X,F(X)) is universally valid
over Nat.

Biichi and Landweber (1969) proved that the Church synthesis problem is decidable.

We investigate a parameterized version of the Church synthesis problem. In this extended version a
formula B and a finite-state operator F might contain as a parameter a unary predicate P.

A large class of predicates P is exhibited such that the Church problem with the parameter P is decidable.

Our proofs use Composition Method and game theoretical techniques.

1. Introduction

Two fundamental results of classical automata theory are decidability of the monadic second-order logic
of order (MLO) over w = (N, <) and computability of the Church synthesis problem. These results have
provided the underlying mathematical framework for the development of formalisms for the description of
interactive systems and their desired properties, the algorithmic verification and the automatic synthesis
of correct implementations from logical specifications, and advanced algorithmic techniques that are now
embodied in industrial tools for verification and validation.

1.1. Decidable Ezpansions of w

Biichi [1] proved that the monadic theory of w = (N, <) is decidable. Even before the decidability of
the monadic theory of w has been proved, it was shown that the expansions of w by “interesting” functions
have undecidable monadic theory. In particular, the monadic theory of (N, <, +) and the monadic theory
of (N, <, A\z.2 x x) are undecidable [15, 20]. Therefore, most efforts to find decidable expansions of w deal
with expansions of w by monadic predicates.

Elgot and Rabin [5] found many interesting predicates P for which MLO over (N, <, P) is decidable.
Among these predicates are the set of factorial numbers {n! | n € N}, the sets of k-th powers {n* | n € N}
and the sets {k™ | n € N} (for k € N).

The Elgot and Rabin method has been generalized and sharpened over the years and their results were
extended to a variety of unary predicates (see e.g., [18, 16, 3]). In [11, 14] we provided necessary and
sufficient conditions for the decidability of monadic (second-order) theory of expansions of the linear order
of the naturals w by unary predicates.

Email address: rabinoa@post.tau.ac.il (Alexander Rabinovich)

Preprint submitted to Elsevier June 20, 2012

1.2. Church’s Problem

What is known as the “Church synthesis problem” was first posed by A. Church in [4] for the case of
(w,<). The Church problem is much more complicated than the decidability problem for M LO. Church
uses the language of automata theory. It was McNaughton (see [9]) who first observed that the Church
problem can be equivalently phrased in game-theoretic language and in recent years many authors took up
the generalizations of such games for various applications of the algorithmic theory of infinite games (see
e.g., [6, 10, 21]). McNaughton considered games over w. We consider such games over expansions of w by
unary predicates.

Let M = (N, <, P) be the expansion of w by a unary predicate P. Let ¢(X7, X2, Z) be a formula, where
X1, X2 and Z are set (monadic predicate) variables. The McNaughton game gj;’t is defined as follows.

1. The game is played by two players, called Player I and Player II.
2. A play of the game has w rounds.

3. At round ¢ € N: first, Player I chooses px, (i) € {0,1}; then, Player IT chooses px, (i) € {0,1}. Both
players can observe whether i € P.

4. By the end of the play two predicates px,, px, € N have been constructed!

5. Then, Player I wins the play if M = ¢(px,,px,, P); otherwise, Player II wins the play.

What we want to know is: Does either one of the players have a winning strategy in gﬁ"? If so, which one?
That is, can Player I choose his moves so that, whatever way Player II responds we have ¢(px,, px,, P)?
Or can Player II respond to Player I’s moves in a way that ensures the opposite?

At round ¢, Player I has access only to px,(0)...px, (i — 1), px,(0)...px,(i —1) and P(0)... P(3).

Hence, a strategy of Player I can be defined as a function which assigns to any finite sequence
(px,(0), px,(0), P(0)) ... (px, (i = 1), px, (i = 1), P(i = 1)) (%, %, P(i))

a value in {0, 1} which is taken to be px, (7). (Equivalently, a strategy of Player I in gﬁ" can be defined as
a function which assigns to any finite sequence px,(0), ..., px, (i — 1) of moves of Player II the i-th move of
Player I. However, information about Player I previous moves is convenient for description of strategies by
formulas, and information about previous values of P will be essential for the definition of finite-memory
strategies.)
At round ¢, Player IT has access only to px, (0)...px, (7), px,(0)...px, (i — 1) and P(0)...P(4).
Hence, a strategy of Player II can be defined as a function which assigns to any finite sequence

(px,(0), px,(0), P(0)) ... (px, (i = 1), px, (i = 1), P(i = 1)) (px, (i), %, P(i))

a value in {0, 1} which is taken to be px, ().

Since strategies are functions from finite strings (over a finite alphabet) to {0,1} we can classify them
according to their complexity. The recursive strategies, the finite-memory strategies, i.e., the strategies
computable by finite-state transducers are defined in a natural way (see Sect. 3).

We investigate the following parameterized version of the Church synthesis problem.

Synthesis Problems for M = (N, <, P), where P C N

Input: an MLO formula ¢(X, Xa, Z).
Task: Check whether Player I has a finite-memory winning strategy in Qﬁ/l
and if there is such a strategy - construct it.

We identify monadic predicates with their characteristic functions.

2

To simplify notations, games and the synthesis problem were previously defined for formulas with
three free variables X;, Xo and Z. It is easy to generalize all definitions and results to formulas
Y(X1,y X, Y1, ... Yo, Z1, ..., Z;) with many variables. In this generalization at round 3, Player I chooses
values for X1 (5),. .., X;n(5), then Player II replies by choosing the values to Y1(f8), ..., Y,(8) and the struc-
ture M provides the interpretation for Zy,...7;. Note that, strictly speaking, the input to the synthesis
problem is not only a formula, but a formula plus a partition of its free-variables to Player I’s variables and
Player II'’s variables and parameter’s variables.

In [2], Biichi and Landweber prove the computability of the synthesis problem in w = (N, <) (no param-
eters).

Theorem 1.1 (Biichi-Landweber, 1969). Let o(X,Y) be a formula, where X and Y are disjoint lists
of variables. Then:

Determinacy: One of the players has a winning strategy in the game Gg.

Decidability: It is decidable which of the players has a winning strategy.

Finite-state strategy: The player who has a winning strategy, also has a finite-state winning strategy.
Synthesis algorithm: We can compute for the winning player in G2 a finite-state winning strategy.

The determinacy part of the theorem follows from topological arguments. In particular for every expansion
M of w by unary predicates, the game pr\’l is determined.

Let M be an expansion of w by unary predicates. We proved in [12], that there is an algorithm which for
every MLO formula ¢ decides who wins gé’l if and only if the monadic theory of M is decidable. Moreover,
we proved that if the monadic theory of M is decidable, then the player who has a winning strategy in Q;}’t
has a recursive MLO-definable winning strategy which is computable from .

The finite-state strategy part of Theorem 1.1 fails for decidable expansions of w. For example, let
Fac = {n!| n € N} be the set of factorial numbers. The monadic theory of M, := (N, <, Fac) is decidable

by [5]. Let ¢(X;, X2, Z) be a formula which specifies that ¢t € X7 iff t + 1 € Z (hence for the game Q{owf“

the moves of Player II are irrelevant). It is easy to see that Player I has a winning strategy in gﬁA e yet
Player I has no finite-state winning strategy in this game. The results of this paper imply that the synthesis
problem for (N, <, Fac) is decidable.

1.3. Main Result

Our main result describes a large class of predicates P such that the synthesis problem for (N, <, P) is
decidable.
An w-sequence a; is said to be ultimately periodic with lag [and period d if a; = a; 4 for i > 1.

Definition 1.2. Let k = (k; < ko < ...k; < ...) be an increasing w-sequence of integers.

1. k is sparse if for each d there is n such that ki1 — k; > d for each i > n.
k is effectively sparse if there is an algorithm that for each d computes n such that ki, — k; > d for
each i > n.

2. k is ultimately reducible if for every m > 1 the sequence k; mod m is ultimately periodic. k is
effectively ultimately reducible if there is an algorithm that for each m computes a lag and a period of
k; mod m.

The next definition introduces a generalization of w-sequences considered by Elgot and Rabin in [5].

Definition 1.3. Let ER be the class of increasing recursive w-sequences of integers which are effectively
sparse and effectively ultimately reducible.

Let P C N be a predicate. We denote by Enum(P) the sequence (ki,ks...k;...) which enumerates the
elements of P in the increasing order. Often we do not distinguish between P and Enum(P), In particular
we say that a predicate is FR predicate if EFnum(P) is in ER. The class FR contains many interesting
predicates. It contains the set Fact={n! | n € N} of factorial numbers, the sets {k" | n € N}, the sets
{n* | n € N}. It has nice closure properties, e.g., if k and [are in ER then {k; +1; | i € N}, {k; xI; | i € N},
and {k!" | i € N} are in ER.

In [18], Siefkes introduced ER predicates and generalized Elgot-Rabin contraction method to prove that
for every ER predicate P the monadic theory of M = (N, <, P) is decidable. Our main results show that
the synthesis problem for each predicate P € ER is decidable.

Theorem 1.4 (Main). Let P be an ER predicate and let M = (N, <,P). There is an algorithm that
for every MLO formula (X1, X2, Z) decides whether Player I or Player II has a finite-memory winning

strategy in gj,”, and if so constructs such a strategy.

Our algorithm is based on game theoretical techniques and the composition method developed by Feferman-
Vaught, Shelah and others.

1.4. Organization of the paper

The article is organized as follows. The next section recalls standard definitions about the monadic
second-order logic of order, and summarizes elements of the composition method.

In Section 3, we introduce game-types, define games on game types and show that these game are
reducible to the McNaughton games.

Section 4 consider games over finite chains. Sufficient conditions are provided for existence of a finite
state strategies which uniformly wins over a class of finite chains.

Section 5 describes an algorithm for the synthesis problem over the expansions of w by ER predicates,
and proves the soundness of the algorithm, i.e., if the algorithm outputs a strategy for Qé‘/‘, then it is a finite
state strategy which wins ¢ over M. In Section 6 we prove the completeness of our algorithm: if a player
has a finite state winning strategy in Qﬁ/‘, then the algorithm will find such a strategy.

In Section 7 we consider strategies with look-ahead. A strategy with a look-ahead h at i-th round can
observe whether i + h € P. We show determinacy of McNaughton games over ER predicates by finite-
memory strategies with look-ahead, i.e., for such games one of the players has a winning finite-memory
strategy with look-ahead. The proofs in Section 7 relies on the definability results in [12], and are entirely
independent from our proof of the computability of finite-memory synthesis problem. To understand these
proofs, the reader should only familiarize himself/herself with the notations and definitions of Section 2.

Further results and open questions are discussed in Section 8.

An extended abstract of this paper was published in [13].

2. Preliminaries and Background

We use i, j,n, k,l,m,p,q for natural numbers. We use N for the set of natural numbers and w for the
first infinite ordinal. We use the expressions “chain” and “linear order” interchangeably. A chain with m
elements will be denoted by m.

We use P(A) for the set of subsets of A.

2.1. The Monadic Logic of Order (MLO)

2.1.1. Syntax
The syntax of the monadic second-order logic of order - MLO has in its vocabulary individual (first
order) variables t1,ts ..., monadic second-order variables X1, X2 ... and one binary relation < (the order).

Atomic formulas are of the form X (¢) and t; < to. Well formed formulas of the monadic logic MLO are
obtained from atomic formulas using Boolean connectives =, V, A, — and the first-order quantifiers 3¢ and
Vt, and the second-order quantifiers 3X and VX. The quantifier depth of a formula ¢ is denoted by qd(¢).

We use upper case letters X, Y, Z.... to denote second-order variables; with an overline, X, Y, etc., to
denote finite tuples of variables.

2.1.2. Semantics

A structure is a tuple M := (A, <M, PM) where: A is a non-empty set, <™ is a binary relation on A,
and PM .= (PlM, e PZM) is a finite tuple of subsets of A.

If PM is a tuple of [sets, we call M an l-structure. If < linearly orders A, we call M an I-chain.
When the specific [is unimportant, we simply say that M is a labeled chain.

Suppose M is an [-structure and ¢ a formula with free-variables among Xi,..., X;. We define the
relation M = ¢ (read: M satisfies) as usual, understanding that the second-order quantifiers range over
subsets of A.

Let M be an [-structure. The monadic theory of M, MTh(M), is the set of all formulas with free-
variables among X7, ..., X; satisfied by M.

From now on, we omit the superscript in ‘<™’ and ‘P™’. We often write (4, <) = ¢(P) meaning
(4,<,P) .]

For a chain M = (4, <, P) and a subset I of A, we denote by M | I the subchain of M over the set I.

2.2. Elements of the composition method

Our proofs make use of the technique known as the composition method developed by Feferman-Vaught
and Shelah [8, 17]. To fix notations and to aid the reader unfamiliar with this technique, we briefly review
the definitions and results that we require. A more detailed presentation can be found in [19] or [7].

Let n,l € N. We denote by Form;" the set of MLO formulas with free variables among X7, ..., X; and
of quantifier depth < n.

Definition 2.1. Let n,l € N and let M, N be l-structures. The n-theory of M is Th" (M) := {p € Form]" |
M= o} If TR (M) = Th"(N), we say that M and N are n-equivalent and write M =" N.

Clearly, =™ is an equivalence relation. For any n € N and [> 0, the set Form} is infinite. However, it
contains only finitely many semantically distinct formulas. So, there are finitely many ="-equivalence classes

=n

of [-structures. In fact, we can compute characteristic formulas for the ="-equivalence classes:

Lemma 2.2 (Hintikka Lemma). For n,l € N, we can compute a finite set Char;" C Form;' such that:

o For every ="-equivalence class C' there is a unique 7 € Char] such that for every l-structure M:

MeCiff M.

o Every MLO formula o(X1,...X;) with qd(v) < n is equivalent to a (finite) disjunction of charac-
teristic formulas from Char}*. Moreover, there is an algorithm which for every formula (X1, ... X))

computes a finite set G C Char?d(“a) of characteristic formulas, such that ¢ is equivalent to the dis-

junction of all the formulas from G.

Any member of Char we call a (n,l)-Hintikka formula or (n,l)-characteristic formula. We use 7, 7;, 77
to range over the characteristic formulas and G,G;, G’ to range over sets of characteristic formulas.

Definition 2.3 (n-Type). Forn,l € N and an l-structure M, we denote by type, (M) the unique member
of Char} satisfied by M and call it the n-type of M.

Thus, type, (M) determines Th"™ (M) and, indeed, Th"™ (M) is computable from type,, (M).

Definition 2.4 (Sum of chains). (1) Let I € N, T := (I,<%) a chain and & := (M, | a € I) a sequence
of l-chains. Write M, 1= (Aq, <*, P1%, ..., PB%) and assume A, N Ag = () whenever oo # 3 are in I. The
ordered sum of & is the l-chain

ZI:GS = (U Aa,<I’G,Ua€IP1°‘, el U P%), where

acl ael
ifa,BE€I,a€ Ay, b€ Ag, then b <B® a iff B <t o or =« and b < a.

5

If the domains of the M, ’s are not disjoint, replace them with isomorphic l-chains that have disjoint do-
mains, and proceed as before.

(2) If for all o € I, My, is isomorphic to M for some fixed M, we denote > ;& by M x T.

(3) If T = ({0,1},<) and & = (Mo, M1), we denote Y ;& by Mo+ M;.

We will use only special cases of this definition in which the index chain Z and the summand chains M,
are finite or of the order type w.
The next proposition says that taking ordered sums preserves ="-equivalence.

Proposition 2.5. Let n,l € N. Assume:
1. (I,<%) is a linear order,
2. (MY ael) and (ML | a € I) are sequences of l-chains, and
3. for every a € I, MO =" M.
Then, Y c; MO =3) Me.
This allows us to define the sum of formulas in Char}" with respect to any linear order.

Definition 2.6 (Sum of types). (1) Let n,l € N, 7 := (I,<%) a chain, § = (1o | @« € I) a sequence of
(n,1)-Hintikka formulas. The ordered sum of $), (notations Y ;9 or Y. .7 7a), is an element T of Char}'
such that:

a€el
if & := (Mg | a€1) is a sequence of l-chains and type, (My) = 7o for a € I, then

typen(z 6)=r.
T

(2) If for all a € I, 7, = 7 for some fixed 7 € Char}’, we denote) .1
(3) If T = ({0,1},<) and $ = (70,71), we denote Y 7 Ta by 70 + T1.

The following fundamental result of Shelah can be found in [17]:

Ta by T X T.

Theorem 2.7 (Composition Theorem). Let ¢(Xi,...,X;) be a formula, let n = qd(p) and let
{71,...,Tm} = Char}. Then, there is a formula ¥(Y1,...,Yy) such that for every chain T = (I,<%)
and every sequence (M, | @ € I) of l-chains the following holds:

Y Mo @ iff TEG(Q1 ... Qm), where
aecl

Q; ={ael|M,rT;}. Moreover, v is computable from .

The next Theorem is an important consequence of the Composition Theorem:

Theorem 2.8 (Addition Theorem). The function which maps the pairs of characteristic formulas to
their sum is a recursive function. Formally, the function An,l € N1y, 71 € Char)' .19 + 11 is recursive.

We often use the following well-known lemmas (see e.g., [7]):

Lemma 2.9. For every n € N there is No(n) such that for every sentence ¢ of quantifier depth at most n
and every m > Ny:
@ is satisfiable over the m-element chain iff it is satisfiable over the m + Ny-element chain, i.e.,
m="m+ Np.
Furthermore, Ny is computable from n.

Lemma 2.10. For every n € N there is Ni(n) such that for every M = (A, <, P): if ny > na > Ny and
ni1 = ne mod Ny, then M x ny =" M X ny. Moreover, Ny is computable from n.

6

3. Game types

In this section we introduce game-types; their role for games is similar to the role of types for MLO. We
define games on game types and show that these games are reducible to McNaughton games. But first we
introduce a terminology, define finite-memory strategies and fix some notational conventions.

Let M := (N, <, P) be an l-chain and let p := (px,(0), px,(0))...(px, (i), px,(i))... be a play. We
denote by M™p the expansion of M by the predicates px, and px,. We say that the m-type of p is 7 if
T = type,, (M7 p). Whenever M is clear from the context we write type,,(p) for type,,(M™p).

A strategy for Player I for games over [-chains is a transducer which consists of a set) - memory states,
an initial state gint, the memory update functions p; : Q x {0,1} — @ and us : Q x {0,1} — @, and the
output function 6 : Q — {0, 1}.

A strategy is finite-memory (or finite-state) if its set of memory states is finite.

During a play at round ¢, Player I first updates the state according to u; and the values of predicates
P(i), then outputs its value according to #, and then after a move of Player II update the state according to
2. Hence, a play p := (px,(0), px,(0)) ... (px, (%), px, (7)) ... is consistent with such a strategy if there are

40,40 - - -+ Gi» 4; such that go = p1(ginit, P(0)), px, (1) = 0(¢:), ¢; = p2(ai, px, (1)) and gi1 = pa(g;, P(i+1)).
Notational Conventions

1. In Hintikka’s Lemma we considered formulas with the free variables among Xi,...,X;. It can be
extended trivially to formulas with free second-order variables in any finite list V. In particular we
use C’hark(X , Y, Z) for the set of Hintikka formulas of quantifier depth k& with free variables X,Y, Z.

2. Whenever we deal with the synthesis problem over an I-chain M = (N, <, Py,..., P), we will often
replace variables Z; by the predicate P;; in particular we will write “o(X1, Xo, P1,..., P;)” instead of
“o(X1, X, Z1,..., 21)”

3. By Lemma 2.2, for every formula ¢(X;, Xa, P) of a quantifier depth n there is G C Char™(X;, Xa, P)
such that ¢ is equivalent to the disjunction of all formulas from G. Moreover, G is computable from
. We often identify ¢ with this set G' and write “GZ"” instead of “g{p‘/"’.

Definition 3.1. Let M be an l-chain, st be a strategy, and G C Char™ (X1, Xs, P). st wins G over M iff
the m-~type of every play (on M) consistent with st is in G.

Definition 3.2 (Game Types). Let n € N.

Game type of a chain Let M := (A, < P) be an l-chain, where (A, <) is finite or of order type w. The
n-game-type of M is defined as: -
game-type, (M) := {G C Char™ (X1, X2, P) | Player I wins G'}.

Formal game-type A formal (n,l)-game-type is an element®> of P(P(Char™ (X1, Xa, P))), where P is an
l-tuple (P1,...,P)) of variables. We denote by Gtype;' the set of formal (n,l)-game-types.

Let F be a function from N into Gtype; and G C Char"(X;, X2, P). We consider the following w-game
Game(F, G).

Game(F,G): The game has w rounds and it is defined as follows:

Round i: Player I chooses G; € F(i). Then, Player II chooses 7; € G;.

Winning conditions: Let 7; (i € N) be the sequence of moves of Player II in the play. Player I wins
the play if) ,.y7i € G.

The following lemma is immediate:

2recall that P(A) stands for the set of subsets of A.

Lemma 3.3. If Vz’(Fl(i) C FQ(i)), Gy C Go and Player I wins Game(Fy1,G1), then Player I wins
Game(Fy,Gs).

The following proposition plays an important role in our proofs:

Proposition 3.4. Assume that F(i) (i € N) is ultimately periodic. Then, it is decidable which of the players
wins Game(F,G), Moreover, the winner has a finite-memory winning strategy which is computable from G.

PROOF. We provide a reduction from Game(F, G) to a McNaughton game over w. Let Char™ (X7, X5.P) :=

{m1,...,7m}. For every G’ C Char™ (X1, X2.P)
e Let oo (X1, X2) be \/ ¢ 7 - the disjunction of all formulas from G'.
o Let v (Y1,...,Y,,) be constructed from ¢ as in the Composition Theorem (Theorem 2.7).

Let {G1,...,Gg} be the set of all formal (n,[)-game-types. Define formula op(X1,..., X, Y1,...,Yyn) as
the disjunction of 1-3

1. (a) For all ¢ exactly one of X;(t) (i =1,...,k) holds and
(b) For all t: X;(t) — (G; € F(t)) and
(c) Ya(Y1,...Yn).
2. There is t such that not exactly one of Y;(¢) holds.
3. Thereis t and i € {1,...,k} such that X;(¢) and —Y}(t) for every 7; € G;.

Note that F' is ultimately periodic and therefore MLO definable. Hence, 1(b) can be expressed in MLO.
All other conditions are clearly expressible in MLO.

Consider the McNaughton game G¢, .. The second disjunct forces Player II at each round to assign the
value 1 exactly to one of Y}, and the third disjunct forces Player II to reply to the choice of X; of Player I
by choosing Y such that 7; € G;. It is clear that Player I (respectively, Player II) has a winning strategy in
Game(F, @) iff Player I (respectively, Player II) has a winning strategy in G¢ - By the Biichi-Landweber
theorem, ggn o is determinate, and it is decidable who wins the game and the winner of g;ij . has a finite-
memory winning strategy. This finite-memory strategy corresponds to a finite-memory winning strategy in
Game(F, G). O

4. Winning strategies over classes of finite chains

In the introduction we defined McNaughton’s games over expansions of w. In this subsection we will
consider the games over expansions of finite chains. These games are defined similarly. The only difference
is that these games are of finite length. Games over an [-chains with m elements have m rounds.

The main result of this section is Proposition 4.7. It deals with conditions for existence of a finite-memory
strategy which uniformly wins over a class of finite chains.

The following lemma says that there is a sentence which uniformly expresses that Player I has a winning
strategy in the game with winning condition ¢.

Lemma 4.1. For every ¢ there is a formula win(p) such that for every finite l-chain M, Player I has a
winning strategy in gj,” iff M = win(p). Furthermore, win(p) is computable from .

PROOF. (Sketch) In [11] we proved much stronger result (Theorem 2.3 in [11]) which says that there is a
formula win, such that if M is an expansion of w, then Player I has a winning strategy in gj,” if and only
if M = wing,. It is easy to transfer the result from w-chains to finite chains. Alternatively, it is easy to
simplify this proof for finite chains.]

Recall that we identify a subset G of Char™(X;, X2, P) with the disjunction V,ce7. In particular, for

G C Char™ (X1, Xz, P) we write win(G) for win(V,ca).

For C C P(Char™ (X1, X3, P)) we write Win(C) for Agecwin(G). Win(C') expresses that Player I has
a winning strategy for every G € C.

Definition 4.2 (Residual). For 7 € Char™ and G C Char™, define res.(G) as res.(G) :={r' |7+ 7' €
G}; define Res(G) as Res(G) := {res,(G) | 7 € G}.

Assume that p is a partial play of type 7. Player I can win res,(G) after p iff she has a strategy which
ensures that every extension of p wins G.

Definition 4.3 (A winning strategy over a class of chains). Let st be a strategy of Player I and C be
a class of chains. We say that st wins ¢ over C iff st is a winning strategy in gj,” for every M € C.

Lemma 4.4. Assume that My and My are finite l-chains. If Mo = win(G) and My = Win(Res(G))
then Player I has a finite-memory strategy which wins G over the class {My+ My x k | k € N} of I-chains.

PROOF. Let ky and k; be the length of M and M respectively. Consider the following strategy of Player
I:

Play first ko rounds according to his winning strategy for win(G). For every j € N if the m-type of
the play after kg + jk1 rounds is 7 then play the next ki rounds according to the winning strategy for
win(res, (G)).

It is easy to show by the induction on j that if a play p is played according to this strategy, then after
ko + jki rounds its m-type is in G. Therefore, it is a winning strategy for Player 1.

Player I needs only a finite memory to keep the information about the m-type of the play 7; up to each
round 7. After a round ¢ she should add to 7;_; the type of the play during the round i, i.e., to add to 7;_1
the m-type of one element chain expanded by the predicates px, (i), px, () and P(i). Player I can calculate
in a finite memory whether the current round number is kg + jk1 for some j € N. Hence, this strategy is a
finite-memory strategy. O

Definition 4.5 (Game type realized by a strategy). Let M be an l-chain, st be a strategy, and G C
Char™ (X1, X2, P). st realizes G on M if it wins G&' and for every m-type T € G there is a play p consistent
with st such that type,,(M™p) =T,

In other words st realizes GG in M, if st wins 934 and there is no G; € G such that st wins gé’}. Recall that
for n € N we also denote by n the finite chain with n elements.

Lemma 4.6. 1. If for ny < ng a strategy realizes G over chains ny and ny, then Win(Res(G)) is
satisfiable over the chain ny —nq.

2. If for ny < ng a strategy realizes G over ny and wins G over ng, then Win(Res(G)) is satisfiable over
Ng —MNt.

PRrROOF. (1) follows from (2). (2) follows from the definition of Win and Definitions 4.2 and 4.5. O

Proposition 4.7. For m € N, let n be an upper bound on the quantifier depth of win(G) for every G C
Chary®, and let Ny be computed from n as in Lemma 2.9. For every i € [0, Ng — 1) the following are
equivalent:

1. Player I has a finite-memory strategy which wins G over the class {t > Ng | t mod Ny = i} of finite
chains.

2. Player I has a finite-memory strateqy which wins G over an infinite subclass of {t > Ny | t mod Ny =

i}

3. There is a finite-memory strateqy which realizes G1 C G over ny and over ny for some no > ny > Ny
such that n1 mod Ng = ny mod Ny = i.

4. There is G1 C G such that Ny + i = win(G1), and No = win(G') for every G' € Res(Gh).

PROOF. The implication (1) = (2) is immediate.
(2) = (3). If a strategy wins G over M then it realizes a subset of G. Since the set of subset of G is
finite, it follows that there is a subset of G which is realized infinitely often and therefore at least twice.
(3) = (4) follows from Lemmas 2.9 and 4.6.
(4) = (1) follows from Lemma 4.4. O

Proposition 4.7 is crucial for the design of our algorithm, due the decidability of (4).

5. Algorithm

Let P be an ER predicate and let M = (N, <, P). We are going to prove that there is an algorithm
that for every MLO formula ¢(X;, Xo, Z) decides whether Player I has a finite-memory winning strategy
in GM . and if so constructs such a strategy. It is easy to modify our proofs and to show that it is decidable
whether Player II has a finite-memory winning strategy.

For every MLO formula ¢(X;, Xs, P), first construct a set of the characteristic formulas G such that ¢
is equivalent to their disjunction and then use the following algorithm.

Synthesis algorithm over M := (N, <, P) where P is in ER

Instance: m € N.
Task: Find the set Out = {G C Char™ (X1, X2, P) | Player I has a finite-memory winning strategy in
G, and for each G € Out construct a finite-memory strategy st(G) which wins G over M.

In this section we describe an algorithm for the synthesis problem for the expansions of w by ER predi-
cates.

First we describe ideas which underline the algorithm and then provide its detailed description.

Let k := ko < k1 < -+~ < k; < ... be the enumeration of the elements of an ER predicate P in the
increasing order and let M := (N, <, P). Recall that M | I is the subchain of M over the set . We can

represent M | [k;,00) as the following sums of chains.

M| [k, 00) = ZM | its, kigsg1) = Z (M | Tkigs, kigs] + M| (kigs, kigs41))

sew sEw

Note that M | [ki4s, ki4s] is isomorphic to the one element chain ({0}, <,{0}) and M | (kiys, kisy1) is
isomorphic to an (kj+s+1 — ki+s — 1)-element linear order expanded by the empty predicate.
Since, k is sparse and for every m the sequence k; mod m is ultimately periodic we obtain (by Lemma
2.9) that the sequence of n-equivalence classes of M | (Kits, ki+s+1) is also ultimately periodic.
These observations together with Proposition 2.5 imply that for every n there is a lag [,, and a period
pp, such that for [> [,:
M | [k, 00) =" M| [kisp,, , 00)

Let st be a finite-memory strategy and G C Char™ a winning condition. It is expressible by an MLO
formula that st wins G.

Therefore, the w-sequence U, := {G C Char™ | st wins G on M | [k;, 00)} is also ultimately periodic.
We will show that the w-sequence U' := {G C Char™ | there is a finite-memory strategy st which wins G
on M | [k, 00)} is also ultimately periodic.

Similar arguments show that the sequence V! := {G C Char
which wins G on M | [0,k)} is ultimately periodic.

™ | there is a finite-memory strategy st

10

Our algorithm computes the (finite description) of ultimately periodic w-sequences {U'}7°, and {V'}2,.
From {U'}2, and {V'}22 we can compute the desirable Out. Indeed, let [and p be a join lag and period
of these sequences. Then, G € Out iff there is G; € V*P such that for every 7 € G; we have that the
residual (see Definition 4.2) res,(G) is in U*P. Indeed if there is such G; then we can play the first k.,
step according to a strategy which wins G; on M | [0,ki4p). This will ensure that after k4, steps our
play will be of some m-type 7 € G;. Then we switch to a finite memory strategy which wins res,(G) on
M | [k14p,00). This will ensure that the m-type of the whole play will be in G. (Actually in the computation
of Out we only used that we can compute a lag and period [and p of w-sequences {U*}22, and {V*¢}22,
and the elements U'*? and VP of these sequences.)

Note that there is a strategy which wins G on a finite chain M’ iff there is a finite-state strategy which
wins G on M’. Lemma 4.1 states that it is MLO definable who has a winning strategy to win a game on a
finite chain. This allows us to compute {V'}2.

The computation of {U* }72, is more subtle. Here Proposition 4.7 plays a crucial role by characterizing
who has a finite state winning strategy over a periodic class of finite (unlabeled) chains.

In the rest of this section we provide a detailed description of our synthesis algorithm. We also prove

the soundness of the algorithm, i.e., if G € Out, then there is a finite-state strategy which wins G over M.
In the next section we show the reverse implication.
Conventions. Let 7(X7, X3) be an m-type for m > 0. There is the unique m-type 7*(X;1, X, P) such
that 7 — (7(X1, X2, P) AVt=P(t)). The m-type of a 2-chain M is 7 iff the m-type of the expansion of
M by the empty predicate is 7*. We often will not distinguish between 7 and the corresponding 7*. In
particular, for m-type 71 (X1, X2, P) we write 7 + 71 instead of 7* + 7. We also lift this correspondence to
sets of m-types; for a set G C Chary' we sometimes use G for the set G* := {7* | 7 € G}. It will be always
clear from the context whether we refer to the type of a chain or to the type of the chain expanded by the
empty predicate.

Now we are going to describe our algorithm.

Step 1

1. Compute One := {G C Char™ (X1, X2, P) | Player I has a strategy which wins G over the one element
structure ({0}, <, {0}).

For G € One, we denote by st1(One, G) the corresponding winning strategy.

2. Let Ny be defined from m as in Proposition 4.7. For i = 0,... Ny — 1 compute CWIN® := {G C
Char™ (X1, X2) | Player T has a finite-memory strategy which wins G over the class {t > Ny |
t mod Ny =i} }. This set is computable by condition (4) of Proposition 4.7.

For G € CWIN®, we denote by sti(i,G) the corresponding finite-memory winning strategy; this
strategy is computable by Lemma 4.4, since the condition (4) of Proposition 4.7 holds.

Step 2 Let k:= kg < k; < --- < k; < ... be the enumeration of the elements of P in the increasing order.
Compute [and p such that for every n greater than [:

1. kn+1 — k, > Np and
2. (kn+1 — k?n) mod NO = (kn+p+1 — kn+p) mod No
3. For j <p, set d; := (kl+j+1 — ki — 1) mod Ny.

(To compute such | and p we need our assumption that P € ER.)
Step 3 Let F': N — Gtype™ (X1, X2, P) be defined as follows:

Fi) = One if 7 is even
Y= owINY ifi=2s+1and s mod p=j

Note that F' is a periodic sequence.

11

Use Proposition 3.4 to compute the set U := {G C Char™ (X1, Xo, P) | Player I has a finite-memory
strategy which wins Game(F, G)}

For G € U, we denote by stmain(F,G) the corresponding finite-memory winning strategy.

Now, for G € U we describe a finite-memory strategy st3(F,G) which wins G over the class {M; =
M | [ki4pis00) | i € N} of chains.

We organize our description of how strategy st3(F, G) behaves on M; := M | [k14pi, 00) in sessions. For
s € N, the session 2s is played on the one element subchain of M, isomorphic to ({0}, <, {0}); the session
2s + 1 will be played on the subchain M | (Ki4pits, kitpitst1) which is isomorphic to the (Kiipitys+1 —
ki pits — 1)-element linear order expanded by the empty predicate.

Session 0. Let G be the first move of styqin(F,G). Then Player I will move according to his winning
strategy in st1(One, Gp). After a move of Player II, the m-type of the partial play pg is some 79 € Go.

Session 2s + 1. Let Gasy1 be the move of Player I according to st (F,G) after a partial play
GoToG171 ... GosTos. Then Player I will play according to his strategy in sti(d(s mod p), G2s+1) until she
reads one on P (recall that d;, were defined in Step 2). At this point the type of a subplay pssy1 during
this round will be 19511 € Gasy1-

Session 2s. (s > 0) Let Gas be the move of Player T according to $tmqin(F, G) after a partial play
Go10G171 - .. Gos_1T2s—1. Player I will move according to his winning strategy in st1(One, Gas). After a
move of Player II, the m-type of the partial play pss during this session will be some 795 € Gag.

Observe that this is indeed a finite-memory strategy. Like in the proof of Lemma 4.4, Player I can
compute in a finite memory at each session s the m-type 75 of the subplay during session s, and then after
this session supply only this m-type to $tmqin(F, G) (and not the whole history Gorg ... Gs7s).

This strategy wins G because the sequence Gy ...GsTs ... played over the sessions is consistent with
the winning strategy stiain(F,G) in Game(F, G).
Step 4 We are going to compute the set V := {G C Char™ (X1, Xo, P) | Player I has a strategy which wins
G over M | [0, ky4pi) for some i € N)}.

Let n be the quantifier depth of win(G).

By our choice of Ny, [and p (in Step 1 and Step 2) we know that for every i:

M| krgis kiivr) = M| Kipips Kigititp)

Hence, for every i:
—1 n
M| Kty Frepir) = Sozo M| kipits kipist1) =
=" oo M [Fiss, Bigssr) = M| [k, Figy)

Let N7 := Ni(n) be defined as in Lemma 2.10. From the above equivalence, Lemma 2.10 and Proposition
2.5, it follows that for every i there is j < Nj such that

M| ki ki) =™ M| (ki kispg)

and hence, M | [0, kijpi) =" M| [0, kijp;)-

Therefore, V = {G C Char™ (X1, Xs, P) | M | [0, kisp;) = win(G) for some j < Ni}. To compute the
right hand side we solve the satisfiability problem for a finite set of formulas over a finite set of finite chains.
Hence, this is computable and therefore, V' is computable.

For G € V, let lg < Ny be such that M | [0, kiip.) = win(G) and let st4(V,G) be the corresponding
strategy which wins G over M | [0, kiypic;)-

Step 5 Output Out := {G C Char™(X,Y, P) | 3G; € V such that res.(G) € U for every 7 € Gy }.

For every G € Out we describe a finite-memory strategy st(G) which wins G over M. Assume G € Out
and let G; € V be such that res.(G) € U for every 7 € Gy. Since G; € V, there is lg, and a strategy
st4(V,G1) which wins G over M | [0, kitpi,)-

Player I will play the first [+p X [¢, rounds according to this winning strategy. Let p be a play according
to this strategy, and let 7 be its m-type and let Gy = res;(G). The rest of the game Player T will play

12

according to his finite-memory strategy st3(F,G3) computed in the Step 3. Clearly, the described strategy
is a finite-memory strategy.

The m-type of the whole play is in 74+ G5 = G. Therefore, the described strategy is winning in gé’t. This
completes the description of our algorithm and the proof that if G € Out, then Player I has a finite-memory
winning strategy in G&'.

6. Completeness of the Algorithm

In this section we prove the completeness of our algorithm, i.e., if there is a finite-memory strategy which
wins G over M, then G € Out.

Definition 6.1. Let M := (N, <, P) be a chain, I = (a,b) be an interval, G C Char™ (X1, X3, P), and let
st be a strategy of Player I.

1. We say that st can realize G on I (in M) if there is a play p consistent with st on M | [0,a] such that

(a) for every play p’' := pp1 which is consistent with st and extends p to the interval [0,b), one has
typem(./\/l“pl | (a, b)) € G, and

(b) for every 1 € G there is p’ := pp1 which is consistent with st and extends p to the interval [0,b),
such that type,, (M p1 | (a,b)) = 71.

2. We say that st can win G on I (in M) if st can realize some G' C G (in M).

Let M := (N, <, P) be a chain, 5§ :=sg < s1 < --- < 8 < ... be an w-sequence, st a strategy of Player I,
and m € N.
Define H := H(3, st,m) : N — Gtype™ (X1, X2, P) as follows:

G € H(2i) iff st can realize G on [s;, s;]

G € H(2i + 1) iff st can realize G on (s;, S;+1)

Notations: (Shift) For a function T : N — A and ¢ € N, the i-th shift of T" is the function A\j. T'(i + j); we
denote the i-shift of T by T';.

Lemma 6.2. For every M := (N, <, P), an increasing w-sequence § := sg < §1 < -+ < 8§ < ...,
and m € N, if Player’s I strategy st can win G on [s;,00) then Player I has a winning strategy in

Game(H(s, st,m) 42, G).

PROOF. Since st can win G on [s;,00), there is a play p_; consistent with st on M| [0,s;) such that
for every play p’ := p_1p which is consistent with st and extends p_; to the interval [0,00), one has
type,, (M p| [si,0)) € G.

Let H2; be the 2i-shift of H(5, st, m). Define the following strategy sty for Player I in Game(H 2, G).
Roughly speaking round 2j of this strategy corresponds to the play according to st on the subchain of
M over [s;4j, Si+j], and round 2j + 1 corresponds to the play according to st on the subchain of M over
(Sits Sitj+1)-

Round 2j. Set Ry; := {p | p2j—1p is a play consistent with st on the interval [0, s,1;]}. Then play
Ga; = {type,,(p) | p € Ra;}. Note that this is a legal move, since Goj € H2,;(2j).
Let m; € G'2; be a response of Player II. Let p € Ry; be a play of m-type 7o;.
Set poj := paj_1p. Note that ps; is play consistent with s¢ on the interval [0, s;4j4+1].
Round 2j + 1. Set Ryjq1 :={p | p2jp is a play consistent with st on the interval [0, s;4;41)}. Then play
Gajt1 = {type,,(p) | p € Raj11}. Note that this is a legal move, since Ga;11 € H42:(25 + 1).

Let 7241 € G2j4+1 be a response of Player II. let p € Raj41 be a play of m-type 7oj41.

Set pajy1 := pa;p. Note that psji1 is play consistent with st on the interval [0, s;4j41).

13

Since p;41 extends p; for each j and all of them are consistent with st there is an w-play p_1p.,, which extends
all of them and is consistent with st. The m-type of p, is in GG, because the m-type of every extension of
p—1 consistent with st is in G. However, type,,(p,) = > 7;. Therefore, > 7; € G and the described strategy
sty wins in Game(H (3, st,m)42:, G).]

Define F := F(5, st,m) : N — Gtype™ (X7, Xo, P) as follows:
G € F(2i) iff st can win G on [s;, 8]
G € F(2i+ 1) iff st can win G on (s;, $i+1)
Let Fia; be the 2i-shift of F. Note that Vj(H2,(j) € Fi2:(j)). Therefore, by Lemma 3.3 we obtain
Corollary 6.3. If st can win G on [s;,00) then Player I has a winning strategy in the Game(Fia;, G).

Let M := (N, <, P) be a chain, k := kg < k1 < --- < k; < ... be the enumeration of P in the increasing
order, let st be a strategy of Player I, and m € N.

Let H := H(k, st,m). Let Ng, [, p and dy, ..., dp—1 be defined as in Step 2 of the algorithm, and let F
be defined as in Step 3. Then we have the following Lemma;:

Lemma 6.4. If st is a finite memory strategy, then there is N such that for every i:
F(k, st,m) 204 np) (i) C F(i).

PRrROOF. For even i the lemma deals with games over one element chain ({0}, <,{0}), hence its conclusion
holds for every even i and every N.

For j < p define the class C; of finite chains as Cj := {kj+j+14pi — ki+j+pi — 1 | © € N}. Assume that st is
a finite state strategy with r states q;...¢q,. For i =1,...,r let us denote by st,, the strategies which has
the same update and output functions as st, and its initial state is g;.

Let us write Char™ for Char™ (X1, X2). For j < p define Lim(st, j) as

Lim(st,j) :=={ G C Char™ | there are infinitely many ¢ such that st can win G on (Ki4j414pi —
Kigj4pi) in M}

Since Char™ is finite there is N such that for every j < p and ' > N
Lim(st,j) 2 {G C Char™ | st can win G on (kitj414pir — Kigjipir) in M}
The definition of F, the above inclusion and (1) below immediately imply that this N works.
Vs(s mod p = j) — (Lim(st,j) C F(2s+1)) (1)

Below a proof of (1) is given.

Lim(st, j) is a subset of

{ G C Char™ | there are infinitely many ¢ such that one of st ... st,,
can win G on (ki4j114pi — kigjpi) in M}
is equal to
,

U{ G C Char™ | sty, win G on an infinite subclass of C,}

s=1

14

is a subset of
{ G C Char™ | Player I has a finite state strategy which wins G on infinite subclass of C;}
(by Lemma 4.7 and the definition of /,p and d;) this is equal to

{ G C Char™ | Player I has a finite state strategy which wins G on the class {t > Ny | t mod Ny = d;}}

(by the definition of CWIN® in Step 2) it is equal to CWIN% and (by definition of F' in Step 3) it is equal
to F(2s + 1), for every s such that s mod p = j.

Now we are ready to prove the completeness of our algorithm.

Let G C Char™ (X1, X2, P) and assume that st is a finite-memory strategy of Player I which wins in
GM. Let N := N(st) be as in Lemma 6.4.

Let Pinit(st) :== {p | p is a play according to st in M | [0,1+ pN)}.

Let type-init(st) := {type,, (M | [0,1+pN))"p) | p € Pinit(st)}.

Note that type-init(st) € V, where V' is defined in Step 4 of the algorithm.

We will show that for every 7 € type-init(st) the set res,(G) is in U, where U is defined in Step 3 of the
algorithm. Therefore, by Step 5, we obtain that G € Out.

For 7 € type-init(st), choose p, € Pinit(st) such that

T = type,, (M | [0,L+ pN)) " p,).

Let Pafter(st,p,) :={p| prp is consistent with st in M}.

Let G, = {type,, (M | [l + pN,00))"p) | p € Pafter(st,p-)}.

st wins G&', therefore for every p € Pafter(st,p,) we have type,, (M p,p) € G. However,
type,,(M " prp) = 7+ typem((./\/l | [+ pN,oo))“p), and therefore G, C res,;(G). On the other hand,
st can win G on [l 4+ pN, c0) in M, Therefore, by Corollary 6.3, Lemma 6.4, Lemma 3.3 and the definition
of U in Step 3, we obtain that G- € U. Note that if G’ € U and G’ C G” then G” € U. Since G, € U and
G, C res-(G) we obtain that res,(G) € U.

7. Games with a bounded look-ahead

Let M = (N, <, P) be the expansion of w by a unary predicate P. Let h; and hy be natural numbers
- look-aheads of the players. Let ¢(X;, X2, Z) be a formula. The game Qﬁ’l(hl, hs) with look-ahead h; for
Player I and look-ahead ho for Player II is defined as follows. The game is played by two players in w rounds.

1. At round 7 € N: first, Player I chooses px, (i) € {0,1}; then, Player IT chooses px, (i) € {0,1}. Player
I can observe whether ¢ + h; € P and Player II can observe whether 7 + hy € P

2. By the end of the play two predicates px,, px, € N have been constructed.

3. Then, Player I wins the play if M E o(px,, px,, P); otherwise, Player II wins the play.

Hence, at round ¢, Player I has access only to px,(0),...,px, (i — 1), px,(0),...,px,(i — 1) and
P(hy),...,P(h1 + 4); Player II has access only to px,(0),...,px, (1), px,(0),...,px,(i — 1) and
P(hg),...,P(hg +1).

If a player has a winning strategy in Q{,}"(hl, hs) then she has a winning strategy in gé\/‘(h’l, h%) for every
h} and hf (when there is no restriction on a strategy, on its i-th move it needs to know only the moves of
the other player so far and all information about past and future bits of P can be kept in its memory). If

15

Player I has a finite-memory winning strategy in g;}’l(hl, hs) then she has a finite-memory winning strategy
in gﬁ"(h’l, h%) for every h} > hy and hj.
The proof of the next proposition is based on a reduction to Theorem 1.4.

Proposition 7.1. Let P be an ER predicate, hy, ha € N and let M := (N, <, P). There is an algorithm
that for every MLO formula o(X1, X2, Z) decides whether Player I has a finite-memory winning strategy in
Qé\/‘ (h1, ha), and if so, constructs such a strategy.

ProOOF. Let P_;, C N be defined asi € P_, iff i +h € P.
Let M_p, := (N, <, P_p,). We are going to construct a formula ¢_j, (X1, Xa, Z) such that Player I has

a finite-memory winning strategy in g{,}/l(hh hs) iff Player I has a finite-memory winning strategy in gj,‘f ;f’l .
For i < h; define a formula a; as follows:

P True ifieP
") False otherwise

Let a(t, Z) be defined as

at,Z)=(\ (t=1) = a;) A((t > h1) = Z(t+ h))
i<hi

Define ¢_p, (X1, X2, Z) as
O—hy (Xl,XQ, Z) = HW(VtW(t) <~ Oé(t)) A (p(Xl,XQ, W)

For 71,73 C N we have
w ': 90(71-1’772’13) iff w ': P—hy (77177T27P—h1)
Moreover, Player I has a finite-memory winning strategy in Q;}"(hl, ho) iff Player I has a finite-memory

winning strategy in gj,‘f ;fl . Note that P is an ER predicate iff P_j, is an ER predicate. Hence, by Theorem
1.4. we obtain that it is decidable whether Player I has a finite-memory in strategy in Qé‘/‘ (h1, ho). o

Section 1 (page 3) gives an example of the game Qéw ¢ where Player I has a winning strategy, yet she
has no finite-memory winning strategy. Note that for this particular game, Player I has a finite-memory
one-look-ahead winning strategy, i.e., she has a finite-memory winning strategy in gja” (1, hg) for every hs.

In [12] we proved determinacy of McNaughton games with parameters by MLO-definable strategies. We
will prove that over every ER chain, the MLO-definable strategies coincide with the finite-memory with
look-ahead strategies. Consequently, we obtain the following Theorem.

Theorem 7.2 (Determinacy for look-ahead finite-memory strategy). Let P be an ER predicate,
and let M = (N, <, P). For every MLO formula (X1, X2,Z) there is h such that one of the players
has a finite-memory with look-ahead h winning strategy in gj,‘/‘. Furthermore, there is an algorithm that
computes such h and a finite-memory winning strategy for the winner in g;‘/‘ (h,h).

In the next subsection we recall the main definability result of [12], and state a lemma which is used to
derive Theorem 7.2 from the results of [12]. The proof of this lemma is postponed to subsection 7.2.

7.1. MLO-definable strategies

Recall that in a McNaughton game at round ¢, Player I has access only to the moves px,(0)...px,(i—1)
of Player II, and Player II has access only to the moves px, (0) ... px, (i) of player I. Therefore, the following
formalizes well the notion of a strategy in this game:

Definition 7.3 (Causal operator). Let F' : P(N) — P(N) maps the subsets of N into the subsets of N.
We call F causal (resp. strongly causal) iff for all p,p’ CN and i € N:

16

if p1[0,i] = ' N[0,] (resp. p[0,3) = o/ N[0,4)), then
F(p) N[0,4] = F(s') N [0,4].
That is, if p and p’ agree up to and including (resp. up to) i, then F(p) and F(p") do so.

An operator F : P(N) — P(N) is smplicitly defined by a formula (X, Y, P) over a structure M = (N, <, P)
if for any pi1, p2 € N we have

F(p1) = p2 iff M = lp1, po]

and F is implicitly MLO definable over M iff it is defined by an MLO formula over M. An operator F' is
explicitly defined by a formula «(X, P, t) over the structure M if for every pi, p2 C N the following holds:

p2 = F(p1) if M |=Vi(pa(t) <> a(p1,1)).

Note that if F is implicitly defined by (X,Y, P) over M then it is explicitly defined by IY¢ A Y (¢). If F
is explicitly defined by «(X,t, P), then it is implicitly defined by V¢(Y (t) +> «).

Our proof of Theorem 7.2 is based on the following Theorem (cf. Theorem 2.3 in [12]) and does not rely
on Theorem 1.4.

Theorem 7.4. There is an algorithm that given a formula (X1, Xa, Z) constructs a sentence WINéI(Z)
and formulas Sté(Xg,t,Z) and Stf,l(Xl,t, Z) such that for every structure M = (N, <, P) Player II wins
the game QS{,‘A iff M = WINéI. Moreover, if Player II wins gﬁ/‘, then Stf,l defines his winning strategy;
otherwise, Sti7 defines a winning strategy of Player I.

Lemma 7.5. Let a(Xo,t,Z) be a formula. Assume that P is an ER predicate and o defines a causal or
strongly causal operator in M := (N, <, P). Then

1. There is No(«) and a finite-memory strategy with look-ahead Ny which computes the operator definable
by a.

2. Furthermore, No(«) and a finite-state transducer for st are computable from « and P.

We prove Lemma 7.5 in the next subsection.
Theorem 7.2 immediately follows from Theorem 7.4 and Lemma 7.5. It is clear that h can be defined as
h := max (No(StVIJ(Xl, XQ, Z)), No(StéI(Xl, XQ, Z)))

7.2. Proof of Lemma 7.5

We are going to prove Lemma 7.5 for the case when o defines a causal operator. It is easy to modify the
proof for strongly causal operators. We also assume that P is an infinite subset of N. The case when P is
finite is simpler.

For an infinite P C N define a function succp : N — N as follows:

succp(i) :==min(j € P | j > 1)
Let M := (N, <, P) be a chain and a € N. M can be represented as the sum of three chains:

M= M][0,a] + M | (a, succp(a)) + M | [succp(a), o0)

As an instance of the Composition Theorem for the case when the index structure has three elements we
obtain that for every a(X,t,Z) there is a finite set of tuples of formulas (7{(X,t,2),75(X, Z), (X, Z))
(i < k) such that for every Q, P C N and a € N:

M E a(Q,a, P) if and only if there is ¢ such that

1. M| [0,q] E 7(Q,a, P) and

17

2. M| (a,succp(a)) = 75(Q, P) and
3. M| [succp(a),o0) E 74(Q, P).

Note that if a(X,t,7) defines a causal operator in M then M E a(Q,a, P) iff M = «(Q’,a, P), where
Q| [0,a] = Q] [0,a] and Q' is empty on (a,00). Note also that P is empty on the interval (a, succp(a)).
Therefore, we obtain

Lemma 7.6. Assume that o(X,t,Z) defines a causal operator on M := (N, <, P). Then there is a finite
set of tuples of formulas (B3(X,t,2), 85, B5(Z)) (fori < k) such that for every a € N and Q C N: M =
a(Q, a, P) if and only if there is i such that

1. M| [0,d] E Bi(Q,a, P) and
2. The chain with (succp(a) —a — 1) elements satisfies B5 and
3. M | [succp(a),00) = B5(P).

We are going to show that if P is an E'R predicate, then each of the conditions in the above lemma is
computable by a finite-memory operator with a look-ahead.

First, by the equivalence between MLO and finite automata over the class of finite chains we obtain

Claim 1. For every B(X,t, Z) there is a finite memory strategy st for Player I such that for every a € N
and @ C [0,a] if @ is a sequence of the first a moves of Player I in the McNaughton game on M then st
outputs 1 at a-th move iff M | [0,d] = 81(Q, a, P).

The next Claim deals with the second condition.

Claim 2. For every sentence 8 and every ER predicate P there is Ny € N and a finite memory strategy
st for Player IT with look-ahead Ny such that for every a € N, st outputs 1 at a-th move in the McNaughton
game on (N, <, P) iff 5 is satisfiable on a linear order with (succp(a) —a — 1) elements.

Proof of Claim 2. Let n be an upper bound on the quantifier depth of 5 and let Ny := Ny(n) be as in
Lemma 2.9. Then there is R C {0, Ny — 1} such that for every m > Ny, an m-element linear order satisfies
B iff m mod Ny € R. Let S :={i < Ny | 8 is satisfiable on the i-element chain}.

We are going to describe a finite-memory strategy with look-ahead Ny which satisfies the conclusion of
Claim 2.

Let k:=ko < ky < -+ <k; <...be the enumeration of the elements of P in the increasing order.

Let I’ be such that k;11 — k; > Ny for every m > I’. The sequence, kj11 — k; mod Ny is ultimately
periodic with a lag [> I’ and period p. For j < p, set d; := (kl+j+1 — ki — 1) mod Ny.

The desirable strategy st behaves as follows. For each a < k; it computes whether [is satisfiable on a
chain with (succp(a) —a — 1) elements, and outputs 1 on the round a if so.

For a > k; it uses its finite memory to calculate 7 < p such that the current round a is in interval
[km, km+1) for j =m — 1 mod p. When we are inside an interval [k,,, k;,+1), on every round a we compute
Tq := a— Ky, —d; mod No until kp,41 —a < No. We need a finite memory to compute r, and Np-look-ahead
to check whether k11 —a < Ny. If k1 —a > Ny then we output 1 if (dj — r4) mod Ny € R and 0
otherwise. When k,,, 11 —a < Ny we output 1 if k,,,41 —a € S and 0 otherwise. O

The next claim asserts that the third condition of Lemma 7.6 can be computed by a finite memory
strategy without look-ahead.

Claim 3. For every formula 5(Z) and every ER predicate P there is a finite memory strategy st for
Player II such that for every a € N, st outputs 1 at a-th move in the McNaughton game on (N, <, P) iff
M | [succp(a), 0) = B(P).

Proof of Claim 3. Let n be an upper bound on the quantifier depth of 5 and let Ny := Ny(n) be as in
Lemma 2.9. Let k := kg < k; < --- < k; < ... be the enumeration of the elements of P in the increasing
order.

Let I’ be such that k;11 — k; > Ng for every m > I’ The sequence, k;11 — k; mod Ny is ultimately
periodic with a lag [> I’ and period p. For j < p, set d; := (kl+j+1 — ki — 1) mod Ny. Then for m > 1,
M | [km, km41) is =" -equivalent to a chain £; := ({0,1,... Ng + d;}, <,{0}), where j = m — [mod p. By

18

Proposition 2.5, =" is a congruence with respect to the sum of chains; hence, if m > [and j = m —1[mod p,
then M | [Em,00) = > ;e M | [Kimtis kmtiv1) is ="-equivalent to the periodic chain M := (L; + Lj1 +
o+ Ly 1+ Lo+ + L 1) Xw. For j <p define s; as 1 if M; = 3, and as 0 otherwise.

The desirable strategy st behaves as follows. For each a < k; it outputs 1 on the round a if 5 is satisfiable
on M | [succp(a),0) and outputs 0 otherwise.

For a > k; it uses its finite memory to calculate j < p such that a current move a is in interval [k,,—1, k)
for j = m — [mod p and outputs s;. O

Now, we are ready to prove Lemma 7.5. Assume that «(Xs,t,Z) defines a causal operator in M :=
(N, <, P). We can compute (8 (X,t,2), 85, 85(Z)) (i < k) as in Lemma 7.6.

By Claims 1-3, for each ﬁ; (for i < k and j € {1,2,3}) we can compute the corresponding finite-memory
with a look-ahead strategy st; Let Ny be an upper bound on the look-aheads of all these strategies. On
each round we can calculate the output of all strategies st; If there is i such that the output of stt, st and
st is 1, then we output 1; otherwise, we output 0. It is clear that this strategy st computes the operator
definable by «. We need only finite memory to implement st, and st uses look-ahead Nj.

8. Conclusion

We proved that the finite-memory synthesis problem is decidable for the expansions of w by predicates
from ER. Let k € N and Py be the union of {n! | n € N} and {n!+ &k | n € N}. For every k > 0, the
predicate Py is not sparse and hence it is not an ER predicate. However, a slight modification of our proof
shows that the finite-memory synthesis problem is decidable for My := (N, <, P;). It is more difficult to
prove that the finite-memory synthesis problem is decidable for M := (N, <, P), where the characteristic
function of P is the concatenation of U, := (0"1)" (for n € N). The predicate P is sparse, but it is not
residually ultimately periodic.

In [12] it was proved that the decidability of the monadic theory of M is equivalent to the decidability
of the recursive strategy synthesis problem for M.

The question whether the decidability of the monadic theory of M implies the decidability of the finite-
memory synthesis problem for M remains open.

A natural question to consider is the synthesis problem for strategies between finite-memory and recursive
ones, e.g., the strategies computable by push-down automata [21].

The use of the composition method in our proof can be hidden and a presentation can be given based
on automata theoretic concepts. The logical n-types can be replaced by “n-types”, using semigroups or
automata rather than formulas to describe properties of words. However, such a proof would be unnatural.

Acknowledgments

I would like to thank anonymous referees for their helpful suggestions.

References

(1] J. R. Biichi. On a decision method in restricted second order arithmetic In Proc. International Congress on Logic,
Methodology and Philosophy of Science, E. Nagel at al. eds, Stanford University Press, pp 1-11, 1960.

(2] J. R. Biichi and L. H. Landweber. Solving sequential conditions by finitestate strategies. Transactions of the AMS,
138(27):295-311, 1969.

[3] O. Carton and W.Thomas. The Monadic Theory of Morphic Infinite Words and Generalizations. Inf. Comput. 176(1), pp.
51-65, 2002.

[4] A. Church. Logic, Arithmetic and Automata, Proc. Intrnat. Cong. Math. 1963, Almquist and Wilksells, Uppsala, 1963.

[5] C. Elgot and M. O. Rabin. Decidability and Undecidability of Extensions of Second (First) Order Theory of (Generalized)
Successor. J. Symb. Log., 31(2), pp. 169-181, 1966.

6] E. Griadel, W. Thomas and T. Wilke. Automata, Logics, and Infinite Games, LNCS 2500, 2002.

[7] Y. Gurevich. Monadic second-order theories, in: J. Barwise, S. Feferman (eds.), Model-Theoretic Logics, Springer-Verlag,
pp. 479-506, 1985.

[8] S. Feferman and R.L. Vaught. The first-order properties of products of algebraic systems. Fundamenta Mathematica 47:57—
103, 1959.

19

[9] R. McNaughton. Finite-state infinite games, Project MAC Rep., MIT, 1965.

[10] D. Perrin and J. E. Pin. Infinite Words Automata, Semigroups, Logic and Games. Pure and Applied Mathematics Vol
141 Elsevier, 2004.

[11] A. Rabinovich. On decidability of Monadic logic of order over the naturals extended by monadic predicates. Information
and Computation, 205(6):870-889, 2007.

[12] A. Rabinovich. Church Synthesis Problem with Parameters. Logical Methods in Computer Science, Vol. 3 (4:9):1-24, 2007,
DOI: 10.2168/LMCS-3(4:9)2007.

[13] A. Rabinovich. Decidable Extensions of Church’s Problem. In CSL 2009, LNCS 5771, pp. 424-439, 2009.

[14] A. Rabinovich and W. Thomas. Decidable Theories of the Ordering of Natural Numbers with Unary Predicates. In CSL
2006, Springer LNCS 4207, 562-574, 2006.

[15] R. M. Robinson. Restricted Set-Theoretical Definitions in Arithmetic. In Proceedings of the AMS Vol. 9, No. 2. pp.
238-242, 1958.

[16] A. Semenov. Logical theories of one-place functions on the set of natural numbers. Mathematics of the USSR - Izvestia,
vol. 22, pp 587-618, 1984.
[17] S. Shelah. The monadic theory of order. Ann. of Math. 102:379-419, 1975.

[18] D. Siefkes. The recursive sets in certain monadic second order fragments of arithmetic. Arch. Math. Logik,17, pp. 71-80,
1975.

[19] W. Thomas, Ehrenfeucht games, the composition method, and the monadic theory of ordinal words. In A Selection of
Essays in Honor of A. Ehrenfeucht, Springer, LNCS 1261 pp. 118-143, 1997.

[20] B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. (Russian version 1961). In AMS Transl. 59,
pp. 23-55, 1966.

[21] I. Walukiewicz. Pushdown processes: games and model checking. Information and Computation 164 pp. 234-263, 2001.

20

