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Abstract

For a two-variable formula B(X,Y) of Monadic Logic of Order (MLO) the Church Synthesis Problem concerns
the existence and construction of a finite-state operator Y=F(X) such that B(X,F(X)) is universally valid
over Nat.

Büchi and Landweber (1969) proved that the Church synthesis problem is decidable.
We investigate a parameterized version of the Church synthesis problem. In this extended version a

formula B and a finite-state operator F might contain as a parameter a unary predicate P.
A large class of predicates P is exhibited such that the Church problem with the parameter P is decidable.
Our proofs use Composition Method and game theoretical techniques.

1. Introduction

Two fundamental results of classical automata theory are decidability of the monadic second-order logic
of order (MLO) over ω = (N, <) and computability of the Church synthesis problem. These results have
provided the underlying mathematical framework for the development of formalisms for the description of
interactive systems and their desired properties, the algorithmic verification and the automatic synthesis
of correct implementations from logical specifications, and advanced algorithmic techniques that are now
embodied in industrial tools for verification and validation.

1.1. Decidable Expansions of ω

Büchi [1] proved that the monadic theory of ω = (N, <) is decidable. Even before the decidability of
the monadic theory of ω has been proved, it was shown that the expansions of ω by “interesting” functions
have undecidable monadic theory. In particular, the monadic theory of (N, <,+) and the monadic theory
of (N, <, λx.2× x) are undecidable [15, 20]. Therefore, most efforts to find decidable expansions of ω deal
with expansions of ω by monadic predicates.

Elgot and Rabin [5] found many interesting predicates P for which MLO over (N, <, P ) is decidable.
Among these predicates are the set of factorial numbers {n! | n ∈ N}, the sets of k-th powers {nk | n ∈ N}
and the sets {kn | n ∈ N} (for k ∈ N ).

The Elgot and Rabin method has been generalized and sharpened over the years and their results were
extended to a variety of unary predicates (see e.g., [18, 16, 3]). In [11, 14] we provided necessary and
sufficient conditions for the decidability of monadic (second-order) theory of expansions of the linear order
of the naturals ω by unary predicates.
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1.2. Church’s Problem

What is known as the “Church synthesis problem” was first posed by A. Church in [4] for the case of
(ω,<). The Church problem is much more complicated than the decidability problem for MLO. Church
uses the language of automata theory. It was McNaughton (see [9]) who first observed that the Church
problem can be equivalently phrased in game-theoretic language and in recent years many authors took up
the generalizations of such games for various applications of the algorithmic theory of infinite games (see
e.g., [6, 10, 21]). McNaughton considered games over ω. We consider such games over expansions of ω by
unary predicates.

Let M = (N, <, P ) be the expansion of ω by a unary predicate P . Let ϕ(X1, X2, Z) be a formula, where
X1, X2 and Z are set (monadic predicate) variables. The McNaughton game GM

ϕ is defined as follows.

1. The game is played by two players, called Player I and Player II.

2. A play of the game has ω rounds.

3. At round i ∈ N: first, Player I chooses ρX1
(i) ∈ {0, 1}; then, Player II chooses ρX2

(i) ∈ {0, 1}. Both
players can observe whether i ∈ P .

4. By the end of the play two predicates ρX1
, ρX2

⊆ N have been constructed1

5. Then, Player I wins the play if M |= ϕ(ρX1
, ρX2

, P ); otherwise, Player II wins the play.

What we want to know is: Does either one of the players have a winning strategy in GM
ϕ ? If so, which one?

That is, can Player I choose his moves so that, whatever way Player II responds we have ϕ(ρX1
, ρX2

, P )?
Or can Player II respond to Player I’s moves in a way that ensures the opposite?

At round i, Player I has access only to ρX1
(0) . . . ρX1

(i− 1), ρX2
(0) . . . ρX2

(i− 1) and P (0) . . . P (i).
Hence, a strategy of Player I can be defined as a function which assigns to any finite sequence

(ρX1
(0), ρX2

(0), P (0)) . . . (ρX1
(i− 1), ρX2

(i− 1), P (i− 1)) (∗, ∗, P (i))

a value in {0, 1} which is taken to be ρX1
(i). (Equivalently, a strategy of Player I in GM

ϕ can be defined as
a function which assigns to any finite sequence ρX2

(0), . . . , ρX2
(i− 1) of moves of Player II the i-th move of

Player I. However, information about Player I previous moves is convenient for description of strategies by
formulas, and information about previous values of P will be essential for the definition of finite-memory
strategies.)

At round i, Player II has access only to ρX1
(0) . . . ρX1

(i), ρX2
(0) . . . ρX2

(i− 1) and P (0) . . . P (i).
Hence, a strategy of Player II can be defined as a function which assigns to any finite sequence

(ρX1
(0), ρX2

(0), P (0)) . . . (ρX1
(i− 1), ρX2

(i− 1), P (i− 1)) (ρX1
(i), ∗, P (i))

a value in {0, 1} which is taken to be ρX2
(i).

Since strategies are functions from finite strings (over a finite alphabet) to {0, 1} we can classify them
according to their complexity. The recursive strategies, the finite-memory strategies, i.e., the strategies
computable by finite-state transducers are defined in a natural way (see Sect. 3).

We investigate the following parameterized version of the Church synthesis problem.

Synthesis Problems for M = (N, <, P ), where P ⊆ N

Input: an MLO formula ϕ(X1, X2, Z).
Task: Check whether Player I has a finite-memory winning strategy in GM

ϕ

and if there is such a strategy - construct it.

1We identify monadic predicates with their characteristic functions.
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To simplify notations, games and the synthesis problem were previously defined for formulas with
three free variables X1, X2 and Z. It is easy to generalize all definitions and results to formulas
ψ(X1, . . . , Xm, Y1, . . . Yn, Z1, . . . , Zl) with many variables. In this generalization at round β, Player I chooses
values for X1(β), . . . , Xm(β), then Player II replies by choosing the values to Y1(β), . . . , Yn(β) and the struc-
ture M provides the interpretation for Z1, . . . Zl. Note that, strictly speaking, the input to the synthesis
problem is not only a formula, but a formula plus a partition of its free-variables to Player I’s variables and
Player II’s variables and parameter’s variables.

In [2], Büchi and Landweber prove the computability of the synthesis problem in ω = (N, <) (no param-
eters).

Theorem 1.1 (Büchi-Landweber, 1969). Let ϕ(X̄, Ȳ ) be a formula, where X̄ and Ȳ are disjoint lists
of variables. Then:

Determinacy: One of the players has a winning strategy in the game Gω
ϕ .

Decidability: It is decidable which of the players has a winning strategy.

Finite-state strategy: The player who has a winning strategy, also has a finite-state winning strategy.

Synthesis algorithm: We can compute for the winning player in Gω
ϕ a finite-state winning strategy.

The determinacy part of the theorem follows from topological arguments. In particular for every expansion
M of ω by unary predicates, the game GM

ϕ is determined.
Let M be an expansion of ω by unary predicates. We proved in [12], that there is an algorithm which for

every MLO formula ϕ decides who wins GM
ϕ if and only if the monadic theory of M is decidable. Moreover,

we proved that if the monadic theory of M is decidable, then the player who has a winning strategy in GM
ϕ

has a recursive MLO-definable winning strategy which is computable from ϕ.
The finite-state strategy part of Theorem 1.1 fails for decidable expansions of ω. For example, let

Fac = {n! | n ∈ N} be the set of factorial numbers. The monadic theory of Mfac := (N, <,Fac) is decidable

by [5]. Let ϕ(X1, X2, Z) be a formula which specifies that t ∈ X1 iff t + 1 ∈ Z (hence for the game G
Mfac
ϕ

the moves of Player II are irrelevant). It is easy to see that Player I has a winning strategy in G
Mfac
ϕ , yet

Player I has no finite-state winning strategy in this game. The results of this paper imply that the synthesis
problem for (N, <,Fac) is decidable.

1.3. Main Result

Our main result describes a large class of predicates P such that the synthesis problem for (N, <, P ) is
decidable.

An ω-sequence ai is said to be ultimately periodic with lag l and period d if ai = ai+d for i > l.

Definition 1.2. Let k̄ = (k1 < k2 < . . . ki < . . . ) be an increasing ω-sequence of integers.

1. k̄ is sparse if for each d there is n such that ki+1 − ki > d for each i > n.

k̄ is effectively sparse if there is an algorithm that for each d computes n such that ki+1 − ki > d for
each i > n.

2. k̄ is ultimately reducible if for every m > 1 the sequence ki mod m is ultimately periodic. k̄ is
effectively ultimately reducible if there is an algorithm that for each m computes a lag and a period of
ki mod m.

The next definition introduces a generalization of ω-sequences considered by Elgot and Rabin in [5].

Definition 1.3. Let ER be the class of increasing recursive ω-sequences of integers which are effectively
sparse and effectively ultimately reducible.
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Let P ⊆ N be a predicate. We denote by Enum(P ) the sequence (k1, k2 . . . ki . . . ) which enumerates the
elements of P in the increasing order. Often we do not distinguish between P and Enum(P ), In particular
we say that a predicate is ER predicate if Enum(P ) is in ER. The class ER contains many interesting
predicates. It contains the set Fact={n! | n ∈ N} of factorial numbers, the sets {kn | n ∈ N}, the sets
{nk | n ∈ N}. It has nice closure properties, e.g., if k̄ and l̄ are in ER then {ki+ li | i ∈ N}, {ki× li | i ∈ N},
and {klii | i ∈ N} are in ER.

In [18], Siefkes introduced ER predicates and generalized Elgot-Rabin contraction method to prove that
for every ER predicate P the monadic theory of M = (N, <, P ) is decidable. Our main results show that
the synthesis problem for each predicate P ∈ ER is decidable.

Theorem 1.4 (Main). Let P be an ER predicate and let M = (N, <, P ). There is an algorithm that
for every MLO formula ϕ(X1, X2, Z) decides whether Player I or Player II has a finite-memory winning
strategy in GM

ϕ , and if so constructs such a strategy.

Our algorithm is based on game theoretical techniques and the composition method developed by Feferman-
Vaught, Shelah and others.

1.4. Organization of the paper

The article is organized as follows. The next section recalls standard definitions about the monadic
second-order logic of order, and summarizes elements of the composition method.

In Section 3, we introduce game-types, define games on game types and show that these game are
reducible to the McNaughton games.

Section 4 consider games over finite chains. Sufficient conditions are provided for existence of a finite
state strategies which uniformly wins over a class of finite chains.

Section 5 describes an algorithm for the synthesis problem over the expansions of ω by ER predicates,
and proves the soundness of the algorithm, i.e., if the algorithm outputs a strategy for GM

ϕ , then it is a finite
state strategy which wins ϕ over M. In Section 6 we prove the completeness of our algorithm: if a player
has a finite state winning strategy in GM

ϕ , then the algorithm will find such a strategy.
In Section 7 we consider strategies with look-ahead. A strategy with a look-ahead h at i-th round can

observe whether i + h ∈ P . We show determinacy of McNaughton games over ER predicates by finite-
memory strategies with look-ahead, i.e., for such games one of the players has a winning finite-memory
strategy with look-ahead. The proofs in Section 7 relies on the definability results in [12], and are entirely
independent from our proof of the computability of finite-memory synthesis problem. To understand these
proofs, the reader should only familiarize himself/herself with the notations and definitions of Section 2.

Further results and open questions are discussed in Section 8.
An extended abstract of this paper was published in [13].

2. Preliminaries and Background

We use i, j, n, k, l,m, p, q for natural numbers. We use N for the set of natural numbers and ω for the
first infinite ordinal. We use the expressions “chain” and “linear order” interchangeably. A chain with m
elements will be denoted by m.

We use P(A) for the set of subsets of A.

2.1. The Monadic Logic of Order (MLO)

2.1.1. Syntax

The syntax of the monadic second-order logic of order - MLO has in its vocabulary individual (first
order) variables t1, t2 . . ., monadic second-order variables X1, X2 . . . and one binary relation < (the order).

Atomic formulas are of the form X(t) and t1 < t2. Well formed formulas of the monadic logic MLO are
obtained from atomic formulas using Boolean connectives ¬,∨,∧,→ and the first-order quantifiers ∃t and
∀t, and the second-order quantifiers ∃X and ∀X. The quantifier depth of a formula ϕ is denoted by qd(ϕ).

We use upper case letters X, Y , Z,... to denote second-order variables; with an overline, X̄, Ȳ , etc., to
denote finite tuples of variables.
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2.1.2. Semantics

A structure is a tuple M := (A,<M, P̄M) where: A is a non-empty set, <M is a binary relation on A,
and P̄M :=

(

PM
1 , . . . , PM

l

)

is a finite tuple of subsets of A.
If P̄M is a tuple of l sets, we call M an l-structure. If <M linearly orders A, we call M an l-chain.

When the specific l is unimportant, we simply say that M is a labeled chain.
Suppose M is an l-structure and ϕ a formula with free-variables among X1, . . . , Xl. We define the

relation M |= ϕ (read: M satisfies ϕ) as usual, understanding that the second-order quantifiers range over
subsets of A.

Let M be an l-structure. The monadic theory of M, MTh(M), is the set of all formulas with free-
variables among X1, . . . , Xl satisfied by M.

From now on, we omit the superscript in ‘<M’ and ‘P̄M’. We often write (A,<) |= ϕ(P̄ ) meaning
(A,<, P̄ ) |= ϕ.

For a chain M = (A,<, P̄ ) and a subset I of A, we denote by M







I the subchain of M over the set I.

2.2. Elements of the composition method

Our proofs make use of the technique known as the composition method developed by Feferman-Vaught
and Shelah [8, 17]. To fix notations and to aid the reader unfamiliar with this technique, we briefly review
the definitions and results that we require. A more detailed presentation can be found in [19] or [7].

Let n, l ∈ N. We denote by Form
n
l the set of MLO formulas with free variables among X1, . . . , Xl and

of quantifier depth ≤ n.

Definition 2.1. Let n, l ∈ N and let M,N be l-structures. The n-theory of M is Thn(M) := {ϕ ∈ Form
n
l |

M |= ϕ}. If Thn(M) = Thn(N ), we say that M and N are n-equivalent and write M ≡n N .

Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set Form
n
l is infinite. However, it

contains only finitely many semantically distinct formulas. So, there are finitely many ≡n-equivalence classes
of l-structures. In fact, we can compute characteristic formulas for the ≡n-equivalence classes:

Lemma 2.2 (Hintikka Lemma). For n, l ∈ N, we can compute a finite set Charnl ⊆ Form
n
l such that:

• For every ≡n-equivalence class C there is a unique τ ∈ Charnl such that for every l-structure M:
M ∈ C iff M |= τ .

• Every MLO formula ϕ(X1, . . . Xl) with qd(ϕ) ≤ n is equivalent to a (finite) disjunction of charac-
teristic formulas from Charnl . Moreover, there is an algorithm which for every formula ϕ(X1, . . . Xl)

computes a finite set G ⊆ Char
qd(ϕ)
l of characteristic formulas, such that ϕ is equivalent to the dis-

junction of all the formulas from G.

Any member of Charnl we call a (n, l)-Hintikka formula or (n, l)-characteristic formula. We use τ , τi, τ
j

to range over the characteristic formulas and G,Gi, G
′ to range over sets of characteristic formulas.

Definition 2.3 (n-Type). For n, l ∈ N and an l-structure M, we denote by typen(M) the unique member
of Charnl satisfied by M and call it the n-type of M.

Thus, typen(M) determines Thn(M) and, indeed, Thn(M) is computable from typen(M).

Definition 2.4 (Sum of chains). (1) Let l ∈ N, I := (I,<I) a chain and S := (Mα | α ∈ I) a sequence
of l-chains. Write Mα := (Aα, <

α, P1
α, . . . , Pl

α) and assume Aα ∩ Aβ = ∅ whenever α 6= β are in I. The
ordered sum of S is the l-chain

∑

I

S := (
⋃

α∈I

Aα, <
I,S,

⋃

α∈I
P1

α, . . . ,
⋃

α∈I

Pl
α), where

if α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <
I,S a iff β <I α or β = α and b <α a.
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If the domains of the Mα’s are not disjoint, replace them with isomorphic l-chains that have disjoint do-
mains, and proceed as before.

(2) If for all α ∈ I, Mα is isomorphic to M for some fixed M, we denote
∑

I
S by M×I.

(3) If I = ({0, 1}, <) and S = (M0,M1), we denote
∑

I
S by M0 +M1.

We will use only special cases of this definition in which the index chain I and the summand chains Mα

are finite or of the order type ω.
The next proposition says that taking ordered sums preserves ≡n-equivalence.

Proposition 2.5. Let n, l ∈ N. Assume:

1. (I,<I) is a linear order,

2.
(

M0
α | α ∈ I

)

and
(

M1
α | α ∈ I

)

are sequences of l-chains, and

3. for every α ∈ I, M0
α ≡n M1

α.

Then,
∑

α∈I M
0
α ≡n

∑

α∈I M
1
α.

This allows us to define the sum of formulas in Charnl with respect to any linear order.

Definition 2.6 (Sum of types). (1) Let n, l ∈ N, I := (I,<I) a chain, H := (τα | α ∈ I) a sequence of
(n, l)-Hintikka formulas. The ordered sum of H, (notations

∑

I
H or

∑

α∈I
τα), is an element τ of Charnl

such that:

if S := (Mα | α ∈ I) is a sequence of l-chains and typen(Mα) = τα for α ∈ I, then

typen(
∑

I

S) = τ.

(2) If for all α ∈ I, τα = τ for some fixed τ ∈ Charnl , we denote
∑

α∈I
τα by τ × I.

(3) If I = ({0, 1}, <) and H = (τ0, τ1), we denote
∑

α∈I
τα by τ0 + τ1.

The following fundamental result of Shelah can be found in [17]:

Theorem 2.7 (Composition Theorem). Let ϕ(X1, . . . , Xl) be a formula, let n = qd(ϕ) and let
{τ1, . . . , τm} = Charnl . Then, there is a formula ψ(Y1, . . . , Ym) such that for every chain I = (I,<I)
and every sequence (Mα | α ∈ I) of l-chains the following holds:

∑

α∈I

Mα |= ϕ iff I |= ψ(Q1, . . . Qm), where

Qj = {α ∈ I |Mα |= τj}. Moreover, ψ is computable from ϕ.

The next Theorem is an important consequence of the Composition Theorem:

Theorem 2.8 (Addition Theorem). The function which maps the pairs of characteristic formulas to
their sum is a recursive function. Formally, the function λn, l ∈ N.λτ0, τ1 ∈ Charnl .τ0 + τ1 is recursive.

We often use the following well-known lemmas (see e.g., [7]):

Lemma 2.9. For every n ∈ N there is N0(n) such that for every sentence ϕ of quantifier depth at most n
and every m ≥ N0:

ϕ is satisfiable over the m-element chain iff it is satisfiable over the m+N0-element chain, i.e.,
m ≡n m+N0.

Furthermore, N0 is computable from n.

Lemma 2.10. For every n ∈ N there is N1(n) such that for every M = (A,<, P ): if n1 > n2 ≥ N1 and
n1 = n2 mod N1, then M× n1 ≡n M× n2. Moreover, N1 is computable from n.
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3. Game types

In this section we introduce game-types; their role for games is similar to the role of types for MLO . We
define games on game types and show that these games are reducible to McNaughton games. But first we
introduce a terminology, define finite-memory strategies and fix some notational conventions.

Let M :=
(

N, <, P̄
)

be an l-chain and let ρ := (ρX1
(0), ρX2

(0)) . . . (ρX1
(i), ρX2

(i)) . . . be a play. We
denote by M⌢ρ the expansion of M by the predicates ρX1

and ρX2
. We say that the m-type of ρ is τ if

τ = typem(M⌢ρ). Whenever M is clear from the context we write typem(ρ) for typem(M⌢ρ).
A strategy for Player I for games over l-chains is a transducer which consists of a set Q - memory states,

an initial state qinit, the memory update functions µ1 : Q× {0, 1}l → Q and µ2 : Q × {0, 1} → Q, and the
output function θ : Q→ {0, 1}.

A strategy is finite-memory (or finite-state) if its set of memory states is finite.
During a play at round i, Player I first updates the state according to µ1 and the values of predicates

P̄ (i), then outputs its value according to θ, and then after a move of Player II update the state according to
µ2. Hence, a play ρ := (ρX1

(0), ρX2
(0)) . . . (ρX1

(i), ρX2
(i)) . . . is consistent with such a strategy if there are

q0, q
′
0, . . . , qi, q

′
i such that q0 = µ1(qinit, P̄ (0)), ρX1

(i) = θ(qi), q
′
i = µ2(qi, ρX2

(i)) and qi+1 = µ1(q
′
i, P̄ (i+1)).

Notational Conventions

1. In Hintikka’s Lemma we considered formulas with the free variables among X1, . . . , Xl. It can be
extended trivially to formulas with free second-order variables in any finite list V̄ . In particular we
use Chark(X,Y, Z) for the set of Hintikka formulas of quantifier depth k with free variables X,Y, Z.

2. Whenever we deal with the synthesis problem over an l-chain M = (N, <, P1, . . . , Pl), we will often
replace variables Zi by the predicate Pi; in particular we will write “ϕ(X1, X2, P1, . . . , Pl)” instead of
“ϕ(X1, X2, Z1, . . . , Zl)”

3. By Lemma 2.2, for every formula ϕ(X1, X2, P ) of a quantifier depth n there is G ⊆ Charn(X1, X2, P )
such that ϕ is equivalent to the disjunction of all formulas from G. Moreover, G is computable from
ϕ. We often identify ϕ with this set G and write “GM

G ” instead of “GM
ϕ ”.

Definition 3.1. Let M be an l-chain, st be a strategy, and G ⊆ Charm(X1, X2, P̄ ). st wins G over M iff
the m-type of every play (on M) consistent with st is in G.

Definition 3.2 (Game Types). Let n ∈ N.

Game type of a chain Let M :=
(

A,< P̄
)

be an l-chain, where (A,<) is finite or of order type ω. The
n-game-type of M is defined as:
game-typen(M) := {G ⊆ Charn(X1, X2, P̄ ) | Player I wins GM

G }.

Formal game-type A formal (n, l)-game-type is an element2 of P(P(Charn(X1, X2, P̄ ))), where P̄ is an
l-tuple (P1, . . . , Pl) of variables. We denote by Gtypenl the set of formal (n, l)-game-types.

Let F be a function from N into Gtypenl and G ⊆ Charn(X1, X2, P̄ ). We consider the following ω-game
Game(F,G).

Game(F,G): The game has ω rounds and it is defined as follows:

Round i: Player I chooses Gi ∈ F (i). Then, Player II chooses τi ∈ Gi.

Winning conditions: Let τi (i ∈ N) be the sequence of moves of Player II in the play. Player I wins
the play if

∑

i∈N
τi ∈ G.

The following lemma is immediate:

2recall that P(A) stands for the set of subsets of A.
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Lemma 3.3. If ∀i
(

F1(i) ⊆ F2(i)
)

, G1 ⊆ G2 and Player I wins Game(F1, G1), then Player I wins
Game(F2, G2).

The following proposition plays an important role in our proofs:

Proposition 3.4. Assume that F (i) (i ∈ N) is ultimately periodic. Then, it is decidable which of the players
wins Game(F,G), Moreover, the winner has a finite-memory winning strategy which is computable from G.

Proof. We provide a reduction from Game(F,G) to a McNaughton game over ω. Let Charn(X1, X2.P̄ ) :=
{τ1, . . . , τm}. For every G′ ⊆ Charn(X1, X2.P̄ )

• Let ϕG′(X1, X2) be
∨

τ∈G′ τ - the disjunction of all formulas from G′.

• Let ψG′(Y1, . . . , Ym) be constructed from ϕG′ as in the Composition Theorem (Theorem 2.7).

Let {G1, . . . , Gk} be the set of all formal (n, l)-game-types. Define formula ϕF,G(X1, . . . , Xk, Y1, . . . , Ym) as
the disjunction of 1-3

1. (a) For all t exactly one of Xi(t) (i = 1, . . . , k) holds and

(b) For all t: Xi(t) →
(

Gi ∈ F (t)
)

and

(c) ψG(Y1, . . . Ym).

2. There is t such that not exactly one of Yj(t) holds.

3. There is t and i ∈ {1, . . . , k} such that Xi(t) and ¬Yj(t) for every τj ∈ Gi.

Note that F is ultimately periodic and therefore MLO definable. Hence, 1(b) can be expressed in MLO .
All other conditions are clearly expressible in MLO .

Consider the McNaughton game Gω
ϕF,G

. The second disjunct forces Player II at each round to assign the
value 1 exactly to one of Yj , and the third disjunct forces Player II to reply to the choice of Xi of Player I
by choosing Yj such that τj ∈ Gi. It is clear that Player I (respectively, Player II) has a winning strategy in
Game(F,G) iff Player I (respectively, Player II) has a winning strategy in Gω

ϕF,G
. By the Büchi-Landweber

theorem, Gω
ϕF,G

is determinate, and it is decidable who wins the game and the winner of Gω
ϕF,G

has a finite-
memory winning strategy. This finite-memory strategy corresponds to a finite-memory winning strategy in
Game(F,G). 2

4. Winning strategies over classes of finite chains

In the introduction we defined McNaughton’s games over expansions of ω. In this subsection we will
consider the games over expansions of finite chains. These games are defined similarly. The only difference
is that these games are of finite length. Games over an l-chains with m elements have m rounds.

The main result of this section is Proposition 4.7. It deals with conditions for existence of a finite-memory
strategy which uniformly wins over a class of finite chains.

The following lemma says that there is a sentence which uniformly expresses that Player I has a winning
strategy in the game with winning condition ϕ.

Lemma 4.1. For every ϕ there is a formula win(ϕ) such that for every finite l-chain M, Player I has a
winning strategy in GM

ϕ iff M |= win(ϕ). Furthermore, win(ϕ) is computable from ϕ.

Proof. (Sketch) In [11] we proved much stronger result (Theorem 2.3 in [11]) which says that there is a
formula winϕ such that if M is an expansion of ω, then Player I has a winning strategy in GM

ϕ if and only
if M |= winϕ. It is easy to transfer the result from ω-chains to finite chains. Alternatively, it is easy to
simplify this proof for finite chains. 2
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Recall that we identify a subset G of Charm(X1, X2, P̄ ) with the disjunction ∨τ∈Gτ . In particular, for
G ⊆ Charm(X1, X2, P̄ ) we write win(G) for win(∨τ∈Gτ).

For C ⊆ P(Charm(X1, X2, P̄ )) we write Win(C) for ∧G∈Cwin(G). Win(C) expresses that Player I has
a winning strategy for every G ∈ C.

Definition 4.2 (Residual). For τ ∈ Charm and G ⊆ Charm, define resτ (G) as resτ (G) := {τ ′ | τ + τ ′ ∈
G}; define Res(G) as Res(G) := {resτ (G) | τ ∈ G}.

Assume that ρ is a partial play of type τ . Player I can win resτ (G) after ρ iff she has a strategy which
ensures that every extension of ρ wins G.

Definition 4.3 (A winning strategy over a class of chains). Let st be a strategy of Player I and C be
a class of chains. We say that st wins ϕ over C iff st is a winning strategy in GM

ϕ for every M ∈ C.

Lemma 4.4. Assume that M0 and M1 are finite l-chains. If M0 |= win(G) and M1 |= Win(Res(G))
then Player I has a finite-memory strategy which wins G over the class {M0 +M1 × k | k ∈ N} of l-chains.

Proof. Let k0 and k1 be the length of M0 and M1 respectively. Consider the following strategy of Player
I:

Play first k0 rounds according to his winning strategy for win(G). For every j ∈ N if the m-type of
the play after k0 + jk1 rounds is τ then play the next k1 rounds according to the winning strategy for
win(resτ (G)).

It is easy to show by the induction on j that if a play ρ is played according to this strategy, then after
k0 + jk1 rounds its m-type is in G. Therefore, it is a winning strategy for Player I.

Player I needs only a finite memory to keep the information about the m-type of the play τi up to each
round i. After a round i she should add to τi−1 the type of the play during the round i, i.e., to add to τi−1

the m-type of one element chain expanded by the predicates ρX1
(i), ρX1

(i) and P (i). Player I can calculate
in a finite memory whether the current round number is k0 + jk1 for some j ∈ N. Hence, this strategy is a
finite-memory strategy. 2

Definition 4.5 (Game type realized by a strategy). Let M be an l-chain, st be a strategy, and G ⊆
Charm(X1, X2, P̄ ). st realizes G on M if it wins GM

G and for every m-type τ ∈ G there is a play ρ consistent
with st such that typem(M⌢ρ) = τ ,

In other words st realizes G in M, if st wins GM
G and there is no G1 ( G such that st wins GM

G1
. Recall that

for n ∈ N we also denote by n the finite chain with n elements.

Lemma 4.6. 1. If for n1 < n2 a strategy realizes G over chains n1 and n2, then Win(Res(G)) is
satisfiable over the chain n2 − n1.

2. If for n1 < n2 a strategy realizes G over n1 and wins G over n2, then Win(Res(G)) is satisfiable over
n2 − n1.

Proof. (1) follows from (2). (2) follows from the definition of Win and Definitions 4.2 and 4.5. 2

Proposition 4.7. For m ∈ N, let n be an upper bound on the quantifier depth of win(G) for every G ⊆
Charm2 , and let N0 be computed from n as in Lemma 2.9. For every i ∈ [0, N0 − 1) the following are
equivalent:

1. Player I has a finite-memory strategy which wins G over the class {t > N0 | t mod N0 = i} of finite
chains.

2. Player I has a finite-memory strategy which wins G over an infinite subclass of {t > N0 | t mod N0 =
i}.
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3. There is a finite-memory strategy which realizes G1 ⊆ G over n1 and over n2 for some n2 > n1 ≥ N0

such that n1 mod N0 = n2 mod N0 = i.

4. There is G1 ⊆ G such that N0 + i |= win(G1), and N0 |= win(G′) for every G′ ∈ Res(G1).

Proof. The implication (1) ⇒ (2) is immediate.
(2) ⇒ (3). If a strategy wins G over M then it realizes a subset of G. Since the set of subset of G is

finite, it follows that there is a subset of G which is realized infinitely often and therefore at least twice.
(3) ⇒ (4) follows from Lemmas 2.9 and 4.6.
(4) ⇒ (1) follows from Lemma 4.4. 2

Proposition 4.7 is crucial for the design of our algorithm, due the decidability of (4).

5. Algorithm

Let P be an ER predicate and let M = (N, <, P ). We are going to prove that there is an algorithm
that for every MLO formula ϕ(X1, X2, Z) decides whether Player I has a finite-memory winning strategy
in GM

ϕ , and if so constructs such a strategy. It is easy to modify our proofs and to show that it is decidable
whether Player II has a finite-memory winning strategy.

For every MLO formula ϕ(X1, X2, P ), first construct a set of the characteristic formulas G such that ϕ
is equivalent to their disjunction and then use the following algorithm.

Synthesis algorithm over M := (N, <, P ) where P is in ER

Instance: m ∈ N.
Task: Find the set Out = {G ⊆ Charm(X1, X2, P ) | Player I has a finite-memory winning strategy in
GM
G }, and for each G ∈ Out construct a finite-memory strategy st(G) which wins G over M.

In this section we describe an algorithm for the synthesis problem for the expansions of ω by ER predi-
cates.

First we describe ideas which underline the algorithm and then provide its detailed description.
Let k̄ := k0 < k1 < · · · < ki < . . . be the enumeration of the elements of an ER predicate P in the

increasing order and let M := (N, <, P ). Recall that M







I is the subchain of M over the set I. We can

represent M







[kl,∞) as the following sums of chains.

M







[kl,∞) =

∑

s∈ω

M







[kl+s, kl+s+1) =

∑

s∈ω

(

M







[kl+s, kl+s] +M








(kl+s, kl+s+1)

)

Note that M







[kl+s, kl+s] is isomorphic to the one element chain ({0}, <, {0}) and M








(kl+s, kl+s+1) is

isomorphic to an (kl+s+1 − kl+s − 1)-element linear order expanded by the empty predicate.
Since, k̄ is sparse and for every m the sequence kl mod m is ultimately periodic we obtain (by Lemma

2.9) that the sequence of n-equivalence classes of M







(kl+s, kl+s+1) is also ultimately periodic.

These observations together with Proposition 2.5 imply that for every n there is a lag ln and a period
pn such that for l > ln:

M







[kl,∞) ≡n M








[kl+pn

,∞)

Let st be a finite-memory strategy and G ⊆ Charm a winning condition. It is expressible by an MLO
formula that st wins G.

Therefore, the ω-sequence U l
st := {G ⊆ Charm | st wins G on M








[kl,∞)} is also ultimately periodic.

We will show that the ω-sequence U l := {G ⊆ Charm | there is a finite-memory strategy st which wins G
on M








[kl,∞)} is also ultimately periodic.

Similar arguments show that the sequence V l := {G ⊆ Charm | there is a finite-memory strategy st
which wins G on M








[0, kl)} is ultimately periodic.
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Our algorithm computes the (finite description) of ultimately periodic ω-sequences {U l}∞l=0 and {V l}∞l=0.
From {U l}∞l=0 and {V l}∞l=0 we can compute the desirable Out. Indeed, let l and p be a join lag and period
of these sequences. Then, G ∈ Out iff there is Gi ∈ V l+p such that for every τ ∈ Gi we have that the
residual (see Definition 4.2) resτ (G) is in U l+p. Indeed if there is such Gi then we can play the first kl+p

step according to a strategy which wins Gi on M







[0, kl+p). This will ensure that after kl+p steps our

play will be of some m-type τ ∈ Gi. Then we switch to a finite memory strategy which wins resτ (G) on
M








[kl+p,∞). This will ensure that them-type of the whole play will be in G. (Actually in the computation

of Out we only used that we can compute a lag and period l and p of ω-sequences {U i}∞i=0 and {V i}∞i=0,
and the elements U l+p and V l+p of these sequences.)

Note that there is a strategy which wins G on a finite chain M′ iff there is a finite-state strategy which
wins G on M′. Lemma 4.1 states that it is MLO definable who has a winning strategy to win a game on a
finite chain. This allows us to compute {V l}∞l=0.

The computation of {U l}∞l=0 is more subtle. Here Proposition 4.7 plays a crucial role by characterizing
who has a finite state winning strategy over a periodic class of finite (unlabeled) chains.

In the rest of this section we provide a detailed description of our synthesis algorithm. We also prove
the soundness of the algorithm, i.e., if G ∈ Out , then there is a finite-state strategy which wins G over M.
In the next section we show the reverse implication.
Conventions. Let τ(X1, X2) be an m-type for m > 0. There is the unique m-type τ∗(X1, X2, P ) such
that τ → (τ∗(X1, X2, P ) ∧ ∀t¬P (t)). The m-type of a 2-chain M is τ iff the m-type of the expansion of
M by the empty predicate is τ∗. We often will not distinguish between τ and the corresponding τ∗. In
particular, for m-type τ1(X1, X2, P ) we write τ + τ1 instead of τ∗ + τ1. We also lift this correspondence to
sets of m-types; for a set G ⊆ Charm2 we sometimes use G for the set G∗ := {τ∗ | τ ∈ G}. It will be always
clear from the context whether we refer to the type of a chain or to the type of the chain expanded by the
empty predicate.

Now we are going to describe our algorithm.
Step 1

1. Compute One :=
{

G ⊆ Charm(X1, X2, P ) | Player I has a strategy which wins G over the one element
structure ({0}, <, {0}).

For G ∈ One, we denote by st1(One, G) the corresponding winning strategy.

2. Let N0 be defined from m as in Proposition 4.7. For i = 0, . . . N0 − 1 compute CWIN i :=
{

G ⊆
Charm(X1, X2) | Player I has a finite-memory strategy which wins G over the class {t > N0 |
t mod N0 = i}

}

. This set is computable by condition (4) of Proposition 4.7.

For G ∈ CWIN i, we denote by st1(i, G) the corresponding finite-memory winning strategy; this
strategy is computable by Lemma 4.4, since the condition (4) of Proposition 4.7 holds.

Step 2 Let k̄ := k0 < k1 < · · · < ki < . . . be the enumeration of the elements of P in the increasing order.
Compute l and p such that for every n greater than l:

1. kn+1 − kn > N0 and

2. (kn+1 − kn) mod N0 = (kn+p+1 − kn+p) mod N0

3. For j < p, set dj :=
(

kl+j+1 − kl+j − 1
)

mod N0.

(To compute such l and p we need our assumption that P ∈ ER.)
Step 3 Let F : N → Gtypem(X1, X2, P ) be defined as follows:

F (i) =

{

One if i is even

CWIN dj if i = 2s+ 1 and s mod p = j

Note that F is a periodic sequence.
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Use Proposition 3.4 to compute the set U :=
{

G ⊆ Charm(X1, X2, P ) | Player I has a finite-memory

strategy which wins Game(F,G)
}

.
For G ∈ U , we denote by stmain(F,G) the corresponding finite-memory winning strategy.
Now, for G ∈ U we describe a finite-memory strategy st3(F,G) which wins G over the class {Mi :=

M







[kl+pi,∞) | i ∈ N} of chains.

We organize our description of how strategy st3(F,G) behaves on Mi := M







[kl+pi,∞) in sessions. For

s ∈ N, the session 2s is played on the one element subchain of Mi isomorphic to ({0}, <, {0}); the session
2s + 1 will be played on the subchain M








(kl+pi+s, kl+pi+s+1) which is isomorphic to the (kl+pi+s+1 −

kl+pi+s − 1)-element linear order expanded by the empty predicate.
Session 0. Let G0 be the first move of stmain(F,G). Then Player I will move according to his winning

strategy in st1(One, G0). After a move of Player II, the m-type of the partial play ρ0 is some τ0 ∈ G0.
Session 2s + 1. Let G2s+1 be the move of Player I according to stmain(F,G) after a partial play

G0τ0G1τ1 . . . G2sτ2s. Then Player I will play according to his strategy in st1(d(s mod p), G2s+1) until she
reads one on P (recall that dj , were defined in Step 2). At this point the type of a subplay ρ2s+1 during
this round will be τ2s+1 ∈ G2s+1.

Session 2s. (s > 0) Let G2s be the move of Player I according to stmain(F,G) after a partial play
G0τ0G1τ1 . . . G2s−1τ2s−1. Player I will move according to his winning strategy in st1(One, G2s). After a
move of Player II, the m-type of the partial play ρ2s during this session will be some τ2s ∈ G2s.

Observe that this is indeed a finite-memory strategy. Like in the proof of Lemma 4.4, Player I can
compute in a finite memory at each session s the m-type τs of the subplay during session s, and then after
this session supply only this m-type to stmain(F,G) (and not the whole history G0τ0 . . . Gsτs).

This strategy wins G because the sequence G0τ0 . . . Gsτs . . . played over the sessions is consistent with
the winning strategy stmain(F,G) in Game(F,G).
Step 4 We are going to compute the set V :=

{

G ⊆ Charm(X1, X2, P ) | Player I has a strategy which wins

G over M







[0, kl+pi) for some i ∈ N)

}

.
Let n be the quantifier depth of win(G).
By our choice of N0, l and p (in Step 1 and Step 2) we know that for every i:

M







[kl+i, kl+i+1) ≡n M








[kl+i+p, kl+i+1+p)

Hence, for every i:
M








[kl+pi, kl+pi+p) =

∑p−1
s=0 M








[kl+pi+s, kl+pi+s+1) ≡

n

≡n
∑p−1

s=0 M







[kl+s, kl+s+1) = M








[kl, kl+p)

Let N1 := N1(n) be defined as in Lemma 2.10. From the above equivalence, Lemma 2.10 and Proposition
2.5, it follows that for every i there is j ≤ N1 such that

M







[kl, kl+pi) ≡

n M







[kl, kl+pj)

and hence, M







[0, kl+pi) ≡

n M







[0, kl+pj).

Therefore, V =
{

G ⊆ Charm(X1, X2, P ) | M







[0, kl+pj) |= win(G) for some j ≤ N1

}

. To compute the
right hand side we solve the satisfiability problem for a finite set of formulas over a finite set of finite chains.
Hence, this is computable and therefore, V is computable.

For G ∈ V , let lG ≤ N1 be such that M







[0, kl+plG) |= win(G) and let st4(V,G) be the corresponding

strategy which wins G over M







[0, kl+plG).

Step 5 Output Out := {G ⊆ Charm(X,Y, P ) | ∃G1 ∈ V such that resτ (G) ∈ U for every τ ∈ G1}.
For every G ∈ Out we describe a finite-memory strategy st(G) which wins G over M. Assume G ∈ Out

and let G1 ∈ V be such that resτ (G) ∈ U for every τ ∈ G1. Since G1 ∈ V , there is lG1
and a strategy

st4(V,G1) which wins G1 over M







[0, kl+plG1

).
Player I will play the first l+p× lG1

rounds according to this winning strategy. Let ρ be a play according
to this strategy, and let τ be its m-type and let G2 = resτ (G). The rest of the game Player I will play
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according to his finite-memory strategy st3(F,G2) computed in the Step 3. Clearly, the described strategy
is a finite-memory strategy.

The m-type of the whole play is in τ+G2 = G. Therefore, the described strategy is winning in GM
G . This

completes the description of our algorithm and the proof that if G ∈ Out , then Player I has a finite-memory
winning strategy in GM

G .

6. Completeness of the Algorithm

In this section we prove the completeness of our algorithm, i.e., if there is a finite-memory strategy which
wins G over M, then G ∈ Out .

Definition 6.1. Let M := (N, <, P ) be a chain, I = (a, b) be an interval, G ⊆ Charm(X1, X2, P ), and let
st be a strategy of Player I.

1. We say that st can realize G on I (in M) if there is a play ρ consistent with st on M







[0, a] such that

(a) for every play ρ′ := ρρ1 which is consistent with st and extends ρ to the interval [0, b), one has
typem

(

M⌢ρ1







(a, b)

)

∈ G, and

(b) for every τ1 ∈ G there is ρ′ := ρρ1 which is consistent with st and extends ρ to the interval [0, b),
such that typem

(

M⌢ρ1







(a, b)

)

= τ1.

2. We say that st can win G on I (in M) if st can realize some G′ ⊆ G (in M).

Let M := (N, <, P ) be a chain, s̄ := s0 < s1 < · · · < si < . . . be an ω-sequence, st a strategy of Player I,
and m ∈ N.

Define H := H(s̄, st ,m) : N → Gtypem(X1, X2, P ) as follows:

G ∈ H(2i) iff st can realize G on [si, si]

G ∈ H(2i+ 1) iff st can realize G on (si, si+1)

Notations: (Shift) For a function T : N → A and i ∈ N, the i-th shift of T is the function λj. T (i+ j); we
denote the i-shift of T by T+i.

Lemma 6.2. For every M := (N, <, P ), an increasing ω-sequence s̄ := s0 < s1 < · · · < si < . . . ,
and m ∈ N, if Player’s I strategy st can win G on [si,∞) then Player I has a winning strategy in
Game(H(s̄, st ,m)+2i, G).

Proof. Since st can win G on [si,∞), there is a play ρ−1 consistent with st on M







[0, si) such that

for every play ρ′ := ρ−1ρ which is consistent with st and extends ρ−1 to the interval [0,∞), one has
typem

(

M⌢ρ







[si,∞)

)

∈ G.
Let H+2i be the 2i-shift of H(s̄, st ,m). Define the following strategy stH for Player I in Game(H+2i, G).

Roughly speaking round 2j of this strategy corresponds to the play according to st on the subchain of
M over [si+j , si+j ], and round 2j + 1 corresponds to the play according to st on the subchain of M over
(si+j , si+j+1).
Round 2j. Set R2j := {ρ | ρ2j−1ρ is a play consistent with st on the interval [0, si+j ]}. Then play
G2j := {typem(ρ) | ρ ∈ R2j}. Note that this is a legal move, since G2j ∈ H+2i(2j).

Let τ2j ∈ G2j be a response of Player II. Let ρ ∈ R2j be a play of m-type τ2j .
Set ρ2j := ρ2j−1ρ. Note that ρ2j is play consistent with st on the interval [0, si+j+1].

Round 2j + 1. Set R2j+1 := {ρ | ρ2jρ is a play consistent with st on the interval [0, si+j+1)}. Then play
G2j+1 := {typem(ρ) | ρ ∈ R2j+1}. Note that this is a legal move, since G2j+1 ∈ H+2i(2j + 1).

Let τ2j+1 ∈ G2j+1 be a response of Player II. let ρ ∈ R2j+1 be a play of m-type τ2j+1.
Set ρ2j+1 := ρ2jρ. Note that ρ2j+1 is play consistent with st on the interval [0, si+j+1).
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Since ρj+1 extends ρj for each j and all of them are consistent with st there is an ω-play ρ−1ρω which extends
all of them and is consistent with st . The m-type of ρω is in G, because the m-type of every extension of
ρ−1 consistent with st is in G. However, typem(ρω) =

∑

τi. Therefore,
∑

τi ∈ G and the described strategy
stH wins in Game(H(s̄, st ,m)+2i, G). 2

Define F := F(s̄, st ,m) : N → Gtypem(X1, X2, P ) as follows:

G ∈ F(2i) iff st can win G on [si, si]

G ∈ F(2i+ 1) iff st can win G on (si, si+1)

Let F+2i be the 2i-shift of F . Note that ∀j(H+2i(j) ⊆ F+2i(j)). Therefore, by Lemma 3.3 we obtain

Corollary 6.3. If st can win G on [si,∞) then Player I has a winning strategy in the Game(F+2i, G).

Let M := (N, <, P ) be a chain, k̄ := k0 < k1 < · · · < ki < . . . be the enumeration of P in the increasing
order, let st be a strategy of Player I, and m ∈ N.

Let H := H(k̄, st ,m). Let N0, l, p and d0, . . . , dp−1 be defined as in Step 2 of the algorithm, and let F
be defined as in Step 3. Then we have the following Lemma:

Lemma 6.4. If st is a finite memory strategy, then there is N such that for every i:
F(k̄, st ,m)+2(l+Np)(i) ⊆ F (i).

Proof. For even i the lemma deals with games over one element chain ({0}, <, {0}), hence its conclusion
holds for every even i and every N .

For j < p define the class Cj of finite chains as Cj := {kl+j+1+pi− kl+j+pi− 1 | i ∈ N}. Assume that st is
a finite state strategy with r states q1 . . . qr. For i = 1, . . . , r let us denote by stqi the strategies which has
the same update and output functions as st , and its initial state is qi.

Let us write Charm for Charm(X1, X2). For j < p define Lim(st , j) as

Lim(st , j) := { G ⊆ Charm | there are infinitely many i such that st can win G on (kl+j+1+pi −
kl+j+pi) in M}

Since Charm is finite there is N such that for every j < p and i′ > N

Lim(st, j) ⊇ {G ⊆ Charm | st can win G on (kl+j+1+pi′ − kl+j+pi′) in M}

The definition of F , the above inclusion and (1) below immediately imply that this N works.

∀s
(

s mod p = j
)

→
(

Lim(st , j) ⊆ F (2s+ 1
)

) (1)

Below a proof of (1) is given.

Lim(st , j) is a subset of

{ G ⊆ Charm | there are infinitely many i such that one of stq1 . . . stqr
can win G on (kl+j+1+pi − kl+j+pi) in M}

is equal to

r
⋃

s=1

{ G ⊆ Charm | stqs win G on an infinite subclass of Cj}
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is a subset of

{ G ⊆ Charm | Player I has a finite state strategy which wins G on infinite subclass of Cj}

(by Lemma 4.7 and the definition of l, p and dj) this is equal to

{ G ⊆ Charm | Player I has a finite state strategy which wins G on the class {t > N0 | t mod N0 = dj}}

(by the definition of CWIN d in Step 2) it is equal to CWIN dj and (by definition of F in Step 3) it is equal
to F (2s+ 1), for every s such that s mod p = j.

Now we are ready to prove the completeness of our algorithm.
Let G ⊆ Charm(X1, X2, P ) and assume that st is a finite-memory strategy of Player I which wins in

GM
G . Let N := N(st) be as in Lemma 6.4.
Let Pinit(st) := {ρ | ρ is a play according to st in M








[0, l + pN)}.

Let type-init(st) := {typem
(

(M







[0, l + pN))⌢ρ

)

| ρ ∈ Pinit(st)}.
Note that type-init(st) ∈ V , where V is defined in Step 4 of the algorithm.
We will show that for every τ ∈ type-init(st) the set resτ (G) is in U , where U is defined in Step 3 of the

algorithm. Therefore, by Step 5, we obtain that G ∈ Out .
For τ ∈ type-init(st), choose ρτ ∈ Pinit(st) such that

τ = typem
(

(M







[0, l + pN))⌢ρτ

)

.

Let Pafter(st , ρτ ) := {ρ | ρτρ is consistent with st in M}.
Let Gτ := {typem

(

(M







[l + pN,∞))⌢ρ

)

| ρ ∈ Pafter(st , ρτ )}.
st wins GM

G , therefore for every ρ ∈ Pafter(st , ρτ ) we have typem(M⌢ρτρ) ∈ G. However,
typem(M⌢ρτρ) = τ + typem

(

(M







[l + pN,∞))⌢ρ

)

, and therefore Gτ ⊆ resτ (G). On the other hand,
st can win Gτ on [l+ pN,∞) in M, Therefore, by Corollary 6.3, Lemma 6.4, Lemma 3.3 and the definition
of U in Step 3, we obtain that Gτ ∈ U . Note that if G′ ∈ U and G′ ⊆ G′′ then G′′ ∈ U . Since Gτ ∈ U and
Gτ ⊆ resτ (G) we obtain that resτ (G) ∈ U .

7. Games with a bounded look-ahead

Let M = (N, <, P ) be the expansion of ω by a unary predicate P . Let h1 and h2 be natural numbers
- look-aheads of the players. Let ϕ(X1, X2, Z) be a formula. The game GM

ϕ (h1, h2) with look-ahead h1 for
Player I and look-ahead h2 for Player II is defined as follows. The game is played by two players in ω rounds.

1. At round i ∈ N: first, Player I chooses ρX1
(i) ∈ {0, 1}; then, Player II chooses ρX2

(i) ∈ {0, 1}. Player
I can observe whether i+ h1 ∈ P and Player II can observe whether i+ h2 ∈ P

2. By the end of the play two predicates ρX1
, ρX2

⊆ N have been constructed.

3. Then, Player I wins the play if M |= ϕ(ρX1
, ρX2

, P ); otherwise, Player II wins the play.

Hence, at round i, Player I has access only to ρX1
(0), . . . , ρX1

(i − 1), ρX2
(0), . . . , ρX2

(i − 1) and
P (h1), . . . , P (h1 + i); Player II has access only to ρX1

(0), . . . , ρX1
(i), ρX2

(0), . . . , ρX2
(i − 1) and

P (h2), . . . , P (h2 + i).
If a player has a winning strategy in GM

ϕ (h1, h2) then she has a winning strategy in GM
ϕ (h′1, h

′
2) for every

h′1 and h′2 (when there is no restriction on a strategy, on its i-th move it needs to know only the moves of
the other player so far and all information about past and future bits of P can be kept in its memory). If
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Player I has a finite-memory winning strategy in GM
ϕ (h1, h2) then she has a finite-memory winning strategy

in GM
ϕ (h′1, h

′
2) for every h

′
1 ≥ h1 and h′2.

The proof of the next proposition is based on a reduction to Theorem 1.4.

Proposition 7.1. Let P be an ER predicate, h1, h2 ∈ N and let M := (N, <, P ). There is an algorithm
that for every MLO formula ϕ(X1, X2, Z) decides whether Player I has a finite-memory winning strategy in
GM
ϕ (h1, h2), and if so, constructs such a strategy.

Proof. Let P−h ⊆ N be defined as i ∈ P−h iff i+ h ∈ P .
Let M−h1

:= (N, <, P−h1
). We are going to construct a formula ϕ−h1

(X1, X2, Z) such that Player I has

a finite-memory winning strategy in GM
ϕ (h1, h2) iff Player I has a finite-memory winning strategy in G

M−h1

ϕ−h1
.

For i ≤ h1 define a formula ai as follows:

ai :=

{

True if i ∈ P

False otherwise

Let α(t, Z) be defined as

α(t, Z) :=
(

∧

i<h1

(t = i) → ai
)

∧
(

(t ≥ h1) → Z(t+ h1)
)

Define ϕ−h1
(X1, X2, Z) as

ϕ−h1
(X1, X2, Z) := ∃W (∀tW (t) ↔ α(t)) ∧ ϕ(X1, X2,W )

For π1, π2 ⊆ N we have
ω |= ϕ(π1, π2, P ) iff ω |= ϕ−h1

(π1, π2, P−h1
)

Moreover, Player I has a finite-memory winning strategy in GM
ϕ (h1, h2) iff Player I has a finite-memory

winning strategy in G
M−h1

ϕ−h1
. Note that P is an ER predicate iff P−h is an ER predicate. Hence, by Theorem

1.4. we obtain that it is decidable whether Player I has a finite-memory in strategy in GM
ϕ (h1, h2). 2

Section 1 (page 3) gives an example of the game G
Mfac
ϕ where Player I has a winning strategy, yet she

has no finite-memory winning strategy. Note that for this particular game, Player I has a finite-memory

one-look-ahead winning strategy, i.e., she has a finite-memory winning strategy in G
Mfac
ϕ (1, h2) for every h2.

In [12] we proved determinacy of McNaughton games with parameters by MLO-definable strategies. We
will prove that over every ER chain, the MLO-definable strategies coincide with the finite-memory with
look-ahead strategies. Consequently, we obtain the following Theorem.

Theorem 7.2 (Determinacy for look-ahead finite-memory strategy). Let P be an ER predicate,
and let M = (N, <, P ). For every MLO formula ϕ(X1, X2, Z) there is h such that one of the players
has a finite-memory with look-ahead h winning strategy in GM

ϕ . Furthermore, there is an algorithm that

computes such h and a finite-memory winning strategy for the winner in GM
ϕ (h, h).

In the next subsection we recall the main definability result of [12], and state a lemma which is used to
derive Theorem 7.2 from the results of [12]. The proof of this lemma is postponed to subsection 7.2.

7.1. MLO-definable strategies

Recall that in a McNaughton game at round i, Player I has access only to the moves ρX2
(0) . . . ρX2

(i−1)
of Player II, and Player II has access only to the moves ρX1

(0) . . . ρX1
(i) of player I. Therefore, the following

formalizes well the notion of a strategy in this game:

Definition 7.3 (Causal operator). Let F : P(N) → P(N) maps the subsets of N into the subsets of N.
We call F causal (resp. strongly causal) iff for all ρ, ρ′ ⊆ N and i ∈ N:
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if ρ ∩ [0, i] = ρ′ ∩ [0, i] (resp. ρ ∩ [0, i) = ρ′ ∩ [0, i)), then

F (ρ) ∩ [0, i] = F (ρ′) ∩ [0, i].

That is, if ρ and ρ′ agree up to and including (resp. up to) i, then F (ρ) and F (ρ′) do so.

An operator F : P(N) → P(N) is implicitly defined by a formula ψ(X,Y, P ) over a structure M = (N, <, P )
if for any ρ1, ρ2 ⊆ N we have

F (ρ1) = ρ2 iff M |= ψ[ρ1, ρ2]

and F is implicitly MLO definable over M iff it is defined by an MLO formula over M. An operator F is
explicitly defined by a formula α(X,P, t) over the structure M if for every ρ1, ρ2 ⊆ N the following holds:

ρ2 = F (ρ1) iff M |= ∀t(ρ2(t) ↔ α(ρ1, t)).

Note that if F is implicitly defined by ψ(X,Y, P ) over M then it is explicitly defined by ∃Y ψ ∧ Y (t). If F
is explicitly defined by α(X, t, P ), then it is implicitly defined by ∀t(Y (t) ↔ α).

Our proof of Theorem 7.2 is based on the following Theorem (cf. Theorem 2.3 in [12]) and does not rely
on Theorem 1.4.

Theorem 7.4. There is an algorithm that given a formula ϕ(X1, X2, Z) constructs a sentence WIN II
ϕ (Z)

and formulas StIϕ(X2, t, Z) and StIIϕ (X1, t, Z) such that for every structure M = (N, <, P ) Player II wins

the game GM
ϕ iff M |= WIN II

ϕ . Moreover, if Player II wins GM
ϕ , then StIIϕ defines his winning strategy;

otherwise, StIϕ defines a winning strategy of Player I.

Lemma 7.5. Let α(X2, t, Z) be a formula. Assume that P is an ER predicate and α defines a causal or
strongly causal operator in M := (N, <, P ). Then

1. There is N0(α) and a finite-memory strategy with look-ahead N0 which computes the operator definable
by α.

2. Furthermore, N0(α) and a finite-state transducer for st are computable from α and P .

We prove Lemma 7.5 in the next subsection.
Theorem 7.2 immediately follows from Theorem 7.4 and Lemma 7.5. It is clear that h can be defined as

h := max
(

N0(St
I
ϕ(X1, X2, Z)), N0(St

II
ϕ (X1, X2, Z))

)

.

7.2. Proof of Lemma 7.5

We are going to prove Lemma 7.5 for the case when α defines a causal operator. It is easy to modify the
proof for strongly causal operators. We also assume that P is an infinite subset of N. The case when P is
finite is simpler.

For an infinite P ⊆ N define a function succP : N → N as follows:

succP (i) := min(j ∈ P | j > i)

Let M := (N, <, P ) be a chain and a ∈ N. M can be represented as the sum of three chains:

M = M







[0, a] +M








(a, succP (a)) +M








[succP (a),∞)

As an instance of the Composition Theorem for the case when the index structure has three elements we
obtain that for every α(X, t, Z) there is a finite set of tuples of formulas

(

τ i1(X, t, Z), τ
i
2(X,Z), τ

i
3(X,Z)

)

(i < k) such that for every Q,P ⊆ N and a ∈ N:
M |= α(Q, a, P ) if and only if there is i such that

1. M







[0, a] |= τ i1(Q, a, P ) and
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2. M







(a, succP (a)) |= τ i2(Q,P ) and

3. M







[succP (a),∞) |= τ i3(Q,P ).

Note that if α(X, t, Z) defines a causal operator in M then M |= α(Q, a, P ) iff M |= α(Q′, a, P ), where
Q′








[0, a] = Q








[0, a] and Q′ is empty on (a,∞). Note also that P is empty on the interval (a, succP (a)).

Therefore, we obtain

Lemma 7.6. Assume that α(X, t, Z) defines a causal operator on M := (N, <, P ). Then there is a finite
set of tuples of formulas

(

βi
1(X, t, Z), β

i
2, β

i
3(Z)

)

(for i < k) such that for every a ∈ N and Q ⊆ N: M |=
α(Q, a, P ) if and only if there is i such that

1. M







[0, a] |= βi

1(Q, a, P ) and

2. The chain with (succP (a)− a− 1) elements satisfies βi
2 and

3. M







[succP (a),∞) |= βi

3(P ).

We are going to show that if P is an ER predicate, then each of the conditions in the above lemma is
computable by a finite-memory operator with a look-ahead.

First, by the equivalence between MLO and finite automata over the class of finite chains we obtain
Claim 1. For every β(X, t, Z) there is a finite memory strategy st for Player II such that for every a ∈ N

and Q ⊆ [0, a] if Q is a sequence of the first a moves of Player I in the McNaughton game on M then st
outputs 1 at a-th move iff M








[0, a] |= βi

1(Q, a, P ).
The next Claim deals with the second condition.
Claim 2. For every sentence β and every ER predicate P there is N0 ∈ N and a finite memory strategy

st for Player II with look-ahead N0 such that for every a ∈ N, st outputs 1 at a-th move in the McNaughton
game on (N, <, P ) iff β is satisfiable on a linear order with (succP (a)− a− 1) elements.

Proof of Claim 2. Let n be an upper bound on the quantifier depth of β and let N0 := N0(n) be as in
Lemma 2.9. Then there is R ⊆ {0, N0 − 1} such that for every m ≥ N0, an m-element linear order satisfies
β iff m mod N0 ∈ R. Let S := {i < N0 | β is satisfiable on the i-element chain}.

We are going to describe a finite-memory strategy with look-ahead N0 which satisfies the conclusion of
Claim 2.

Let k̄ := k0 < k1 < · · · < ki < . . . be the enumeration of the elements of P in the increasing order.
Let l′ be such that ki+1 − ki > N0 for every m > l′. The sequence, ki+1 − ki mod N0 is ultimately

periodic with a lag l > l′ and period p. For j < p, set dj :=
(

kl+j+1 − kl+j − 1
)

mod N0.
The desirable strategy st behaves as follows. For each a < kl it computes whether β is satisfiable on a

chain with (succP (a)− a− 1) elements, and outputs 1 on the round a if so.
For a ≥ kl it uses its finite memory to calculate j < p such that the current round a is in interval

[km, km+1) for j = m− l mod p. When we are inside an interval [km, km+1), on every round a we compute
ra := a−km−dj mod N0 until km+1−a < N0. We need a finite memory to compute ra and N0-look-ahead
to check whether km+1 − a < N0. If km+1 − a ≥ N0 then we output 1 if (dj − ra) mod N0 ∈ R and 0
otherwise. When km+1 − a < N0 we output 1 if km+1 − a ∈ S and 0 otherwise. 2

The next claim asserts that the third condition of Lemma 7.6 can be computed by a finite memory
strategy without look-ahead.

Claim 3. For every formula β(Z) and every ER predicate P there is a finite memory strategy st for
Player II such that for every a ∈ N, st outputs 1 at a-th move in the McNaughton game on (N, <, P ) iff
M








[succP (a),∞) |= β(P ).

Proof of Claim 3. Let n be an upper bound on the quantifier depth of β and let N0 := N0(n) be as in
Lemma 2.9. Let k̄ := k0 < k1 < · · · < ki < . . . be the enumeration of the elements of P in the increasing
order.

Let l′ be such that ki+1 − ki > N0 for every m > l′ The sequence, ki+1 − ki mod N0 is ultimately
periodic with a lag l > l′ and period p. For j < p, set dj :=

(

kl+j+1 − kl+j − 1
)

mod N0. Then for m ≥ l,

M







[km, km+1) is ≡

n -equivalent to a chain Lj := ({0, 1, . . . N0 + dj}, <, {0}), where j = m− l mod p. By
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Proposition 2.5, ≡n is a congruence with respect to the sum of chains; hence, if m > l and j = m− l mod p,
then M








[km,∞) =

∑

i∈ω M







[km+i, km+i+1) is ≡

n-equivalent to the periodic chain M′
j := (Lj + Lj+1 +

· · ·+ Lp−1 + L0 + · · ·+ Lj−1)× ω. For j < p define sj as 1 if M′
j |= β, and as 0 otherwise.

The desirable strategy st behaves as follows. For each a < kl it outputs 1 on the round a if β is satisfiable
on M








[succP (a),∞) and outputs 0 otherwise.

For a ≥ kl it uses its finite memory to calculate j < p such that a current move a is in interval [km−1, km)
for j = m− l mod p and outputs sj . 2

Now, we are ready to prove Lemma 7.5. Assume that α(X2, t, Z) defines a causal operator in M :=
(N, <, P ). We can compute

(

βi
1(X, t, Z), β

i
2, β

i
3(Z)

)

(i < k) as in Lemma 7.6.
By Claims 1-3, for each βi

j (for i < k and j ∈ {1, 2, 3}) we can compute the corresponding finite-memory

with a look-ahead strategy st ij . Let N0 be an upper bound on the look-aheads of all these strategies. On

each round we can calculate the output of all strategies st ij . If there is i such that the output of sti1, st
1
2 and

st i3 is 1, then we output 1; otherwise, we output 0. It is clear that this strategy st computes the operator
definable by α. We need only finite memory to implement st , and st uses look-ahead N0.

8. Conclusion

We proved that the finite-memory synthesis problem is decidable for the expansions of ω by predicates
from ER. Let k ∈ N and Pk be the union of {n! | n ∈ N} and {n! + k | n ∈ N}. For every k > 0, the
predicate Pk is not sparse and hence it is not an ER predicate. However, a slight modification of our proof
shows that the finite-memory synthesis problem is decidable for Mk := (N, <, Pk). It is more difficult to
prove that the finite-memory synthesis problem is decidable for M := (N, <, P ), where the characteristic
function of P is the concatenation of Un := (0n1)n (for n ∈ N). The predicate P is sparse, but it is not
residually ultimately periodic.

In [12] it was proved that the decidability of the monadic theory of M is equivalent to the decidability
of the recursive strategy synthesis problem for M.

The question whether the decidability of the monadic theory of M implies the decidability of the finite-
memory synthesis problem for M remains open.

A natural question to consider is the synthesis problem for strategies between finite-memory and recursive
ones, e.g., the strategies computable by push-down automata [21].

The use of the composition method in our proof can be hidden and a presentation can be given based
on automata theoretic concepts. The logical n-types can be replaced by “n-types”, using semigroups or
automata rather than formulas to describe properties of words. However, such a proof would be unnatural.
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