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1. INTRODUCTION AND SUMMARY OF RESULTS

The compositional approach reduces the verification of a property ϕ of a system
C(S1, . . . , Sn) assembled from the components S1, . . . , Sn to the verification of
other properties ϕ1, . . . , ϕn of the components. There are two parameters here:
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2 • A. Rabinovich

(1) The specification language Lspec in which properties are formulated.

(2) The collection of operations OP by which a complex system can be assembled
from its components.

The ideal dream of compositionality (composition theorem) is to find an algo-
rithm which for every formula ϕ ∈ Lspec and every n-ary operator C ∈ OP will
construct formulas ϕ1, . . . , ϕn such that C(S1, . . . , Sn) satisfies ϕ iff S1 satisfies
ϕ1, S2 satisfies ϕ2, . . . , and Sn satisfies ϕn.

In a seminal article, Feferman and Vaught [1959] introduced a generalized
product of structures. The generalized product encompasses a great variety
of algebraic constructions. The Feferman-Vaught composition theorem reduces
the first-order theory of the generalized product to the first-order theory of
the component structures (factors) and the monadic second-order theory of the
index structure. In the Feferman-Vaught composition theorem, Lspec is first-
order logic and OP consists of all generalized products.

First-order logic is not very appropriate for the specification of concurrent
and reactive systems because it distinguishes between bisimulation equivalent
systems (it is often argued that bisimulation invariant systems are indistin-
guishable for all reasonable notions of observation). Multimodal logic has the
same expressive power as the bisimulation invariant fragment of first-order
logic [van Benthem 1976].

We aim to explore the applicability of compositional methods in the area of
verification. We will show that the composition theorem is realizable when the
specification language Lspec is multimodal logic and the set of operations OP
consists of a wide variety of product (“parallel composition”) operators. On the
other hand, we will show that if Lspec can express “there is a path such that all
the nodes of the path have a property p,” then (even a nonalgorithmic version
of) the composition theorem fails for very simple parallel operators.

In recent years, products of modal logics corresponding to products of Kripke
frames were actively studied. Axiomatization, decision, and complexity prob-
lems for products of multimodal logics were investigated (see a comprehensive
survey by Gabbay and Shehtman [1998]).

Recall that a Kripke frame for basic modal logic is a structure F = 〈F, R〉,
where F is a set of states and R is a binary relation (the accessibility re-
lation) on F . A Kripke structure over a frame F = 〈F, R〉 is a structure
K = 〈F, R, P1, . . . , Pi, . . .〉, where Pi is a subset of F , which provides the
interpretation of a propositional variable pi in the structure. Reactive and con-
current systems such as computer hardware or software systems which exhibit
nondeterministic behavior are typically represented by Kripke structures.

Suppose we need to combine two frames F1 = 〈F1, R1〉 and F2 = 〈F2, R2〉
into a complex frame F . A natural way of combining is as follows. Let the states
F of F be F1 × F2 and define two accessibility relations on F : The first is for
the accessibility relation of F1, where F2 states are fixed and the second is for
the accessibility relation of F2, where F1 states are fixed (see Section 2.1 for a
more detailed definition).

From the computer science point of view, it is more interesting to study
products of Kripke structures instead of products of Kripke frames. Suppose
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we need to combine two Kripke structures K1 = 〈F1, R1, P1
1 , . . . , P1

j , . . .〉, K2 =
〈F2, R2, P2

1 , . . . , P2
j , . . .〉 into a complex Kripke structure. A natural way is to

take the product of their frames 〈F1, R1〉 and 〈F2, R2〉 and then to specify
how the interpretation of monadic predicates over F1 × F2 is defined by the
interpretations of the monadic predicates in K1 and K2 (see Section 2.1 for a
more detailed definition).

In Section 2.2 we illustrate the composition theorem in a very simple con-
text. As the set of operations, we take the products of Kripke structures (these
products correspond to parallel composition operations without communica-
tion). We will show (Theorem 2) that for the products of Kripke structures, the
composition theorem holds. In other words, Theorem 2 reduces the verification
of a multimodal formula ϕ over the products to the verification of modal proper-
ties (computable from ϕ) over the components of the product. A variant of this
theorem was independently obtained by Gabbay and Shechtman [1999].

In Section 2.3 some simple applications of the composition theorem are pro-
vided. We will address two computational problems associated with the prod-
ucts. The first is the model-checking problem (MCP) over a product σ : Given a
sequence K1 . . . Kn of finite state Kripke structures, a state s in their σ product
and a modal formula ϕ determine whether the state s satisfies ϕ. The second
problem is the satisfiability problem: Given a formula ϕ and an n-ary product
operation σ , determine whether there are Kripke structures K1, . . . , Kn such
that ϕ is satisfiable in their σ product.

As a consequence of the composition theorem, we obtain an algorithm for the
model-checking problem over products of time complexity O(g (|ϕ|) × (|K1| +
|K2| + · · · + |Kn|)), where g is a recursive function (we found only a non-
elementary upper bound on g , see notes after Theorem 2). Hence, for MCP
over products, there is no need to construct the product Kripke structure which
has size |K1|×· · ·×|Kn|. Therefore, the state explosion problem for multimodal
logic can be avoided.

Another consequence of Theorem 2 is that the satisfiability problem over the
product of Kripke structures is decidable.

In Section 2.4 we show that the composition theorem fails for simple product
operations when multimodal logic is replaced by a more expressive specifica-
tion formalism. The expressive power of multimodal logic is weak. It can only
express local properties. In particular, there is no multimodal formula which
holds at a state s in a structure K iff there is a path from s such that all the
nodes of the path have the property p. It is shown in Section 2.4 that the com-
position theorem fails for any logic which can express this property, however,
the composition theorem still holds for the extension of multimodal logic by the
reachability modality. The result provides a very sharp bound on the limitation
of compositional methods.

In Section 3 we provide a definition of the generalized product of Kripke struc-
tures. The generalized product construct encompasses a wide variety of parallel
composition operators. We state the composition theorem for multimodal log-
ics and generalized products. We also show that the composition theorem fails,
even over simple instances of the generalized product for any extension of mul-
timodal logics which can express reachability. In some sense, the article begins
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again in Section 3. The results obtained in the previous section are reproved in
a much more general framework. The product operations considered in Section
2 are almost trivial instances of the generalized product. We believe that for a
didactic purpose, it is helpful first to illustrate the compositional theorem and
its consequence in the simplest framework (as was done is Section 2) and only
afterwards to show the framework in its full generality (with many complex
and nontrivial definitions).

In Section 4, we provide applications of the composition theorem of Section 3
for parametric model-checking.

Section 5 concludes the article.

2. COMPOSITION OF N-ARY PRODUCT

2.1 Preliminaries

The n-modal logic is propositional multimodal logic with unary operators
♦1, ♦2, . . . , ♦n. Formulas of this language (n-modal formulas) are constructed
from propositional variables by the Boolean operations and modalities. Frames
for n-modal logic are structures of the form F = 〈F, R1, . . . , Rn〉, where Ri

(for i = 1, . . . , n) is a binary relation on F . A Kripke model over an n-frame
F = 〈F, R1, . . . , Rn〉 is a structure K = 〈F, R1, . . . Rn, P1, . . . Pi . . .〉, where Pi

are subsets of F . F is the universe of the Kripke structure; the elements of
F are called states or worlds; Ri is a binary (accessibility) relation, and Pi is
the interpretation of a propositional variable pi in the structure. The inductive
definition of “formula ϕ is true at state s in a structure K ” is the standard, for
example, the clause for ♦i is as follows:

K , s |= ♦iϕ iff there is s′ such that sRis′ and K , s′ |= ϕ

Sometimes it is more convenient to index accessibility relations by the elements
of a set A, rather than by natural numbers. Hence, an A frame is a structure
〈F, {Ra : a ∈ A}〉, where Ra are binary relations on F ; the elements of A
are called actions. Similarly, monadic predicates on a frame are sometimes
indexed by the elements of a set V . An (A, V ) Kripke structure is a structure
〈F, {Ra : a ∈ A}, {Pv : v ∈ V }〉, where Ra are binary relations on F and Pv

are subsets of F .
An (A, V ) Kripke structure is finite if A, V and its set of states are all finite.

The size of an (A, V ) Kripke structure K is denoted by |K | and is defined as
usual (for example, we can describe the transition relation of such an (A, V )
Kripke structure as an array with one entry for every node; the entry for a
node u contains a list of all pairs 〈a, w〉 such that Ra(u, w); the size of K can
be defined as the number of bits needed to describe the transition relation plus
the number of bits needed to describe the subsets Pv for v ∈ V ). Whenever A
and V are clear from the context or are irrelevant, we use a “Kripke structure”
for an “(A, V ) Kripke structure.”

The formulas of (A, V ) modal logic (notation ML(A, V )) are constructed from
the set pv (v ∈ V ) of propositional variables by the Boolean operators and unary
modalities ♦a (a ∈ A). The semantics is defined as for n-modal logic.
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Product of frames and of Kripke structures. Given one-framesF1 = 〈S1, R1〉,
. . . , Fn = 〈Sn, Rn〉, their product F1 × · · · × Fn is defined to be the n-frame
〈S1 × · · · × Sn, R̄1, . . . , R̄n〉, where R̄i is the following relation on S1 × · · · × Sn:

〈s1, . . . , sn〉R̄i〈s′
1, . . . , s′

n〉 iff si Ris′
i and sj = s′

j for j �= i.

Let K1 = 〈S1, R1, P1
1 , . . . , P1

j , . . .〉, . . . , Ki = 〈Si, Ri, Pi
1, . . . , Pi

j , . . .〉, . . . , Kn =
〈Sn, Rn, Pn

1 , . . . , Pn
j , . . .〉 be Kripke structures over one-frames F = 〈S1, R1〉,

. . . , Fi = 〈Si, Ri〉, . . . , Fn = 〈Sn, Rn〉. Their product is a Kripke structure over
the frame F1 × · · · ×Fn. The interpretation Pm of the propositional variable pm

in the product is defined by the interpretation of the propositional variables in
the factor structures. A natural way to define an interpretation for pk can be
provided by a Boolean formula αk over Boolean variables {pj

i : j = 1, . . . , n}.
A state 〈s1, . . . sn〉 will be in Pk iff αk holds whenever pj

i is defined as:

pj
i =

{
True if sj ∈ P j

i
False otherwise

Therefore, we define the product for Kripke structures over one-frames as
follows.

Definition 1 (n-ary Product—Syntax). An n-ary product operator is a func-
tion σ which assigns to variables pk a Boolean formula ασ (pk ) over variables

{pj
i : j = 1, . . . , n}.
The semantics of the product is defined as follows. Let σ be a product operator.

Let K1 = 〈S1, R1, , P1
1 , . . . P1

j . . .〉, . . . , Kn = 〈Sn, Rn, , Pn
1 , . . . Pn

j . . .〉 be Kripke
structures over one-frames. Their σ product �σ

i=1,...,nKi is defined to be the

structure 〈S1 ×· · ·× Sn, R̄1, . . . , R̄n, . . . Pi . . .〉, where R̄i (i = 1, . . . , n) is defined
as in the product of one-frames and Pk is the following unary relation on S1 ×
· · · × Sn: The 〈s1, . . . , sn〉 ∈ Pk if ασ (pk ) holds under the interpretation of its
Boolean variables, as explained previously.

The products of k-frames (and of Kripke structures over k-frames) are de-
fined similarly to the products of one-frames. For k-frames F1, . . . , Fn, their
product F1 × · · · × Fn has n × k accessibility relations (one accessibility rela-
tion for each accessibility relation of every factor). In Sections 2.2–2.4, the re-
sults are stated for Kripke structures over one-frames. However, all theorems
and their proofs are easily extended to the products of Kripke structures over
k-frames.

2.2 Composition Theorem for n-ary Product

THEOREM 2 (COMPOSITION THEOREM FOR THE PRODUCT). Let σ be an n-ary
product operator. For every formula ϕ of n-modal logic, there is a finite set I and
one-modal formulas ϕ

j
i (i ∈ I , j = 1, . . . , n) such that for every sequence of Kripke

structures K1 = 〈S1, Ri, P1
1 , . . . , P1

l , . . .〉, . . . , Kn = 〈Sn, Rn, Pn
1 , . . . , Pn

j , . . .〉
over one-frames and every 〈s1, . . . , sn〉 ∈ S1 × · · · × Sn

�σ
i=1,...,nKi, 〈s1, . . . , sn〉 |= ϕ
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6 • A. Rabinovich

if and only if for some i ∈ I and all j = 1, . . . , n

K j , sj |= ϕ
j
i .

Moreover, the formulas ϕ
j
i are computable from ϕ and σ .

Remarks. (1) The composition theorem reduces verification of ϕ in a product
to a finite set of cases. For each case, we only have to verify formulas on the
components of the product. (2) The best upper bound on the number of cases
which we were able to extract from the following proof is exp|ϕ|(1), where |ϕ| is
the length of the formula ϕ and expm(k) is m-time iterated exponential function

(e.g., exp2(k) = 22k
).

PROOF. We prove the theorem by induction on ϕ. For atomic ϕ, it is clear from
the definition and the observation that any Boolean formula over propositional
variables {pj

h : j = 1, . . . , n} is equivalent to a finite disjunction of the form∨
i∈I (α1

i ∧α2
i ∧ . . .∧αn

i ), where α
j
i is a formula that contains only variables from

{pj
h : h-arbitrary}.
For disjunction, inductively assume that the theorem holds for ψ and θ . Let

ψ
j

i (i ∈ I1) and θ
j

i (i ∈ I2) be the sequences of formulas correlated with ψ and
θ . Without loss of generality, we can assume that I1 and I2 are disjoint. Put
I = I1 ∪ I2, and define:

ϕ
j
i =

{
θ

j
i if i ∈ I1

ψ
j

i if i ∈ I2

It is easy to check that the theorem holds when we correlate ϕ
j
i (i ∈ I1 ∪ I2) with

θ ∨ ψ .
For negation, inductively assume that the theorem holds for ψ and let ψ

j
i

(i ∈ I ) be a sequence of formulas correlated with ψ . Let P(I ) be the set of all
subsets of I . Let H be the set of functions from {1, 2, . . . , n} into P(I ), defined
as follows:

H �= {h ∈ {1, 2, . . . , n} → P(I ) : ∀i ∈ I∃ j ∈ {1, 2, . . . , n}(i �∈ h( j )}
For h ∈ H, define:

ϕ
j
h

�=
∧

i∈h( j )

ψ
j

i ∧
∧

i �∈h( j )

¬ψ
j

i

It is easy to check that the theorem holds when we correlate ϕ
j
h (h ∈ H) with

¬ψ .
Finally, for modality ♦m, let ψ

j
i (i ∈ I ) be a sequence of formulas correlated

with ψ . For i ∈ I , define:

ϕ
j
i

�=
{

ψ
j

i if j �= m
♦mψm

i if j = m

It is easy to check that the theorem holds when we correlate ϕ
j
i (i ∈ I ) with

♦mψ .
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2.3 Model-Checking and Satisfiability Over Products

Recall that an n-ary product operator (see Definition 1) is defined by that a
function σ . Throughout this section we will assume that σ is recursive (this
is always the case for structures with a finite number of accessibility relation
names and monadic predicate names). Given an n-ary product operator σ , the
model-checking problem over σ is the following decision problem:

Input: A sequence K1, . . . , Kn of finite state Kripke structures, a sequence
s1, . . . , sn of states (si is a state of Ki), and an n-modal formula ϕ.

Question: Determine whether the state 〈s1, . . . , sn〉 of �σ Ki satisfies ϕ.

A naive algorithm for the model-checking problem will first construct the prod-
uct K of Ki and then evaluate the formula ϕ in K .

Note that the first step of this algorithm has space and time complex-
ity O(|K1| × · · · × |Kn|). Hence, even for a fixed formula ϕ, this algorithm is
exponential.

Recall the following theorem which was first proved in Clarke and Emerson
[1981]:

THEOREM 3. There is an algorithm that given a finite Kripke structure K , a
state s of K , and a modal formula ϕ, decides whether K , s |= ϕ in time O(|K | ×
|ϕ|).
Theorem 3, together with the composition theorem, implies the following result.

THEOREM 4. The model-checking problem over σ product can be decided in
time O(g (|ϕ|) × (|K1| + |K2| + · · · + |Kn|)), where g is a recursive function.

Now let us consider the satisfiability problem over products. First, recall
Theorem 5 from Ladner [1977] and Theorem 6 from Hirsch et al. [2002].

THEOREM 5. The satisfiability problem for modal logic is PSPACE-complete.

THEOREM 6 (SATISFIABILITY OVER THE PRODUCTS OF FRAMES IS UNDECIDABLE). It
is undecidable whether for a modal formula ϕ, there are frames F1, F2, F3 such
that ϕ is satisfiable in a Kripke structure over the frame F1 × F2 × F3.

Theorem 6 contrasts with the next theorem, which follows from Theorem 5
and from the composition theorem.

THEOREM 7 (SATISFIABILITY OVER PRODUCTS OF KRIPKE STRUCTURES IS DECIDABLE).
Let σ be an n-ary product operator. There is an algorithm that decides whether
an n-modal formula ϕ is satisfiable in the σ product of Kripke structures.

Let C1, . . . , Cn be classes of Kripke structures. The σ product �σ Ci of C1, . . . ,
Cn is the class {�σ Ki : Ki ∈ Ci for i = 1, . . . , n} of Kripke structures. Consider
the following refinements of the satisfiability problem.

Satisfiability problem over �σ Ci: Given an n-modal formula ϕ, decide whether
ϕ is satisfiable in the class �σ Ci.

From the composition theorem, it follows.
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8 • A. Rabinovich

COROLLARY 8. The satisfiability problem over the class �σ Ci of structures is
recursively reducible to the satisfiability problems over the classes C1, . . . , Cn.

PROOF. Given a formula ϕ, construct formulas ϕ
j
i which correspond to ϕ by

Theorem 2. The formula ϕ is satisfiable in �σ Ci if and only if there is i such
that for every j = 1, . . . , n, the formula ϕ

j
i is satisfiable over the class Cj .

2.4 Composition Theorem Fails for Expressive Logics

The expressive power of multimodal logic is weak. It can only express local
properties. Recall that a partial path in a structure K is a (finite or infinite)
sequence s0, . . . , si, . . . of nodes such that ∀i∃ j (si R j si+1). A state s′ is at distance
≤ d from s if there is a partial path of length ≤ d which starts at s and ends at
s′. For every modal formula ϕ, there is a number d (= the modal depth of ϕ) such
that the truth value of ϕ at a state s of K is determined by the substructure of
K over the states at the distance, at most, d from s.

Recall that a path is a partial path which is either infinite or is finite and no
node is accessible from its last state. From the preceding observation, it follows
that none of the following properties (of a state s of a Kripke structure) are
expressible in multimodal logic:

— EFp: There is a finite partial path which starts at s such that its last node
has the property p. In other words, EFp holds at s iff a node with property p
is reachable from s.

— EGp: There is a path which starts at s such that all the nodes of the path
have the property p.

— p UNTIL q: There is a partial path which starts at s such that its last node
has the property q and all the other nodes have the property p.

The next theorem shows that the composition theorem holds for the extension of
n-modal logic with the modality EF. However, the main result of this subsection
(Theorem 11) states that the composition theorem fails for any logic which can
express the property EGp (a similar result holds for the property p UNTIL q).

THEOREM 9 (COMPOSITION THEOREM FOR EF). Let σ be an n-ary product oper-
ator. For every formula ϕ of the extension of n-modal logic, by the modality EF,
there is a finite set I and formulas ϕ

j
i (i ∈ I , j = 1, . . . , n) in the modal logic

with the modalities ♦1 and EF such that for every sequence of Kripke struc-
tures K1 = 〈S1, Ri, P1

1 , . . . , P1
j , . . .〉, . . . , Kn = 〈Sn, Rn, Pn

1 , . . . , Pn
j , . . .〉 over

one-frames and every 〈s1, . . . , sn〉 ∈ S1 × · · · × Sn:

�σ
i=1,...,nKi, 〈s1, . . . , sn〉 |= ϕ

if and only if for some i ∈ I and all j = 1, . . . , n:

K j , sj |= ϕ
j
i .

Moreover, the formulas ϕ
j
i are computable from ϕ and σ .

PROOF. We prove the theorem by induction on ϕ. The case of atomic formulas
and the inductive steps for disjunction, negation, and ♦i is exactly like in the
proof of Theorem 2.
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On Compositionality and Its Limitations • 9

The case of EF is treated as follows. Let ψ
j

i (i ∈ I ) be a sequence of formulas
correlated with ψ . For i ∈ I , define:

ϕ
j
i

�= EFψ
j

i

It is easy to check that the inductive assertion holds when we correlate ϕ
j
i (i ∈ I )

with EFψ .

Now we are going to show that the composition theorem fails for any logic
which can express EGp.

The idea of the proof is as follows. We define a formula ψ , a binary product
operator ×σ , and an infinite family {Cj : j ∈ Nat} of Kripke structures with
a common state s0 such that:

The state 〈s0, s0〉 of Ci ×σ Cj satisfies ψ if and only if i = j . (1)

From Eq. (1), the failure of the composition theorem for any logic L that can
express ψ is derived as follows. For the purpose of the contradiction, assume that
the composition theorem holds for L. Then there is a finite family of formulas
φi

1, φi
2 (i ∈ I ) such that:

K1×σ K2, 〈s1, s2〉 |= ψ if and only if (2)

K1, s1 |= φi
1 and K2, s2 |= φi

2 for some i ∈ I

Define an equivalence relations on {Cj : j ∈ Nat} as follows: Cj and Cj ′ are
equivalent iff s0 in Cj and s0 in Cj ′ satisfy the same formulas from φi

1 (i ∈ I ),
that is, Cj , s0 |= φi

1 ⇐⇒ Cj ′ , s0 |= φi
1 for all i ∈ I .

Since φi
1 (i ∈ I ) is a finite set of formulas, the aforementioned equivalence

partitions the infinite set {Cj : j ∈ Nat} of Kripke structures into a finite set of
equivalence classes. Hence, there is a nonsingular equivalence class, that is, an
equivalence class that contains at least two elements Cj , Cj ′ for j �= j ′ (actually,
there is a class that contains an infinite number of different elements).

From Eq. (1) we have that Cj ×σ Cj , 〈s0, s0〉 |= ψ and Cj ′×σ Cj , 〈s0, s0〉 |= ¬ψ .
However, from Eq. (2) and the fact that 〈s0, Cj 〉 and 〈s0, Cj ′ 〉 are indistinguish-
able by formulas from φi

1 (i ∈ I ), it follows that Cj ×σ Cj , 〈s0, s0〉 |= ψ iff
Cj ′×σ Cj , 〈s0, s0〉 |= ψ . Contradiction.

Actually, the previous arguments can be easily modified for weaker assump-
tions: It is sufficient to provide two infinite families of distinct structures
{Cj : j ∈ Nat} and {D j : j ∈ Nat} and replace Eq. (1) by the condition
“Ci×σ D j , 〈s0, s0〉 |= ψ if and only if i = j .”

Now we are going to complete the preceding sketch by providing the appro-
priate details. We are going to define an infinite family of structures Ci and an
appropriate binary product ×σ .

Consider a Kripke structure Cn = 〈S, R, P0, P1, P2〉 defined as follows:

—States: The universe S is {1, 2, 3, . . . , 3n}.
—Accessibility Relation: R is interpreted as the successor relation on S, that

is, R = {〈i, i + 1〉 : i = 1, . . . , 3n − 1}.
—Monadic Predicates: P0 = {i ∈ S : i mod 3 = 0}, P1 = {i ∈ S : i mod 3 = 1}

and P2 = {i ∈ S : i mod 3 = 2}.
ACM Transactions on Computational Logic, Vol. 8, No. 1, Article 4, Publication date: January 2007.



10 • A. Rabinovich

Fig. 1. The p-property nodes of C2 ×σ C3 are drawn in black. The partial path whose all nodes

have a property p is drawn.

Consider a binary product σ which defines P on the product as follows: 〈s1, s2〉
is in P iff

s1 has the property p0 and s2 has the property p0 ∨ p1, or
s1 has the property p1 and s2 has the property p1 ∨ p2, or

s1 has the property p2 and s2 has the property p2 ∨ p0.

The reader is invited to write down the corresponding formal definition for
this product. Figure 1 shows the product of C2 ×σ C3. The following lemma is
immediate.

LEMMA 10. The state 〈1, 1〉 of Cn×σ Cm satisfies EGp if and only if n = m.

PROOF. First observe that the node 〈3n, 3m〉 is the last node in every (full)
path in the structure Cn ×σ Cm.

Note also that the set H of nodes reachable from 〈1, 1〉 by a partial path with
all nodes having property p is:

H = {〈i, i〉 : i ≤ 3 × min(n, m)} ∪ {〈i, i + 1〉 : i < 3 × min(n, m)}
Therefore, if n �= m, there is no (full) path from 〈1, 1〉 such that all nodes on the
path have a property p.

THEOREM 11 (THE COMPOSITION THEOREM FAILS FOR EXPRESSIVE LOGICS). Let L
be any logic which can express EGp. There is no finite set I and sequence of L-
formulas φi

1, φi
2 (i ∈ I) such that:

K1×σ K2, 〈s1, s2〉 |=EGp if and only if

K1, s1 |= φi
1 and K2, s2 |= φi

2 for some i ∈ I

PROOF. For contradiction, assume that there are φi
1, φi

2 such that:

K1×σ K2, 〈s1, s2〉 |=EGp
if and only if

K1, s1 |= φi
1 and K2, s2 |= φi

2 for some i ∈ I
(3)

For i ∈ I , let Ni be defined as

Ni = {
n ∈ Nat : Cn, 1 |= φi

1 and Cn, 1 |= φi
2

}
. (4)
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On Compositionality and Its Limitations • 11

Fig. 2. B2.

Since the state 〈1, 1〉 of Cn ×σ Cn satisfiesEGp (see Lemma 10), it follows from
Eq. (3) that for every n ∈ Nat, there is i ∈ I such that n ∈ Ni.

Recall that I is finite; therefore, there is i0 ∈ I such that Ni0 contains at least

two elements. Let n1 �= n2 be two elements of Ni0 . Observe that Cn1
, 1 |= φ

i0
1

and Cn2
, 1 |= φ

i0
2 by Eq. (4) and the choice of i0. Therefore, by (3), we obtain that

Cn1
×σ Cn2

, 〈1, 1〉 |=EGp. Therefore, (by Lemma 10) n1 = n2. Contradiction.

Sometimes in the literature the variable/free fragment of multimodal logic
is considered. This fragment is often called Hennessy-Milner logic [Hennessy
and Milner 1985]. In this fragment the formulas are constructed from True and
False by Boolean operations and modalities. Such formulas are interpreted over
Kripke frames (since there is no need for an interpretation of variables). We
will show next that the composition theorem fails over the product of frames
for any logic that contains the variable free fragment of multimodal logic and
modality EG.

Consider Kripke structures Bn = 〈Sn, Rb, R0, R1, R2〉 and Dn = 〈Sn, Rd ,
R3, R4, R5〉, defined as follows (see Figure 2):

—States: Sn = {1, 2, 3, . . . , 6n}.
—Accessibility Relations:

(1) Rb = Rd = {〈i, i + 1〉 : i = 1, . . . , 3n − 1};
(2) R0 = R3 = {〈i, 3n + i〉 : where i ≤ 3n and i mod 3 = 0};
(3) R1 = R4 = {〈i, 3n + i〉 : where i ≤ 3n and i mod 3 = 1}; and
(4) R2 = R5 = {〈i, 3n + i〉 : where i ≤ 3n and i mod 3 = 2};

Let ψ be defined as

ψ
�= (♦0True ∧ (♦3True ∨ ♦4True))

∨ (♦1True ∧ (♦4True ∨ ♦5True))
∨ (♦2True ∧ (♦5True ∨ ♦3True))

This is a variable free formula. Let En.m be the product of Kripke frames Bn and
Dm (this is a frame with eight accessibility relations). It is easy to show that
the state 〈1, 1〉 of En,m satisfies EGψ if and only if n = m. Hence, by the same
arguments as in the proof of Theorem 11, we can derive that the composition
theorem fails over the product of frames for any logic that contains the variable
free fragment of multimodal logic and modality EG.
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12 • A. Rabinovich

3. GENERALIZED PRODUCT OF KRIPKE STRUCTURES

In Section 2.2 we considered the composition theorem for multimodal logic, and
very simple product operations which correspond to parallel composition with-
out communication. In Section 2.4 we showed that the composition theorem
fails, even for these simple product operations when the multimodal logic is
replaced by a more expressive specification formalism. Here we will show that
the composition theorem holds for multimodal logic and a wide variety of prod-
uct operations which cover most parallel composition operators considered in
the literature.

In Section 3.2 we give a definition of the generalized product of Kripke struc-
tures and in Section 3.3 we prove the corresponding composition theorem for
modal logics. In Section 3.4 we show that the composition theorem fails over
the generalized products and any logic which has the reachability modality
EF. In Section 4 we derive some consequences of the composition theorem for
parametric model checking.

The generalized product construct encompasses a wide variety of ways to
assemble a complex system from its components (factors). Henceforth, before
providing the definition, we consider some of its instances.

3.1 Examples of Products

In this subsection we present many “parallel composition” operators that can
be found in the literature on concurrency or in the formalizations of distributed
systems. All these parallel compositions are instances of the generalized prod-
uct which will be presented in the next subsection.

In the following examples, we assume that accessibility relations are indexed
by a set A of actions; the frames with accessibility relations indexed by a set A
will be called A-frames or frames over A.

Example 12 (Synchronous Product). Given A-frames F1 = 〈S1, {R1
a : a ∈

A}〉, . . . , Fn = 〈Sn, {Rn
a : a ∈ A}〉, their synchronous composition is defined as

the A-frame 〈S1 ×· · ·× Sn, {Rs
a : a ∈ A}〉, where Rs

a (for a ∈ A) is the following
relation on S1 × · · · × Sn:

〈s1, . . . , sn〉Rs
a〈s′

1, . . . , s′
n〉 iff si Ri

as′
i for all i.

Remark 13. Some explanations about the notations and terminology used
here might be helpful for the reader who is used to the notations of concurrency
theory. What we call an A-frame is called a labeled transition system over the
alphabet A. Instead of sRas′, the notations s →a s′ are used in the literature.
Usually in concurrency, systems are described by process expressions. The la-
beled transition system is associated with the set of process expressions; the
states of this transition system are the process expressions, and the transition
relations →a on expressions are defined by appropriate transition rules. For
example, the rule for the aforementioned synchronous product (Synch) would
be:

E1 →a E ′
1, E2 →a E ′

2, . . . , En →a E ′
n

Synch(E1, . . . , En)→aSynch(E ′
1, . . . , E ′

n)

ACM Transactions on Computational Logic, Vol. 8, No. 1, Article 4, Publication date: January 2007.
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Throughout this subsection, we just recall some operations considered in the
literature and restate (in a straigtforward way) transition rules for these opera-
tions in the logical notations which are used in the definition of the generalized
product in Section 3.2.

Example 14 (Shuffle). The asynchronous composition (shuffle) of A-frames
F1 = 〈S1, {R1

a : a ∈ A}〉, . . . , Fn = 〈Sn, {Rn
a : a ∈ A}〉 is defined as the A-frame

〈S1 ×· · ·× Sn, {Rshuf
a : a ∈ A}〉, where Rshuf

a (for a ∈ A) is the following relation
on S1 × · · · × Sn:

〈s1, . . . , sn〉Rshuf
a 〈s′

1, . . . , s′
n〉 iff there is i such that si Ri

as′
i and sj = s′

j for j �= i.

Remark 15 (Shuffle versus the Product of Frames). Let F1 = 〈S1, R1〉,
. . . , Fn = 〈Sn, Rn〉 be one-frames. Their product (see Section 2.1) is n-frame
〈S1 × · · · × Sn, R̄1, . . . , R̄n〉. However, their shuffle is one-frame 〈S1 × · · · ×
Sn, Rshuf〉, where the accessibility relation Rshuf is the union of R̄i.

In the following examples, a set A of actions will be structured.

Example 16 (CCS Parallel Composition [Milner 1989]). Let 
 be a set (of
input communication actions) and let 
̄ = {c̄ : c ∈ 
} be a set (of output
actions). Assume that sets 
 and 
̄ are disjoint and τ �∈ 
 ∪ 
̄ (τ is called an
internal or invisible action). For d = c̄ ∈ 
̄, we define d̄ as c. A set of actions A
is 
 ∪ 
̄ ∪ {τ }. Let F1 = 〈S1, {R1

a : a ∈ A}〉 and F2 = 〈S2, {R2
a : a ∈ A}〉 be

A-frames. Their CCS composition is defined as the A-frame 〈S1 × S2, {Ra : a ∈
A}〉, where the relation Rc for c ∈ 
 ∪ 
̄ is defined as

〈s1, s2〉Rc〈s′
1, s′

2〉 iff either s1 Rcs′
1 and s2 = s′

2 or s2 Rcs′
2 and s1 = s′

1,

and Rτ is defined as

〈s1, s2〉Rτ 〈s′
1, s′

2〉 iff

⎧⎪⎨
⎪⎩

for some c ∈ 
 ∪ 
̄, s1 R1
c s′

1 and s2 R2
c̄ s′

2 or

s1 R1
τ s′

1 and s2 = s′
2 or

s2 R2
τ s′

2 and s1 = s′
1.

Example 17 (Broadcast Composition). In broadcast protocols [Emerson
and Namjoshi 1996, 1998; Esparza et al. 1999] a set of actions A is composed
of a set 
l of local actions, two sets 
r × {?} and 
r × {!} of input and output
rendezvous actions and two sets 
b × {??} and 
b × {!!} of input and output
broadcast actions.

Let Fi be A-frames. Their broadcast composition is a frame F over action set

l ∪ 
b ∪ 
r . Frames Fi are called the components and F is called the systems
defined by the broadcast composition.

The system performs a local action c if one of its components performs c and
moves to a new state and the other components do not change their state. The
system performs a rendezvous action c ∈ 
r if two components perform a ren-
dezvous, (i.e., one performs c! transition and the second performs c? transition)
and the other components do not change their state. The system performs a
broadcast action c ∈ 
b if one of its components performs c!! transition and all
the other components perform c?? transitions.
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14 • A. Rabinovich

A product appropriate for broadcast protocols can be formalized as follows.
Let Fi = 〈Si, {Ri

a : a ∈ A}〉 (i ∈ I ) be a family of frames over A = 
l ∪

b × {??} ∪ 
b × {!!} ∪ 
r × {?} ∪ 
r × {!}. Their (broadcast) product is defined as
the following frame: 〈S, {Ra : b ∈ B}〉 over B = 
l ∪ 
b ∪ 
r , where the set S
of states is the Cartesian product of the sets Si (i ∈ I ) and the relations Rc are
defined as follows:

For c ∈ 
l

〈. . . , si, . . .〉Rc〈. . . , s′
i, . . .〉 iff there is i such that si Rcs′

i and sj = s′
j for j �= i.

For c ∈ 
r

〈. . . , si, . . . sm . . .〉Rc〈. . . , s′
i, . . . s′

m . . .〉 iff there are i and m such that i �= m and
si Rc?s′

i and sm Rc!s′
m and sj = s′

j if j �= i ∧ j �= m.

For c ∈ 
b

〈. . . , si, . . .〉Rc〈. . . , s′
i, . . .〉 iff there is i such that si Rc!!s′

i and sj Rc??s′
j for j �= i.

Example 18 (Network Composition). In the previous examples, we dealt
with families Fi (i ∈ I ) of frames over an index set I . No structure on the index
set I was assumed. The next example of a communication network assumes
that we have an index structure Ind = 〈I, Edge〉, where I is a set and Edge is a
binary relation on I . Let Ind be such a structure and let Fi = 〈Si, {Ri

a : a ∈ A}〉
(i ∈ I ) be a family of frames over A = 
l ∪
r × {?}∪
r × {!}. The network prod-
uct of Fi over Ind is defined as the following frame: 〈S, {Ra : b ∈ B}〉 over
B = 
l ∪ 
r , where the set S of states is the Cartesian product of the sets Si

(i ∈ I ) and for c ∈ 
l ∪ 
r , the relations Rc are defined as follows:
For c ∈ 
l

〈. . . , si, . . .〉Rc〈. . . , s′
i, . . .〉 iff there is i such that si Rcs′

i and sj = s′
j for j �= i.

For c ∈ 
r

〈. . . , si, . . . sm . . .〉Rc〈. . . , s′
i, . . . s′

m . . .〉 iff there are i �= m such that
Edge(i, m) and si Rc?s′

i and sm Rc!s′
m and sj = s′

j if j �= i ∧ j �= m.

In other words, a system performs a local action c if one of its components
performs c and moves to a new state and the other components do not change
their state. A system performs a rendezvous action c if two components i and
j connected by the edge from i to j perform a rendezvous, (i.e., i performs
c! transition and j performs c? transition) and the other components do not
change their state.

3.2 Generalized Product

In this section we introduce the generalized product of Kripke structures. It is a
proper instance of Feferman-Vaught generalized product construct [Feferman
and Vaught 1959]. However, the Feferman-Vaught product deals with arbitrary
first-order languages and first-order structures. The product introduced here
deals with Kripke structures and multimodal logic. First-order logic is not very
appropriate for the specification of concurrent and reactive systems because it
distinguishes between bisimulation equivalent systems. Multimodal logic has
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the same expressive power as the bisimulation invariant fragment of first-order
logic [van Benthem 1976].

Let τ be a signature (i.e., a set of predicate and function symbols). We use
MSO(τ ) for the monadic second-order language over τ , that is, MSO(τ ) is the
extension of the first-order language over τ by monadic predicate variables (set
variables) and by the quantification over these variables. We use uppercase
letters monadic variables and lowercase letters for first-order variables.

Let Ki (i ∈ I ) be a family of Kripke structures with accessibility relations
indexed by the elements of a set A and propositional variables indexed by the
elements of a set V (the same sets A and V for all structures). We use ML(A, V )
for the modal logic appropriate for these structures.

An (A, V , τindex) determining sequence for an unary predicate is a finite se-
quence of the form 〈α1, . . . , αn; β(X 1, . . . , X n)〉, where αi (i = 1, . . . , n) are for-
mulas in ML(A, V ) and β(X 1, . . . , X n) is a formula in the monadic second-order
logic for the signature τindex, and β has no free first-order variables and it has
one free monadic variable X i for every formula αi (i = 1, . . . , n).

An (A, V , τindex) determining sequence for an accessibility relation consists of:

(1) a finite sequence a1, . . . , am of distinct actions in A.

(2) a finite sequence α1, . . . , αn of formulas in ML(A, V ).

(3) a formula β(Z1, . . . , Zm, X 1, . . . , X n) in the monadic second-order logic for
the signature τindex, where β has no free first-order variables and has one
free monadic variable Z j for every action aj ( j = 1, . . . , m) that appears in
(1) and one free monadic variable X i for every formula αi (i = 1, . . . , n); no
other variable is free in β.

We use the notation 〈a1, . . . , am; α1, . . . αn; β〉 for such sequences. If n = 0, we
write 〈a1, . . . , am; ; β〉.

Definition 19 (Generalized Product of Kripke Structures—Syntax). A gen-
eralized product operation is a tuple σ = 〈A, Vc, B, V , τindex, ρ〉, where

— A is a set of actions (the actions of component Kripke structures);

—Vc is a set of indexes for the variables (of component Kripke structures);

— B is a set of actions (the actions of product Kripke structures);

—V is a set of indexes for the variables (of product Kripke structures);

—τindex is a signature for index structures; and

—ρ is a function that assigns to every b ∈ B, an (A, Vc, τindex) determining
sequence for an accessibility relation and to every p ∈ V , an (A, Vc, τindex)
determining sequence for a unary predicate.

Semantics. The semantics of a product operation σ is defined as follows.
Let I be a set and let Ind be a τindex structure over the universe I . Let Ki =
〈Si, {Ri

a : a ∈ A}, {Pi
v : v ∈ Vc}〉 (i ∈ I ) be a family of (A, Vc) Kripke structures.

The σ product of Ki over Ind is a (B, V ) Kripke structure K = 〈S, {Rb : b ∈
B}, {Pv : v ∈ V }〉, defined as follows.
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16 • A. Rabinovich

—States: S is the Cartesian product of the family Si (i ∈ I ) of sets; hence, the
set of states is the set of all functions g with domain I such that for each
i ∈ I , g (i) is an element of Si.

—Interpretation of Unary Predicates: Pv (v ∈ V ) is a unary relation on S
defined as follows: Let 〈α1, . . . αn; β(X 1, . . . , X n)〉 be the determining se-
quence assigned by ρ to v. For g ∈ S and l = 1, . . . , n, let I g

l be the set

{i ∈ I : Ki, g (i) |= αl }. Then Pv
�= {g ∈ S : Ind |= β(I g

1 , I g
2 , . . . , I g

n )}
(we say that Pv is defined by the sequence 〈α1, . . . αn; β(X 1, . . . , X n)〉 or that
〈α1, . . . αn; β(X 1, . . . , X n)〉 defines Pv).

—Interpretation of Accessibility Relations: Rb (b ∈ B) is an accessibility relation
on S defined as follows: Let 〈a1, . . . , am; α1, . . . αn; β(Z1, . . . , Zm, X 1, . . . , X n)〉
be the determining sequence assigned by ρ to b. For g ∈ S and l = 1, . . . , n,
let I g

l ⊆ I be defined as previously. Then g Rb g ′ iff there are disjoint sets
Jr ⊆ I (r = 1, . . . , m) such that

(1) Ind |= β(J1, . . . , Jm, I g
1 , . . . , I g

n );
(2) g (i)Ral g ′(i) for every l = 1, . . . , m and i ∈ Jl ; and
(3) g (i) = g ′(i) for i ∈ I \ ⋃r

l=1 Jl .

(We say that Rb is defined by the sequence 〈a1, . . . , am; α1, . . . αn; β(Z1, . . . ,
Zm, X 1, . . . , X n)〉 or that this sequence defines Rb.)

Let us illustrate these definitions by examples.

Example 20. (1) Assume that the unary predicate P is defined by the de-
termining sequence 〈P1; ∀t. t ∈ X 1〉. Then g ∈ S satisfies P iff for all i, the
ith component of g is in a state that satisfies P1.

(2) Assume that Q is defined by the determining sequence 〈P1, P2; ∃!t.(t ∈
X 1 ∨t ∈ X 2)〉, where “∃!” stands for “there is a unique.” Then g ∈ S satisfies
Q iff exactly one of the g (i) is in a state that satisfies either P1 or P2.

(3) The accessibility relation Ra (a ∈ A) for the synchronous product of A-
frames is defined by the determining sequence 〈a; ; β(Z1)〉; this sequence
does not contain any α formula and β(Z1) is ∀t. t ∈ Z1. Similarly, the
accessibility relation Ra (a ∈ A) of the shuffle of A-frames is defined by the
sequence 〈a; ; ∃!t. t ∈ Z1〉.

(4) For the CCS parallel composition [Milner 1989], the accessibility relation
is defined by the following sequences: For c ∈ 
 ∪ 
̄, the determining se-
quence is 〈c ; ; ∃!t1. (t1 ∈ Z1〉. In the case when 
 is a finite set {a1, . . . , am},
the determining sequence for Rτ is 〈a1, . . . , am, ā1, . . . , ām, τ ; ; β〉, where
β(Z1, . . . , Z2m+1), says that either for i ≤ m, the sets Zi and Zm+i have only
one element and all the other sets Z j are empty ( j �∈ {i, i+m}) or Z2m+1 has
a unique element and all the other sets are empty. Note that for the CCS
composition over an infinite alphabet, the τ accessibility relation cannot be
defined by a determining sequence.

(5) In all the previous examples, the determining sequences for accessibility
relations do not use formulas α ∈ ML. More general parallel composition
operations in which the accessibility relations depend on the global state of a
system can use such formulas. Consider an accessibility relation R, defined
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On Compositionality and Its Limitations • 17

by 〈a; ♦bTrue; β(Z1, X 1)〉, where β(Z1, X 1)
�= ∀t. t ∈ Z1∧∃t ′. t ′ ∈ X 1. There

is an R transition from g to g ′ iff for every i, there is an Ra transition from
g (i) to g ′(i) in the structure Ki and there is at least one j such that Rb

transition is possible from the state g ( j ) in the structure K j .

3.3 Composition Theorem for Generalized Products

THEOREM 21 (COMPOSITION THEOREM FOR THE GENERALIZED PRODUCT). Let σ =
〈A, Vc, B, V , τindex, ρ〉 be a generalized product operator. For every formula ϕ ∈
ML(B, V ), there is a determining sequence 〈α1, . . . , αn; β(X 1, . . . , X n)〉, where
αi(i = 1, . . . , n) are formulas in ML(A, V ) and β(X 1, . . . , X n) in MSO(τindex)
such that for every structure Ind = 〈I, · · ·〉, for τindex, and every family Ki(i ∈ I )
of (A, Vc) Kripke structures and a state g ∈ �σ

i∈IndKi:

�σ
i∈IndKi, g |= ϕ if and only if Ind |= β(I g

1 , I g
2 , . . . , I g

n )}, where

I g
l (l = 1, . . . , n) is the set {i ∈ I : Ki, g (i) |= αl }. Moreover, the formulas

αi(i = 1, . . . , n) and β are computable from ϕ and σ .

Notes. (1) Any modal formula ϕ defines a unary predicate {s : K , s |= ϕ}
over every Kripke structure K . The composition theorem can be rephrased as
follows. For every generalized product operator σ and every formula ϕ, there
corresponds a determining sequence γ such that ϕ and γ define the same unary
predicate for any σ -product �σ

i∈IndKi. Moreover, γ is computable from ϕ and σ .
(2) Let Ind be a fixed finite structure for τindex, with the universe {1, . . . n}.
The composition theorem implies that for every generalized product operator
σ and every formula ϕ, there is a finite set M and modal formulas ϕ

j
i (i ∈ M ,

j = 1, . . . , n) such that for every sequence K1, . . . , Kn of Kripke structures:

�σ
i=1,...,nKi, 〈s1, . . . , sn〉 |= ϕ

if and only if for some i ∈ M and all j = 1, . . . , n

K j , sj |= ϕ
j
i .

Moreover, the formulas ϕ
j
i are computable from ϕ and σ and Ind.

As a consequence of Theorem 21, we obtain

COROLLARY 22. There is an algorithm that solves the following decision prob-
lems in time O(g (|ϕ|, n) × (|K1| + |K2| + · · · + |Kn|)):
(1) Determine whether a state s of synchronous (respectively, asynchronous)

product of K1, . . . , Kn satisfies ϕ.
(2) Determine whether a state s of K1|K2| · · · |Kn satisfies ϕ, where | is CCS

parallel composition.

In the rest of this subsection, the proof of Theorem 21 is given. We prove the
theorem by induction on ϕ. However, unlike the proof of Theorem 2, the most
subtle step is for modalities.

For atomic ϕ the assertion immediately follows from the definition of the
product.
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For disjunction, inductively assume that the theorem holds for ψ and θ .
Let 〈α1, . . . , αn; β(X 1, . . . , X n)〉 and 〈α′

1, . . . , α′
m; β ′(X 1, . . . , X m)〉 be sequences

correlated with ψ and θ . It is easy to check that the theorem holds when we
correlate 〈α1, . . . , αn, α′

1, . . . , α′
m; β(X 1, . . . , X n)∨β ′(X n+1, . . . , X n+m)〉 with θ∨ψ .

For negation, inductively assume that the theorem holds for ψ . Moreover,
suppose that 〈α1, . . . , αn; β(X 1, . . . , X n)〉 is a sequence correlated with ψ . It is
easy to check that the theorem holds when we correlate 〈α1, . . . , αn; ¬β(X 1, . . . ,
X n)〉 with ¬ψ .

We say that 〈α1, . . . , αn; β(X 1, . . . , X n)〉 and 〈α′
1, . . . , α′

m; β ′(X 1, . . . , X m)〉 are
equivalent iff they define the same relations over every family Ki (i ∈ Ind) of
Kripke structures.

We need the following standard lemma.

LEMMA 23. For every sequence 〈α1, . . . , αn; β(X 1, . . . , X n)〉, there exists an
equivalent 〈α′

1, . . . , α′
m; β ′(X 1, . . . , X m)〉 such that

(1)
∨

α′
i is valid.

(2) α′
i ∧ α′

j is unsatisfiable for i �= j .

PROOF. For h ⊆ {1, . . . , n}, define:

α′
h

�=
∧
i∈h

αi ∧
∧
i �∈h

¬αi

It is clear that
∨

α′
h is valid and α′

h ∧ α′
g is unsatisfiable for h �= g . Moreover, αi

is equivalent to
∨

i∈h α′
h.

It is easy to check that 〈. . . , α′
h, . . . ; β ′(. . . , X h, . . .)〉, where h ranges over the

subsets of {1, . . . , n} and β ′(. . . , X h, . . .) defined as:

β ′(. . . , X h, . . .)
�= ∃X 1 . . . ∃X n.

n∧
i=1

(
∀t.X i(t) ↔

∨
i∈h

X h(t)

)
∧ β(X 1, . . . , X n)

is equivalent to 〈α1, . . . , αn; β(X 1, . . . , X n)〉.
Now let us proceed with the inductive step for modalities. Assume that an

accessibility relation for Ra is defined by a sequence

〈a1, . . . , am; α1, . . . αn; β(Z1, . . . , Zm, X 1, . . . , X n)〉.
Inductively assume that the theorem holds for ψ . Moreover, let
〈γ1, . . . , γl ; δ(Y1, . . . , Yl )〉 be a sequence correlated with ψ . By Lemma 23,
we can assume that

∨
γi is valid and γi ∧ γ j is unsatisfiable for i �= j .

We are going to construct a determining sequence for ♦aψ .
First, define θk,r (for k = 1, . . . , m and r = 1, . . . , l ) as:

θk,r
�= ♦ak γr

We correlate with ♦aψ the sequence

〈α1, . . . αn, γ1, . . . , γl , θ1,1, . . . , θm,l ; H(X 1, . . . , X n, V1, . . . Vl , V1,1, . . . , Vm,l )〉,
(5)

where H says the following:
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(A)—There are disjoint sets Uk,r (k = 1, . . . , m and r = 1, . . . , l ) such that
Uk,r ⊆ Vk,r , and

(B)—there are nonempty sets Z1, . . . , Zm such that for k = 1, . . . , m

Zk =
⋃

r

Uk,r

and

Ind |= β(Z1, . . . , Zm, X 1, . . . , X n);

and
(C)—there are Y1, . . . , Yl such that for r = 1, . . . , l

Yr =
(⋃

k

Uk,r

)
∪

(
Vr \

⋃
k,i

Uk,i

)

and

Ind |= δ(Y1, . . . , Yk).

Let us show the correctness of our construction. First, assume that g be-
longs to the predicate defined by the sequence (5). We are going to show
that �σ

i∈IndKi, g |= ♦aψ . It is sufficient to define g ′ such that g Ra g ′ and
�σ

i∈IndKi, g ′ |= ψ . Take sets Uk,r , Zk and Yr which satisfy (A), (B) and (C).
From (A) it follows that j ∈ Vk,r for j ∈ Uk,r . Hence, K j , g ( j ) |= ♦ak γr (for
j ∈ Uk,r ). Therefore, there is sj ∈ K j such that K j , sj |= γr and g ( j )Rak sj .
Define g ′ as follows:

g ′( j ) =
{

sj if j ∈ Uk,r

g ( j ) otherwise

Note that g ′( j ) is well-defined because Uk,r are disjoint. From the definition of
g ′ and (B), it follows that g ( j )Rak g ′( j ) for j ∈ Zk and g ( j ) = g ′( j ) for j �∈ ∪Zk .
Therefore, from (A) and (B) it follows that g Ra g ′. Observe that K j , g ′( j ) |= γi

iff either j ∈ Uk,i or j ∈ Vi \
⋃

Uk,r (in this case g ( j ) = g ′( j )). Therefore, by (C)
and the inductive assumption for ψ , we obtain that �σ

i∈IndKi, g ′ |= ψ . Hence,
�σ

i∈IndKi, g |= ♦aψ . This completes the first part of the proof.
Now let us show that if �σ

i∈IndKi, g |= ♦aψ , then g belongs to the predicate
defined by the sequence (5). Let g ′ be such that g Ra g ′ and �σ

i∈IndKi, g ′ |= ψ .
From the definition of Ra, it follows that there are disjoint Z1, . . . , Zl such

that

g ( j )Rai g ′( j ) for j ∈ Zi

and

g ′( j ) = g ( j ) for j �∈
⋃

Zi

Ind |= β(Z1, . . . , Zm, X 1, . . . , X n),

where X k = {i ∈ I : Ki, g ′(i) |= αk}.
Since �σ

i∈IndKi, g ′ |= ψ , we have that

Ind |= δ(Y1, . . . , Yl ),
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where Yi = { j : K j , g ′( j ) |= γi}. Note that Y1, . . . , Yl are disjoint because

γi ∧ γi′ are unsatisfiable for i �= i′. Hence, Uk,r
�= Zk ∩ Yr are disjoint. We leave

for the reader to verify that (A), (B), and (C) hold.

3.4 Composition Theorem Fails for Logics with Reachability Modality

In Section 2.4 we proved that the composition theorem over n-products (“prod-
ucts without communication”) and the modal logic extended by the reachability
modality EF holds (recall that EFp holds at s iff a node with property p is reach-
able from s). However, the composition theorem fails over n-products and the
modal logic extended by the modality EG. Here, we show that the composition
theorem fails over the generalized products and any logic which has the reach-
ability modality EF. More precisely, we will show that the composition theorem
fails, even over the synchronous product (a very simple and basic instance of
the generalized product) for any logic which can express reachability EF.

The synchronous product of frames is an important instance of generalized
product. It was defined in Example 12 in Section 3.1. Recall that this is defined
as follows. Let A = {a1, . . . , am} be a set (of action). Given a family of A-frames
F1 = 〈S1, R1

a1
, R1

a2
, . . . , R1

am
〉, . . . , Fn = 〈Sn, Rn

a1
, Rn

a2
, . . . , Rn

am
〉,. . . , their syn-

chronous product is defined to be the A-frame 〈S1 ×· · ·×Sn×· · · , Ra1
, . . . , Ram〉,

where Rai (i = 1, . . . , m) is the following relation on S1 × · · · × Sn × · · ·:
〈s1, . . . , sn, . . .〉Rai 〈s′

1, . . . , s′
n, . . .〉 iff sn Rn

ai
s′
n for all n.

We denote by F1

⊗
sync F2 the synchronous product of two frames F1 and F2.

The synchronous products of Kripke structure define the accessibility relations
like the synchronous product of the underlying frames, and provide an inter-
pretation by (arbitrary) determining sequences for unary predicates.

Consider a frame Dn = 〈Sn, Ra, Rb〉 over two actions {a, b}, defined as
follows:

—States: the universe Sn is {0, 1, 2, 3, . . . , n + 1}; and

—Accessibility relations: Ra is interpreted as Ra = {〈i, i +1〉 : i = 0, . . . , n−1}
and Rb contains only one pair 〈n, n + 1〉.

We identify the frame Dn with the Kripke structure over Dn with no unary
predicates.

The formula EF♦bTrue holds at a state s in a Kripke structure if it is possible
to reach from s a state where b transition is possible. The following lemma is
immediate.

LEMMA 24. The state 〈0, 0〉 of Dn
⊗

sync Dm satisfies EF♦b True if and only if
n = m.

By the same argument as in the proof of Theorem 11, we can derive from
Lemma 24:

THEOREM 25 (COMPOSITION THEOREM FAILS FOR LOGICS WITH REACHABILITY). Let
L be any logic which can express EF♦b True. There is no finite set I and sequence
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of L-formulas φi
1, φi

2 (i ∈ I) such that

K1

⊗
sync

K2, 〈s1, s2〉 |= EF♦b True if and only if

K1, s1 |= φi
1 and K2, s2 |= φi

2 for some i ∈ I .

4. PARAMETERIZED SYSTEMS

Here we provide applications of the composition theorem for parametric model-
checking.

Many protocols are specified by a number of instances of identical processes.
Sometimes there is an infinite number of possible instances. Each instance can
be represented as a finite product of identical (or similar) Kripke structures.
We are usually interested to show that all the instances have a certain prop-
erty. Here, we suggest a formalization of parameterized systems of processes
as the generalized power. This formalization encompasses many constructions
considered in the literature [German and Sistla 1992; Emerson and Namjoshi
1998]. Let σ = 〈A, Vc, B, V , τindex, ρ〉 be a generalized product operator. Let
Ind = 〈I, · · ·〉 be a structure for τindex and let K be (A, Vc) Kripke structures. We
denote by power(K , Ind, σ ) the generalized product �σ

i∈IndKi, where all Ki are
isomorphic to K .

For a class C of τindex structures and K and σ as earlier, we denote by
power(K , C, σ ) the class {power(K , Ind, σ ) : Ind ∈ C} of structures.

Example 26 (Token Ring Protocol). Our formalization of the token ring
protocol follows the presentation in German and Sistla [1992]. The processes
are arranged on a ring. Initially, one process has a token that permits it to enter
its critical region. The processes circulate the token around a ring network.
All processes have the same behavior as described by the Kripke structure K
in Figure 3.

The critical region of K consists of the state C. A process in state N can enter
its waiting state W by its internal transition I . Then, it waits to receive the
token from its left neighbor before it can enter its critical region. The state T is
used by a process that has the token, but is not in its critical region. It permits
the token to be circulated by processes, without entering the critical region.

The instance Sn of this protocol over the ring of size n can be described as
follows. The states are all the functions from {0, . . . , n − 1} to the states of
K (see Figure 3). The structure Sn is a Kripke structure for one accessibility
relation. There is a transition

〈s0, . . . , sn−1〉 → 〈s′
0, . . . , s′

n−1〉
if either: (1) Exactly one component j executes the internal transition I from
sj to s′

j and all the other components do not move, that is, si = s′
i for i �= j ;

or (2) there is j such that the j th component can move from sj to s′
j by an R

transition and its right neighbor (r = j + 1 mod n) can move from sr to s′
r by

an L transition, and all the other components do not move.
It should be clear how to formalize this structure Sn as a generalized power

of K over the directed circle Circn of size n considered as the structure for
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Fig. 3.

the binary relation Edge( , ). For example, Condition (1) is formalized by the
following determining sequence for an accessibility relation:

〈I ; ; ∃!t. t ∈ Z1)〉.
Condition (2) is formalized by the following determining sequence for an
accessibility relation:

〈L, R; ; (∃!t1 t1 ∈ Z1)∧ (∃!t2 t2 ∈ Z2)∧ (∃t1∃t2 (t1 ∈ Z1)∧ (t2 ∈ Z2)∧Edge(t1, t2))〉.
Both these sequences do not contain any α formula. The accessibility relation for
the token ring protocol is defined as the disjunction 〈I, L, R; ; : β(Z1, Z2, Z3)〉of
these two sequences, where β is

(∃!t1 t1 ∈ Z1) ∧ ¬(∃t t ∈ Z2) ∧ ¬(∃t t ∈ Z3)
∨

¬∃t1 t1 ∈ Z1∧∃!t2 t2 ∈ Z2∧∃!t3 t3 ∈ Z3∧(∃t2∃t3 t2 ∈ Z2 ∧ t3 ∈ Z3 ∧ Edge(t2, t3)).

We can also define on Sn unary predicates (such as C≤1) at most, one component
is in the state C, or T=1—there is exactly one component with the token.

For a formula ϕ, we are usually interested in whether ϕ holds on Sn for
every n. The most relevant property of the token ring protocol is the mutual
exclusion (in all reachable states C≤1 holds). Unfortunately, multimodal
logic is too weak to express the mutual exclusion. However, the invariant
(T=1 ∧ C≤1) → �(T=1 ∧ C≤1) implies the mutual exclusion.

The parametric model checking problem (PMCP) over a class C of structures
for a generalized product σ and for a logic L can be formalized as follows:

For a formula ϕ ∈ L and a finite state Kripke structure K , decide
whether ϕ is valid over power(K , C, σ ).

As a consequence of Theorem 21, we obtain:
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COROLLARY 27. If the monadic second-order theory of C is decidable, then
PMCP over C for modal logic is decidable in time O(g (|ϕ|) × |K |), where g is a
recursive function.

PROOF (Sketch). First, observe that every determining sequence for a unary
predicate is equivalent to a sequence of the form 〈α1, . . . , αn, β(X 1, . . . X n)〉,
where αi and α j are inconsistent (i.e., αi ∧ α j is unsatisfiable) for i �= j .

The algorithm proceeds as follows. Given a formula ϕ:

(1) Construct a determining sequence 〈α1, . . . , αn, β(X 1, . . . X n)〉 associated
with ϕ as in Theorem 21. Moreover, we can assume that αi and α j are
inconsistent for i �= j .

(2) Find J = { j : α j is satisfiable in K }.
(3) Check if the formula

∀X 1 . . .∀X n

(∧
j �∈J

Empty(X j ) ∧
∧

j1 �= j2

Empty(X j1
∩ X j2

)

)
→ β(X 1, . . . , X n)

(6)
holds over C (here, Empty(X ) abbreviates ∀t.t �∈ X ).

Note that Eq. (6) holds over C iff the formula ϕ holds over power(K , C, σ ).
Observe that the complexity of the first and the third steps are independent
from K . The complexity of the second step is linear in |K |, by Theorem 3. These
observations imply the complexity bound stated in the corollary.

The monadic second-order theory of the class of circles is decidable (it can be
easily interpreted in the monadic second-order theory of finite linear orders).
Hence, we deduce that PMCP for modal logic is decidable for the class of ring
protocols.

5. CONCLUSION

Composition theorems are tools which reduce sentences about some compound
structures to sentences about their parts. A seminal example of such a re-
sult is the Feferman-Vaught theorem [Feferman and Vaught 1959], which re-
duces the first-order theory of generalized products to the first-order theory
of its factors. Composition theorems for monadic second-order logic and gen-
eralized sums were developed by Shelah [1975]. The technique was used in
Gurevich [1979], Gurevich and Shelah [1979, 1983, 1985], Hafer and Thomas
[1987], Moller and Rabinovich [1999, 2003], Courcelle et al. [2000], and
Makowsky [2004] and is outlined in survey expositions by Gurevich [1985] and
Thomas [1997].

The aim of our work was to explore the applicability of this approach in the
area of verification. We obtained a positive result—the composition theorem
is realizable when the specification language Lspec is the multimodal logic and
the set of operations OP consists of a wide variety of the generalized product
(“parallel composition”) operators, and a negative result—if Lspec can express
“there is a path such that all the nodes of the path have a property p,” then the
composition theorem fails for very simple parallel operators.
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The generalized product of Kripke structures suggested here is a proper
instance of the Feferman-Vaught generalized product construct [Feferman and
Vaught 1959]. Many minor modifications of the generalized product construct
of Kripke structures are not appropriate. They lead to one of the following
situations: (1) Kripke structures S1, . . . , Sn might be bisimulation equivalent
to S′

1, . . . , S′
n, but the product of Si is not bisimulation equivalent to the product

of S′
i; or (2) the composition theorem for multimodal logics fails over these more

general products.
Our composition theorem is a strong inductive assertion. When such an as-

sertion is stated correctly, its proof is easy and proceeds by the standard argu-
ments developed by Feferman and Vaught [1959].

The negative results show that: (1) The composition theorem fails, even for
very simple product operations (which correspond to the parallel composition
without communication) when the multimodal logic is replaced by any logic
which can express EGp; and (2) the composition theorem fails over the syn-
chronous product for any logic which has the reachability modality. Though
the proofs of these results are simple, the results are important because they
provide a very sharp bound on the limitations of compositional methods. The
second result was recently complemented by a theorem of Wöhrle and Thomas
[2004], which shows that “semifinite synchronization” does not preserve the de-
cidability of FO(R)—the first-order logic extended by the reachability modality
(i.e., there are Kripke structures with a decidable model-checking problem for
FO(R), but the model-checking problem for FO(R) over their semifinite syn-
chronization product is undecidable).

It is important to emphasize that the composition theorem for a set of oper-
ations OP and specification language Lspec is much stronger than other notions
of compositionality considered in the literature on verification (e.g., see Owicki
and Gries [1976], Lamport [1980], de Roever [1985], Stirling [1988], Zwiers
[1989], Apt and Olderog [1991], de Roever [1997], and Trakhtenbrot [1997]).
In such compositional frameworks (see de Roever [1997]) it is required that for
every operator opP ∈ OP ′ there should exist an operator opS in the specification
language such that

(1) whenever Pi satisfy specifications ϕi for i = 1, . . . n, we also have for every
n-ary operator opP ∈ OP that opP (P1, . . . Pn) satisfies opS(ϕ1, . . . , ϕn);

(2) whenever opP (P1, . . . Pn) satisfies ϕ, there exist specifications ϕi for Pi such
that Pi satisfies ϕi for i = 1, . . . n and opS(ϕ1, . . . , ϕn) → ϕ is valid.

It is easy to see that the composition theorem implies the aforementioned prop-
erties, but does not follow from them.

Often, arguments which show that there is no compositional proof system for
Lspec and OP exploit the fact that the specification language Lspec is too weak
(with respect to OP). One usually shows that two programs P1 and P2 satisfy the
same specifications in Lspec, but there is a context op[ , Q] and a formula ϕ such
that op(P1, Q) satisfies ϕ, while op(P2, Q) does not satisfy ϕ. In such situations,
in order to gain a compositional proof system, Lspec should be replaced by a
more expressive language. Our negative result shows that the increase in the
expressive power of Lspec cannot help to obtain the composition theorem.
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