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Abstract
In modern networks, forwarding of packets often depends on the history of previously trans-
mitted traffic. Such networks contain stateful middleboxes, whose forwarding behaviour
depends on a mutable internal state. Firewalls and load balancers are typical examples of
stateful middleboxes. This work addresses the complexity of verifying safety properties, such
as isolation, in networks with finite-state middleboxes. Unfortunately, we show that even in
the absence of forwarding loops, reasoning about such networks is undecidable due to interac-
tions betweenmiddleboxes connected by unbounded ordered channels.We therefore abstract
away channel ordering. This abstraction is sound for safety, andmakes the problemdecidable.
Specifically, safety checking becomes EXPSPACE-complete in the number of hosts andmid-
dleboxes in the network. To tackle the high complexity, we identify two useful subclasses of
finite-state middleboxes which admit better complexities. The simplest class includes, e.g.,
firewalls and permits polynomial-time verification. The second class includes, e.g., cache
servers and learning switches, and makes the safety problem coNP-complete. Finally, we
implement a tool for verifying the correctness of stateful networks.

Keywords Safety verification · Stateful networks · Middleboxes · Channel systems · Petri
nets · Complexity bounds

1 Introduction

Modern computer networks are extremely complex, leading to many bugs and vulnerabilities
which affect our daily life. Therefore, network verification is an increasingly important topic
addressed by the programming languages and networking communities (e.g., see [8,13,16–
18,20,27,37]). Previous network verification tools leverage a simple network forwarding
model which renders the datapath immutable; i.e., normal packets going through the network
do not change its forwarding behaviour, and the control plane explicitly alters the forwarding
state at relatively slow time scales. Thus, invariants can be verified before each control-plane
initiated change and these invariants will be enforced until the next such change. While the
notion of an immutable datapath supported by an assemblage of routers makes verification
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tractable, it does not reflect reality. Modern enterprise networks are comprised of roughly
2/3 routers1 and 1/3 middleboxes [38]. A simple example of a middlebox is a stateful hole-
punching firewall which permits traffic from untrusted hosts only after they have received a
message from a trusted host. Middleboxes—such as firewalls, WAN optimizers, transcoders,
proxies, load-balancers, intrusiondetection systems (IDS) and the like—are themost common
way to insert new functionality in the network datapath, and are commonly used to improve
network performance and security.While useful, middleboxes are a common source of errors
in the network [31], with middleboxes being responsible for over 40% of all major incidents
in networks.

This work addresses the problem of verifying safety of networks with middleboxes,
referred to as stateful networks. We model such a network as a finite undirected graph with
two types of nodes: (i) hosts which can send packets, (ii) middleboxes which react to packet
arrivals and forward modified packets. Each node in the network has a fixed number of ports,
connected by network edges (links).

From a verification perspective, it is possible to view amiddlebox as a procedurewith local
mutable state which is atomically changed every time a packet is transmitted. The local state
determines the forwarding behaviour.2 Thus, the problem of network verification amounts to
verifying the correctness of a specialized distributed system where each of the middleboxes
operates atomically and the order of packet processing by different middleboxes is arbitrary.

Real middleboxes are generally complex software programs implemented in several hun-
dreds of thousands of lines of code. We follow [28,29] in assuming that we are provided
with middlebox models in the form of finite-state transducers. In our experience one can
naturally model the behaviour of most middleboxes this way. For every incoming packet, the
transducer uses the packet header and the local state to compute the forwarding behaviour
(output) and to update its state for future packets. The transducer can be non-deterministic
to allow modelling of middleboxes like load-balancers whose behaviour depends not just on
the state, but also on a random number source. We symbolically represent the local state of
each middlebox by a fixed set of relations on finite elements, each with a fixed arity.

The verification problem We define network safety by means of avoiding “bad” middlebox
states (e.g., states from which a middlebox forwards a packet in a way that violates a network
policy). Given a set of bad middlebox states, we are interested in showing that for all packet
scenarios the bad states cannot be reached. This problem is hard since the number of packets
is unbounded and the states of one middlebox can affect another via transmitted packets.

1.1 What is decidable about middlebox verification

In Sect. 2.4, we prove that for general stateful networks the verification problem is undecid-
able. This result relies on the observation that packet histories can be used to count, similarly to
results in model checking of infinite ordered communication channels [7]. Simulating count-
ing is immediate when the network configuration admits forwarding loops. However, such
configurations are usually avoided in real networks. In order to address realistic networks,
we show that the verification problem is undecidable even for networks without forwarding
loops.

1 In this work we do not distinguish between routers and switches, since they obey similar forwarding models.
2 Routers may be considered a degenerate case of middleboxes, whose state is constant and hence their
forwarding behaviour does not change over time.
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In order to obtain decidability, we introduce an abstract semantics of networks where the
order of packet processing on each channel (connecting two middleboxes or a middlebox
and a host) is arbitrary, rather than first-in, first-out (FIFO). Thus, middlebox inputs are
multisets of packets which can be processed in any order. This abstraction is conservative,
i.e., whenever we verify that the network does not reach a bad state, it is indeed the case.
However, the verification may fail even in correct networks, resulting in false alarms. Since
packets are atomically processed, we note that network designers can impose ordering even
in this abstract model by sending acknowledgments for received packets, and dropping out-
of-order packets.

In fact, the abstraction of the packet order over channels closely corresponds to assump-
tions made by network engineers: since packets in modern networks can traverse multiple
paths, be buffered, or be chosen for more complex analysis, network software cannot assume
that packets sent from a source to a server are received by a server in order. Network protocols
therefore commonly build on TCP, a protocol which uses acknowledgments and other mech-
anisms to ensure that servers receive packets in order. Since packet ordering is enforced by
causality (by sending acknowledgments) and by software on the receiving end, rather than by
the network semantics, correctness of such networks typically does not rely on the order of
packet processing. Therefore we can successfully verify a majority of network applications
despite our abstraction.

1.2 Complexity of stateful verification

In Sect. 5, we show that the problem of network verification when assuming a nondetermin-
istic order of packet processing is complete for exponential space, i.e., it is decidable, and
in the worst case, the decision procedure can take exponential space in terms of hosts and
middleboxes. This is proved by showing that the network safety problem is equivalent to
the coverability problem of Petri nets, which is known to be EXPSPACE-complete [21,32].
This result is not surprising, and resembles previous work on message passing systems with
unordered communication channels [21,36].

Since the problem is complete, it is impossible to improve this upper-boundwithout further
assumptions. Therefore, we consider limited cases of middleboxes permitting more efficient
verification procedures, as shown in Fig. 1. We identify four classes of middleboxes with
increasing expressive power and verification complexity: (i) stateless middleboxes whose
forwarding behaviour is constant over time, (ii) increasing middleboxes whose forwarding
behaviour increases over time, i.e., as the history of packets is extended, the set of forwarded
packets may never decrease, (iii) progressingmiddleboxes whose forwarding behaviour can-

Fig. 1 Middlebox hierarchy with worst-case time complexity for each category
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not regress to a previous state, i.e., the transition relation of the transducer does not include
cycles besides self-cycles (or cycles of “equivalent states”), and hence the forwarding behav-
ior stabilizes after some time, and (iv) arbitrary middleboxes without any restriction. For
example, NATs, Switches and simple ACL-based firewalls are stateless; hole-punching state-
ful firewalls are increasing—as time proceeds more hosts become “trusted” and hence more
packets are being forwarded rather than dropped; and learning-switches and cache-proxies
are progressing and not increasing—information that is learnt is never unlearned, but the
forwarding behaviour may decrease as a result of learning (e.g., a learning switch would
forward a packet to the right port rather than broadcasting it).

For stateless and increasing middleboxes, we prove that any packet which arrives once
can arrive any number of times, leading to a polynomial-time verification algorithm, using
a fixed-point computation. We note that efficient near linear-time algorithms for stateless
verification are known (e.g., see [18]). Our result generalizes these results to increasing
networks and is in line with the recent work in [12,24].

For progressing middleboxes, we show that verification is coNP-complete. The main
insight is that if a bad state is reachable then there exists a small (polynomial) input scenario
leading to a bad state. This means that tools like SAT solvers which are frequently used for
verification can be used to verify large networks in many cases but it also means that we
cannot hope for a general efficient solution unless P = NP.

Finally, we note that unlike the known results in stateless networks, the absence of for-
warding loops does not improve the upper bound, i.e., we show that our lower bounds also
hold for networks without forwarding loops.

Packet space assumption Previous works in stateless verification [13,17] assume that packet
headers have n-bits, simulating realistic packet headers which can be large in practice. This
makes the complexity of checking safety of stateless networks PSPACE-hard. Our model
avoids packet space explosion by only supporting three fields: source, destination, and packet
tags. We make this simplification since our work primarily focuses on middlebox policies
(rather than routing). As demonstrated in Sect. 4.2, middlebox policies are commonly spec-
ified in terms of the source and destination hosts of a packet and the network port (service)
being accessed. For example, at the application level, firewalls may decide how to handle a
packet according to a small set of application types (e.g., skype, ssh, etc.). Source, destination
and packet tag are thus sufficient for reasoning about safety with respect to these policies.
This simplification is also supported by recent works (e.g. [18]) which suggest that in practice
the forwarding behaviour depends only on a small set of bits.

Lossless channels Previous works on infinite ordered communication channels have intro-
duced lossy channel systems [1] as an abstraction of ordered communication that recovers
decidability. Lossy channel systems allow messages to be lost in transit, making the reach-
ability problem decidable, but with a non-elementary lower bound on time complexity. In
our model, packets cannot be lost. On the other hand, the order of packets arrival becomes
nondeterministic. With this abstraction, we manage to obtain elementary time complexity
for verification.

Initial experienceWe implemented a tool which accepts symbolic representations of middle-
boxes and a network configuration and verifies safety. For increasing (and stateless) networks,
the tool generates a Datalog program and a query which holds iff a bad state is reachable.
Then, the query is evaluated using existing Datalog engines [22].
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For arbitrary networks (and for progressing networks), the tool generates a petri-net and a
coverability propertywhich holds iff the network reaches a bad state. Toverify the coverability
property we use LOLA [23,34]—a Petri-Net model checker.

1.3 Main results and outline

This work addresses the complexity of verifying the safety of stateful networks. It makes the
following main contributions:

– We introduce a formalmodel for stateful networks with finite-state middleboxes, inspired
by communicating finite state machines [7] (Sect. 2). We further propose a symbolic
representation of middleboxes, resulting in some cases in an exponentially more succinct
description compared to an explicit representation as a finite state machine (Sect. 2.1).
We use the formal model to show that verifying safety properties in stateful networks
is undecidable, even when the network configuration does not admit forwarding loops
(Sect. 2.4).

– We adopt an unordered abstraction inspired by Lipton [21] and Sen and Viswanathan
[36] to define a conservative abstraction of networks in which packets can be processed
out of order (Sect. 3). Under this abstraction, the safety problem of stateful networks
becomes decidable, but EXPSPACE-complete. Interestingly, we show that for a certain
class of networks (namely, increasing networks) this abstraction is in fact precise for
safety (Sect. 4).

– We identify four classes to which we classify networks, characterized by the forwarding
behaviours of theirmiddleboxes: stateless, increasing, progressing and arbitrary (Sect. 4).
We characterize these classes both semantically and syntactically via restrictions on the
symbolic representation of themiddleboxes (Sect. 4.1), and demonstrate that these classes
capture real-world middleboxes (Sect. 4.2).

– We show that different network classes admit better complexity results than the
EXPSPACE complexity of arbitrary networks: PTIME for stateless and increasing net-
works (Sect. 6.1), and coNP for progressing networks (Sect. 6.2). The upper bounds are
made more realistic by stating them in terms of a symbolic representation of middle-
boxes, i.e., the middlebox code, rather than the explicit state space. We match the upper
bounds with lower bounds (Sect. 5), which are obtained with standard middleboxes, and
thus reflect the complexity of realistic networks.

– We present initial empirical results using Petri nets and Datalog engines to verify safety
of networks (Sect. 7).

Finally, we discuss related work and conclude in Sect. 8.

2 A formal model for stateful networks

In this section, we present a formal model of networks with stateful middleboxes. We define
a concrete network semantics, and present the safety verification problem, as well as the
special case of isolation. Finally, we show that the safety verification problem is undecidable
under the concrete semantics.

A network N is a finite undirected graph of hosts andmiddleboxes, equipped with a packet
domain. Formally, N = (H ∪ M, E, P), where H is a finite set of hosts, M is a finite set of
middleboxes, E ⊆ {{u, v} | u, v ∈ H ∪ M} is the set of (undirected) edges and P is a set of
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packets.

Packets In real networks, a packet consists of a packet header and a payload. The packet
header contains a source and a destination host ids and additional arbitrary stream of control
bits. The payload is the content of the packet and may consist of any arbitrary sequence of
bits. The cardinality of the set of packets is determined by the possible range of control bits
and the possible space of payloads, and need not be finite.

In this work, P is a set of abstract packets. An abstract packet p ∈ P consists of a header
only, in the form of a triple (s, d, t), where s, d ∈ H are the source and destination hosts
(respectively) and t is a packet tag that ranges over a finite domain T . Intuitively, T stands
for an abstract set of services or security policies. Therefore, P = H × H × T is a finite set.

Middlebox behaviour in our model is defined with respect to abstract packets and is
oblivious of the underlying concrete packets.

Each host h ∈ H is associated with a set of packets that it can send, denoted Ph ⊆ P .

2.1 Stateful middleboxes

A middlebox m ∈ M in a network N has a set of ports Pr and a forwarding transducer F .
The set of ports Pr consists of all the adjacent edges of m in the network N,

The forwarding transducer of a middlebox is a tuple F = (Σ, Γ , Qm, q0m, δm) where:

– Σ = P × Pr is the input alphabet in which each letter consists of a packet and an input
port,

– Γ = 2P×Pr is the output alphabet in which each letter describes (possibly empty) sets of
packets sent over the different ports,

– Qm is a possibly infinite set of states,
– q0m ∈ Qm is the initial state, and
– δm ⊆ Qm × Σ × Γ × Qm is the transition relation, which describes both the output and

the change of state in response to an input.

Note that the alphabet Σ is finite (since abstract packets are considered).
We often refer to the transition relation δm as a function δm : Qm × Σ → 2Γ ×Qm , where

δm(q, (p, pr)) = {(o, q ′) | (q, (p, pr), o, q ′) ∈ δm}. If δm(q, (p, pr)) = ∅, we say that δm is
undefined for the packet p arriving on port pr in state q .

We extend δm to sequences h ∈ (P × Pr)∗ in the natural way: δm(q, ε) = {(ε, q)} and
δm(q, h·(p, pr)) = {(γi ·o′, q ′) | ∃qi ∈ Qm . (γi , qi ) ∈ δm(q, h)∧(o′, q ′) ∈ δm(qi , (p, pr))}.
The language of a state q ∈ Qm is L(q) = {(h, γ ) ∈ (P × Pr)∗ × (2P×Pr)∗ | ∃q ′ ∈
Qm . (γ, q ′) ∈ δm(q, h)}. The language of F , denoted L(F), is the language of q0m . We
also define the set of histories leading to q ∈ Qm as h(q) = {h ∈ (P × Pr)∗ | ∃γ ∈
(2P×Pr)∗. (γ, q) ∈ δm(q0m, h)}.

F is deterministic if for every q ∈ Qm and every (p, pr) ∈ Σ , |δm(q, (p, pr))| ≤ 1. If
F is deterministic, then every history leads to at most one state and output, in which case F
defines a (possibly partial) forwarding function f : (P × Pr)∗ × (P × Pr) → 2P×Pr where
f(h, (p, pr)) = o for the (unique) output o ∈ 2P×Pr such that (h · (p, pr), γ · o) ∈ L(F) for
some γ ∈ (2P×Pr)∗. If no such output o exists, then f is undefined. The forwarding function f
defines the (possibly empty) set of output packets (paired with output ports) that m will send
to its neighbors following a history h of packets that m received in the past and input packet
p arriving on input port pr . We note that f(h, (p, pr)) = ∅ should not be confused with the
case where f(h, (p, pr)) is undefined.
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If F is nondeterministic, a forwarding relation fr ⊆ (P × Pr)∗ × (P × Pr) × 2P×Pr is
defined in a similar way.

Note that every forwarding function f can be defined by an infinite-state deterministic
transducer: Qm will include a state for every possible history, with ε as the initial state. The
transition relation δm will map a state and an input packet to the set of output packets as
defined by f, and will change the state by appending the packet to the history.

2.1.1 Finite-state middleboxes

Arbitrary middlebox functionality, defined via infinite-state transducers, makes middleboxes
Turing-complete, and hence impossible to analyze. To make the analysis tractable, we focus
on abstract middleboxes, whose forwarding behaviour is defined by finite-state transducers.
Nondeterminism can then be used to overapproximate the behaviour of a concrete, possibly
infinite-state, middlebox via a finite-state abstract middlebox, allowing a sound abstraction
w.r.t. safety.

In the sequel, unless explicitly stated otherwise, we consider finite-state middleboxes. We
identify a middlebox with its forwarding relation and the transducer that implements it, and
use m to denote each of them.

2.1.2 Symbolic representation of middleboxes

To allow a more succinct representation, we use a symbolic representation of finite-state
middleboxes, where a state of a middlebox m is described by the valuation of a finite set of
relations R1, . . . , Rk defined over finite domains (e.g., hosts). The transition relation δm is
also described symbolically using (nondeterministic) update operations of the relations and
output. The syntax for the symbolic representation is described in Fig. 2.

Technically, we describe δm on an input packet (src, dst, tag) arriving from port prt by a
sequence of loop-free guarded commands, which we call a guarded command block. Each
guarded command in the block consists of a command and a guard, which determineswhether

Fig. 2 A simple language for representing finite state middleboxes. 〈exp〉 denotes a vector of 〈exp〉 separated
by commas
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the command should be executed. Guards are Boolean expressions over relation membership
predicates of the form e in R (where e = (e1, . . . , en) for an n-ary relation R) and element
equalities e1 = e2. Each ei is either a constant or a variable that refers to packet fields: src,
dst, tag, prt. Commands are of the form:

(i) output set of tuples,
(ii) abort,
(iii) insert tuple e to relation R,
(iv) remove tuple e from relation R,
(v) sequential composition, and
(vi) guarded command block.

The semantics of insert, remove and sequential composition is straightforward.Anoutput
command produces output. In case more than one output is executed, e.g., in the case of a
sequential composition of output commands, the output of the execution is the union of all
output commands. Blocks of guarded commands are executed non deterministically. That
is, all the guards in the block are evaluated, and one command whose guard is evaluated to
true is executed. If no guard evaluates to true then the empty set is produced as output, and
no relation changes are made. The abort command is used to signify that δm is not defined
on the given input.

A symbolic middlebox program represents a finite-state middlebox where each state rep-
resents an interpretation (state) of all the relations, and the transition relation is defined by
the main guarded command block in the natural way. Note that since all the relations in the
program are over finite domains, the set of states is indeed finite.

Lemma 1 Every finite-state middlebox has a symbolic representation.

Proof Let Q = {q0, . . . , qn} be the finite set of states of m, and q0 be the initial state. We
construct a symbolic middlebox program A over the constants q0, . . . , qn with a single unary
relation R. Initially, R = {q0}. Each transition (q ′, o) ∈ δm(q, (p, pr)) of m is represented
by a guarded command in the main guarded command block. The guard checks whether
q ∈ R and whether the packet is (p, pr). The command is a sequential composition of three
commands: The first command removes the (only) current state q from R. The second inserts
the new state q ′ and the third outputs the tuples in o according to δm . If δm(q, (p, pr)) = ∅,
the abort command is used. ��
Remark 1 We note that the construction of a symbolic representation in Lemma 1 results in a
linear blowup of the representation, whereas the construction of the explicit-state middlebox
represented by a symbolic representation potentially results in an exponential blowup, sug-
gesting that the symbolic representation is at least as succinct and is potentially exponentially
more succinct than the explicit state representation.

Example 1 Figure 3a contains a symbolic representation of a hole-punching Firewall which
uses a unary relation trusted. It assumes that port 1 connects hosts inside a private organi-
zation to the firewall and that port 2 connects public hosts. By default, messages from public
hosts are considered untrusted and are dropped. trusted is a unary relation which stores
public hosts that become trusted once they receive a packet from private hosts.

Figure 3b contains a simplified, nondeterministic, version of a Proxy server (or cache
server). A proxy stores copies of documents (packet payloads) that passed through it. Subse-
quent requests for those documents are provided by the proxy, rather than being forwarded.
Technically, the middlebox has two ports, namely, a request port from which requests are
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(a) (b)

Fig. 3 Symbolic representation of middleboxes

received and a response port from which responses arrive. Our modelling abstracts away
the packet payloads and keeps only their types. Consequently we use nondeterminism to
also account for different requests with the same type. The internal relation cache stores
responses for packet types.

2.2 Concrete (FIFO) network semantics

The concrete semantics of a network N = (H ∪ M, E, P) is given by a transition system
defined over a set of configurations. In order to define the semantics we first need to define
the notion of channels which capture the transmission of packets in the network. Formally,
each (undirected) edge {u, v} ∈ E in the network induces two directed channels: (u, v) and
(v, u). The channel (v, u) is an ingress channel of u, as well as an egress channel of v. It
consists of the sequence of packets that were sent from v to u and were not yet received by
u (and similarly for the channel (u, v)). The capacity of channels is unbounded, that is, the
sequence of packets may be arbitrarily long. In the concrete semantics, the channels admit a
first-in-first-out (FIFO) behavior: Whenever a middlebox forwards a packet p from a certain
port it removes it from the head of the corresponding ingress channel and adds the generated
packets to the tails of the corresponding egress channels (note that the mapping between
channels and middlebox ports is unique).

Configurations and runsA configuration of a network consists of the content of each channel
and the state of every middlebox. Channels have an unbounded capacity, resulting in an
infinite number of configurations even for finite state middleboxes. The initial configuration
of a network consists of empty channels and initial states for all middleboxes. A configuration
c2 is a successor of configuration c1 if it can be obtained by either: (i) some host h sending a
packet p ∈ Ph to a neighbor, thus appending the packet p to the corresponding channel; or
(ii) some middlebox m processing a packet p from the head of one of its ingress channels,
changing its state to q ′ and appending output o to its egress channels where q ′, o are defined
in accordance with δm , i.e., if q is the current state of m and pr is the port associated with
the ingress channel then (o, q ′) ∈ δm(q, (p, pr)). This model corresponds to asynchronous
networks with non-deterministic event order.

A run of a network from configuration c0 is a sequence of configurations c0, c1, c2, . . .
such that ci+1 is a successor configuration of ci . A run is a run from the initial configuration.
The set of reachable configurations from a configuration ci is the set of all configurations
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that reside on a run from ci . The set of reachable configurations of a network is the set of
reachable configurations from the initial configuration.

2.3 Safety verification of stateful networks

In this section we define the safety verification problem in stateful networks, as well as the
special case of isolation.

To describe safety properties, we augment middleboxes with a special abort state that
is reached whenever δm(q, (p, pr)) = ∅, i.e., the forwarding behaviour is undefined (not
to be confused with the case where (∅, q ′) ∈ δm(q, (p, pr)) for some q ′ ∈ Qm). This
lets middleboxes function as “monitors” for safety properties. If δm(q, (p, pr)) = ∅, and
h ∈ h(q), i.e., h is a history leading to q , we say that m aborts on h · (p, pr) (and every
extension thereof). In the symbolic representation, this is captured by the abort command.

We define abort configurations as network configurations where at least one middlebox
is in an abort state.

Safety The input to the safety problem consists of a network N. The output is True if no abort
configuration is reachable in N, and False otherwise.

Isolation and reachabilityAn important example of a safety property is isolation. Informally,
isolation is the requirement that certain packets (e.g., packets from a certain host) never reach
some host. In the isolation problem, the input is a network N, a set of hosts Hi ⊆ H and a
forbidden set of packets Pi ⊆ P . The output is True if there is no run of N in which a host
from Hi receives a packet from Pi , and False otherwise.

The isolation problem can be formulated as a safety problem by introducing an isolation
middlebox mhi for every host hi ∈ Hi . The role ofmhi is to monitor all traffic to hi , and abort
if a forbidden packet p ∈ Pi arrives. All other packets are forwarded to hi . (Figure 4 shows
a symbolic representation of such a middlebox connected to hi on port 0 and to the rest of
the network on port 1.) Clearly, isolation holds if and only if the resulting network is safe.

The Reachability problem is the dual of the isolation problem (i.e., the output is flipped).

Example 2 Figure 5 shows several examples of interesting middlebox topologies for verifi-
cation. In all of the topologies shown we want to verify a variant of the isolation property.
In Fig. 5a we want to verify that A, a host, cannot send more than a fixed number of packets

Fig. 4 Isolation checking middlebox

Fig. 5 Interesting network topologies for verification
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to B. Here r1 and r2 are rate limiters, i.e., they count the number of packets they have seen
going from one host to the other, and lb is a load balancer that evenly spreads packets from
A along both paths (to minimize the load on any one path). In Fig. 5b we want to ensure
that host A cannot access data that originates in S1, but should be allowed to access data
from S2, where f is a firewall and c is a proxy (cache) server. Finally in Fig. 5c we show
a multi-tenant datacenter (e.g., Amazon EC2), where many independent tenants insert rules
into firewalls ( f1 and f2) and we want to ensure that the overall behaviour of these rules is
correct. For example, we would like to ensure that pri1 cannot communicate with pri2, and
pub2 communicates with pri1 only if pri1 initiates the connection.

2.4 Undecidability of safety w.r.t. the FIFO semantics

In this section, we prove undecidability of the safety problem by showing that (the specific
example of) checking isolation w.r.t. the FIFO semantics is undecidable, even when the
network does not have forwarding loops. Forwarding loops occur in networks when a packet
reaches the same middlebox (or router) multiple times during the packet’s traversal of the
network. In the case of deterministic networks (e.g., stateless networks that consist solely of
routers), forwarding loops result in the packet traversing the network in an infinite path, never
reaching the packet’s destination. In general, the existence of forwarding loops is considered
a fault in the network design [14].

It is well known that an automaton with an ordered channel of messages (also known as a
communicating FSM) can simulate a Turing machine [7]. This can be used to show that the
isolation problem over ordered channels is undecidable in the presence of forwarding loops:
a forwarding loop allows a packet to traverse the network and reach the same middlebox any
number of times. Therefore, it allows one middlebox in the network to simulate a communi-
cating FSM by having all packets rerouted to it. However, it turns out that forwarding loops
are not the root cause for undecidability. In this work, we prove that the isolation problem is
still undecidable even in the absence of forwarding loops.

To formally define forwarding loops, we augment every packet sent by a host with a unique
packet id (e.g., the host id combinedwith a time stamp).Middlebox forwarding is oblivious to
this augmentation: forwarding relations do not depend on the packet id, nor do they change it.
We say that a network has a forwarding loop if there is a run in which a packet with the same
packet id is received by the samemiddlebox twice (i.e., a run in which a packet that originates
from a middlebox is received by the same middlebox again, possibly after modifications).

We now prove the undecidability result. For completeness of the presentation, our proof
shows a reduction from the halting problem of 2-counter machines rather than from reacha-
bility of communicating FSMs. However, the same idea of avoiding forwarding loops could
be applied to the reduction from commmunicating FSMs sketched above.

Theorem 1 The isolation problem under the FIFO network semantics is undecidable even
for networks with finite-state middleboxes and without forwarding loops.

Proof We prove undecidability by a reduction from the (undecidable) halting problem of a
two-counter machine to the reachability problem, which is the complement of the isolation
problem. A two-counter machine M consists of a finite set of control states Q, an initial
state q0 ∈ Q, a final state q f ∈ Q, and a set of instructions per state (state transitions). An
instruction determines the next state andmanipulates the value of the counters c1, c2 (initially
the value of the two counters is 0). An instruction is in one of the two following forms [26]:
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– q1 : ci = ci + 1 ; GOTO q2.
The instruction increments ci and changes the state from q1 to q2.

– q1 : If ci = 0 GOTO q2 Else ci := ci − 1 ; GOTO q3.
The instruction changes the state to q2 if the counter value is zero; otherwise it decrements
the counter and goes to state q3.

We first describe a reduction that constructs a network with forwarding loops and allows
discarding of packets. We then describe how to get rid of the forwarding loops and the
discard operation. Our reduction constructs a network with three middleboxes: a controller
middlebox that simulates the state in Q, a c1 middlebox that helps simulate the value of
the first counter, and a c2 middlebox that helps simulate the value of the second counter, as
illustrated in Fig. 6. The network has two hosts: initiator and target. Intuitively, the initiator
host initiates the simulation of the counter machine, and the target host receives a packet
if and only if the counter machine reaches the final state q f . Isolation holds if and only if
the target host receives no packet. Both hosts are connected to the controller, which is also
connected to c1 and c2. The set of packet tags is T = {#, 1}. Recall that this determines the
set of (abstract) packets. The simulation is done by making sure that the total number of 1
packets on the ingress and egress channels of each ci corresponds the value of the simulated
counter.

In our construction, the middleboxes decide on forwarding based on the packet tag only.
Middlebox ci forwards all of its received packets back to the controller host.We now describe
the forwarding behaviour of the controller. Initially, the initiator sends two # packets to the
controller. From that point on, the initiator sends only 1 packets. As our network model does
not allow to restrict the order in which hosts send packets, this scheme is enforced by the
controller: if any other packet arrives, the controller goes to a sink state in which it discards
all received packets. The controller forwards the first # to c1 and the second # to c2. When the
controller gets a 1 packet from the initiator it simulates a single step of the counter machine,
as follows. In an increment operation of ci , the controller sends a 1 packet to ci . To simulate
a zero test of ci , the controller receives two packets from ci (if packets from other hosts or
middleboxes are received, then the controller goes to a sink state). If the first received packet
is #, then the controller forwards it back to ci . If the second one is also #, then the value of
the counter is zero. If it is 1, then it is discarded (the value of ci is decremented by 1). If
both packets are 1, then the first one is discarded and the second is forwarded back to ci . The
simulation of the states of the counter machine is performed by the states of the controller
middlebox in a straightforward manner. Finally, if the controller simulates a transition to q f ,
then it forwards the packet to the target host. Hence, the counter machine halts if and only if
the target host is not isolated.

Construction without discard operation To avoid packet discarding we add a dummy host,
and packets that should be discarded are forwarded to the dummy host.

Fig. 6 The network resulting
from the reduction from the
halting problem for two counter
machines
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Construction without forwarding loops To avoid forwarding loops, we add a repeater host to
every middlebox. In the new construction, if a middlebox receives a packet with tag t and
needs to forward it to port p, then it discards it, and (i) if the next packet that it receives is not
from its repeater with tag t , then it goes to a sink state. (ii) otherwise, it forwards the packet
it got from its repeater to port p. ��

3 Abstract network semantics

In this section we define an abstract network semantics, called the unordered semantics,
which recovers decidability of the safety problem. A similar setting was explored in [21,36]
to recover decidability and obtain the same complexity results we show in Theorem 4.

In the concrete (FIFO) network semantics channels are ordered. In an ordered channel,
if a packet p1 precedes a packet p2 in an ingress channel of some middlebox, then the
middlebox will receive packet p1 before it receives packet p2. We abstract this semantics by
an unordered network semantics, where the channels are unordered, i.e., there is no restriction
on the order in which a middlebox receives packets from an ingress channel. In this case,
the sequence of pending packets in a channel is abstracted by a multiset of packets. Namely,
the only relevant information is how many occurrences each packet has in the channel. The
definitions of configurations and runs w.r.t. the unordered semantics are adapted accordingly.
Note that this change does not affect the capacity of the network edges. Consequently the set
of network configurations remains infinite.

Remark 2 Every run with respect to the FIFO network semantics is also a run with respect to
the unordered semantics. Therefore, if safety holds with respect to the unordered semantics,
then it also holds for the FIFO semantics,making the unordered semantics a sound abstraction
of the FIFO semantics with respect to safety.

The abstraction can introduce false alarms, where a violation exists with respect to the
unordered semantics but not with respect to the concrete semantics. This is demonstrated
by Example 3 which presents a network that violates isolation with respect to the unordered
semantics, but satisfies isolation with respect to the FIFO semantics. Still, in many cases, the
abstraction is precise enough to enable verification. In particular, in Lemma 4 we show that
for an important class of networks, the two semantics coincide with respect to safety.

Lossy channel semantics is another overapproximation of the FIFO network semantics
considered in the literature, where the order on the channels is maintained, but packets can be
lost. We note that the unordered semantics also over-approximates the lossy semantics with
respect to safety, as any violating run with respect to the lossy semantics can be simulated
by a run with respect to the unordered semantics where “lost” packets are starved until the
violation occurs.

Example 3 Consider a network with two hosts (h1 and h2), each connected to an authen-
tication middlebox (m1 and m2 respectively), as depicted in Fig. 7. The authentication
middleboxes are connected to each other as well. Each authentication middlebox forwards
all packets from a host only if the first packet seen from that host is an authentication key (k1
and k2 for m1 and m2 respectively), otherwise it drops all packets from that host. We would
like to verify isolation between h1 and h2. Namely, we would like to verify that no packet
with source h1 arrives at h2 and vice versa.

A possible scenario violating isolation w.r.t the unordered semantics is: (i) h1 sends k1
and then sends k2; (ii) m1 receives k1 and then receives k2 (and forwards both packets in that
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Fig. 7 A network with two hosts
and two authentication
middleboxes. Isolation in this
network is preserved under the
FIFO semantics, but is violated
under the unordered semantics

order). (iii) m2 receives k2 before it receives k1 (i.e., the order on the channel between m1

and m2 was not maintained). m2 forwards k2 to h2 and isolation is violated.
On the other hand, if all channels are FIFO, then if h1 first sends k2, it and all subsequent

packets from h1 will be dropped by m1. If h1 first sends k1 instead, m1 will forward it to
m2, which in turn will drop it and all subsequent packets from h1. Consequently, isolation
between h1 and h2 is preserved under the FIFO semantics.

Decidability of safety w.r.t. the unordered semantics In the unordered semantics, the network
forms a special case of monotone transition systems: We define a partial order ≤ between
network configurations such that c1 ≤ c2 if the middlebox states in c1 and c2 are the same
and c2 has at least the same packets (for every packet type) in every channel. The network is
monotone in the sense that for every run from c1 there is a corresponding run from any bigger
c2, since more packets over a channel can only add possible scenarios. The partial order is
trivially awell-quasi-order (as the number of packets cannot be negative), and the predecessor
relation is clearly computable. The classical results of Abdulla et al. [2] and Finkel et al.
[11] prove that in monotone transition systems a backward reachability algorithm always
terminates and thus, the safety problem is decidable. Formal arguments and complexity
bounds are provided by Theorem 4.

4 Classification of stateful middleboxes

Encouraged by the decidability of safety w.r.t. the unordered semantics, we are now inter-
ested in investigating its complexity. As a first step, in this section, we identify three special
classes of forwarding behaviours of middleboxes within the class of arbitrary middleboxes.
Namely, stateless, increasing, and progressing middleboxes. We show that these classes cap-
ture the behaviours of real world middleboxes. The classes naturally extend to classes of
networks: a network is stateless (respectively, increasing, progressing or arbitrary) if all of
its middleboxes are. As we show in Sects. 5 and 6, each of these classes results in a different
complexity of the safety problem. Our definitions apply both for finite-state and infinite-state
middleboxes.

Stateless middleboxAmiddleboxm is stateless if it can be implemented as a transducer with
a single state (in addition to the abort state), i.e., its forwarding behaviour does not depend
on its history (with the exception of abort). Formally, a middlebox m is stateless if for every
two histories h1, h2 ∈ (P × Pr)∗, packet p ∈ P , port pr ∈ Pr and output set o ∈ 2P×Pr,
(h1, (p, pr), o) ∈ fr iff (h2, (p, pr), o) ∈ fr.

Increasing middlebox A middlebox m is increasing if its forwarding relation fr is mono-
tonically increasing w.r.t. its history, where histories are ordered by the subsequence
relation,3 denoted by �. Formally, a middlebox m is increasing if for every two histories

3 A subsequence is a sequence that can be derived from another sequence by deleting some elements without
changing the order of the remaining elements.
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h1, h2 ∈ (P×Pr)∗: if h1 � h2, then for every packet p, portpr and output setso1, o2 ∈ 2P×Pr,
if (h1, (p, pr), o1) ∈ fr and (h2, (p, pr), o2) ∈ fr then o1 ⊆ o2. Intuitively, this means that
new information can only expand the forwarding policy of an increasing middlebox, or lead
to an abort.

Remark 3 The “increasing” property implies that the forwarding relation of an increasing
middlebox is in fact a function. Hence, the middlebox can be implemented by a determin-
istic transducer. In the following we will refer to the forwarding function f of increasing
middleboxes instead of the forwarding relation fr.

The following lemma ensures that the behaviour of an increasing middlebox can be pre-
cisely captured by a finite-state deterministic transducer. Its proof uses Higman’s lemma [15]
(based on well quasi ordering).

Lemma 2 Any infinite-state increasing middlebox has an implementation as a deterministic
finite-state increasing middlebox.

Proof Consider an infinite-state increasing middlebox m, and its forwarding function f :
(P × Pr)∗ × (P × Pr) → 2P×Pr. Recall that f might be a partial function.

Let f(h) denote an � × k output matrix for the middlebox m and history h, where |P| = �

and |Pr| = k. We further denote P = {p1, . . . , p�} and Pr = {pr1, . . . , prk}. Every entry in
the output matrix f(h) contains the output set for the corresponding pair of packet and port,
or � if it is undefined. Formally f(h)i, j = f(h, (pi , pr j )) or f(h)i, j = � when f is undefined
for the input.

As P and Pr are finite, we get that there is a finite number of different output matrices. We
denote them by A1, . . . , An . With every output matrix Ai we associate the set of matching
histories h(Ai ) = {h | f(h) = Ai }. Note that h(A1) ∪ · · · ∪ h(An) = (P × Pr)∗ and
that h(Ai ) ∩ h(A j ) = ∅ for every i �= j (since the forwarding function is deterministic).
Therefore, for every history h there exists a unique i such that h ∈ h(Ai ).

In the following, we will show that for every Ai , the set h(Ai ) is regular and thus we
can implement the forwarding function f of m by using finite-state automata to recognize
the matrix that corresponds to the current history and then forwarding the current packet
accordingly.

We show that for every output matrix A, h(A) is regular. We define a partial order ≤
over matrices as: A ≤ B iff Ai, j ⊆ Bi, j for every pair of indices i, j , (where X ⊆ � for
every X ∈ 2P×Pr). We denote by UP(A) the upwards closure of {A} with respect to the
≤ order on matrices. We extend the definition of h(A) to sets of matrices: for a (possibly
infinite) set of matrices A we define h(A ) = ⋃

A∈A {h | f(h) = A}. We note that since m
is increasing, the set h(UP({A})) is upwards closed with respect to the subsequence relation
over histories. Indeed, if h1 ∈ h(UP(A)), then f(h1) ≥ A. For every h2 � h1, f(h1) ≤ f(h2)
(as m is increasing), and thus f(h2) ≥ A, which means that h2 ∈ h(UP(A)) as well. Hence,
by Higman’s lemma and the finite basis property of wqo, we get that h(UP(A)) has a finite
basis (which consists of histories). We denote the basis {h1, . . . , ho}. Then h ∈ h(UP(A)) if
and only if h � hi for some i = 1, . . . , o.

We further observe that for a given history hi , the (infinite) set {h | hi � h} is a regular
language, and as regular languages are closed under finite union, we get that the (infinite) set
of histories h(UP(A)) is regular. Finally, we note that h(A) = h(UP(A)) \ ⋃{h(UP(A′)) |
A′ ≥ A ∧ A′ �= A}. Since there are finitely many output matrices, closure properties of
regular languages imply that h(A) is regular.

To complete the proof, we describe the transducer construction. Let Di be a finite-state
automaton that recognizes h(Ai ). We construct a finite-state transducerm′ for m, as follows.
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m′ runs D1, . . . , Dn in parallel. They all start from their initial states, and on every new
packet p that arrives from port pr, m′ updates the states of D1, . . . , Dn in parallel based on
(p, pr). Exactly one of them, say Di , will reach an accepting state, in which case m′ will
process the packet as defined by Ai . Correctness is ensured since for every history h, Di

accepts h if and only if h ∈ h(Ai ), which by definition ensures that f(h) = Ai . In addition,
the construction results in a finite-state transducer since the number of matrices is finite. ��
Precision of abstract semantics in increasing networksRecall that in general, safety w.r.t. the
FIFO semantics and the unordered semantics do not coincide.However, the following lemmas
show that for increasing networks (with either finite-state or infinite-state middleboxes) they
must coincide, making the abstraction precise for such networks. Intuitively, this is because
in increasing networks if a packet p reaches a middlebox m once, then unless a middlebox
in the network reaches an abort state, the packet p can reach m again, thus enabling the
simulation of unordered channels with ordered ones. The following lemma formalizes this
claim.

Lemma 3 Let N be an increasing network. For every middlebox m, packet p and port pr, if
there exists a run r of N from the initial configuration in the FIFO semantics such that in the
last step m receives p from pr, then from any configuration there exists a run, in the FIFO
semantics, that ends in a step in which m receives p from pr (or in abort).

Proof We prove the assertion by induction on |r | (the length of the run from the initial
configuration). We fix m, p, pr, r , and an arbitrary configuration c from which we wish to
show a run.

If |r | = 1, then it must be the case thatm received the packet from a neighbor host. Hence,
c has a run in which the same neighbor host sends the same packet to m, and after all the
previous packets in the ingress channel of m are processed, the packet p arrives from port
pr.

If |r | > 1, then we consider two distinct cases. In the first case, the packet was sent tom by
a neighbor host, and by the same arguments as before the assertion holds. In the second case,
the packet was sent to m by a neighbor middlebox m′. Let h′ = (p′

1, pr
′
1), . . . , (p

′
n, pr

′
n) be

the history of packets received by m′ before it sent the packet, and let (p′, pr′) be the packet
that triggered the forwarding of p from m′ to m. Since these packets were received by m′
before the last step of r it must be the case that there exist n + 1 runs r1, . . . , rn, r ′ such that
run ri ends when m′ receives packet (p′

i , pr
′
i ), and run r ′ ends when m′ receives (p′, pr′).

Each of the runs r1, . . . , rn, r ′ has a length of at most |r | − 1, since they are subsequences of
the prefix of r that excludes the packet (p, pr) sent from m′ to m.

Hence, by the induction hypothesis there is a run over N that begins in c and ends in some
configuration c1 afterm′ received the packet (p′

1, pr
′
1). Similarly, for every i = 1, . . . , n there

is a run that begins in ci and ends in some configuration ci+1 after m′ received the packet
(p′

i , pr
′
i ). Finally, there is a run from cn+1 to a configuration c′ that ends after m′ received

(p′, pr′). Consider the history h′′ of m′ that is formed in the run c � c1 � · · · cn+1 � c′.
Regardless of the history ofm′ in c (which is the prefix of h′′), we get that h′ is a subsequence
of h′′ (as (p′

i+1, pr
′
i+1) is added after (p′

i , pr
′
i )). Hence, after m

′ receives (p′, pr′), it must
forward p to m (due to the fact that fm′(h, (p′, pr′)) ⊆ fm′(h′′, (p′, pr′))). Hence, after m
processes all the packets in its ingress channel, it will receive (p, pr) (or will get to an abort
state). ��

In Lemma 4, we use the property shown in Lemma 3 to prove that any reachable config-
uration in an unordered network, is also a reachable configuration of a FIFO network. Given
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an unordered violating run, we use the construction described in the proof of Lemma 3 to
build a FIFO run that ends in the packet that caused the violation in the unordered run, or in
a FIFO violating run in case the construction from Lemma 3 resulted in an abort state.

Lemma 4 Let N be an increasing network. Then the output of the safety problem in N w.r.t.
the FIFO semantics and the unordered semantics is identical.

Proof Recall that any (violating) run w.r.t. the FIFO semantics is also a viable (violating)
run w.r.t. the unordered semantics. Therefore, in order to prove the assertion of the lemma, it
suffices to prove that for every violating run w.r.t. the unordered semantics there is a violating
run w.r.t. the FIFO semantics.

We prove that for every unordered run r and every middlebox m there exists an ordered
run r ′ s.t. r |m � r ′|m where r |m is the history of middlebox m in run r .

The proof is by induction on the length of the unordered run r . The base case, where
|r | = 0, is clear as the history is necessarily empty.

For |r | > 0, the induction hypothesis guarantees that for the prefix of r of length |r − 1|,
denoted r−1, there exists an ordered run r ′−1 s.t. r−1|m � r ′−1|m . If m is not the recipient
of the last packet, then we consider r ′ = r ′−1. The resulting history for middlebox m is
r ′|m = r ′−1|m , and because r |m = r−1|m in this case, we have that r |m � r ′|m .

If m is the recipient of the last packet, we consider two distinct cases. In the first case,
the final packet (p, pr) in r was sent by a neighbor host. Since hosts can send packets in
any configuration, we append the last event of r to r ′−1, resulting in the ordered run r ′. The
resulting history formiddleboxm is r ′|m = r ′−1|m ·(p, pr), and because r |m = r−1|m ·(p, pr),
we have that r |m � r ′|m .

In the second case, the final packet (p, pr) in r was sent by a neighbor middlebox m′.
We consider the history of middlebox m′ for r−1—the prefix of r of length |r − 1|, denoted
h = r−1|m′ = 〈(p0, pr0), . . . , (pl , prl)〉. By the induction hypothesis, there exists an ordered
run r ′′−1 s.t. r−1|m′ � r ′′−1|m′ , and by Lemma 3 we get that for every packet (pi , pri ) in h from
any configuration there exists an ordered run that ends in middlebox m′ receiving (pi , pri ),
or there exists a run that leads to a safety violation (in which case we have reached the goal
of this construction and are done).

We proceed by constructing the run r ′. We first construct the run r̃ = r ′−1 · r ′
1 · · · r ′

l where
r ′−1 is the ordered run guaranteed by the induction hypothesis s.t. r−1|m � r ′−1|m , and ri
is the ordered run ending in the middlebox m′ receiving the packet (pi , pri ), starting from
the configuration at the end of the previous run. The construction ensures that r−1|m � r̃ |m
(since r−1|m � r ′−1|m). In addition, because r−1|m′ = 〈(p0, pr0), . . . , (pl , prl)〉 � r̃ |m′ and
m′ is increasing, m′ can send the packet (p, pr) to m after r̃ . We obtain r ′ by appending to
r̃ the final event of r , where m′ sends the packet (p, pr) to m. Since r ′|m = r̃ |m · (p, pr),
r |m = r−1|m · (p, pr) and r−1|m � r̃ |m , we get that r |m � r ′|m .

In particular, we can construct an ordered run in which m has an aborting history. ��

Progressing middlebox In order to define progressing middleboxes, we define an equivalence
relation between middlebox states based on their forwarding behaviour. States q1, q2 are
equivalent, denoted q1 ≈ q2, if L(q1) = L(q2). A middlebox m is progressing if it can be
implemented by a transducer in which whenever the state is changed into a non-equivalent
state, it will never return to an equivalent state. Formally, if (o′, q ′) ∈ δm(q, (p, pr)) and
q ′ �≈ q (where q, q ′ are reachable states of m) then for any future sequence of packets
h ∈ (P × Pr)∗, if (γ ′′, q ′′) ∈ δm(q ′, h) for some γ ′′ and q ′′, then q ′′ �≈ q .

123



Formal Methods in System Design

As opposed to increasing middleboxes, progressing middleboxes might require infinitely
many states. In this case nondeterminism is essential as it allows to support the abstraction
of infinite-state middleboxes via finite-state transducers.

Example 4 (Infinite-state progressing middlebox) Consider the packet space H ×H ×{0, 1},
and a deterministic middlebox m with a single port whose forwarding function is defined
as follows. As long as all received packets have tag 0, then each packet is forwarded (as is)
back to the single port. When a packet with tag 1 arrives for the first time, if the number
of previous packets is prime, then all future packets are discarded. Otherwise, all future
packets are forwarded back to the single port. Prime numbers are not recognizable by finite-
state machines. Hence, there is no finite-state implementation of m. On the other hand, m is
progressing since its state always progresses (from counting to always discarding or always
forwarding).

Finite-state progressing middleboxes have the following useful property:

Lemma 5 Every finite-state progressing middlebox has an implementation as a finite-state
transducer whose underlying state graph has a tree structure, except for, possibly, self-loops.

Proof We show an implementation as a directed acyclic graph (DAG), possibly with self
loops. The transformation to a tree is then straightforward. Let m be a minimal transducer
that implements the progressing middlebox. We consider the language L(q) of each state q
in m. Minimality ensures that no two states in m have the same language (otherwise they are
equivalent and can be merged). Therefore, each state q represents a unique language L(q).

Towards a contradiction we assume that there is a directed loop that is not a self-loop in
m. A loop implies that there are two states q1 �≈ q2 in m such that q1 transitions to q2 by
some sequence h2 and q2 transitions back to q1 by some sequence h3. Further, by minimality
of m, q1 is reachable by some sequence h1.

Since m is progressing, contradiction is obtained. ��
The next lemma summarizes the hierarchy of the classes (as illustrated by Fig. 1).

Lemma 6 – Any stateless middlebox is also increasing.
– Any increasing middlebox is also progressing.

Proof The first part of the lemma is straightforward.
Consider the second part of the lemma. Letm be a deterministic transducer of an increasing

middlebox and f is its forwarding function. Towards a contradiction assume that m is not
progressing, i.e. there exist two states q1 �≈ q2 and three histories h0, h1, h2 s.t. (γ0, q1) ∈
δm(q0, h0), (γ1, q2) ∈ δm(q0, h0 · h1) and (γ2, q1) ∈ δm(q0, h0 · h1 · h2).

Because q1 �≈ q2, there exists a history h s.t. f(h0 · h) �= f(h0 · h1 · h), and since m is
increasing it must be the case that f(h0 · h) ⊂ f(h0 · h1 · h).

However, since m is deterministic and h0 and h0 · h1 · h2 lead to the same state, namely
q1, it must be that f(h0 ·h) = f(h0 ·h1 ·h2 ·h) and we get that f(h0 ·h1 ·h) ⊃ f(h0 ·h1 ·h2 ·h),
in contradiction to the fact that m is increasing. ��

4.1 Syntactic characterization of middlebox classes

The classes of middleboxes defined above can be characterized via syntactic restrictions on
their symbolic representation. In Sect. 6 we will use the syntactic characterization to obtain
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more realistic complexity upper bounds, stated in terms of the symbolic representation rather
than the explicit state-space of middleboxes.

Amiddlebox representation is syntactically stateless if it does not use any insert or remove
command on any relation. A middlebox representation is syntactically increasing if it does
not use the remove command on any relation, does not use negated membership predicates
in the guards and all guards are mutually exclusive (i.e. no two guards can be true at the same
time). A middlebox representation is syntactically progressing if it does not use the remove
command on any relation.

Lemma 7 Every stateless finite-state middlebox has an equivalent syntactically stateless
symbolic representation and vice versa.

Proof The lemma is trivial for stateless middleboxes, as both the transducer and the symbolic
representation simply describe a fixed forwarding table. ��
Lemma 8 Every increasing finite-state middlebox has an equivalent syntactically increasing
symbolic representation and vice versa.

Proof We first show that every increasing finite-state middlebox has an equivalent syntac-
tically increasing symbolic representation. Let m be an increasing finite-state middlebox
implemented by a deterministic transducer with state set Q = {q0, . . . , qn}, where q0 is the
initial state. By Lemmas 5 and 6 we may assume w.l.o.g that the underlying graph of m
is a tree. We construct a symbolic program A with one unary relation R over the constants
q−1, q0, . . . , qn . Initially R = {q0}. To describe Awe need the next three notations. To reduce
the notational burden, we use packets p instead of pairs (p, pr) of a packet and an input port.
For a state qi and a packet p we denote the successor state of qi according to packet p by
qi →p (we note that possibly qi →p= qi ). The successor state is unique since the transducer
is deterministic. We denote by qi (p) the output of m when m is in state qi and packet p is
received. We denote the (single) predecessor of qi in the tree by pre(qi ) (we note that in case
the state qi has a self loop, the predecessor function returns the unique predecessor of qi that
is not qi . i.e., pre(qi ) = q j s.t. qi �= q j ). For uniformity, we assume that the root q0 also has
a predecessor, namely, q−1 with q−1(p) = ∅ for every packet p.

We now describe how A processes a packet p:

– Relation update. For every qi ∈ R: insert qi →p to R.
– Output. For every qi ∈ R: output qi (p) \ pre(qi )(p).

We first observe that A can be implemented as a syntactically increasing program. Indeed,
the “for every” loops can be replaced by a sequential composition of finitely many guarded
commands consisting of positive relation membership queries, and only insert update oper-
ations.

We now show that the forwarding behaviours of A and m are identical and hence A
is indeed a correct symbolic representation of m. Let h be an arbitrary history and let p
be an arbitrary packet. By a simple induction we get that the states in the relation R are
exactly the states that m visited while processing the history h. We assume w.l.o.g that the
set of visited states (after history h) is {q0, . . . , qk} and that qi = pre(qi+1). We prove, by
induction on k, that the outputs of m and A are identical. In the base case k = 0, and the
proof follows as we defined pre(q0)(p) = q−1 and q−1(p) = ∅. For k > 1, we observe
that since m is increasing and a prefix is also a subsequence, then qk−1(p) ⊆ qk(p). Hence,
qk(p) = (qk(p)\qk−1(p))∪qk−1(p). By the induction hypothesis, we get that A first outputs
qk−1(p), and by the implementation of A, we get that it then outputs qk(p)\qk−1(p). Hence,
overall A outputs qk(p), and the proof of the claim is complete.
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To conclude, we proved that A is a syntactically increasing symbolic representation of m.
For the converse direction, we show that the forwarding behaviour of a middlebox given

via a syntactically increasing symbolic representation is increasing. Let A be a syntactically
increasing symbolic program. For simplicity we assume that A has only one relation R. The
mutually exclusive guard requirement implies deterministic execution. Consequently, for a
history h we can denote by Rh the unique content of relation R after h. We claim that if
h1 � h2, then Rh1 ⊆ Rh2 . The proof follows from the fact that all the guards in A have
positive conditions and from the fact that elements are only added to the relation. As the
forwarding behaviour depends only on the state of the relation, and since all conditions are
positive, we get that the forwarding behaviour is increasing. ��
Lemma 9 Every progressing finite-state middlebox has an equivalent syntactically progress-
ing symbolic representation and vice versa.

Proof We first show that every progressing finite-state middlebox has an equivalent syntac-
tically progressing symbolic representation. Let m be a progressing finite-state middlebox,
and by Lemma 5 we may assume w.l.o.g that the underlying state graph of m is a tree. Let
Q = {q0, . . . , qn} be the states ofm.We construct a symbolic program A similarly to the con-
struction in the proof of Lemma 8 (with one unary relation R over the constants q0, . . . , qn ,
where initially R = {q0}, and where R accumulates the traversed states). When a packet p
is processed, the program identifies the current state by computing a maximal (according to
topological order) state qi in R (this is implemented using a guard for every path from the
tree root to each state in the state tree). It then adds qi →p to R and outputs qi (p). Since
m is a tree, there always exists exactly one maximal state in R, and we get that A always
simulates m correctly.

For the converse direction,we show that the forwarding behaviour of amiddlebox given via
a syntactically progressing symbolic representation is progressing. Let A be a syntactically
progressing symbolic program. For simplicity we assume that A has only one relation R. We
recall that the domain of R is always finite, and thus it has only a finite number of different
states (interpretations). We construct a middleboxm whose states are exactly the states of R,
and the forwarding function is exactly according to those states. As A is progressing, we get
that elements are only added to R, and thus the underlying graph of m is progressing. ��

4.2 Examples

In this section, we introduce several middleboxes, each of which resides in one of the classes
of the hierarchy presented above.

ACL switchAn ACL switch has a fixed access control list (ACL) that indicates which packets
it should forward and which packets it should discard. Typically the rules in the list refer to
the port number or to hosts that are allowed to use a certain service. As such, the forwarding
policy of an ACL switch is based only on the source host and/or ingress port of the current
packet, and does not depend on previous packets. Hence, an ACL switch can be implemented
by a stateless middlebox.

Hole-punching firewall A hole-punching firewall is described in Example 1. As the set of
trusted hosts depends on the history of the middlebox, a hole punching firewall cannot be
captured by a stateless middlebox. (Formally, given two different histories, the forwarding
function might produce a different output for the same packet and port.)
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However, a hole punching firewall is an increasingmiddlebox. This follows since for every
source host s and two histories h1 � h2, if s is trusted according to h1, then it is also trusted
according to h2. The proof of the latter is by induction on |h1|. In the base case |h1| = 0,
and therefore s is in the initial list of trusted hosts (and therefore, it is trusted also in h2).
If |h1| > 0, then h1 = h′

1 · (p, pr). We consider two distinct cases: In the first case s was
trusted before the last packet p in h1 was received. Hence, by the induction hypothesis we
get that s is trusted also in h2. In the second case s became trusted only after the last packet p
was processed. In this case, p had a trusted source host s1 (according to h′

1) with destination
s. Since h1 � h2, there exist h′

2, h
′′
2 such that h2 = h′

2 · (p, pr) · h′′
2 and h′

1 � h′
2. By the

induction hypothesis, the source host s1 of the last packet p is also trusted according to h′
2,

and therefore s is trusted also in h′
2 · (p, pr). As the set of trusted hosts never decreases, s

remains trusted in h2.

Learning switch A learning switch dynamically learns the topology of the network and
constructs a routing table accordingly. Initially, the routing table of the switch is empty. For
every host h the switch remembers the first port from which a packet with source h has
arrived. When a packet arrives, if the port of the destination host is known, then the packet
is forwarded to that port; otherwise, the packet is forwarded to all connected ports excluding
the input-port.

A learning switch is a progressingmiddlebox. Intuitively, after themiddlebox’s forwarding
function has changed to incorporate the destination port for a certain host h, it will never
revert to a state in which it has to flood a packet destined to h. A learning switch is however,
not an increasing middlebox, as packets destined to a host whose location is not known are
initially flooded, but after the location of the host is learned, a single copy of all subsequent
packets is sent.

Figure 8 depicts a symbolic representation of a learning switch that uses a binary relation
connected storing connections between hosts and ports. If the port of the destination host
is known, then the packet is forwarded to that port; otherwise, the packet is forwarded to all
connected ports excluding the input-port. The last command in the program is a syntactic
shorthand used to avoid the explicit enumeration of incoming ports required to correctly
perform the flood operation.

Proxy server The Proxy server as described in Example 1 is a progressing middlebox. After
it has stored a response, it nondeterministically replies with the stored response, or sends
the request to the server again. Once a new request is responded by a proxy the forwarding
behaviour changes as it takes into account the new response, and it never returns to the previ-
ous forwarding behaviour (as it does not “forget” the response). This example demonstrates

Fig. 8 A learning switch with three ports

123



Formal Methods in System Design

Fig. 9 A 3-port round-robin load-balancer

how nondeterminism is used to model middleboxes whose concrete behaviour depends on
packet payloads. In a concrete network model that does not abstract away the packet pay-
load, the proxy middlebox would always reply to a request with a stored response and never
forward it to the server.

Round-robin load balancerA load balancer is a device that distributes network traffic across
a number of servers. In its simplest implementation, a round-robin load balancer with n
out-ports (each connected to a server) forwards the i th packet it receives to out-port i
(mod n). Round-robin load balancers are not progressing middleboxes, as the same for-
warding behaviour repeats after every cycle of n packets.

Figure 9 depicts a symbolic representation of a round-robin load balancer with 3 ports:
port 0 is an ‘input’ port, and ports 1 and 2 are ‘output’ ports on which the load balancer splits
the incoming traffic. It uses a unary relation nextport to hold the port to which the next
packet is to be sent.

Remark 4 In practice, middlebox behaviour can also be affected by timeouts and session
termination. For example, in a firewall, a trusted host may become untrusted when a session
terminates (which makes the firewall behaviour no longer increasing). Similarly, cached
content of a cache server expires after a certain period of time (which violates progress). In
this work, we do not model timeouts and session termination.

5 Lower bounds on complexity of safety w.r.t. the unordered semantics

When considering the unordered network semantics, the safety problem becomes decidable
for networks with finite-state middleboxes. In this section, we analyze its complexity lower
bounds. The complexity bounds are w.r.t the input size, namely, (i) the number of hosts;
(ii) number of middleboxes; and (iii) the encoding size of the middleboxes functionality, i.e.,
the size of the explicit state machine (if the encoding is explicit) or the number of characters
in the symbolic representation (if the encoding is symbolic).

In Sect. 6 we present matching upper bounds for networks represented symbolically.
Since symbolic representations are at least as succinct as explicit-state descriptions of finite-
state middleboxes, all the lower bounds obtained for the explicit finite-state model apply
for the symbolic one as well, and all the upper bounds obtained for the symbolic model are
applicable to the explicit finite-state model, resulting in tight complexity bounds, both for
explicit finite-state middleboxes and for symbolic ones.

We obtain lower bounds for the safety verification problem by considering the isolation
problem. Recall that the isolation problem reduces to a safety problem by the introduction of
isolation middlebox. Since isolation middleboxes are stateless, they do not change the class
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of the input network. We can therefore deduce that the same lower bounds also hold for the
more general safety problem.

5.1 Unordered safety in progressing networks is coNP-hard

Lemma 10 The isolation problem w.r.t. the unordered network semantics for a progressing
network is coNP-hard.

Proof We show a reduction from the (NP-hard) Hamiltonian Path problem to the reachability
problem, which is the complement of the isolation problem. Recall that the Hamiltonian Path
problem is given a directed graph G(V , E), a source vertex s ∈ V and a target vertex t ∈ V ,
and it determines whether there is a simple path from s to t in G with length |V |.

In the reduction, we use flood-once middleboxes that upon receiving a packet with a
numeric tag (from a finite domain) increment the packet tag and flood the new packet. All
following packets that arrive at the middlebox are discarded. These flood-once middleboxes
are finite-state progressing middleboxes.

We construct a network with a single flood-once middlebox for every vertex in the graph
and connect them in accordance with the edges in the graph. In addition, we create two hosts
hs and ht and connect them to the middleboxes representing the source and target in the
graph. We use packet tags {0, . . . , |V |}. Host hs sends packets with tag 0. The reachability
problem is to determine whether ht can receive a packet with tag |V |.

The flood once middleboxes ensure that the packet tags ‘count’ the length of the path.
Thus, a Hamiltonian Path corresponds to a packet with the tag |V | arriving at the destination
host ht , and the correctness of the reduction follows. ��

The following lemma shows that a similar result can be obtained using more “standard”
middleboxes, namely, stateless middleboxes and learning switches.

Lemma 11 The isolation problemw.r.t. the unordered network semantics for a network where
each middlebox is either stateless or a learning switch is coNP-hard.

Proof The proof is by reduction from the (NP-hard) Hamiltonian Path problem to the reach-
ability problem. We use the same notation as used in the proof of Lemma 10. W.l.o.g we
assume that the out-degree of all vertices of the directed graph G is two. For the reduction,
we construct a network with three hosts, namely, hs, ht and hd , and 4|V | middleboxes, as
described below. The topology of the resulting network is illustrated in Fig. 10. The set of
packet tags is {0, . . . , |V |}. As before, the reachability problem is to determine whether host
ht can receive a packet with tag |V |.

We now describe the network in more detail. With every vertex v we associate three
statelessmiddleboxes, namely, vA, vB and vC , and a learning switch vLS , illustrated in Fig. 11.

Fig. 10 The network resulting
from the reduction from the
Hamiltonian Path problem to
network reachability
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Fig. 11 The network ‘gadget’
associated with vertex v in the
reduction from the Hamiltonian
Path problem to network
reachability. The vertex v has an
incoming edge from ui and an
outgoing edge to vertex u j in the
input graph G

Intuitively, these middleboxes will simulate a “flood once” middlebox. The middlebox vA

is connected to vB , vC and vLS . The middlebox vLS is connected to vB and vC as well as to
vA, and if (v, u1) ∈ E and (v, u2) ∈ E , then vB has a link to (u1)A and vC is connected
to (u2)A. Host hs is connected to (vs)A and is allowed to send only the packet (hs, ht , 0)
(source hs , destination ht , and tag 0). Host ht is connected to (vt )B and (vt )C . Host hd is a
dummy host, disconnected from any middlebox. Its purpose is merely to allow three distinct
host ids. The forwarding function of the learning switch is as described in Sect. 4.2. The
forwarding function of the stateless middleboxes is defined as follows:

– packets received by vA from some uB or uC : if the packet is (hs, ht , n), namely, source
is hs , destination is ht and packet tag is n, then forward it to vLS .

– packets received by vA from vLS: if the packet is (hd , hs, n), then forward packet
(ht , hd , n) to vLS .

– packets received by vB, vC from vLS: if the packet is (hs, ht , n) forward packet (hd , hs, n)

to vLS . If the packet is (ht , hd , n) forward packet (hs, ht , n + 1) to the appropriate uA.
Otherwise, discard.

All other packets are discarded.
We first give an informal description of how a packet is processed and then turn to formally

prove the correctness of the reduction. When vA receives a (hs, ht , n) packet from some uB

or uC it sends it to the learning switch. When vLS first receives the packet it forwards it to all
of its neighbors except for vA (from which it was received) and marks the port connected to
vA as the destination port to hs . vB and vC reply with (hd , hs, n), and when the first of these
packets arrives to vLS , then it marks either vB or vC as the destination of hd . In addition,
as the port connected to vA is marked as the destination to hs , the learning switch sends
the packets (hd , hs, n) to vA. vA responds with (ht , hd , n). When vLS receives the packet it
marks the port connected to vA as the destination for ht and forwards the packet to vB or vC
(depending on which was marked as the destination for hd ). vB or vC increments the tag and
forwards the packet to a neighbor uA. All additional packets of the form (hs, ht , n′) that will
arrive to vA after vB or vC has already incremented the tag will be forwarded by vLS back to
vA (as it was marked as the destination port to ht ), and in vA they will be discarded.

We now give a formal proof. We claim two assertions: (i) For every v ∈ V , at most
one of the middleboxes vB and vC forwards a packet to an adjacent node (other than vLS).
(ii) Both vB and vC will never forward the same packet twice. The proof of item (i) is due
to the fact that every packet passes through the learning switch and the learning switch will
mark only one of vB or vC as the destination of hd . The proof of item (ii) is due to the
fact that if a packet p is generated as a result of vB (vC ) sending a packet to an adjacent
middlebox, then at this stage vA is already marked by the learning switch as the destination
of ht . Therefore, when the packet p reaches vA, it will be forwarded from the learning
switch back to vA and will be discarded. Hence, it can never reach vB (vC ) again. By the
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two assertions we get that reachability holds if and only if a packet visited |V | different
middleboxes (v1)X1 , . . . , (v|V |)X |V | for Xi ∈ {B,C}, and each such middlebox was visited
exactly once. Hence, reachability holds iff a Hamiltonian path exists. ��

5.2 Unordered safety in arbitrary networks is EXPSPACE-hard

The result in this section is similar to previous work on message passing systems with
unordered communication channels [21,36], and is included here for completeness of pre-
sentation.

The lower bound is obtained by a reduction from the VASS control state reachability
problem. We first present the problem and its known complexity results. A vector addition
system with states (VASS) is a weighted directed graph (V , E, v0, w : E → Z

k), where V is
a finite set of vertices (Control States), E ⊆ V × V is a set of directed edges, v0 is the initial
vertex, and w is a weight function that assigns a k-dimensional weight vector to every edge.
A (finite) path π in the directed graph is valid if it begins in v0 and every prefix of π has a
non-negative sum of weights in every dimension.

The VASS control state reachability problem gets as input a VASS and a reachability set
R ⊆ V , and checks whether there exists a valid path in the VASS to (at least) one vertex in R.

Lemma 12 [9,21,32] The VASS control state reachability problem is EXPSPACE-complete.
Moreover, it is EXPSPACE-hard even when the coefficients of every vector in the image of the
weight function are bounded by ±1, and even when every vector has at most one non-zero
dimension.

To simplify our proofs we define the class of simple VASSs as all VASSs that satisfy:

– Every weight vector has exactly one non-zero coefficient which is either +1 or −1.
– All the outgoing edges of every vertex v have different weight vectors. Formally, for

every v1, v2, v3 ∈ V , if (v1, v2), (v1, v3) ∈ E and w(v1, v2) = w(v1, v3), then v2 = v3.

The next claim is a simple corollary of Lemma 12.

Corollary 1 The control state reachability problem over simple VASS systems is EXPSPACE-
hard.

Next, we show a reduction from control state reachability over simple VASS systems to
stateful network reachability.

The reduction is straightforward: given a VASS system (V , E, v0, w : E → Z
k) and

a reachability set R ⊆ V we construct a network with two hosts, namely h1 and h2 and
one middlebox m (see Fig. 12). The network reachability problem is to determine whether
a packet with source host h1 can reach h2. The set of packet tags is T = {1, . . . , k} (where
k is the number of dimensions in the VASS system). We denote by pt = (h1, h2, t), and
PT = {pt | t ∈ T } the packets host h1 sends. We associate each packet pt with a vector
t ∈ N

k that consists of 1 in dimension t and the rest of the dimensions are zero. The set of
states of m is V (with initial state v0) with the addition of one sink state. When in sink state,
the middlebox discards all incoming packets and remains in sink state. We now describe the
transitions of the middlebox m from state v ∈ V :

– Upon receipt of a packet pt from port 1:

– If v ∈ R, then forward the packet to port 3 (reachability is obtained).
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– If there exists u ∈ V such that (v, u) ∈ E (of the VASS) and w(v, u) = t, then:
• Forward pt to port 2
• Change state to u

– Else (such u does not exists), discard packet and go to sink state.

– Upon receipt of a packet pt from port 2:

– If v ∈ R, then forward the packet to port 3 (reachability is obtained).
– If there exists u ∈ V such that (v, u) ∈ E (of the VASS) and w(v, u) = −t, then:

• Discard the packet
• Change state to u

– Upon receipt of a packet from port 3, go to sink state.
– Upon receipt of a packet p /∈ PT from any port, go to sink state.

In order to prove the correctness of the reductionwe give the next definitions and notations.
A VASS configuration is a tuple (v, c) ∈ V × N

k which consists of a vertex and a vector. A
configuration is reachable in n steps if there exists a valid path in theVASSwith length exactly
n and total sum of weights c. We denote by SVASS(n) the (finite) set of all configurations that
are reachable in n steps.

A VASS-network configuration is a tuple (v, c) ∈ V × N
k , where v is the state of the

middlebox m and c corresponds to the multiplicity of the packets of PT in the multiset of
packets in port 2. That is, if the multiplicity of packet pt in the multiset is r , then dimension
t of c is r . We say that a VASS-network configuration is reachable in n steps if there exists
a scenario that consists of exactly n middlebox packet processing events that forms the
configuration. We denote by SNetwork(n) the (finite) set of all VASS-network configurations
that are reachable in n steps.

Lemma 13 For every n ≥ 0: SVASS(n) = SNetwork(n) − ({sink} × N
k).

Proof The proof is by induction over n. The proof for n = 0 is trivial. For n > 0, let (v, c) be
an arbitrary VASS configuration in SVASS(n−1). We claim that every successor configuration
of (v, c) is also in SNetwork(n). The proof is straightforward. If the successor is reachable by
an addition of positive vector r, then a corresponding successor in the network is obtained
when h1 sends a packet of type r and m processes the packet. If the successor is reachable
by an addition of negative vector r, then by the induction hypothesis there exists a pending
packet in port 2 with type r , and a successor in the network is obtained whenm processes one
packet from port 2 with type r . Hence, we get that SVASS(n) ⊆ SNetwork(n) − ({sink} ×N

k).
The proof that SNetwork(n) − ({sink} × N

k) ⊆ SVASS(n) follows from similar arguments. ��
The next lemma follows immediately from Lemma 13 and Corollary 1.

Lemma 14 The reachability problem w.r.t. the unordered network semantics for an arbitrary
network is EXPSPACE-hard.

Fig. 12 The network resulting in
the reduction from the VASS
control state reachability problem
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6 Upper bounds on complexity of safety w.r.t. the unordered semantics

This section provides complexity upper bounds for the safety problem of stateful networks
w.r.t. the unordered semantics of networks. Our complexity analysis considers symbolic
representations of middleboxes (which might be exponentially more succinct than explicit-
state representations). The obtained upper bounds match the lower bounds from Sect. 5
(hence, the bounds are tight).

Remark 5 The complexity upper boundswe present are under the assumption that all relations
used to definemiddlebox statesmayhave atmost polynomial number of elements (polynomial
in the size of the network and the size of the middlebox representation). To enforce this
limitation we assume that the arity of relations is constant. If the arity of the relation is
bounded by a constant c, then the number of elements is bounded by the polynomial nc,
where n is the size of the network.

In all of our examples we use relations with arity at most three, and since abstract packets
have only three attributes, we believe that most applications will use relations with small
arity.

The input to the safety verification problem The input to the safety verification problem is
given in the form of a network topology description, and the symbolic representations of the
middleboxes in the network.

The complexity results in this section are given in terms of the number of hosts in the
network |H |, the size of the type domain |T |, the total number of ports in the network |Pr|, the
number of middleboxes in the network |M |, and the total size of the symbolic representation
|S| = ∑ |Si | where |Si | is the size of the symbolic representation of middlebox mi .

In our complexity analysis we sometime refer to the set of packets in the networks. Recall
that the set of packets in the networks is P = H×H×T , and so the size of P is |P| = |H |2|T |.
Finally, in our complexity analysis we also refer to

∑ |Ri | which denotes the total size of
the domains of relations of middleboxes in the network where Ri is the domain of relation
Ri . Note that |Ri | is polynomial in the in the size of |H |, |Pr| and |T |, as the arity of Ri is
fixed and the domains of its dimensions are taken from H , Pr and T .

6.1 Unordered safety of increasing networks is in PTIME

In this section, we show that safety of syntactically increasing networks is in PTIME.
Figure 13presents a polynomial algorithm for determining safety of a syntactically increas-

ing network. The algorithm performs a fixed-point computation of the set of all tuples present
in middlebox relations in reachable middlebox states, as well as the set of all different pack-

Fig. 13 Safety checking of increasing networks
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ets transmitted in the network. For every middlebox m ∈ M , the algorithm maintains the
following sets:

– StateData(m): a set of pairs of the form (R, d) where R is a relation of m, and d is a
tuple in the domain of R, indicating that there is a run in which d ∈ R.

– PacketData(m): a set of pairs of the form (p, pr), where p is a packet and pr is a port of
m, indicating that p can reach m from port pr.

StateData(m) is initialized to reflect the initial values of allmiddlebox relations.PacketData(m)

is initialized to include the packets Ph that can be sent from neighbor hosts h ∈ H . As long
as a fixed-point is not reached, the algorithm iterates over all middleboxes and their packet
data. For each middleboxm and (p, pr) ∈ PacketData(m),m is run over (p, pr) from a state
q in which every relation R contains all the tuples d such that (R, d) ∈ StateData(m). The
sets StateData(m) and PacketData(m′) for every neighborm′ ofm, are updated to reflect the
discovery of more elements in the relations (more reachable states), and more packets that
can be transmitted.

As the algorithm only adds relation elements and packets, the number of additions is
bounded by (|P||Pr| + ∑ |Ri |). At every iteration of the while loop, at least one relation
element or packet is added to StateData or PacketData respectively. The number of foreach
iterations in every singlewhile iteration is bounded by |P||Pr|. The runtime of every foreach
iteration is linear in the runtime of the corresponding middlebox, which is linear in the size
of its symbolic representation. This is because the computation of δm(q, (p, pr)) consists
of executing the middlebox program, and since the symbolic representation does not have
loops, the runtime is linear. Hence, the runtime of a single iteration of the foreach loop can
be bounded by |S|.

The total running time of the algorithm is then bounded by (|P||Pr| + ∑ |Ri |)|P||Pr||S|,
and hence polynomial.

The correctness of the algorithm relies on the next lemma,which is a variation of Lemma3.

Lemma 15 For every increasing network, if there is a run in the unordered semantics in
which packet p arrives to port pr of middlebox m, then any run r in the unordered semantics
has an extension in which packet p arrives to m from port pr. Moreover, if there is a run in
which element d is in a relation R, then any run has an extension in which element d is in
the relation R.

We now use Lemma 15 to prove that in every iteration the data structure of the algorithm
under-approximates PacketData and StateData.

Lemma 16 For every iteration of the algorithm there is a run r, such that if (p, pr) ∈
PacketData(m), then in r there is a step in which p arrived to m from port pr, and if
(R, d) ∈ StateData(m), then in r there is a step in which d was added to R.

Proof The proof is by induction on the number of iterations performed by the algorithm.
The proof for the base case (zero iterations performed) is trivial—the initial state of the
PacketData and StateData matches the initial state of the network.

For the nth iteration, let (p, pr) ∈ PacketData(m). We consider two distinct cases. In
the first case, after the n − 1th iteration, (p, pr) ∈ PacketData(m). Then by the induction
hypothesis, there exists a run r such that in r there is a step in which p arrived to m from
port pr. In the second case, (p, pr) was added to PacketData in the nth iteration. In this case,
after iteration n− 1 there must have existed a middleboxm′ adjacent tom, a state q in which
{(R1, d1), . . . , (Rk, dl)} ⊆ StateData(m′), and (p′, pr′), such that as a result of running m′
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over (p′, pr′) from state q , (p, pr) was sent to m. By the induction hypothesis, there exist
runs r1,1, . . . , rk,l in which (R1, d1), . . . , (Rk, dl) (respectively) are added to StateData(m′),
as well as a run r0 in which p′ arrives tom′ from pr′. Then by Lemma 15 we can constructs a
run r ′ in which m′ is in state q and p′ has arrived to m′ from pr′. The configuration c, which
is obtained by m′ processing p′, is a successor of the last configuration of r ′. We denote the
resulting run by r , and note that in the last step of r , p arrived to m from port pr.

The proof for (R, d) ∈ StateData(m) follows from similar arguments.
Finally we use Lemma 15 to construct a witness run for the n-th iteration. ��
The next lemma shows that when fixed-point occurs the data structure over-approximate

PacketData and StateData.

Lemma 17 When the algorithm reaches a fixed-point, if (p, pr) /∈ PacketData(m) (respec-
tively., (R, d) /∈ StateData), then there is no run in which m receives p from port pr (resp.,
d is added to R).

Proof Let r be the witness run that the fixed-point under-approximates (r exists by
Lemma 16). Towards a contradiction we assume that there is a run r ′ in which m receives
p from port pr (respectively, d was added to R), but such an event did not occur in r . By
Lemma 15, we get that r has an extension in which the event does happen. But such an
extension contradicts the fact that a fixed-point occurred. Hence, the data structure over-
approximates all runs. ��
Lemmas 16 and 17 imply that the algorithm determines the safety problem, and the next
theorem follows.

Theorem 2 The safety problem of syntactically increasing networks w.r.t. the unordered
semantics is in PTIME.

Proof Safety is violated iff there exists a run r that ends in a configuration c where some
middlebox is in state q with packet p pending on its port pr such that δm(q, (p, pr)) = ∅.

By Lemmas 16 and 17, the latter holds iff at some iteration of the algorithm (p, pr) ∈
Packet Data(m), and the values pf m’s relations in state q are included in StateData(m),
in which case the algorithm identifies the safety violation. ��
Remark 6 Recall that for increasing networks, safety w.r.t. the unordered semantics and the
FIFO semantics coincide. As such, the polynomial upper bound applies to both.

Remark 7 The complexity analysis of the algorithmused the property that |P| is polynomial in
the network representation. If n-tag packet headers are allowed, i.e. P = H×H×T1 . . .×Tn ,
then |P| is no longer polynomial in the network representation, damaging the complexity
analysis of the algorithm. In fact, in this case the safety problemw.r.t. the unordered semantics
becomes PSPACE-hard even for stateless middleboxes.

Intuitively, n-tag packet headers allow a middlebox to maintain the state of n automata in
the packet header, supporting a reduction from the emptiness problem of the intersection of
n automata, which is PSPACE-hard [19].

Proof The PSPACE-hardness proof is by reduction from the problem of deciding the empti-
ness of intersection of n automata [19], which is formally defined as:

– Input: n automata A1, . . . , An over alphabet {0, 1} with state set Q (w.l.o.g. all automata
have the same set of states).
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– Question: is there a word w ∈ {0, 1}∗ that is accepted by all n automata?

The reduction is as follows. Given n automata with state set Q we define a network with
one host and one middlebox. The packets consist of n + 1-tuples of tags from the domain
T = Q ∪ {0, 1}. Intuitively, the first n tags hold the states of the n automata, and the last tag
is an input symbol for the automata. The middlebox has two ports. Port 0 is connected to the
host and port 1 is a self loop.

The symbolic representation of the middlebox has four parts:

1. Initial state verifier The first part handles packets from port 0. If the packet’s first n
tags do not correspond to the n initial states, then the middlebox discards the packet.
Otherwise it sends the packet to port 1.

2. Advance state The second part handles packets from port 1. In a sequence of n|Q| com-
mands, the program advances the state of each automaton (i.e., changes the corresponding
packet tag) according to the symbol in tag n+1.After the sequence, the programcontinues
to the third part.

3. Accepting state verifier If the packet’s tag corresponds to n accepting states, then the
program aborts. Otherwise the program continues to the fourth part.

4. New symbol generator In the fourth part the program generates two packets that differ
only in their n + 1 tag. In one packet the tag has value 0 and in the second it has value
1. Both packets are sent back to port 1.

It is an easy observation that the intersection of the n automata is non-empty iff abort is
invoked. ��

6.2 Unordered safety of progressing networks is in coNP

We prove coNP-membership of the safety problem in syntactically progressing networks by
proving that there exists a witness run for safety violation if and only if there exists a “short”
witness run, where a witness run for safety violation is a run from the initial configuration in
which at least one middlebox reaches an abort state.

The proof considers thenetwork states that arise in a run.Anetwork state captures the states
of all middleboxes (not to be confused with a network configuration, which also includes
the content of every channel). Formally, let N be a network whose middleboxes are defined
symbolically via (in total) n relations, namely R1, . . . , Rn . Then the network state consists
of the values of (R1, . . . , Rn).

In order to construct a “short” witness run, we wish to bound both the number of different
network states in a run and the number of steps in which a run stays in the same state. The
former is bounded due to the progress of the network: once the state of some middlebox
changes along a run, it will not change back to the previous state. The latter is more tricky. To
provide a bound, we wish to analyze the packets that “affect” the run. We define the notion
of active packets. The active packets are a superset of the packets that actually affect the run.

Active packets Let r be a finite run of a network. We say that a packet p is active in step i of
r , if it resides in the ingress channel of some middlebox m and it is processed (i.e., received
by m) in some future step of r . A packet is inactive, if it is pending in the ingress channel of
m until the end of the run.

The next lemmas show that only a few active packets are needed to reach a certain state in
the network. Intuitively, the proof of the lemma traverses the run from the last configuration to
the first, and removes inactive packets (and steps that produce only inactive packets), which
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in turn makes other, earlier, packets inactive. For a run r and a network state s that appears
in r , we denote by r [s] an interval of the run that includes all consecutive occurrences of s
(for runs of progressing networks, the interval is unique).

Lemma 18 Let r be a run in which the network state changes exactly k times, and the different
states are s1, s2, . . . , sk (in this order). Then for every prefix rsi of r that ends in a state si ,
there is an extension esi to rsi such that: (i) esi visits the network states si , . . . , sk; (ii) esi has
at most k − i active packets in every step; and (iii) the number of active packets in esi may
decrease only after a change in the network state.

Proof The proof is by induction over |r | − |rsi |. For the base case r = rsi and the proof is
trivial. For |r | > |rsi |, we extend the prefix rsi by one step according to r . We denote this
extended prefix by r ′. Let p be the last packet that was processed in r ′, and let m be the
middlebox that processes p. That is, m and p are responsible for the step that extends rsi to
r ′.

We consider two distinct cases. In the first case, the network state in the last configuration
of r ′ is still si . Then by the induction hypothesis we get that there is an extension e′

si with at
most k − i active packets in interval e′

si [si ]. We consider the set of packets that were created
by m after processing p. If this set has at least one active packet in e′

si , then we define esi to
be e′

si prepended by the last step of r
′, where p is marked as active and all the active packets

of e′
si remain active. Surely, there are no more than k − i active packets in the first step of esi

since at least one of the active packets in e′
si resulted from p and hence did not yet exist in

this step, so it balances out the addition of p as an active packet. In addition, the total number
of active packets is not decreased in this step (thus, the claim holds). Otherwise, we define
esi to be e′

si , i.e. we skip the processing of p, and turn it to inactive.
In the second case, the last state in r ′ is si+1. Then by the induction hypothesis we get that

there is an extension e′
si+1

with at most k − i − 1 active packets. In this case we construct
esi simply by prepending to e′

si the last step of r ′. That is, p is marked as active and all the
active packets of e′

si+1
remain active. There are only k − i − 1 + 1 = k − i active packets.

Hence, the claim holds. This completes the proof. ��
Lemma 19 Let r be a run in which the network state changes exactly k times, and the different
states are s1, s2, . . . , sk (in this order). Then there exists a run r ′ such that: (i) r ′ visits the
network states s1, s2, . . . , sk; and (ii) r ′ stays in state si at most (k − i)2|P||M | steps.
Proof For the sake of the proof we give a unique id to every active packet according to the
following rules:

– If a host sends an active packet, then the packet gets someunique id (for example,maximal
id assigned so far + 1).

– If an active packet p1 was processed by a middlebox, and the middlebox forwards only
one active packet p2, then p2 gets the id of p1.

– If an active packet p1 was processed by a middlebox, and the middlebox forwards more
than one active packet, then each active packet gets a unique id (for example, maximal
id assigned so far + 1).

We now return to the proof. Let e′ be the shortest extension for the prefix of r that consists
of the initial configuration that satisfies the assertions of Lemma 18. The extension e′ clearly
visits s1, . . . , sk . We claim that it stays in state si at most (k − i)2|P||M | steps. The proof of
the claim follows from the fact that if there are two steps j1 < j2 in e′[si ] such that in both
steps a middlebox m received an active packet p with id id, and no new active packet (i.e.,
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an active packet with a new packet id) was generated between those rounds, then a run in
which m does not process packet p with id id is shorter by one step, and reaches the same
configuration in step j2 − 1. Hence, if a certain middlebox processed more than |P|(k − i)
packets, then it must be the case that either a new active packet was created, or it processed
the same packet twice. The proof is complete by the pigeonhole principle and by the fact that
there are at most k − i active packets and |M | middleboxes. ��

The next lemma shows that there is a short witness for reachability of a state in progressing
networks.

Lemma 20 Let N be a syntactically progressing network whose middleboxes are defined
symbolically via relations R1, . . . , Rn (in total). Then there is a run ending in an abort state
if and only if there is such a run whose length is at most (

∑n
i=1 |Ri |)3|P||M |.

Proof The proof is an immediate corollary of Lemma 19. If there is a run r that leads to
a certain state of R1, . . . , Rn , then since all middleboxes are progressing we get that the
number of intermediate network states k is at most (

∑n
i=1 |Ri |). We denote the intermediate

states by s1, . . . , sk . By Lemma 19, there is also a run r ′ that visits the same k states and
stays in state si at most (k − i)2|P||M | ≤ k2|P||M | steps. Therefore |r ′| ≤ k3|P||M |. ��

Since the size of each relation is polynomial in the size of the network, we conclude:

Theorem 3 The safety problem w.r.t. the unordered semantics for progressing networks is
coNP-complete.

Proof The lower bound follows fromLemma 10. The upper bound is obtained by first observ-
ing that the complement of the safety problem is polynomially reducible to the reachability
of a state in the network (by adding a special abort state). In addition, the state reachability
problem is in NP: since the arity of each relation in the considered middlebox programs is
fixed, its size is polynomial in the size of the network. Hence, by Lemma 20, there is a witness
run for reachability whose length is polynomial. Thus, the NP procedure is to guess the short
run and verify it, in time linear in the length of the run multiplied by |S| (the size of the
symbolic representation of the middleboxes which also bounds the time it takes to compute
their transitions). ��

6.3 Unordered safety of arbitrary networks is in EXPSPACE

In this section we show how to solve the reachability problem of symbolic networks by a
reduction to the coverability problem of Petri Nets, which is EXPSPACE-complete [21,32].

Similarly to the lower bound result (Sect. 5.2), the upper bound result on the complexity
of safety of arbitrary networks is similar to previous work [21,36], and is included here for
completeness of presentation.

A Petri Net is a four-tuple C = (P,T ,I ,O) where P is a set of places, T is a set
of transitions, I : T → N

|P | is an input function and O : T → N
|P | is an output

function. A marking μ ∈ N
|P | denotes the number of tokens assigned to each place. Given

a marking, a transition t ∈ T can be fired (equivalently enabled) if I (t) ≤ μ. Firing a
transition t ∈ T from marking μ produces a new marking μ′ = μ − I (t) + O(t) [30].
We denote a firing of a transition by μ →t μ′. In the following, we will refer to non-zero
dimensions in I (t) as consumed tokens, and non-zero dimensions in O(t) as produced
tokens. A finite run in a Petri Net from a marking μ0 is a series of transitions and resulting
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markings μ0 →t0 μ1 →t1 · · · →tk μk s.t. t0 can be fired from μ0 and each following
transition can be fired from the previous marking.

The coverability problem asks, given a Petri Net C , an initial marking μ0 and a target
marking μ, whether there is a finite run leading to a marking μ′ s.t. μ′ ≥ μ.

We now show howwe encode a symbolic network as a Petri Net, and howwe formulate the
reachability problem as a Petri Net coverability problem. We first describe the role of every
place and the initial marking, and then we describe the set of transitions used to simulate a
run of the network.

Places The places are partitioned to sets of places in the following way:

– Channel places. To keep track of the packets over the unbounded channels, we assign
a place to every pair of packet p ∈ P and channel. The number of tokens in the place
corresponds to the number of instances of packet p on the channel. The initial marking
for each packet place is 0.

– Active and non-active relation places. For every element d in every relation R in every
middlebox we have two places. The active place will have the marking 1 when the
element is in the relation. When the element is not in the relation the non-active place
will the marking 1. The initial marking for the active (respectively, non-active) place is 1
if initially the element is in the relation (resp., not in the relation). Otherwise, the initial
marking is 0. The markings for both places will only be 0 or 1. We need two places
since the Petri Net semantics does not allow to encode negative (i.e., non-membership)
conditions.

– Global command place. We have a single place that is used to make sure that at most one
middlebox is processing a packet in every step. The initial marking for the place is 1; it
is consumed whenever a packet processing starts, and produced when it ends.

– Command places. We have a place for every triple of command, processed packet and
input port in every middlebox in the network. The markings on the places are used to
keep track of the next command to be executed. In particular, each guarded command
block has a single place (for every combination of packet and input port) rather than a
place for each guarded command in the block. This ensures that only one of the guarded
commands in the block whose guards evaluate to true is executed. Having a separate
command place for every packet processed and every input port allows us to evaluate
variables that appear in the command (including the guards). The initial marking for the
topmost guarded command block in each middlebox (with every combination of packet
and input port) is 1. The initial marking for the rest is 0.

– Auxiliary guardplaces.To allowconjunction anddisjunction in theguardweaddauxiliary
guard places. The initial marking for each of these places is 0.

– Abort place. To keep track of the safety state of the network, we assign a single place for
all abort calls made during the network run. The initial marking for the place is 0.

Transitions For each middlebox in the network we define a “command transition” for each
combinationof processed command, input packet, input port, andnext command, as explained
below. For some commands only a single “next” command exists, however, since we allow
non-determinism, some commands (specifically, guarded command blocks with overlapping
guards) have multiple “next” commands, in which case a separate transition is defined for
each one of them.

For a guarded command block we define a set of “command transitions”. This allows us
to handle complex guards (i.e. guards which contain conjunction and disjunction in addition
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to atomic propositions). To do so, we recursively decompose each guard while producing a
sequence of transitions that simulates the evaluation of the boolean formula in the guard.

To correctly simulate cases in which no guard in a guarded command block is evaluated
to true, and as a result no command is processed, we add a default guarded command to each
guarded command block. The guard of the default guarded command is a conjunction of the
negations of the guards of the other guarded commands in the block. The command of the
default guarded command is output ∅.

Each of the command transitions of the first command in the middlebox (i.e. the top-
most guarded command block) consumes a token from the global command place, and each
terminating command that can be executed in the middlebox run produces a token in the
global command place. Note that the addition of default guarded commands as described
above means that the terminating commands are well defined (i.e. for every command in the
middlebox, if it is terminating in some run then it is a terminating command in every run that
it is executed in). Each of the command transitions of the first command in the middlebox
also consumes a token from the corresponding channel place. Furthermore, every command
transition consumes its command place, and produces the command place of the following
command, specifically the place corresponding to the combination of the next command to
be executed and the same input packet and input port as the packet and port processed in the
current command (or the first command in case it is a terminating command).

In addition to the above, the command transition associatedwith a command, input packet,
input port and next command consumes and produces tokens in the places relevant to the
corresponding command, as well as the guards (in the case of a guarded command block),
as described below.

Since we have a command transition for every combination of command, input packet
and input port, when we translate the command to a transition we consider the values of
the variables (src, dst , t ype and port) at that transition based on the packet and port cur-
rently processed by the middlebox, and simplify the command (and guards) accordingly.
For example, for the command trusted.insert dst , packet (h0, h1, t0) and port pr0, the
command simplifies totrusted.insert h1. In particular, atomic equality predicates are now
essentially equalities between constants, and are trivially simplified.

The transition for each guarded command in a guarded command block consumes a token
from the command place for the guarded command block, and produces a token in the
command place of the first command in the guarded command, as well as consuming and
producing the tokens of the guard as described below.

We begin by describing the tokens consumed and produced by the atomic propositions
of the guards (after simplification). Note that since guards do not change the state of the
network, all tokens consumed by the guard must also be produced by the guard.

– Relation membership (d ∈ R). Consume (and produce) tokens in the active place for
element d in relation R.

– Negated relation membership (d /∈ R). Consume (and produce) tokens in the inactive
place for element d in relation R.

Next, we describe how disjunction and conjunction are handled: In the case of a guarded
command whose guard’s formula ϕ contains a disjunction or conjunction, we produce a
series of transitions by recursively decomposing the formula, and producing a set of transi-
tions for every decomposition step. Each decomposition step introduces new auxiliary guard
places. We denote by ci �⇒ϕ c j an intermediate step in the decomposition process where
ci is the place that initiates the evaluation of ϕ and c j is the place of the next step in the
execution. Specifically, initially, ci is the command place for the guarded command and c j
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is the command place of the command. The recursive decomposition of guard ci �⇒ϕ c j is
as follows:

– Conjunction (ϕ = ϕ1 ∧ϕ2). We introduce five auxiliary places, denoted c1, c2, c3, c4 and
c5, two intermediate steps, and four new transitions. The first transition consumes one
token from ci and produces two tokens in c1. The second and third transitions consume
one token each from c1 and produce a token in c2 and c3 respectively. We produce two
intermediate steps: c2 �⇒ϕ1 c4 and c3 �⇒ϕ2 c5. Finally, we produce a final transition
that consumes one token from both c4 and c5, and produces a token in c j .

– Disjunction (ϕ = ϕ1 ∨ϕ2). We introduce four auxiliary places, denoted c1, c2, c3 and c4,
two intermediate steps, and four new transitions. The first transition consumes a token
from ci and produces a token in c1. Likewise, the second transition consumes a token
from ci and produces a token in c2. We produce two intermediate steps: c1 �⇒ϕ1 c3 and
c2 �⇒ϕ2 c4. The third transition consumes a token from c3 and produces a token in c j .
Likewise, the fourth transition consumes a token from c4 and produces a token in c j .

The process is performed recursively on ci �⇒ϕ1 c j and ci �⇒ϕ2 c j . The process
terminates for ci �⇒ϕ c j once ϕ is an atomic proposition, in which case a single transition
is produced, which consumes a token from ci , consumes and produces the tokens for the
atomic proposition as described above, and produces a token in c j .

Finally, we describe the dimensions consumed and produced by the commands output,
insert, remove and abort.

– output. Produce: the appropriate packets in the egress channel.We note that in the special
case of output ∅ no tokens are produced.

– insert. We replace every insert command with a guarded command block consisting
of two guarded commands. The first guarded command represents the case where the
element is already in the relation, in which case the guard will be a relation membership
predicate, and the command will be output ∅. The second guarded command represents
the case where the element is not in the relation. The guard of the command will be a
negated relation membership predicate to the guard, and the transition produced from
the command will consume and produce the following:
Consume: a token from the appropriate non-active place of the new element.
Produce: a token in the appropriate active place of the new element.

– remove. Analogous to insert.
– abort. Produce: a token in the abort place.

This concludes the description of the command transitions.
Finally, for every host h and every packet p ∈ Ph we have a “host transition” that produces

a token in the corresponding ingress channel place of the neighbor middlebox.

From network safety to Petri Net coverability Non-safety of the network amounts to a run
in the Petri Net where an abort place gets a token. The target marking for the coverability
problem is therefore a vector of 0s, with 1 in the abort place.

As the reduction is polynomial, we get that the stateful network reachability problem is
in EXPSPACE.

The reduction, combined with the lower bound implies:

Theorem 4 The safety problem of arbitrary stateful networks w.r.t. the unordered semantics
is EXPSPACE-complete.
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7 Implementation and case studies

In this section, we present several examples of networks consisting of stateful middleboxes
and their safety properties. We describe a prototype implementation of a tool for verification
of stateful networks, and describe our initial experiencewhile running the tool on the networks
listed in Example 2 and illustrated in Fig. 5. For the experiments we used a machine equipped
with a quad core Intel Core i7-4790 CPU and 32GB ofmemory, runningUbuntu Linux 14.04.

7.1 Network examples

Load balancer and IDS As an example consider the network shown in Fig. 5a. Here A is a
host, lb is a load balancer, which can send a packet received from A to either r1 or r2. Both
r1 and r2 are rate limiters, i.e., they count and limit the number of packets sent between host
pairs. Let us consider a case where the administrator wants to ensure that exactly 8 packets
sent by A can be received by B. If the load balancer in this case sends packets from A to both
r1 and r2, then this rate limit does not hold.

Firewall and Proxy Consider the network in Fig. 5b. Here, c is a content addressable cache,
which on receiving a packet checks if it has previously seen either server S1 or S2 respond to
a packet of the same type; if so it sends back the previously observed response, otherwise it
forwards the request to the packets original destination. f is a learning firewall. We want to
ensure that A cannot receive data from S1, while B should be able to receive data from both
S1 and S2. This is complicated by the fact that c’s response is based on the packet type: in
the current configuration if B sends a request for type t to server S1 then A can access the
response by subsequently sending a request with the same type t addressed to server S2. In
general this problem is not solvable without changing the cache to be policy aware.

Multi-tenant datacenter Consider a multi-tenant datacenter such as Amazon EC2 shown in
Fig. 5c. In such datacenters each tenant (customer who purchase VMs from the provider)
gets to add rules about their VMs, to the firewall to which their VMs are connected. For
example in Fig. 5c, each tenant i owns VMs pubi1 and pri i1, and programs the rules for
firewall fi . Given a set of rules for firewall f1 and f2 we verify that VMs of the same tenant
can communicate with each other and that pri VMs of one tenant can send packets to pub
VMs of the other.

7.2 Results

Increasing middleboxes Increasing networks are verified using LogicBlox, a Datalog based
database system [4]. The Multi-Tenant Datacenter example is an increasing network. Our
tool produced a datalog program with 35 predicates, 153 rules and 29 facts. LogicBlox suc-
cessfully reached a fixed point in 3s, and proved all required properties.

Arbitrary middleboxes Progressing and Arbitrary networks are verified using LOLA, a Petri-
Net model checker [23,34]. In the Load Balancer and Rate Limiter example our tool created
a P/T net with 243 places and 663 transitions; it was successfully verified in 30ms. In the
Firewall and Proxy example our tool produced a P/T net with 530 places and 4447 transitions.
LOLA successfully verified the resulting petri-net in 0.2s.
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8 Conclusion and related work

In this work, we investigated the complexity of reasoning about stateful networks. We devel-
oped three algorithms and several lower bounds. In the future we hope to develop practical
verification methods utilizing the results in this work. Below we survey some of the most
closely related work and conclude with open questions and future work.

8.1 Related work

Topology-independent verification The earliest use of formal verification in networking
focused on proving correctness and checking security properties for protocols [10,33]. Recent
works such FlowLog [27] and VeriCon [5] also aim to verify the correctness of a given mid-
dlebox implementationw.r.t any possible network topology and configuration, e.g., flow table
entries only contain forwarding rules from trusted hosts.

Immutable topology-dependent verificationRecent efforts in network verification [3,8,13,17,
18,25,37,39] have focused on verifying network properties by analyzing forwarding tables.
Some of these tools including HSA [16], Libra [42] and VeriFlow [18]. These tools perform
near real-time verification of simple properties, but they cannot handle dynamic (mutable)
datapaths.

Mutable topology-dependent verification SymNet [40] has suggested the need to extend these
mechanisms to handlemutable datapath elements. In theirmechanism themutablemiddlebox
states are encoded in the packet header. This technique is only applicable when state is not
shared across a flow (i.e., the middlebox can punch holes, but do no more), and will not work
for cache servers or learning switches.

Thework in [29] is themost similar to ourmodel. Their work considers Python-like syntax
enriched with uninterpreted functions that model complicated functionality. However [29]
do not define formal network semantic (e.g., FIFO vs ordered channels) and do not give any
formal claim on the complexity of the solution.

Channel systems Channel systems, also called Finite State Communicating Machines, are
systems of finite state automata that communicate via asynchronous unbounded FIFO chan-
nels [6,7]. They are a natural model for asynchronous communication protocols and, indeed,
they form the semantic basis of protocol specification languages such as SDL and Estelle.
Unbounded FIFO channels can simulate unbounded Turing machine tape and therefore all
verification problems are undecidable. Abdulla and Jonsson [1] introduced lossy channel
systems where messages can be lost in transit. In their model the reachability problem is
decidable but has a non-primitive lower bound [35].

In this work we use unordered (non-lossy) channels as a different relaxation for channel
systems. The unordered semantics over-approximates the lossy semantics w.r.t. safety, as
any violating run w.r.t. the lossy semantics can be simulated by a run w.r.t. the unordered
semantics where “lost” packets are starved until the violation occurs.

The unordered semantics admits verification procedures with elementary complexity, and
turns out to be sufficiently precise formanynetwork protocols inwhich order is not guaranteed
and hence not relied on.
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8.2 Future work

Exploration of network semantics In this workwe have outlined two possible network seman-
tics, namely FIFO and Unordered packet processing order. Various other network semantics
could be considered, along with their effect on expressibility and complexity results, and the
precision loss in safety analysis. One such network semantics is the StickyChannel semantics,
where packets can be added by the sending middlebox and read by the receiving middlebox
but cannot be removed. This network semantics corresponds to networks in which middle-
boxes can arbitrarily retransmit messages.

Modelling packet payload In this work we have only considered packet headers. However,
somemiddlebox behaviour depends on the content of the packet payload (IntrusionDetection
Systems are one such example). A potential approach to bridging this gap could be to model
middleboxes using register automata. This would allow us to reason about letters from an
infinite alphabet, thus modelling the arbitrary nature of packet payloads, while potentially
retaining the decidability of reasoning about such systems.

Liveness In this work we have limited ourselves to reasoning about safety properties. How-
ever, various liveness and performance properties are just as important when approaching
the creation of networks. Reasoning about liveness properties such as guarantees on packet
arrival, or performance properties such as load estimates or packet traversal times would
require the development of a new model for describing the network semantics and middle-
box behaviour. In particular, unordered semantics are ill suited for most sorts of reasoning
on liveness properties.

Further aspects of network security In addition to safety properties that can be expressed
by checker middleboxes and liveness properties there are various other network security
properties that can be considered when reasoning about networks. Non-interference and
information leakage are two examples of security properties which cannot be modeled by
our current approach.

Reasoning about progressing networks under the FIFO semanticsWe’ve seen that in arbitrary
networks reasoning is undecidable under the FIFOsemantics but EXPSPACE-complete under
the unordered semantics, and that for increasing networks the two semantics coincide. This
leaves the question of reasoning about progressing network under the FIFO semantics open.
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