
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 411 (2010) 2331–2342

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Complexity of metric temporal logics with counting and the
Pnueli modalities
Alexander Rabinovich ∗
The Blavatnik School of Computer Science, Tel Aviv University, 69978, Israel

a r t i c l e i n f o

Article history:
Received 27 November 2008
Received in revised form 7 July 2009
Accepted 2 March 2010
Communicated by J. Tiuryn

Keywords:
Real time temporal logics
Complexity
Expressive power

a b s t r a c t

The common metric temporal logics for continuous time were shown to be insufficient,
when it was proved in Hirshfeld and Rabinovich (1999, 2007) [7,12] that they cannot
express a modality suggested by Pnueli. Moreover, no temporal logic with a finite set of
modalities can express all the natural generalizations of this modality. The temporal logic
with counting modalities (TLC) is the extension of until–since temporal logic TL(U, S) by
‘‘counting modalities’’ Cn(X) and

←−
C n (n ∈ N); for each n the modality Cn(X) says that X

will be true at least at n points in the next unit of time, and its dual
←−
C n(X) says that X

has happened n times in the last unit of time. In Hirshfeld and Rabinovich (2006) [11] it
was proved that this temporal logic is expressively complete for a natural decidable metric
predicate logic. In particular the Pnueli modalities Pnk(X1, . . . , Xk), ‘‘there is an increasing
sequence t1, . . . , tk of points in the unit interval ahead such thatXi holds at ti’’, are definable
in TLC .
In this paper we investigate the complexity of the satisfiability problem for TLC and

show that the problem is PSPACE complete when the index of Cn is coded in unary, and
EXPSPACE complete when the index is coded in binary. We also show that the satisfiability
problem for the until–since temporal logic extended by the Pnueli modalities is PSPACE
complete.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The temporal logic that is based on the two modalities ‘‘Since" and ‘‘Until" is popular among computer scientists as a
framework for reasoning about a system evolving in time. By Kamp’s theorem [4,13] this logic has the same expressive
power as the first-order monadic logic of order, whether the system evolves in discrete steps or in continuous time. Wewill
denote this logic by TL(U, S).
For systems evolving in discrete steps, this logic seems to supply all the expressive power needed. This is not the case for

systems evolving in continuous time, as the logic cannot express metric properties like: ‘‘X will happen within one unit of
time". Themost straightforward extensionwhich allows one to expressmetric properties is to addmodality which says that
‘‘X will happen exactly after one unit of time". Unfortunately, this logic is undecidable. Over the years different decidable ex-
tensions of TL(U, S)were suggested. Most extensively researched wasMITL [1,2,5]. Other logics are described in [3,6,14,18].
Hirshfeld and Rabinovich introduced the language QTL (quantitative temporal logic) [8–10], which extends the until–since
temporal logic by twomodalities: ♦1X and

←−
♦ 1X . The formula ♦1X (respectively

←−
♦ 1X) expresses that ‘‘X will be true at some

point during the next unit of time" (respectively, ‘‘X was true at some point during the previous unit of time").

∗ Tel.: +972 36405388.
E-mail address: rabinoa@post.tau.ac.il.

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.03.017

Author's personal copy

2332 A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342

QTL andMITL have the same expressive power, which indicates that they capture a natural fragment of what can be said
about the system which evolve in time. These ‘‘first generation" metric extensions of TL(U, S) can be called simple metric
temporal logics.
A. Pnueli was probably the first person to question if these simple logics are expressive enough for our needs. The con-

jecture that they cannot express the property ‘‘X and then Y will both happen in the coming unit of time" is usually referred
to as ‘‘Pnueli’s conjecture" [2,18].
Hirshfeld and Rabinovich [7,12] proved Pnueli’s conjecture, and strengthened it significantly. To do this, we defined for

every natural k the ‘‘Pnueli modality" Pnk(X1, . . . , Xk), which states that there is an increasing sequence t1, . . . , tk of points
in the unit interval ahead such that Xi holds at ti. We also defined the weaker ‘‘Counting modalities" Ck(X) which state that
X is true at least at k points in the unit interval ahead (so that Ck(X) = Pnk(X, . . . , X)). To deal with the past we define also
the dual past modality,

←−
Pnk(X1, . . . , Xk): there is a decreasing sequence t1, . . . , tk of points in the previous unit interval such

that Xi holds at ti, and
←−
C k(X)which state that X was true at least at k points in the previous unit interval.

This yields a sequence of temporal logics TLPn (n ∈ N), where TLPn is the standard temporal logic, with ‘‘Until" and ‘‘Since",
and with the addition of the k-place modalities Pnk and

←−
Pnk for k ≤ n. Similarly, TLCn is the extension of TL(U, S) with the

addition of modalities Ck and
←−
C k for k ≤ n. We note also that TLP1 is just the logic QTL and it represents the simple metric

logics.
Let TLP be the union of TLPn and TLC be the union of TLCn.
We proved in [7,12] that:

1. The sequence of temporal logics TLPn is strictly increasing in expressive power. In particular, Cn+1(X) is not expressible
in TLPn.

2. TLP and TLC are decidable and have the same expressive power. Moreover, they are expressively equivalent to a natural
decidable fragment of first-order logic.

In this paper we investigate the complexity of the satisfiability problem for TLP and TLC . In [17] it was shown that TL(U, S) is
PSPACE complete. In [7,10] we provided a polynomial satisfiability preserving translation from QTL to TL(U, S) and derived
PSPACE completeness of QTL.
In this paper we first prove that the satisfiability problem for TLP is PSPACE complete.
When one write a TLC formula there are two natural possibilities: to write index n of Cn in unary or in binary. We show

that the satisfiability problem for TLC is PSPACE complete when the index of Cn is coded in unary, and EXPSPACE complete
when the index is coded in binary.
Our results holds both when the interpretation of temporal variable is arbitrary and when we assume that they satisfy

the finite variability assumption (FVA) which states that no variable changes its truth-value infinitely many times in any
bounded interval.
In [12] we proved that there is no temporal logic Lwith finitely many modalities definable in the monadic second-order

logic expanded by+1 function such that over the reals L is at least as expressive as TLC . Our conjecture was that this result
can be extended to the non-negative reals. Our proofs refute this conjecture.
The paper is organized as follows: In Section 2, we recall definitions and previous results. In Section 3, we prove PSPACE

completeness for TLP and as a consequence obtain PSPACE completeness for TLC under the unary coding of indexes. In
Section 4, EXPSPACE completeness for TLC under the binary coding of indexes is proved. Section 5 contains complexity
results for relatedmore succinct temporal logics. Section 6 discusses the expressive power of TLC and shows that our results
provide a negative answer to a conjecture from [12].
An extended abstract of this paper was published in [16].

2. Preliminaries

First, we recall the syntax and semantics of temporal logics and how temporal modalities are defined using truth tables,
with notations adopted from [4,9].
Temporal logics use logical constructs called ‘‘modalities" to create a language that is free from quantifiers.
The syntax of a Temporal Logic has in its vocabulary a countably infinite set of variables {X1, X2, . . .} and a possibly infinite

set B = {Ol11 ,O
l2
2 , . . .} ofmodality names (sometimes called ‘‘temporal connectives’’ or ‘‘temporal operators’’) with prescribed

arity indicated as superscript (we usually omit the arity notation). TL(B) denotes the temporal logic based on modality set B
(and B is called the basis of TL(B)). Temporal formulas are built by combining atoms (the variables Xi) and other formulas
using Boolean connectives and modalities (with prescribed arity). Formally, the syntax of TL(B) is given by the following
grammar:

φ ::= Xi|φ1 ∧ φ2|φ1 ∨ φ2|φ1 ↔ φ2|¬φ1|Oi(φ1, φ2, . . . , φli).

We will use (in our metalanguage) S, X, Y , Z to range over variables.
A structure for Temporal Logic , in this work, is the non-negative real line with monadic predicates M = 〈R+, <, S1,

S2, . . .〉, where the predicate Si are the interpretation in M of the variable Si. (All our complexity results can be easily
adopted to the models over the whole real line R.) Every modality Ok is interpreted in the structure M as an operator

Author's personal copy

A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342 2333

OkM : [P(R
+)]k → P(R+)which assigns ‘‘the set of points whereOk[A1, . . . , Ak] holds" to the k-tuple 〈A1, . . . , Ak〉 ∈ P(R+)k.

(P(R+) denotes the set of all subsets of R+.) Once every modality corresponds to an operator the semantics is defined by
structural induction:

• for atomic formulas:M, t |= S iff t ∈ S
• for Boolean combinations the definition is the usual one
• for Ok(ϕ1, . . . , ϕk)

M, t |= Ok(ϕ1, . . . , ϕk) iff t ∈ OkM(Aϕ1 , . . . , Aϕk)

where Aϕ = {τ : M, τ |= ϕ}.

For the modality to be of interest the operator O should reflect some intended connection between the sets Aϕi of points
satisfying ϕi and the set of points O[Aϕ1 , . . . , Aϕk]. The intended meaning is usually given by a formula in an appropriate
predicate logic:
Truth Tables: A formula O(t, X1, . . . Xk) in the predicate logic L is a Truth Table for the modality Ok if for every structureM

OM(A1, . . . , Ak) = {τ :M |= O[τ , A1, . . . , Ak]}.

2.1. Since–until temporal logic

Themodalities until and since are most commonly used in temporal logic for computer science. They are defined through
the following truth tables:

• The modality XU Y , ‘‘X until Y ", is defined by

ψ(t0, X, Y) ≡ ∃t1(t0 < t1 ∧ Y (t1) ∧ ∀t(t0 < t < t1 → X(t))).

• The modality XS Y , ‘‘X since Y ", is defined by

ψ(t0, X, Y) ≡ ∃t1(t0 > t1 ∧ Y (t1) ∧ ∀t(t1 < t < t0 → X(t))).

Reynolds [17] proved.

Theorem 2.1. The satisfiability problem for TL(U, S) over the reals is PSPACE complete.

We will use standard abbreviations. E.g., ♦X – sometimes in the future X holds – abbreviates TrueUX; �X – always in the
future X holds – abbreviates ¬(TrueU¬X); the past modalities←−♦ X – ‘‘X happened in the past", and←−� X – ‘‘X have been
always true", are defined similarly. The modality always acts like the universal quantifier and is defined as

always(X) : ←−
� X ∧ X ∧ �X .

Llim(X) and Rlim(X) abbreviate the formulas

Llim(X) : ¬(¬XSTrue)
Rlim(X) : ¬(¬XUTrue).

Llim(X) holds at t if t is a left limit of X , i.e., for every t1 < t there is an X in the interval (t1, t). Rlim(X) holds at t if t is a
right limit of X .

2.2. Three metric temporal logics

We recall the definitions of three temporal logics: Quantitative Temporal Logic—QTL, Temporal Logic with Counting—TLC
and Temporal Logic with the Pnueli modalities—TLP .
The logic QTL in addition to modalities U and S has two modalities ♦1X and

←−
♦ 1X . These modalities are defined by the

tables with free variable t0:

♦1X : ∃t((t0 < t < t0 + 1) ∧ X(t))
←−
♦ 1X : ∃t((t0 − 1 < t < t0) ∧ X(t))).

In [7] it was proved.

Theorem 2.2. The satisfiability problem for QTL is PSPACE complete.

Author's personal copy

2334 A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342

The logic TLP is the extension of TL(U, S) by an infinite set of modalities Pnk(X1, . . . , Xk) and
←−
Pnk(X1, . . . , Xk). These

modalities are defined by the tables with free variable t0:

Pnk(X1, . . . , Xk) : ∃t1 . . . ∃tk

(
t0 < t1 < · · · < tk < t0 + 1 ∧

k∧
i=1

Xi(ti)

)
←−
Pnk(X1, . . . , Xk) : ∃t1 . . . ∃tk

(
t0 − 1 < t1 < · · · < tk < t0 ∧

k∧
i=1

Xi(ti)

)
.

Finally, the logic TLC – the temporal logic with counting modalities – is the extension of TL(U, S) by an infinite set of
modalities Ck(X) and

←−
C k(X) . These modalities are defined by the tables with free variable t0:

Ck(X) : ∃t1 . . . ∃tk

(
t0 < t1 < · · · < tk < t0 + 1 ∧

k∧
i=1

X(ti)

)
←−
C k(X) : ∃t1 . . . ∃tk

(
t0 − 1 < t1 < · · · < tk < t0 ∧

k∧
i=1

X(ti)

)
.

We recall the terminology that is used when comparing the expressive power of languages.
Let C be a class of structures and let L and L′ be temporal logics.

1. L is at least as expressive as L′ over a classC if for every formulaϕ of L′ there is a formulaψ in L such that for every structure
M in C and for every τ ∈M:M, τ |= ϕ iffM, τ |= ψ .

2. L and L′ are expressively equivalent over C if L is at least as expressive as L′ over C and L′ is at least as expressive as L
over C.

We deal here with the temporal logics over the class of non-negative real numbers. We will say ‘‘L is at least as expressive
as (respectively, is expressively equivalent to) L′ if L is at least as expressive as (respectively, is expressively equivalent to) L′
over this class.
The following theorem from [12] compares the expressive power of TLP , TLC and QTL.

Theorem 2.3 (Comparing the Expressive Power). TLP and TLC are expressively equivalent. TLP and TLC are strictly more
expressive than QTL.

2.3. Size of formulas

Usually the size of a formula is defined as its length (string representation) or the size of its directed acyclic graph
representation (DAG). The logics TLC and TLP have infinite sets of modalities and therefore we have to agree how to code the
names ofmodalities. There are two natural possibilities: to write index k of Ck and Pnk in unary or in binary. For TLP formulas
this decision affects the size of the formulas up to a constant factor, and, therefore, it is not important. For TLC formulas the
binary coding might be exponentially shorter than the unary coding. Our main results show that the satisfiability problem
for TLC is PSPACE complete when the index of Ck is coded in unary, and EXPSPACE complete when the index is coded in
binary.
Note that there might be an exponential gap in the size of a DAG representation of a formula and its length. Our proofs of

upper bounds will be given for DAG representation (and hence the bounds are valid for string representations). Our proofs
of lower bounds will be given for string representations (and hence the bounds are valid for DAG representation).

3. TLP is PSPACE complete

Theorem 3.1. The satisfiability problem for TLP is PSPACE complete.

The PSPACE hardness immediately follows from PSPACE hardness for the satisfiability problem for TL(U, S)which is a subset
of TLP . Below we prove that the satisfiability problem is in PSPACE.
A structureM is called proper if it is an expansion of 〈R+, <,N, Even,Odd〉 by unary predicates. Here N, Even, and Odd

are the sets of natural, even and odd numbers; these sets will be denoted by predicate names N, E, O.
In contrast to the fact that TLP is much more expressive than QTL over the class of all real structures and over the class

of finite variability structures [7,9], we are going to show that they are expressively equivalent over the class of proper
structures. Moreover, there is a polynomial meaning preserving (over the proper structures) translation from TLP to QTL.

Lemma 3.2. 1. For every k there is a QTL formula Ψk(X1, . . . , Xk,N, E,O) which is equivalent over the proper structures to
Pnk(X1, . . . , Xk). Furthermore, the size of Ψk is less than 100k2.

2. For every k there is a QTL formula
←−
Ψ k(X1, . . . , Xk,N, E,O)which is equivalent over the proper structures to

←−
Pnk(X1, . . . , Xk).

Furthermore, the size of Ψk is less than 100k2.

Author's personal copy

A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342 2335

Proof. (1) For i ≤ j ≤ k define formulas φi,j as follows:

φi,i := (¬N)UXi
φi,i+l+1 := (¬N)U(Xi ∧ ¬N ∧ φi+1,i+l+1).

It is clear that the size of φi,j is less than 10(j − i + 1) and that φi,j holds at t iff there are t < ti < ti+1 < · · · < tj ≤ n,
where n is the smallest integer greater than t , such that∧jl=iXl(tl). Similarly, there are formulas

←−
φ i,j such that

←−
φ i,j holds at

t iff there are t > tj > · · · > ti > n, where n is the largest integer less than t , and ∧
j
l=iXl(tl) holds.

The formula Ψk which is equivalent to Pnk over the proper structures can be defined as the disjunction of the following
formulas:
1. φ1,k — ‘‘φ1,k holds at t if there are t < t1 < t2 < · · · < tk ≤ n, where n is the smallest integer greater than t , such that
∧
k
l=1Xl(tl)".

2.
∨k−1
n=1(¬N)UE ∧ φ1,n ∧ ♦1((¬N)SE ∧

←−
φ n+1,k) — this covers the case when t is in an interval [2m − 1, 2m] for some

integerm. The nth disjunct says that ∧nl=1Xl(tl) holds for t < t1 < · · · < tn ≤ 2m and in the interval (2m, 2m+ 1) there
are tn+1 < · · · < tk < t + 1 such that ∧kl=n+1Xl(tl) holds.

3.
∨k−1
n=1(¬N)UO∧ φ1,n ∧♦1((¬N)SO∧

←−
φ n+1,k)— this is similar to the previous disjunct, but deals with t in the intervals

[2m, 2m+ 1], wherem is an integer.

This proves (1). The proof of (2) is similar. �

Corollary 3.3. TLP and QTL are expressively equivalent over the class of proper structures. Furthermore, for every TLP formula ϕ
there is a QTL formula ψ which is equivalent to ϕ over the proper structures and |ψ | is O(|ϕ|2).
Proof. We define a meaning preserving translation Tr from TLP to QTL.
1. For variables Tr(X) := X .
2. If op is a Boolean connective Tr(ϕ1opϕ2) := Tr(ϕ1)opTr(ϕ2).
3. For until and since modalities:

Tr(ϕ1Uϕ2) := (Tr(ϕ1))U(Tr(ϕ2)) and Tr(ϕ1Sϕ2) := (Tr(ϕ1))S(Tr(ϕ2)).

4. Tr(Pnk(ϕ1, . . . , ϕk)) is obtained by substitution of Tr(ϕi) instead of Xi inΨk. Similarly, Tr(
←−
Pnk(ϕ1, . . . , ϕk)) is obtained by

substitution of Tr(ϕi) instead of Xi in
←−
Ψ k.

It is clear that ϕ is equivalent to Tr(ϕ) over the proper structures. In Ψk and in
←−
Ψ k every variable appears at most k times,

therefore the size (of the DAG representation) of Tr(ϕ) is O(|ϕ|2). �

The next lemma shows that the set of proper structures is definable by a QTL formula.
Lemma 3.4. There is a QTL formula PROPER(Y , Z,U) such that R+, t |= PROPER(N, E,O) iff N is the set of natural numbers,
and E and O are the sets of even and odd numbers.
Proof. (1) Let Nat(Y) be the conjunction of the following formulas:
1. ←−� False→ Y — ‘‘Y holds at zero".
2. always(Y → �1¬Y) — ‘‘If Y holds at t then ¬Y holds at all points in (t, t + 1)".
3. always(¬Y →♦1Y) — ‘‘If Y does not hold at t then Y holds at some point in (t, t + 1)".

It is clear that the set of naturals is unique set that satisfies Nat(Y).
(2) Let EVEN(Y , Z) be the conjunction of

1. Nat(Y) — ‘‘Y is the set of the natural numbers".
2. always(Z → Y) — ‘‘Z is a subset of the natural numbers".
3. ←−� False→ Z — ‘‘Z holds at zero".
4. always(Z → (¬Y)U(Y ∧ ¬Z)) — ‘‘ if Z holds at a natural number n then it does not hold at the next natural number".
5. always(¬Z ∧ Y → (¬Y)U(Y ∧ Z))— ‘‘ if Z does not hold at a natural number n then it holds at the next natural number".

It is clear that EVEN(N, E) holds iff N is the set of naturals and E is the set even numbers.
PROPER(Y , Z,U) can be defined as EVEN(Y , Z) ∧ always(U ↔ (Y ∧ ¬Z)). �

Finally, to complete the proof of Theorem 3.1, observe that a TLP formula ϕ is satisfiable iff ϕ is satisfiable over a proper
structure iff PROPER(N, E,O)∧ϕ is satisfiable iff the QTL formula PROPER(N, E,O)∧ψ is satisfiable, whereψ is constructed
as in Corollary 3.3. Since, the satisfiability problem for QTL is in PSPACE we obtain that the satisfiability problem for TLP is
in PSPACE and this completes the proof of Theorem 3.1.
As a consequence we obtain the following corollary.

Corollary 3.5. The satisfiability problem for TLC is PSPACE complete under the unary coding.
Proof. Note that Ck(X) is equivalent to Pnk(X, X, . . . , X). The translation from TLC to TLP based on this equivalence is linear
in the size of DAG representation. Hence, by Theorem 3.1, TLC is in PSPACE.
The PSPACE hardness immediately follows from PSPACE hardness for the satisfiability problem for TL(U, S) which is a

subset of TLC . �

Author's personal copy

2336 A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342

4. EXPSPACE completeness for TLC

Theorem 4.1. The satisfiability problem for TLC is EXPSPACE complete under the binary coding.

The upper bound immediately follows from Corollary 3.5. Below we prove that the satisfiability problem is EXPSPACE
hard. For every Turing MachineM which works in space 2n and every input x of length nwe construct a TLC formula AccM,x
which is satisfiable iffM accepts x. Moreover, AccM,x is computable fromM and x in polynomial time. This proves EXPSPACE
hardness with respect to the polynomial reductions.
A one-tape deterministic Turing machineM is (Q , q0, qacc, qrej,Γ , b, ν), where Q is the set of states, q0, qacc, qrej ∈ Q are

initial, accepting and rejecting states, Γ is the alphabet, b ∈ Γ is the blank symbol and ν : ((Q \ {qacc, qrej})× Γ)→(Q ×
Γ × {−1, 0, 1}) is the transition function. If the head is over a symbol σ andM is in a state q and ν(q, σ) = 〈q′σ ′, d〉, then
M replaces σ by σ ′ changes its state to q′ and moves d cells to the right (if d = −1 then it moves one cell left). There is no
transition from the accepting and rejecting states.
A configuration (or an instantaneous description) is a member of Γ ∗QΓ + and represents a complete state of the Turing

machine.
Let α = xqσy be a configuration, where σ ∈ Γ , x, y ∈ Γ ∗ and q ∈ Q . We define tape(α) = xσy, and state(α) = q. It

describes that for i ≤ |tape(α)|, the ith cell of the tape contains the ith symbol of tape(α) and all other cells contain blank;
the control state is q and the head is over the symbol σ at the position |x| + 1.
We deal with Turing machines which use at most 2n tape cells on inputs of length n. A configuration α is an n-

configuration if tape(α) has 2n symbols. Hence, a computation of M on an input x = x1 · · · xn of length n can be described
by a sequence α1α2 · · · of n-configurations, where α1 = q0x1x2 · · · xnb2

n
−n is the initial n-configuration for the input x.

For n-configurations α and β we write α →M β if β is obtained from α according to the transition function of M .
Whenever M is clear from the context we will write α → β . Note that if α→β then tape(α) and tape(β) have the same
length.
A computation sequence is a sequence of configurations α1 · · ·αk for which αi → αi+1, 1 ≤ i < k. A configuration β is

reachable from a configuration α if there exists a computation sequence α1 · · ·αk with α = α1 and β = αn.
Acceptance conditions. A configuration α is an accepting (respectively, rejecting) configuration if state(α) is accepting

(respectively, rejecting) state. A computation sequence α1 · · ·αm is accepting (respectively, rejecting) if αm is accepting
(respectively, rejecting).
We are going to encode computations of M over proper structures, i.e., over expansions of 〈R+, <,N, Even,Odd〉 by

monadic predicates. All these predicates will have finite variability and the EXPSPACE lower bound holds both under the
finite variability and arbitrary interpretations. We will denote byM an expansion of 〈R+, <,N〉 by unary predicates.
From now on we fix a Turing machine M with the alphabet {0, 1, b} of space complexity ≤ 2n. W.l.o.g. we assume that

M never moves to the left of the first input cell. All definitions and constructions below will be for thisM .
Let α1, . . . , αk be a sequence of n-configurations (not necessary a computation sequence). The ith configuration αi will

be encoded on the interval (i − 1, i) with integer end-points as follows: The interval will contain 2n points τi,j such that
i− 1 < τi,1 < τi,2 < · · · < τi,2n < i and the predicate T will hold exactly at these points in the interval. All other predicates
described belowwill be subsets of T . Predicates A0, A1 and Ab will partition T ; τi,j will be in A0 (respectively, in A1 or in Ab) if
the jth tape symbol of αi is 0 (respectively 1, or blank). Predicates Sq for q ∈ Q are interpreted in (i−1, i) as follows: τi,j ∈ Sq
if q is the state of αi and the head is over the jth tape symbol.

Definition 4.2. LetM be an expansion of 〈R+, <,N〉 by predicates T , A0, A1, Ab, Sq for q ∈ Q . For i ∈ N, we say that the
interval [i, i+ 1] ofM represents a legal n-configuration if

1. it contains 2n points in T and all these points are inside (i, i+ 1).
2. A0, A1 and Ab partition T .
3. ∪q∈Q Sq ⊆ T and there is exactly one q ∈ Q such that Sq ∩ [i, i+ 1] is a singleton and for all q′ 6= q, the set Sq′ ∩ [i, i+ 1]
is empty.

The following lemma is easy. We use there
−→
S for the tuple of predicate names 〈Sq : q ∈ Q 〉.

Lemma 4.3. 1. There is a TLC formula ϕ0(N, T , A0, A1, Ab,
−→
S)which holds in a structureM iff there is l ∈ N such that for every

i < l the interval [i, i+1] represents a legal n-configuration, the configuration represented in the interval [l−1, l] is accepting
or rejecting, and no τ ≥ l is in T ∪ A0 ∪ A1 ∪ Ab ∪ ∪q∈Q Sq. Furthermore, the size of ϕ0 is O(n).

2. For every x = x1 · · · xn ∈ {0, 1}n, there is a formula INITx which holds in a structureM iff the interval [0, 1] represents the
initial n-configuration σ0 with input x. Furthermore, the size of INITx is O(n).

Our next task is to specify that the configuration represented in an interval [i, i + 1] is obtained from the configuration
represented in [i − 1, i] according to the transition function of M . We have to express (1) the head is moved properly and
update the symbols under the head correctly and (2) all other symbols are unchanged.
The next lemma shows that the cells numbered from 1 to 2n can be succinctly described by their binary representations.

Lemma 4.4. There is a formula ϕ1(N, T , B1, . . . , Bn) such that if for every i ∈ N the interval (i, i+ 1) contains at most 2n points
from T thenM, 0 |= ϕ1 iff

Author's personal copy

A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342 2337

for every i ∈ N and τ ∈ (i, i + 1): if τ is the jth occurrence of T in this interval then τ ∈ Bl iff the lth bit of the binary
representation of j− 1 is one.

Furthermore, the size of ϕ1 is O(n2).

Proof. ϕ1 is always(ψ1), where ψ1 is the conjunction of

1. ∨Bl→(T ∧ ¬N) — Bl are subsets of T \ N.
2. N ∧ (¬N)U(T ∧¬N)→((¬N)U(T ∧

∧n
l=1 ¬Bl))— the first occurrence of T in (i, i+1) has binary representation 00 · · · 0,

i.e., is not in ∪Bl.
3. [T ∧ ¬N ∧ (¬N)U(T ∧ ¬N)]→

∧
k γk, where γk is(

¬Bk ∧
n∧

m=k+1

Bm

)
→

(
(¬T)U(T ∧ Bk ∧

n∧
m=k+1

¬Bm) ∧
k−1∧
m=1

(Bm→(¬T)U(T ∧ Bm))

)
.

The formula γk expresses that if τ is not the last occurrence of T in (i, i+ 1) and its binary code has 0 at kth place and 1
at places k + 1, . . . , n then the code of the next occurrence of T has 1 at kth place and zero at places k + 1, . . . ,m and
both occurrences have the same bit in the binary code at places 1, . . . , k− 1. �

Now we can express that the head moves properly, state is updated correctly and the type symbol under the head is
updated correctly.

Lemma 4.5. There is a formula ϕ2 such that ifM represents a terminating sequence of configurations α1, . . . , αl andM, 0 |= ϕ1,
then1 M, 0 |= ϕ2 iff

for every i < l if in αi the head is over symbol σ at position j and the state is q and ν(q, σ) = 〈q′.σ ′, d〉 then the state in
the αi+1 is q′ the head is at the position j+ d, the symbol at position j is σ ′.

Furthermore, the size of ϕ2 is O(n2).

Proof. Let ν(q, σ) = 〈q′.σ ′, 1〉 and let S := ∨q1∈Q Sq1
Let ψq,σ be the conjunction of

1. The head moved one position to the right:
(
Sq ∧ Aσ

)
→
∧n
k=1 γ

′

k where γ
′

k is obtained from γk after substitution of S
instead T (see proof of Lemma 4.4).

2. The state and the symbols under the head were updated correctly:

(Sq ∧ Aσ)→(¬S)U(Sq′ ∧ (¬T)SAσ ′).

When ν(q, σ) = 〈q′.σ ′, 0〉 and ν(q, σ) = 〈q′.σ ′,−1〉 the formula ψq,σ is defined similarly.
The desirable formula ϕ2 can be defined as always(

∧
q6∈{qacc , qrej}

∧
σ ψq,σ). �

The creative part of our proof is to show how to express succinctly that the symbols not under the head are unchanged.
In order to do this we introduce the following notion.
Assume thatM represents a terminating sequence of configurations α1, . . . , αl. Recall that τi,j ∈ R+ is the jth occurrence

of T in the interval (i− 1, i). We denote by tape(αi)[j] the jth symbol of tape(αi). We say thatM is well-timed if for all i < l
and j ≤ 2n and some positive εi,j, δi,j:

τi+1,j =

{1+ τi,j + εi,j if tape(αi)[j] is 0
1+ τi,j − δi,j if tape(αi)[j] is 1
1+ τi,j if tape(αi)[j] is blank.

(WT)

First observe

Lemma 4.6. Ifα1 · · ·αl, is a terminating sequence of n-configuration, then there is awell-timedMwhich represents this sequence.

Proof. Just choose τ1,j as j
2n+1 (for j = 1, . . . 2

n) and choose εi,j = δi,j as 1
3l×(2n+1) . Define τi+1,j as in Eq. (WT). Our choice of

εi,j, δi,j ensures that i− 1 < τi,1 < τi,2 < · · · < τi,2n < i for all i ≤ l. �

Lemma 4.7. There is a formula ϕ3 such thatM |= ϕ3 iffM is a well-timed sequence of n-configurations. Furthermore, the size
of ϕ3 is O(n).

Proof. Let ψ be the conjunction of the following formulas

1. Ab→(C2n−1(T) ∧ Llim(C2n(T)) ∧ Rlim(C2n(T)))

1 Until the end of this section ϕ1 is the formula from Lemma 4.3. The scope of the definition of ϕ2 from this lemma and formulas ϕ3 and ϕ4 from the
following lemmas extends to the end of this section.

Author's personal copy

2338 A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342

2. A1→(C2n(T) ∧ Llim(C2n+1(T)) ∧ Rlim(C2n(T)))
3. A0→(C2n−1(T) ∧ Llim(C2n(T)) ∧ Rlim(C2n−1(T))).

(Recall that Llim(X) (respectively, Rlim(X)) holds at t iff t is a left limit (respectively, a right limit of X), see Section 2.1.)
LetM′ represents an n-configuration αi in [i.i+ 1] and has 2n occurrences of T in [i+ 1, i+ 2] all the occurrences inside

(i+ 1, i+ 2). The crucial observation is that Eq. (WT) holds iffM′, τ |= ψ for every τ ∈ [i, i+ 1].
From ψ it is easy to construct ϕ3. Just express that ϕ0 holds, and ψ holds at all points except the points of the interval

where the last configuration is represented. �

We are now ready to specify that if a symbols is not under the head then in the next configuration it will be unchanged.

Lemma 4.8. There is a formula ϕ4 such that ifM represents a well-timed terminating sequence of n-configurations α1, . . . , αl
andM, 0 |= ϕ1, thenM, 0 |= ϕ4 iff

for every i < l if in αi the head is at position j, then tape(αi)[m] = tape(αi+1)[m] for every m 6= j.

Furthermore, the size of ϕ4 is O(n).

Proof. Let ψ be the conjunction of the following formulas

1. Ab→(
←−
C 2n−1(T) ∧ Llim(

←−
C 2n(T)) ∧ Rlim(

←−
C 2n(T)))

2. A1→(
←−
C 2n(T) ∧ Rlim(

←−
C 2n+1(T)) ∧ Llim(

←−
C 2n(T)))

3. A0→(
←−
C 2n−1(T) ∧ Rlim(

←−
C 2n(T)) ∧ Llim(

←−
C 2n−1(T))).

Assume thatM is well-timed. Hence, Eq. (WT) holds. Then ψ holds at τi+1,m iff tape(αi)[m] = tape(αi+1)[m].
The head is at positionm in σi iff at τi+1,m the following formula γ holds:

γ :=
∧
k

(Bk ↔ ((¬N)S(N ∧ ((¬N)S(∨q∈Q Sq ∧ Bk))).

Indeed, this formula says that Bk holds at τ iff in the previous interval Bk holds at the (unique) position where ∨q∈Q Sq
holds (this is the position of the head in the configuration σi). Hence, T → ((¬γ)→ψ) holds in every point of the interval
[i+ 1, i+ 2] iff tape(αi)[m] = tape(αi+1)[m] for everym different from the head position in σi.
Finally, ϕ4 should express that T → ((¬γ)→ψ) holds at all points except the points of the interval [0, 1]. Note that t ∈

[0, 1] iff←−♦ (N∧
←−
♦N)does not hold at t . Hence,ϕ4 can be defined as follows:ϕ4 := (

←−
♦ (N∧

←−
♦N))→(T → ((¬γ)→ψ)). �

From Lemmas 4.3–4.5, 4.7 and 4.8 we obtain:

Lemma 4.9. For every x ∈ {0, 1}n let AccM,x be INITx ∧ ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ♦qacc . ThenM, 0 |= AccM,x iffM represents
a well-timed accepting computation sequence of M on x.

The size AccM,x is polynomial in the size of x, therefore this lemma together with Lemma 4.6 implies EXPSPACE hardness
of the satisfiability problem for TLC .

Remark 4.10. 1. Our proof of the EXPSPACE lower bound require an unbounded set of variables. We do not know what
happens if the set of variables is assumed to be bounded?

2. In the proof of Theorem 4.1, we assumed that the Turing machine M works over the binary alphabet and in space 2n.
Formally speaking, for the EXPSPACE-completeness one needs to consider space 2f (n), for any polynomial f . The proof
clearly works pretty well for any such f .

5. Further results

5.1. QTLI and MITL logics and their complexity

In this subsection we recall the syntax and semantics of temporal logics QTLI andMITL and results on the complexity of
their satisfiability problem.
Often in the literature the temporal logics with modalities ♦(m,n)(X) for integersm < n are considered. These modalities

are defined by the truth tables:

♦(m,n)(X) : ∃t((t0 +m < t < t0 + n) ∧ X(t)).

The logic QTLI in addition tomodalitiesU and S has infinitymanymodalities♦(m,n)(X) for all integersm < n. The logic QTLI0
is a fragment of QTLI; it has in addition to modalities U and S the modalities ♦(0,n)(X), ♦(−n,0)(X) for all natural n.
The logics QTL, QTLI0 and QTLI have the same expressive power (under arbitrary interpretations). However, there is an

exponential succinctness gap (under the binary coding) between QTL and QTLI0 and between QTLI0 and QTLI .

Author's personal copy

A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342 2339

The logic MITL was introduced in [1]; it also has the same expressive power as QTL. Syntactically, MITL modalities are
obtained by decorating U and S modalities by the non-singular interval with integer end-points. For m < n the modality
U(m,n) is defined by the truth tables:

∃t(t0 +m < t < t0 + n ∧ X2(t) ∧ ∀t2(t0 < t2 < t→X1(t2)).

The truth table of the modality U[m,n) (respectively, of U(m,n]) is obtained from the above truth table by replacing the first
(respectively, the second) occurrence of< by≤; the truth table of themodalityU[m,n] is obtained from the above truth table
by replacing the first two occurrences of< by≤. The decorated ‘‘since" modalities S(m,n), S(m,n], S[m,n) and S[m,n] are defined
similarly.
The logicMITL in addition to modalities U and S has infinity many modalities U(m,n), U(m,n], U[m,n) and U[m,n], S(m,n), S(m,n],

S[m,n) and S[m,n]. for all integersm < n.
The logic MITL0 is the fragment of MITL which uses only the modalities where one of the end-points of the intervals is

zero.
Observe that for 0 ≤ m < n the following equivalences hold:

♦(m,n)(X)↔ TrueU(m,n)X
♦(−m,−n)(X)↔ XS(−m,−n)True.

Themeaning preserving polynomial translations from QTLI toMITL and from QTLI0 toMITL0 can be easily defined from these
equivalences.
Observe that for 0 ≤ m < n

XU(m,n)Y ↔ ♦(m,n)(Y) ∧ �(0,n]XUY .

The meaning preserving polynomial translations formMITL to QTLI and fromMITL0 to QTLI0 can be easily defined from the
above equivalence and similar equivalences for the half closed and closed intervals and for the ‘‘since" modal operators [9].
The next theorem characterizes the complexity of these logics [1].

Theorem 5.1. 1. The satisfiability problem for QTLI0 is PSPACE complete under the binary coding.
2. The satisfiability problem for QTLI is EXPSPACE complete under the binary coding.

Theorem 5.1 was proved for the finite variability interpretation in [1] and for arbitrary interpretation in [8,15].

5.2. Logics TLPI and TLCI and their complexity

In this section we consider temporal logics with the modalities C (n,m)k (X) and Pn(m,n)k (X1, . . . , Xk) for the integersm < n.
These modalities are defined by the truth tables with free variable t0:

Pn(m,n)k (X1, . . . , Xk) : ∃t1 . . . ∃tk

(
t0 +m < t1 < · · · < tk < t0 + n ∧

k∧
i=1

Xi(ti)

)

C (m,n)k (X) : ∃t1 . . . ∃tk

(
t0 +m < t1 < · · · < tk < t0 + n ∧

k∧
i=1

X(ti)

)
.

Note that Pnk is equivalent to Pn
(0,1)
k and Ck is equivalent to C

(0,1)
k

We consider the following temporal logics:

TLPI := TL(U, S, {Pn(m,n)k : m < n})

TLPI0 := TL(U, S, {Pn
(0,n)
k , Pn(−n,0)k : 0 < n})

TLCI := TL(U, S, {C (m,n)k : m < n})

TLCI0 := TL(U, S, {C
(0,n)
k , C (−n,0)k : 0 < n}).

All these logics are expressively equivalent to TLC [11].We investigate the complexity of the satisfiability problems for these
logics under the unary and binary codings. Under the unary (respectively, binary) coding all the numbers which occur in the
superscripts and subscripts of these modalities are coded in unary (respectively, in binary). This section contains proofs of
the results summarized in Table 1.

5.3. The complexity of the logics under the unary coding

The PSPACE hardness under the unary coding immediately follows from the PSPACE hardness of the satisfiability problem
for TL(U, S).
The PSPACE upper bound for the unary coding follows from simple linear translation of all these logic into TLPI and the

following lemma:

Author's personal copy

2340 A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342

Table 1
The complexity of the satisfiability problem.
Logic Unary coding Binary coding

TLPI0 PSPACE complete PSPACE complete
TLPI PSPACE complete EXPSPACE complete
TLCI0 PSPACE complete EXPSPACE complete
TLCI PSPACE complete EXPSPACE complete

Lemma 5.2. The satisfiability problem for TLPI is in PSPACE under the unary coding.

Proof. For i ≤ j ≤ k let φi,j(Xi, . . . , Xj,N) be defined as in the proof of Lemma 3.2. Recall that the size of φi,j is less than
10(j− i+ 1) and that φi,j holds at t iff there are t < ti < ti+1 < · · · < tj ≤ l, where l is the smallest integer (element of N)
greater than t , such that ∧js=iXs(ts).
For d > 0 a structureM is called d-proper if it is an expansion of 〈R+, <,N, Even,Odd, Zd0 , . . . , Z

d
d−1〉 by unary predicates.

HereN, Even, andOdd are the sets of natural, even and oddnumbers and for r ∈ {0, . . . , d−1} the predicate Zdr is interpreted
as the set of natural numbers equal r modulo d.
Set

φdi,j, r := (¬N)UZ
d
(r+1)mod d ∧ φi,j{Z

d
r /N},

where φi,j{Zdr /N} is obtained from φi,j when Z
d
r is substituted instead of N .

Set

φdi,j :=

d−1∨
r=0

φdi,j, r .

Note that the size of φdi,j is polynomial in (unary representation of) k and d. Observe that φ
d
i,j holds at t in a d-proper

structure iff there are t < ti < ti+1 < · · · < tj ≤ l+ d, where l is the smallest integer greater than t , such that ∧
j
s=iXs(ts).

Similarly, for i ≤ j ≤ k and d ∈ N there are formulas
←−
φdi,j(Xi, . . . , Xj,N, Z

d
0 , . . . , Z

d
d−1) such that

←−
φdi,j holds at t if there are

t > tj > · · · > ti > l − d, where l is the largest integer less than t , and ∧
j
s=iXs(ts) holds. Furthermore, the size of

←−
φdi,j is

polynomial in (unary representation of) k and d.
We are going to construct a QTL formula Ψ (m,n)

k (X1, . . . , Xk,N, E,O, Zd0 , . . . , Z
d
d−1)which is equivalent over the d-proper

structures to Pn(m,n)k (X1, . . . , Xk), where d = n−m. Furthermore, the size of Ψ
(m,n)
k is polynomial inm, n, k.

Our construction ofΨ (m,n)
k (X1, . . . , Xk) depends whetherm is even or odd and whether n is even or odd. These four cases

are similar and we describe below only the case whenm and n are even.
Let Ev be defined as (¬N)UE. Ev holds at t iff t is in an interval [2l− 1, 2l) for a natural l.
Let Ai be defined as

Ai := Ev ∧ ♦(m,m+1)(Ev ∧ φ1,i) ∧ ♦(n−1,n)(¬Ev ∧
←−−−
φdi+1,k), where d = n−m.

Note that in the case whenm and n are even, Ev(t) iff Ev(t +m) iff Ev(t + n).
Assume that Ev ∧ ¬N holds at t . Then Ai holds at t iff for j = dt +me the following conditions hold:

1. there are t1 < t2 < · · · < ti in the interval (t +m, j] such that X1(t1) ∧ X2(t2) ∧ · · · ∧ Xi(ti) and
2. there are ti+1, ti+2 < · · · < tk in the interval (j, t + n) such that Xi+1(ti+1) ∧ Xi+2(ti+2) ∧ · · · ∧ Xk(tk).

Hence, Ev ∧ ¬N implies that
∨
Ai is equivalent (over (n−m)-proper structures) to Pn

(m,n)
k .

Note that Ai are QTLI formulas of size polynomial in n, m, k. We can transform Ai into an equivalent QTL formula A′i using
the following equivalences from [8]. For 0 < s ∈ N:

♦(s,s+1)Y ↔ (♦1�1) · · · (♦1�1)︸ ︷︷ ︸
s times

♦1Y

♦(−s−1,−s)Y ↔ (
←−
♦ 1
←−
� 1) · · · (

←−
♦ 1
←−
� 1)︸ ︷︷ ︸

s times

←−
♦ 1Y .

(These equivalences can be proved by the induction on s.) Let A :=
∨
A′i . Then Ev ∧¬N → (A↔ Pn(m,n)k) holds over the

(n−m)-proper structures and the size of A is polynomial in n, m, k.
Similarly, one can construct QTL formulas B and C of size polynomial in n, m, k such that (¬Ev∧¬N)→ (B↔ Pn(m,n)k)

and N → (C ↔ Pn(m,n)k) hold over the (n−m)-proper structures.

Author's personal copy

A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342 2341

LetΨ (m,n)
k (X1, . . . , Xk) be defined as (A∧ B∧ C). Then,Ψ

(m,n)
k ↔ Pn(m,n)k hold over the (n−m)-proper structures and the

size of Ψ (m,n)
k is polynomial in n, m, k.

As in Lemma 3.4, for every d > 0 there is a QTL formula PROPERd such thatM, t |= PROPERd iffM is a d-proper structure.
Moreover, the size of PROPERd is polynomial in d.
Now, relying on the equivalence ofΨ (m,n)

k and Pn(m,n)k , we can easily translate every TLPI formulaα into an equi-satisfiable
QTL formula of the size polynomial in the unary coding of α. This together with Theorem 2.2 implies that the satisfiability
problem TLPI is in PSPACE under the unary coding. �

Since TLPI0 ⊂ TLPI , TLCI0 ⊂ TLCI , and TLCI can be translated into TLPI applying equivalence Ck(X) ↔ Pnk(X, X, . . . , X),
we obtain that the satisfiability problems for TLPI0, TLCI0 and TLCI are also in PSPACE.

5.4. The complexity of the logics under the binary coding

Lemma 5.3. The satisfiability problem for TLPI0 is PSPACE complete under the binary coding.
Proof. The PSPACE hardness immediately follows from the PSPACE hardness of the satisfiability problem for TL(U, S).
Let l = dlog2 2me. We say that a structureM is m-structure if it is an expansion of 〈R+, <,N, Bm1 , . . . , B

m
l , Pm, P2m〉 by

unary predicates, where Pm, P2m, Bmi ⊂ N and are defined as follows:

i ∈ Pm iff i is a multiple ofm
i ∈ P2m iff i is a multiple of 2m
i ∈ Bmj iff jth bit of the binary representation of i mod(2m) is one.

First observe that there is a QTL formula Structurem such that Structurem is satisfiable in M iff M is an m-structure.
Moreover, the size of Structurem is polynomial in logm. (The construction of these formulas is similar to the construction
used in the proof of Lemma 4.4.)
We are going to construct a QTLI0 formula Ψ mk of size polynomial in k, logm (i.e., polynomial in the size of Pn

(0,m)
k

(X1, . . . , Xk) under the binary coding) such that Ψ mk is equivalent to Pn
(0,m)
k over them-structures.

Note that there are TL(U, S) formulas χi,j for i < j ≤ k such that
χi,j holds at t in an m-structureM iff there are t < ti < ti+1 < · · · < tj ≤ n, where n is the smallest multiple of m
greater than t , such that ∧js=iXs(ts).

Similarly, there are formulas←−χ i,j such that
←−χ i,j holds at t if there are t > tj > · · · > ti > n, where n is the largest multiple ofm less than t , and∧

j
s=iXs(ts) holds.

Let Evm be defined as (¬Pm)UP2m. Evm holds at t iff t is in an interval [2ml−m, 2ml) for a natural l.
Let Ak,m be a QTLI0 formula defined as follows:

Ak,m := χ1,k ∨ ♦(0,m)(¬Evm ∧←−χ 1,k) ∨
k∨
i=1

(χ1,i ∧ ♦(0,m)(¬Evm ∧←−χ i+1,k)).

The size of Ak,m is polynomial in k, logm, and over them-structures Evm → (Ak,m ↔ Pn
(0,m)
k) holds.

Similarly, one can define QTLI0 formulas Bk,m of size polynomial in k, logm, such that over the m-structures ¬Evm →
(Bk,m ↔ Pn

(0,m)
k) holds.

Now, Ψ mk can be defined as

Ψ mk := (Evm → Ak,m) ∧ (¬Evm → Bk,m).

Ψ mk ↔ Pn
(0,m)
k hold over them-structures and the size of Ψ mk is polynomial in the size of Pn

(0,m)
k .

Relying on the equivalence ofΨ mk and Pn
(0,m)
k , we can easily transform every TLPI0 formula α into an equivalent (over the

m-structures) formula β ∈ QTLI0 of the size polynomial in the binary coding of α.
Hence, α is satisfiable iff
β ∧

∧
{m : Pn(0,m)k occurs in α}

Structurem

is satisfiable. This together with Theorem 5.1(1) implies that the satisfiability problem TLPI0 is in PSPACE under the binary
coding. �

Lemma 5.4. The satisfiability problem for TLPI, TLCI0 and TLCI is EXPSPACE complete under the binary coding.
Proof. The membership in EXPSPACE follows from the PSPACE upper bound under the unary coding for the satisfiability
problem of these logics.
The EXPSPACE hardness for TLPI and TLCI follows from Theorem 5.1. The EXPSPACE hardness for TLCI0 follows from

Theorem 4.1. �

Author's personal copy

2342 A. Rabinovich / Theoretical Computer Science 411 (2010) 2331–2342

6. TLC and logics with finitely many modalities

Let B = {Ol11 ,O
l2
2 , . . . ,O

lk
k } be a finite set of modality names, and assume that every modality in B has a truth table

definable in the monadic second-order logic of order with λx.x + 1 function (we denote this logic by MLO+1). MLO+1 is a
very expressive (and undecidable) logic, and most of the modalities considered in the literature can be easily formalized in
it. We proved in [12] that there is n (which depends on B) such that Cn is not expressible over the reals by a TL(B) formulas.
Hence, there is no temporal logic L which is at least as expressive as TLC over the reals, which has a finite set of modalities
with truth tables inMLO+1.
Our conjecture was that this result can be extended to the non-negative real line. However, the results of Section 3 refute

this conjecture.
Indeed, let L be the temporal logic with the modalities U, S, ♦1

←−
♦ 1, nat and even, where nat and even are zero-arity

modalities interpreted as the sets of natural and even numbers respectively Corollary 3.3 shows that TLP , TLC and QTL
are expressively equivalent over the class of proper structures, i.e., over the expansions of 〈R+, <,N, Even,Odd〉 by unary
predicates.
Hence, L is at least as expressive (over the class of non-negative real structures) as TLC . Over the non-negative reals, the

modalities nat and even are easily definable by truth tables inMLO+1 (see Lemma 3.4). This refutes the conjecture.
Similarly to Corollary 3.3 one can show that TLP , TLC and QTL are expressively equivalent over the class of the expansions

of 〈R, <,Z, Even〉 by unary predicates, where Z and Even are the sets of integers and even numbers. Hence, QTL with two
additional zero-arity modalities for the set of integers and for the set of even numbers is at least as expressive as TLC .
However, over the reals, these two modalities are not definable by truth tables inMLO+1.

Acknowledgements

I am grateful to Yoram Hirshfeld for his insightful comments. I would like to thank the anonymous referees for their
helpful suggestions.

References

[1] R. Alur, T. Feder, T.A. Henzinger, The benefits of relaxing punctuality, Journal of the ACM 43 (1996) 116–146.
[2] R. Alur, T.A. Henzinger, Logics and models of real time: a survey, in: de Bakker, et al. (Eds.), Real Time: Theory and Practice, in: LNCS, vol. 600, 1992,
pp. 74–106.

[3] Baringer H. Barringer, R. Kuiper, A. Pnueli, A really abstract concurrent model and its temporal logic, in: Proceedings of the 13th POPL, 1986,
pp. 173–183.

[4] D.M. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logics, vol. 1, Clarendon Press, Oxford, 1994.
[5] T.A. Henzinger, It’s about time: real-time logics reviewed, in: Concur 98, in: Lecture Notes in Computer Science, vol. 1466, 1998, pp. 439–454.
[6] T.H Henzinger, J.F Raskin, P.Y Schobbens, The regular real time languages, in: ICALP 1998, pp. 580–591.
[7] Y. Hirshfeld, A. Rabinovich, A framework for decidable metrical logics, in: Proc. 26th ICALP Colloquium, in: LNCS, vol. 1644, 1999, pp. 422–432.
[8] Y. Hirshfeld, A. Rabinovich, Quantitative temporal logic, in: Computer Science Logic 1999, in: LNCS, vol. 1683, Springer Verlag, 1999, pp. 172–187.
[9] Y. Hirshfeld, A. Rabinovich, Logics for real time: decidability and complexity, Fundamental Information 62 (1) (2004) 1–28.
[10] Y. Hirshfeld, A. Rabinovich, Timer formulas and decidable metric temporal logic, Information and Computation 198 (2) (2005) 148–178.
[11] Y. Hirshfeld, A. Rabinovich, An expressive temporal logic for real time, in: MFCS 2006, in: Springer LNCS, vol. 4162, 2006, pp. 492–504.
[12] Y. Hirshfeld, A. Rabinovich, Expressiveness of Metric modalities for continuous time, Logical Methods in Computer Science 3 (1) (2007).
[13] H. Kamp, Tense logic and the theory of linear order, Ph.D. Thesis, University of California L.A., 1968.
[14] Z. Manna, A. Pnueli, Models for reactivity, Acta Informatica 30 (1993) 609–678.
[15] C. Lutz, D. Walther, F. Wolter, Quantitative temporal logics over the reals: PSPACE and below, Information and Computation 205 (1) (2007) 99–123.
[16] A. Rabinovich, Complexity of metric temporal logics with counting and the pnueli modalities, in: FORMATS 2008, in: Springer LNCS, vol. 5215, 2008,

pp. 93–108.
[17] M. Reynolds, The complexity of the temporal logic with until over general linear time, manuscript, 1999.
[18] T. Wilke, Specifying time state sequences in powerful decidable logics and time automata, in: Formal Techniques in Real Time and Fault Tolerance

Systems, in: LNCS, vol. 863, 1994, pp. 694–715.

