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modalities can express all the natural generalizations of this modality. The temporal logic
with counting modalities (TLC) is the extension of until-since temporal logic TL(U, S) by

“counting modalities” C,(X) and ((Tn (n € N); for each n the modality C,(X) says that X
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Real time temporal logics will be true at least at n points in the next unit of time, and its dual C ,(X) says that X

Comple?dty has happened n times in the last unit of time. In Hirshfeld and Rabinovich (2006) [11] it

Expressive power was proved that this temporal logic is expressively complete for a natural decidable metric
predicate logic. In particular the Pnueli modalities Pnj (X1, ..., Xi), “there is an increasing
sequencety, ..., t, of points in the unit interval ahead such that X; holds at t;”, are definable
in TLC.

In this paper we investigate the complexity of the satisfiability problem for TLC and
show that the problem is PSPACE complete when the index of C, is coded in unary, and
EXPSPACE complete when the index is coded in binary. We also show that the satisfiability
problem for the until-since temporal logic extended by the Pnueli modalities is PSPACE
complete.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The temporal logic that is based on the two modalities “Since" and “Until" is popular among computer scientists as a
framework for reasoning about a system evolving in time. By Kamp’s theorem [4,13] this logic has the same expressive
power as the first-order monadic logic of order, whether the system evolves in discrete steps or in continuous time. We will
denote this logic by TL(U, S).

For systems evolving in discrete steps, this logic seems to supply all the expressive power needed. This is not the case for
systems evolving in continuous time, as the logic cannot express metric properties like: “X will happen within one unit of
time". The most straightforward extension which allows one to express metric properties is to add modality which says that
“X will happen exactly after one unit of time". Unfortunately, this logic is undecidable. Over the years different decidable ex-
tensions of TL(U, S) were suggested. Most extensively researched was MITL [1,2,5]. Other logics are described in [3,6,14,18].
Hirshfeld and Rabinovich introduced the language QTL (quantitative temporal logic) [8-10], which extends the until-since
temporal logic by two modalities: ¢1X and ¢ 1X.The formula (X (respectively ¢ 1X)expresses that “X will be true at some
point during the next unit of time" (respectively, “X was true at some point during the previous unit of time").

* Tel.: +972 36405388.
E-mail address: rabinoa@post.tau.ac.il.

0304-3975/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.03.017



2332 A. Rabinovich / Theoretical Computer Science 411 (2010) 2331-2342

QTL and MITL have the same expressive power, which indicates that they capture a natural fragment of what can be said
about the system which evolve in time. These “first generation" metric extensions of TL(U, S) can be called simple metric
temporal logics.

A. Pnueli was probably the first person to question if these simple logics are expressive enough for our needs. The con-
jecture that they cannot express the property “X and then Y will both happen in the coming unit of time" is usually referred
to as “Pnueli’s conjecture” [2,18].

Hirshfeld and Rabinovich [7,12] proved Pnueli’s conjecture, and strengthened it significantly. To do this, we defined for
every natural k the “Pnueli modality" Pn, (X1, ..., X), which states that there is an increasing sequence tq, ..., t; of points
in the unit interval ahead such that X; holds at t;. We also defined the weaker “Counting modalities" C,(X) which state that
X is true at least at k points in the unit interval ahead (so that C,(X) = Pn(X, ..., X)). To deal with the past we define also

<«
the dual past modality, Pny(Xq, ..., Xi): there is a decreasing sequence ty, . . ., t; of points in the previous unit interval such

that X; holds at t;, and C ,(X) which state that X was true at least at k points in the previous unit interval.
This yields a sequence of temporal logics TLP, (n € N), where TLP,, is the standard temporal logic, with “Until" and “Since",

and with the addition of the k-place modalities Pnj and 1(3?  for k < n. Similarly, TLC,, is the extension of TL(U, S) with the

<
addition of modalities C, and C \ for k < n. We note also that TLP; is just the logic QTL and it represents the simple metric
logics.

Let TLP be the union of TLP,, and TLC be the union of TLC,,.

We proved in [7,12] that:

1. The sequence of temporal logics TLP,, is strictly increasing in expressive power. In particular, C,1(X) is not expressible
in TLP,,.

2. TLP and TLC are decidable and have the same expressive power. Moreover, they are expressively equivalent to a natural
decidable fragment of first-order logic.

In this paper we investigate the complexity of the satisfiability problem for TLP and TLC. In [17] it was shown that TL(U, S) is
PSPACE complete. In [7,10] we provided a polynomial satisfiability preserving translation from QTL to TL(U, S) and derived
PSPACE completeness of QTL.

In this paper we first prove that the satisfiability problem for TLP is PSPACE complete.

When one write a TLC formula there are two natural possibilities: to write index n of C, in unary or in binary. We show
that the satisfiability problem for TLC is PSPACE complete when the index of C, is coded in unary, and EXPSPACE complete
when the index is coded in binary.

Our results holds both when the interpretation of temporal variable is arbitrary and when we assume that they satisfy
the finite variability assumption (FVA) which states that no variable changes its truth-value infinitely many times in any
bounded interval.

In [12] we proved that there is no temporal logic L with finitely many modalities definable in the monadic second-order
logic expanded by +1 function such that over the reals L is at least as expressive as TLC. Our conjecture was that this result
can be extended to the non-negative reals. Our proofs refute this conjecture.

The paper is organized as follows: In Section 2, we recall definitions and previous results. In Section 3, we prove PSPACE
completeness for TLP and as a consequence obtain PSPACE completeness for TLC under the unary coding of indexes. In
Section 4, EXPSPACE completeness for TLC under the binary coding of indexes is proved. Section 5 contains complexity
results for related more succinct temporal logics. Section 6 discusses the expressive power of TLC and shows that our results
provide a negative answer to a conjecture from [12].

An extended abstract of this paper was published in [16].

2. Preliminaries

First, we recall the syntax and semantics of temporal logics and how temporal modalities are defined using truth tables,
with notations adopted from [4,9].

Temporal logics use logical constructs called “modalities” to create a language that is free from quantifiers.

The syntax of a Temporal Logic has in its vocabulary a countably infinite set of variables {X;, X5, . ..} and a possibly infinite
setB = {O’]1 , 0122, ...} of modality names (sometimes called “temporal connectives” or “temporal operators”) with prescribed
arity indicated as superscript (we usually omit the arity notation). TL(B) denotes the temporal logic based on modality set B
(and B is called the basis of TL(B)). Temporal formulas are built by combining atoms (the variables X;) and other formulas
using Boolean connectives and modalities (with prescribed arity). Formally, the syntax of TL(B) is given by the following
grammar:

¢ = Xilp1 A @2l V 2l < P2|—d1|0i(P1, P2, . - ., D).

We will use (in our metalanguage) S, X, Y, Z to range over variables.

A structure for Temporal Logic, in this work, is the non-negative real line with monadic predicates M = (R, <, Sy,
S,, ...), where the predicate S; are the interpretation in .M of the variable S;. (All our complexity results can be easily
adopted to the models over the whole real line R.) Every modality O¥ is interpreted in the structure .M as an operator
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ok, : [P(R1)]* — P(R*) which assigns “the set of points where O¥[A;, . . ., A;] holds" to the k-tuple (A1, ..., Ay) € P(R1)k.
(P(R™) denotes the set of all subsets of R*.) Once every modality corresponds to an operator the semantics is defined by
structural induction:

e for atomic formulas: M, t = Sifft € S
e for Boolean combinations the definition is the usual one

e for O%(¢1, ..., @)
M, tE O, ...,¢) iff t €08 (Ay,...,Ay)
where A, = {t : M, T = ¢}.

For the modality to be of interest the operator O should reflect some intended connection between the sets A,, of points
satisfying ¢; and the set of points O[A,, ..., Ay, ]. The intended meaning is usually given by a formula in an appropriate
predicate logic:

Truth Tables: A formula O(t, X1, . . . Xi) in the predicate logic L is a Truth Table for the modality O if for every structure M

Op(Ar, ..., A) ={t: M E O[T, A, ..., Adl}.

2.1. Since-until temporal logic

The modalities until and since are most commonly used in temporal logic for computer science. They are defined through
the following truth tables:

e The modality XU Y, “X until Y", is defined by

Y(to, X, Y) =3t1(to < t1 AY () AVE(ty <t <t = X(1))).
e The modality XS Y, “X since Y", is defined by

Y(to, X, Y) = 3t1(to > t1 AY () AVE(t; <t < tyg = X(1))).

Reynolds [17] proved.
Theorem 2.1. The satisfiability problem for TL(U, S) over the reals is PSPACE complete.

We will use standard abbreviations. E.g., 0X — sometimes in the future X holds - abbreviates TrueUX; O0X - always in the

future X holds - abbreviates —(TrueU—X); the past modalities <<>_X - “X happened in the past”, and T X - “X have been
always true", are defined similarly. The modality always acts like the universal quantifier and is defined as

always(X) : TXAX ADX.
Llim(X) and Rlim(X) abbreviate the formulas

Llim(X) : —(—XSTrue)
Rlim(X) : —(—=XUTrue).

Llim(X) holds at t if t is a left limit of X, i.e., for every t; < t there is an X in the interval (t;, t). Rlim(X) holds at t if t is a
right limit of X.

2.2. Three metric temporal logics

We recall the definitions of three temporal logics: Quantitative Temporal Logic—QTL, Temporal Logic with Counting—TLC
and Temporal Logic with the Pnueli modalities—TLP.

The logic QTL in addition to modalities U and S has two modalities ¢1X and <<>_1X . These modalities are defined by the
tables with free variable tj:

01X : dt((tg < t < tp+ 1) AX(L))
DX Tty —1 <t <ty AX(D)).
In [7] it was proved.

Theorem 2.2. The satisfiability problem for QTL is PSPACE complete.
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The logic TLP is the extension of TL(U, S) by an infinite set of modalities Pn,(Xy, ..., Xx) and P?R(X], ..., X). These
modalities are defined by the tables with free variable t;:

k
PreXi, ..., X0 : 3ty ... 3t (to <tj<--<ty<to+1 /\/\Xi(ti)>
i=1

- k
PreXe, ..., X0 : 3.3 lto—1<ti<- <t < to/\/\Xi(t,-) .
i=1

Finally, the logic TLC (—_the temporal logic with counting modalities - is the extension of TL(U, S) by an infinite set of
modalities C,(X) and C ,(X) . These modalities are defined by the tables with free variable ty:

k
Ce(X) : E|t1...E|tk(to<t1<--~<tk<to+1/\/\X(ti)>
i=1

- k
Ch): 3.3 (t-T<t<-<te<ton \X®)].

i=1

We recall the terminology that is used when comparing the expressive power of languages.
Let © be a class of structures and let L and L’ be temporal logics.

1. Lis at least as expressive as L’ over a class € if for every formula ¢ of L’ there is a formula v in L such that for every structure
Min C and foreveryt € M: M, T E @ iff M, T = .

2. L and L’ are expressively equivalent over C if L is at least as expressive as L’ over € and L’ is at least as expressive as L
over C.

We deal here with the temporal logics over the class of non-negative real numbers. We will say “L is at least as expressive
as (respectively, is expressively equivalent to) L’ if L is at least as expressive as (respectively, is expressively equivalent to) L’
over this class.

The following theorem from [12] compares the expressive power of TLP, TLC and QTL.

Theorem 2.3 (Comparing the Expressive Power). TLP and TLC are expressively equivalent. TLP and TLC are strictly more
expressive than QTL.

2.3. Size of formulas

Usually the size of a formula is defined as its length (string representation) or the size of its directed acyclic graph
representation (DAG). The logics TLC and TLP have infinite sets of modalities and therefore we have to agree how to code the
names of modalities. There are two natural possibilities: to write index k of C, and Pn,, in unary or in binary. For TLP formulas
this decision affects the size of the formulas up to a constant factor, and, therefore, it is not important. For TLC formulas the
binary coding might be exponentially shorter than the unary coding. Our main results show that the satisfiability problem
for TLC is PSPACE complete when the index of C; is coded in unary, and EXPSPACE complete when the index is coded in
binary.

Note that there might be an exponential gap in the size of a DAG representation of a formula and its length. Our proofs of
upper bounds will be given for DAG representation (and hence the bounds are valid for string representations). Our proofs
of lower bounds will be given for string representations (and hence the bounds are valid for DAG representation).

3. TLP is PSPACE complete

Theorem 3.1. The satisfiability problem for TLP is PSPACE complete.

The PSPACE hardness immediately follows from PSPACE hardness for the satisfiability problem for TL(U, S) which is a subset
of TLP. Below we prove that the satisfiability problem is in PSPACE.

A structure M is called proper if it is an expansion of (R™, <, N, Even, Odd) by unary predicates. Here N, Even, and Odd
are the sets of natural, even and odd numbers; these sets will be denoted by predicate names N, E, O.

In contrast to the fact that TLP is much more expressive than QTL over the class of all real structures and over the class
of finite variability structures [7,9], we are going to show that they are expressively equivalent over the class of proper
structures. Moreover, there is a polynomial meaning preserving (over the proper structures) translation from TLP to QTL.

Lemma 3.2. 1. For every k there is a QTL formula ¥, (X1, ..., X, N, E, O) which is equivalent over the proper structures to
Pni(X, ..., Xy). Furthermore, the size of ¥ is less than 100k?.
<~ <~
2. Forevery k there is a QTL formula ¥ (X4, ..., Xk, N, E, O) which is equivalent over the proper structures to Pn,(Xy, ..., Xy).

Furthermore, the size of Wy is less than 100k2.
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Proof. (1) Fori < j < k define formulas ¢; ; as follows:
¢ii = (—~N)UX;
Giivir1 = (CNUX; A =N A @ig1iv141)-
It is clear that the size of ¢;; is less than 10(j — i 4 1) and that ¢;; holds at t iff therearet < t; < tiy1 < -+ < tj < n,

where n is the smallest integer greater than ¢, such that A{:ix,(t,). Similarly, there are formulas <q7,~,j such that <¢Ti,j holds at

tifftherearet > t; > --- > t; > n, where n is the largest integer less than t, and A{:iXI(tl) holds.
The formula ¥, which is equivalent to Pn, over the proper structures can be defined as the disjunction of the following

formulas:

1. ¢1x — “¢1x holds at tif therearet < t; < t; < --- < i < n, where n is the smallest integer greater than t, such that
/\lel(tl)".

2. \/’::1 (=N)UE A ¢p1.0 A O1((—=N)SE A <¢Tn+1,k) — this covers the case when t is in an interval [2m — 1, 2m] for some
integer m. The nth disjunct says that A]_;X;(t;) holds fort < t; < --- < t, < 2mand in the interval (2m, 2m + 1) there
are typq < -+ <t < t+ 1suchthat AL, Xi(t;) holds.

3. \/ﬁ: (=N)UO A ¢p1.0 A<1((—N)SO A ¢ ny1.k) — this is similar to the previous disjunct, but deals with ¢t in the intervals
[2m, 2m + 1], where m is an integer.

This proves (1). The proof of (2) is similar. O

Corollary 3.3. TLP and QTL are expressively equivalent over the class of proper structures. Furthermore, for every TLP formula ¢
there is a QTL formula yr which is equivalent to ¢ over the proper structures and || is O(|¢|?).

Proof. We define a meaning preserving translation Tr from TLP to QTL.

1. For variables Tr (X) := X.
2. If op is a Boolean connective Tr (¢ 0pp;) := Tr(¢1)opTr(¢z).
3. For until and since modalities:

Tr(p1Ugy) == (Tr(p1)U(Tr(pz)) and Tr(giSe;) := (Tr(p)S(Tr(gz)).

e
4. Tr(Png(¢1, . . ., @y)) is obtained by substitution of Tr (¢;) instead of X; in W,. Similarly, Tr (Pny(¢q, . . ., ¢k)) is obtained by
substitution of Tr(¢;) instead of X; in ¥ .

<«
It is clear that ¢ is equivalent to Tr(¢) over the proper structures. In ¥, and in ¥  every variable appears at most k times,
therefore the size (of the DAG representation) of Tr(¢) is O(|¢|?). O

The next lemma shows that the set of proper structures is definable by a QTL formula.

Lemma 3.4. There is a QTL formula PROPER(Y, Z, U) such that R*,t = PROPER(N, E, O) iff N is the set of natural numbers,
and E and O are the sets of even and odd numbers.

Proof. (1) Let Nat(Y) be the conjunction of the following formulas:

<~

1. OFalse — Y — “Y holds at zero".

2. always(Y — O;—Y) — “If Y holds at t then —Y holds at all pointsin (¢t, t + 1)".

3. always(—Y — <&1Y) — “If Y does not hold at t then Y holds at some point in (t, t + 1)".

It is clear that the set of naturals is unique set that satisfies Nat(Y).
(2) Let EVEN(Y, Z) be the conjunction of

Nat(Y) — “Y is the set of the natural numbers".

always(Z — Y) — “Z is a subset of the natural numbers".

O False — Z — “Z holds at zero".

always(Z — (—=Y)U(Y A —Z)) — “if Z holds at a natural number n then it does not hold at the next natural number".
always(—Z AY — (—=Y)U(Y AZ)) —“if Z does not hold at a natural number n then it holds at the next natural number".

is clear that EVEN(N, E) holds iff N is the set of naturals and E is the set even numbers.
PROPER(Y, Z, U) can be defined as EVEN(Y, Z) A always(U < (Y A —Z)). O

Finally, to complete the proof of Theorem 3.1, observe that a TLP formula ¢ is satisfiable iff ¢ is satisfiable over a proper
structure iff PROPER(N, E, O) A ¢ is satisfiable iff the QTL formula PROPER(N, E, O) A v is satisfiable, where v is constructed
as in Corollary 3.3. Since, the satisfiability problem for QTL is in PSPACE we obtain that the satisfiability problem for TLP is
in PSPACE and this completes the proof of Theorem 3.1.

As a consequence we obtain the following corollary.

Corollary 3.5. The satisfiability problem for TLC is PSPACE complete under the unary coding.
Proof. Note that C,(X) is equivalent to Pn,(X, X, ..., X). The translation from TLC to TLP based on this equivalence is linear
in the size of DAG representation. Hence, by Theorem 3.1, TLC is in PSPACE.

The PSPACE hardness immediately follows from PSPACE hardness for the satisfiability problem for TL(U, S) which is a
subset of TLC. O

kW N=

I

~
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4. EXPSPACE completeness for TLC

Theorem 4.1. The satisfiability problem for TLC is EXPSPACE complete under the binary coding.

The upper bound immediately follows from Corollary 3.5. Below we prove that the satisfiability problem is EXPSPACE
hard. For every Turing Machine M which works in space 2" and every input x of length n we construct a TLC formula Accy «
which is satisfiable iff M accepts x. Moreover, Accy x is computable from M and x in polynomial time. This proves EXPSPACE
hardness with respect to the polynomial reductions.

A one-tape deterministic Turing machine M is (Q, qo, qacc, qrej» I, b, v), where Q is the set of states, qo, Gacc, Grej € Q are
initial, accepting and rejecting states, I" is the alphabet, b € I" is the blank symbol and v : ((Q \ {qacc, Grej}) X I)—(Q %
I' x {—1, 0, 1}) is the transition function. If the head is over a symbol o and M is in a state g and v(q, o) = (q'c’, d), then
M replaces o by o’ changes its state to ¢’ and moves d cells to the right (if d = —1 then it moves one cell left). There is no
transition from the accepting and rejecting states.

A configuration (or an instantaneous description) is a member of I"'*Q I"* and represents a complete state of the Turing
machine.

Let « = xqoy be a configuration, whereo € I', x,y € I'* and q € Q. We define tape(«) = xoy, and state(x) = q. It
describes that for i < |tape()|, the ith cell of the tape contains the ith symbol of tape(c) and all other cells contain blank;
the control state is g and the head is over the symbol ¢ at the position |x| + 1.

We deal with Turing machines which use at most 2" tape cells on inputs of length n. A configuration « is an n-
configuration if tape(a) has 2" symbols. Hence, a computation of M on an input x = x; - - - X, of length n can be described
by a sequence o> - - - of n-configurations, where oy = qoXx1x, - - - x,,bzn_” is the initial n-configuration for the input x.

For n-configurations o and 8 we write « —) B if B is obtained from « according to the transition function of M.
Whenever M is clear from the context we will write « — . Note that if «— g then tape(«) and tape(8) have the same
length.

A computation sequence is a sequence of configurations « - - - a for which o; — «j11, 1 < i < k. A configuration S is
reachable from a configuration « if there exists a computation sequence o - - - o Witha = o7 and 8 = «y,.

Acceptance conditions. A configuration « is an accepting (respectively, rejecting) configuration if state(c) is accepting
(respectively, rejecting) state. A computation sequence o - - - o, is accepting (respectively, rejecting) if «,, is accepting
(respectively, rejecting).

We are going to encode computations of M over proper structures, i.e., over expansions of (R*, <, N, Even, Odd) by
monadic predicates. All these predicates will have finite variability and the EXPSPACE lower bound holds both under the
finite variability and arbitrary interpretations. We will denote by .M an expansion of (R™, <, N) by unary predicates.

From now on we fix a Turing machine M with the alphabet {0, 1, b} of space complexity < 2". W.l.0.g. we assume that
M never moves to the left of the first input cell. All definitions and constructions below will be for this M.

Let rq, ..., a; be a sequence of n-configurations (not necessary a computation sequence). The ith configuration o; will
be encoded on the interval (i — 1, i) with integer end-points as follows: The interval will contain 2" points t;; such that
i—1<r711 <7ty <--- <71 <iandthe predicate T will hold exactly at these points in the interval. All other predicates
described below will be subsets of T. Predicates Ag, A1 and A will partition T; 7; j will be in Ag (respectively, in A; or in Ap) if
the jth tape symbol of «; is O (respectively 1, or blank). Predicates S, for g € Q are interpreted in (i — 1, i) as follows: 7;; € S,
if g is the state of «; and the head is over the jth tape symbol.

Definition 4.2. Let .M be an expansion of (R™, <, N) by predicates T, Ag, A1, Ap, Sq for ¢ € Q. Fori € N, we say that the
interval [i, i + 1] of M represents a legal n-configuration if

1. it contains 2" points in T and all these points are inside (i, i + 1).

2. Ap, A7 and A, partition T.

3. UgeqSq € T and there is exactly one g € Q such that S, N [i, i + 1] is a singleton and for all " # g, the set Sy N [i, i + 1]
is empty.

The following lemma is easy. We use there ? for the tuple of predicate names (S; : g € Q).

Lemma 4.3. 1. Thereis a TLC formula ¢o(N, T, Ao, A1, Ap, ?) which holds in a structure M iff thereis| € N such that for every
i < ltheinterval [i, i+ 1] represents a legal n-configuration, the configuration represented in the interval [ — 1, I] is accepting
orrejecting, and not > lisin T U Ag U A; U A, U UyeqSq. Furthermore, the size of ¢q is O(n).

2. Forevery x = x1---x, € {0, 1}", there is a formula INIT, which holds in a structure M iff the interval [0, 1] represents the
initial n-configuration oy with input x. Furthermore, the size of INIT, is O(n).

Our next task is to specify that the configuration represented in an interval [i, i 4+ 1] is obtained from the configuration
represented in [i — 1, i] according to the transition function of M. We have to express (1) the head is moved properly and
update the symbols under the head correctly and (2) all other symbols are unchanged.

The next lemma shows that the cells numbered from 1 to 2" can be succinctly described by their binary representations.

Lemma 4.4. There is a formula ¢1(N, T, By, . .., By) such that if for every i € N the interval (i, i + 1) contains at most 2" points
from T then M, 0 = ¢ iff
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foreveryi € Nand t € (i,i+ 1):if t is the jth occurrence of T in this interval then T € B iff the Ith bit of the binary
representation of j — 1 is one.

Furthermore, the size of ¢, is O(n?).
Proof. ¢ is always(y1), where v, is the conjunction of

1. VB— (T A =N) — B are subsets of T \ N.

2. NA(=N)U(T A—=N)— ((—N)U(T A /\7:1 —B,)) — the first occurrence of T in (i, i + 1) has binary representation 00 - - - 0,
i.e., is not in UB,.

3. [T A=N A (=N)U(T A =N)]— A\, ¥ Where yj is

n n k—1
<—-Bk A /\ Bm) — ((—-T)U(T A B A /\ —B,) A /\(Bm—>(—-T)U(T A Bm))) .

m=k+1 m=k+1 m=1

The formula y; expresses that if t is not the last occurrence of T in (i, i + 1) and its binary code has 0 at kth place and 1
at places k + 1, ..., n then the code of the next occurrence of T has 1 at kth place and zero at places k + 1, ..., m and
both occurrences have the same bit in the binary code at places 1, ...,k —1. O

Now we can express that the head moves properly, state is updated correctly and the type symbol under the head is
updated correctly.

Lemma 4.5. There is a formula ¢, such that if M represents a terminating sequence of configurations oy, . .., ¢jand M, 0 = ¢4,
then' M, 0 |= ¢, iff

for every i < lifin «; the head is over symbol o at position j and the state is q and v(q, o) = {q'.c’, d) then the state in
the a1 is ¢ the head is at the position j + d, the symbol at position jis o’'.

Furthermore, the size of ¢, is O(n?).

Proof. Let v(q,0) = (q'.0’, 1) and let S := V4, ¢S,
Let ¥ - be the conjunction of

1. The head moved one position to the right: (Sq A A;)— A\y_; ¥x Where y; is obtained from y after substitution of S
instead T (see proof of Lemma 4.4).
2. The state and the symbols under the head were updated correctly:

(Sq A As)— (=S)U(Sy A (=T)SAy).

When v(q, o) = (q".0’,0) and v(q, o) = (¢'.0’, —1) the formula v, , is defined similarly.
The desirable formula ¢, can be defined as always(/\ ;... i) Ao Vo) O

The creative part of our proof is to show how to express succinctly that the symbols not under the head are unchanged.
In order to do this we introduce the following notion.

Assume that M represents a terminating sequence of configurations o1, . .., ;. Recall that 7;; € R is the jth occurrence
of T in the interval (i — 1, i). We denote by tape(«;)[j] the jth symbol of tape(«;). We say that M is well-timed if for all i < [
and j < 2" and some positive €;j, §;;:

1+ 7+ €; if tape(a;)[j] is O
Tit1,j = 1+ ‘L’i,j — 51‘,1‘ if tGPE(Oti) []] is1 (WT)
1475 if tape(«;)[j] is blank.

First observe

Lemma 4.6. Ifa; - - - «y, is a terminating sequence of n-configuration, then there is a well-timed M which represents this sequence.

Proof. Just choose 7y as 54 (forj = 1,...2") and choose €;; = §; as

€ij,dijensuresthati — 1 <71 <72 <--- <7 <iforalli<l O

m. Define 7;41 j as in Eq. (WT). Our choice of

Lemma 4.7. There is a formula @3 such that M = @3 iff M is a well-timed sequence of n-configurations. Furthermore, the size
of g3 is O(n).

Proof. Let Yy be the conjunction of the following formulas
1. Ap— (Con_1(T) A Llim(Can (T)) A Rlim(Con(T)))

1 Until the end of this section @1 is the formula from Lemma 4.3. The scope of the definition of ¢, from this lemma and formulas ¢3 and ¢4 from the
following lemmas extends to the end of this section.
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2. A1— (Con(T) A Llim(Cyn1(T)) A Rlim(Con(T)))
3. Ag—> (Con_1(T) A LEim(Cyn(T)) A Rlim(Con_1(T))).
(Recall that Llim(X) (respectively, Rlim(X)) holds at t iff t is a left limit (respectively, a right limit of X), see Section 2.1.)

Let M’ represents an n-configuration «; in [i.i + 1] and has 2" occurrences of T in [i + 1, i + 2] all the occurrences inside
(i+ 1,1+ 2). The crucial observation is that Eq. (WT) holds iff M’, T = ¢ forevery t € [i, i+ 1].

From v it is easy to construct ¢s. Just express that ¢g holds, and v holds at all points except the points of the interval
where the last configuration is represented. O

We are now ready to specify that if a symbols is not under the head then in the next configuration it will be unchanged.

Lemma 4.8. There is a formula ¢4 such that if M represents a well-timed terminating sequence of n-configurations o, . . ., ®;
and M, 0 |= ¢y, then M, 0 |= ¢4 iff

foreveryi < lifin «; the head is at position j, then tape(o;)[m] = tape(wjyq)[m] for every m # j.
Furthermore, the size of ¢4 is O(n).

Proof. Let vy be the conjunction of the following formulas

«— «— «—

1. Ay— (C y1_1(T) A Llim( C yn(T)) A Rlim(C 5n(T)))
<~ pan <

2. Al—)( C on (T) AN Rllm( C 2n+1(T)) A\ Lllm( C le(T)))
< < <~

3. Ag—>( C 2n_1(T) A Rlim( C yn(T)) A Llim( C yn_1(T))).

Assume that .M is well-timed. Hence, Eq. (WT) holds. Then 1 holds at ;1 n iff tape(o;)[m] = tape(aiy1)[m].
The head is at position m in o iff at 7;11 1, the following formula y holds:

y = /\Bc & (=N)S(N A (=N)S(VgeqSq A BD))).-
k

Indeed, this formula says that By holds at 7 iff in the previous interval By holds at the (unique) position where Vgeq S,
holds (this is the position of the head in the configuration o;). Hence, T — ((—y)— ) holds in every point of the interval
[i + 1,i+ 2] iff tape(c;)[m] = tape(wis1)[m] for every m different from the head position in o;.

Finally, ¢4 should express that T — ((—y)— ) holds at all points except the points of the interval [0, 1]. Note that ¢ €

[0, 1]iff <<>_(N/\ XN) does not hold at t. Hence, ¢4 can be defined as follows: ¢4 := (<<>_(N/\ XN))—) (T = (—y)—=y)). O
From Lemmas 4.3-4.5, 4.7 and 4.8 we obtain:

Lemma 4.9. For every x € {0, 1}" let Accy x be INITy A 9o A @1 A @2 A @3 A @4 A Oace- Then M, O = Accy x iff M represents
a well-timed accepting computation sequence of M on x.

The size Accy x is polynomial in the size of x, therefore this lemma together with Lemma 4.6 implies EXPSPACE hardness
of the satisfiability problem for TLC.

Remark 4.10. 1. Our proof of the EXPSPACE lower bound require an unbounded set of variables. We do not know what
happens if the set of variables is assumed to be bounded?

2. In the proof of Theorem 4.1, we assumed that the Turing machine M works over the binary alphabet and in space 2".
Formally speaking, for the EXPSPACE-completeness one needs to consider space 2/, for any polynomial f. The proof
clearly works pretty well for any such f.

5. Further results

5.1. QTLI and MITL logics and their complexity

In this subsection we recall the syntax and semantics of temporal logics QTLI and MITL and results on the complexity of
their satisfiability problem.

Often in the literature the temporal logics with modalities Oy ) (X) for integers m < n are considered. These modalities
are defined by the truth tables:

O(m,n)(x) : Ht((to +m<t<ty+ Tl) /\X(t)).

The logic QTLI in addition to modalities U and S has infinity many modalities <, n) (X) for all integers m < n. The logic QTLIp
is a fragment of QTLI; it has in addition to modalities U and S the modalities ¢, n)(X), O(—n,0)(X) for all natural n.

The logics QTL, QTLI, and QTLI have the same expressive power (under arbitrary interpretations). However, there is an
exponential succinctness gap (under the binary coding) between QTL and QTLI, and between QTLI; and QTLI.
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The logic MITL was introduced in [1]; it also has the same expressive power as QTL. Syntactically, MITL modalities are
obtained by decorating U and S modalities by the non-singular interval with integer end-points. For m < n the modality
U(n.n) is defined by the truth tables:

dt(to+m<t<to+nAXa(t) AV (tyg < tp < t—=X ().

The truth table of the modality Uy, ) (respectively, of Uy, 1) is obtained from the above truth table by replacing the first
(respectively, the second) occurrence of < by <; the truth table of the modality Uy, 5 is obtained from the above truth table
by replacing the first two occurrences of < by <. The decorated “since" modalities Sm,n), S(m,n]» Stm,n) and Sym, o) are defined
similarly.

The logic MITL in addition to modalities U and S has infinity many modalities Uy, ny, Um,n}» Upm,ny and U, ny, Sem,ny» Sim,ns
Sim,n) and Sy ). for all integers m < n.

The logic MITL, is the fragment of MITL which uses only the modalities where one of the end-points of the intervals is
zero.

Observe that for 0 < m < n the following equivalences hold:

Oam,n) X) < TTUEU(m,n)X
Q(_m. —n) (X) <> XS(_m’_n) True.
The meaning preserving polynomial translations from QTLI to MITL and from QTLI, to MITL, can be easily defined from these

equivalences.
Observe thatfor0 <m < n

XU(m,n)Y <~ O(m,n)(Y) A D(O,H]XUY.

The meaning preserving polynomial translations form MITL to QTLI and from MITL, to QTLI, can be easily defined from the
above equivalence and similar equivalences for the half closed and closed intervals and for the “since” modal operators [9].
The next theorem characterizes the complexity of these logics [1].

Theorem 5.1. 1. The satisfiability problem for QTLI, is PSPACE complete under the binary coding.
2. The satisfiability problem for QTLI is EXPSPACE complete under the binary coding.

Theorem 5.1 was proved for the finite variability interpretation in [ 1] and for arbitrary interpretation in [8,15].
5.2. Logics TLPI and TLCI and their complexity

In this section we consider temporal logics with the modalities C,f"’m) (X) and Pn,im’") (X1, ..., X) for the integers m < n.
These modalities are defined by the truth tables with free variable ty:

k
Po™ (Xy, ... X 3.3t <t0 tm<ti<--<tg<to+nAa /\Xi(ti))
i=1

k
c™(X): A3 (to tm<ti<---<tp<to+na /\X(t,»)) .
i=1

Note that Pny, is equivalent to Pn,ﬁo‘]) and Cy is equivalent to C,EO‘])

We consider the following temporal logics:

TLPI := TL(U, S, {Pn{™" : m < n})
TLPly := TL(U, S, {Pn\"™, Pni ™ : 0 < n})
TLCI := TL(U, S, {C™™ : m < n})
TLClo := TL(U, S, {C>", ™™ : 0 < n}).

All these logics are expressively equivalent to TLC [11]. We investigate the complexity of the satisfiability problems for these
logics under the unary and binary codings. Under the unary (respectively, binary) coding all the numbers which occur in the
superscripts and subscripts of these modalities are coded in unary (respectively, in binary). This section contains proofs of
the results summarized in Table 1.

5.3. The complexity of the logics under the unary coding

The PSPACE hardness under the unary coding immediately follows from the PSPACE hardness of the satisfiability problem
for TL(U, S).

The PSPACE upper bound for the unary coding follows from simple linear translation of all these logic into TLPI and the
following lemma:
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Table 1
The complexity of the satisfiability problem.

Logic  Unary coding Binary coding

TLPIy PSPACE complete ~ PSPACE complete

TLPI PSPACE complete  EXPSPACE complete
TLCIy  PSPACE complete = EXPSPACE complete
TLCI PSPACE complete ~ EXPSPACE complete

Lemma 5.2. The satisfiability problem for TLPI is in PSPACE under the unary coding.

Proof. Fori < j < klet ¢;j(X;, ..., X;, N) be defined as in the proof of Lemma 3.2. Recall that the size of ¢;; is less than
10(j — i+ 1) and that ¢; j holds at ¢ iff thereare t < t; < tjy1 < --- < tj < I, where [ is the smallest integer (element of N)

greater than t, such that /\];:,‘Xs(ts)-

Ford > 0astructure M is called d-proper if it is an expansion of (R*, <, N, Even, Odd, Zg, e Zg_1> by unary predicates.
Here N, Even,and Odd are the sets of natural, even and odd numbers and forr € {0, ..., d—1} the predicate Zf’ isinterpreted
as the set of natural numbers equal r modulo d.

Set

¢gj, re= (_‘N)Uzgr+1)mod o A GidZeINY,

where ¢i,j{Zrd /N} is obtained from ¢; ; when Zrd is substituted instead of N.
Set

d—1
d .__ d
¢i,j T \/ ¢i,j, re
r=0

Note that the size of ¢fj is polynomial in (unary representation of) k and d. Observe that ¢>fj holds at t in a d-proper
structure iff there are t < t; < tiy1 < --- < t; < I+ d, where | is the smallest integer greater than ¢, such that /\]S:,-Xs(ts).

Similarly, fori < j < kand d € N there are formulas ¢<;‘J(x,-, ..., X, N, Zg, e, Zg_l) such that :{:‘1] holds at t if there are
t >t > .- >t > 1 —d, wherelis the largest integer less than ¢, and /\j:,.Xs(ts) holds. Furthermore, the size of:I;‘fj is
polynomial in (unary representation of) k and d.

We are going to construct a QTL formula llfk(m’") X1,..., Xk, N,E, O, zg e zg_l) which is equivalent over the d-proper
structures to Pn,({m’") (X1, ..., Xy, where d = n — m. Furthermore, the size of lllk(m’") is polynomial inm, n, k.

Our construction of lI/k(m’") (X1, ..., Xy) depends whether m is even or odd and whether n is even or odd. These four cases

are similar and we describe below only the case when m and n are even.
Let Ev be defined as (—N)UE. Ev holds at t iff t is in an interval [2] — 1, 2I) for a natural L
Let A; be defined as

d
Ai = EVA Omm+1)(Ev A @10) A Om—1.m)(TEVA @iy 1), whered =n—m.

Note that in the case when m and n are even, Ev(t) iff Ev(t + m) iff Ev(t + n).
Assume that Ev A —N holds at t. Then A; holds at ¢t iff for j = [t + m] the following conditions hold:

1. therearet; < t; < --- < t;in the interval (t + m, j] such that X; (t;) A Xo(t2) A - - - A X;(t;) and
2. thereare tj 1, tiy; < --- < ty in the interval (j, t + n) such that Xi 1 (tir1) A Xiz2(tiz2) A -+ - A X (t)-
Hence, Ev A —N implies that \/ A; is equivalent (over (n — m)-proper structures) to Pn,ﬁm’").
Note that A; are QTLI formulas of size polynomial inn, m, k. We can transform 4; into an equivalent QTL formula A; using
the following equivalences from [8]. For 0 < s € N:
Ois+nY < (0101) - - - (0101) O1Y
—_—
s times

<« «— <«
O(=s—1,—5Y < (0 1(51) (0 151) O qY.

s times

(These equivalences can be proved by the induction ons.) Let A := \/ A.. ThenEv A—=N — (A < Pn,(cm’")) holds over the

(n — m)-proper structures and the size of A is polynomial in n, m, k.
Similarly, one can construct QTL formulas B and C of size polynomial in n, m, k such that (—Ev A =N) — (B < Pn,ﬁm’"))
and N — (C <> Pn{™™) hold over the (n — m)-proper structures.



A. Rabinovich / Theoretical Computer Science 411 (2010) 2331-2342 2341

Let Wk(m’") (X1, ..., X) be defined as (AA B A C). Then, llfk(m’”) DI Pn,({m’") hold over the (n — m)-proper structures and the

size of tlfk(m’”) is polynomial in n, m, k.
As in Lemma 3.4, for every d > 0 there is a QTL formula PROPER,; such that M, t = PROPER; iff M is a d-proper structure.
Moreover, the size of PROPER, is polynomial in d.

Now, relying on the equivalence of q/k(’"*”) and Pn,ﬂm’”), we can easily translate every TLPI formula « into an equi-satisfiable
QTL formula of the size polynomial in the unary coding of «. This together with Theorem 2.2 implies that the satisfiability
problem TLPI is in PSPACE under the unary coding. O

Since TLPI, C TLPI, TLCIy C TLCI, and TLCI can be translated into TLPI applying equivalence Ci(X) < Pni(X, X, ..., X),
we obtain that the satisfiability problems for TLPIy, TLCIy and TLCI are also in PSPACE.

5.4. The complexity of the logics under the binary coding

Lemma 5.3. The satisfiability problem for TLPI, is PSPACE complete under the binary coding.
Proof. The PSPACE hardness immediately follows from the PSPACE hardness of the satisfiability problem for TL(U, S).

Let | = [log, 2m]. We say that a structure M is m-structure if it is an expansion of (R*, <, N, Bl', ..., B[", P, Pam) by
unary predicates, where Pp,, P, B' C N and are defined as follows:

ieP, iff iisamultipleofm
i € Py, iff iisamultiple of2m
ie B}" iff jth bit of the binary representation of i mod(2m) is one.

First observe that there is a QTL formula Structure,, such that Structure,, is satisfiable in M iff M is an m-structure.
Moreover, the size of Structure,, is polynomial in log m. (The construction of these formulas is similar to the construction
used in the proof of Lemma 4.4.)

We are going to construct a QTLI, formula ¥ of size polynomial in k, logm (i.e., polynomial in the size of Pn

(X1, ..., Xp) under the binary coding) such that ¥" is equivalent to Pn,io’m) over the m-structures.

Note that there are TL(U, S) formulas x;; fori < j < k such that

(0,m)
k

xij holds at t in an m-structure M iff there are t < t; < tiyq < --- < t; < n, where n is the smallest multiple of m
greater than ¢, such that AL_X;(t;).

Similarly, there are formulas 7,«,]« such that

Yi,j holds at t if thereare t > t; > --- > t; > n, where n is the largest multiple of m less than ¢, and /\]S':ixs(ts) holds.

Let Ev,, be defined as (—P,;)UP,,. Ev,; holds at t iff t is in an interval [2ml — m, 2ml) for a natural L
Let Ay m be a QTLI, formula defined as follows:

k

Aem = X1k V Oom (CEVm A X 100) V \/(X],i A O (“EVm A X i41.40))-
i=1

The size of Ay, is polynomial in k, log m, and over the m-structures Evy, — (Agm <> Pn,({o’m)) holds.

Similarly, one can define QTLI, formulas By ,, of size polynomial in k, logm, such that over the m-structures —Ev,, —
(Bim <> Pn{>™) holds.

Now, ¥, can be defined as

Y := (Evpm — Am) A (mEvy — Bim).

< Pn,ﬁo’m) hold over the m-structures and the size of ¥, is polynomial in the size of Pn,ﬁo’m) .

Relying on the equivalence of ¥, and Pn’({o,m)‘ we can easily transform every TLPI, formula « into an equivalent (over the

m-structures) formula 8 € QTLIy of the size polynomial in the binary coding of «.
Hence, « is satisfiable iff

B A /\ Structure,,

) .
(m: Pn,(C ™ oceurs in o)

is satisfiable. This together with Theorem 5.1(1) implies that the satisfiability problem TLPI, is in PSPACE under the binary
coding. O

Lemma 5.4. The satisfiability problem for TLPI, TLCly and TLCI is EXPSPACE complete under the binary coding.

Proof. The membership in EXPSPACE follows from the PSPACE upper bound under the unary coding for the satisfiability
problem of these logics.

The EXPSPACE hardness for TLPI and TLCI follows from Theorem 5.1. The EXPSPACE hardness for TLCI, follows from
Theorem 4.1. O



2342 A. Rabinovich / Theoretical Computer Science 411 (2010) 2331-2342
6. TLC and logics with finitely many modalities

Let B = {Olll, 0’22, e O;f} be a finite set of modality names, and assume that every modality in B has a truth table
definable in the monadic second-order logic of order with Ax.x + 1 function (we denote this logic by MLO™!). MLO*! is a
very expressive (and undecidable) logic, and most of the modalities considered in the literature can be easily formalized in
it. We proved in [12] that there is n (which depends on B) such that C, is not expressible over the reals by a TL(B) formulas.
Hence, there is no temporal logic L which is at least as expressive as TLC over the reals, which has a finite set of modalities
with truth tables in MLO™!.

Our conjecture was that this result can be extended to the non-negative real line. However, the results of Section 3 refute
this conjecture.

Indeed, let L be the temporal logic with the modalities U, S, ¢4 ?1, nat and even, where nat and even are zero-arity
modalities interpreted as the sets of natural and even numbers respectively Corollary 3.3 shows that TLP, TLC and QTL
are expressively equivalent over the class of proper structures, i.e., over the expansions of (R*, <, N, Even, Odd) by unary
predicates.

Hence, L is at least as expressive (over the class of non-negative real structures) as TLC. Over the non-negative reals, the
modalities nat and even are easily definable by truth tables in MLO"! (see Lemma 3.4). This refutes the conjecture.

Similarly to Corollary 3.3 one can show that TLP, TLC and QTL are expressively equivalent over the class of the expansions
of (R, <, Z, Even) by unary predicates, where Z and Even are the sets of integers and even numbers. Hence, QTL with two
additional zero-arity modalities for the set of integers and for the set of even numbers is at least as expressive as TLC.
However, over the reals, these two modalities are not definable by truth tables in MLO™!.
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