
Decidable Extensions of Church’s Problem

Alexander Rabinovich

The Blavatnik School of Computer Science, Tel Aviv University, Israel
rabinoa@post.tau.ac.il

Abstract. For a two-variable formula B(X,Y) of Monadic Logic of Or-
der (MLO) the Church Synthesis Problem concerns the existence and
construction of a finite-state operator Y=F(X) such that B(X,F(X)) is
universally valid over Nat.
Büchi and Landweber (1969) proved that the Church synthesis problem
is decidable.
We investigate a parameterized version of the Church synthesis problem.
In this extended version a formula B and a finite-state operator F might
contain as a parameter a unary predicate P.
A large class of predicates P is exhibited such that the Church problem
with the parameter P is decidable.
Our proofs use Composition Method and game theoretical techniques.

1 Introduction

Two fundamental results of classical automata theory are decidability of the
monadic second-order logic of order (MLO) over ω = (N, <) and computability
of the Church synthesis problem. These results have provided the underlying
mathematical framework for the development of formalisms for the description of
interactive systems and their desired properties, the algorithmic verification and
the automatic synthesis of correct implementations from logical specifications,
and advanced algorithmic techniques that are now embodied in industrial tools
for verification and validation.

Decidable Expansions of ω Büchi [1] proved that the monadic theory of
ω = (N, <) is decidable. Even before the decidability of the monadic theory
of ω has been proved, it was shown that the expansions of ω by “interesting”
functions have undecidable monadic theory. In particular, the monadic theory
of (N, <,+) and the monadic theory of (N, <, λx.2 × x) are undecidable [15, 20].
Therefore, most efforts to find decidable expansions of ω deal with expansions
of ω by monadic predicates.

Elgot and Rabin [5] found many interesting predicates P for which MLO over
(N, <, P) is decidable. Among these predicates are the set of factorial numbers
{n! | n ∈ N}, the sets of k-th powers {nk | n ∈ N} and the sets {kn | n ∈ N} (for
k ∈ N).

The Elgot and Rabin method has been generalized and sharpened over the
years and their results were extended to a variety of unary predicates (see e.g.,
[18, 16, 3]). In [11, 14] we provided necessary and sufficient conditions for the
decidability of monadic (second-order) theory of expansions of the linear order
of the naturals ω by unary predicates.

Church’s Problem What is known as the “Church synthesis problem” was
first posed by A. Church in [4] for the case of (ω,<). The Church problem is
much more complicated than the decidability problem for MLO. Church uses
the language of automata theory. It was McNaughton (see [9]) who first observed
that the Church problem can be equivalently phrased in game-theoretic language
and in recent years many authors took up the generalizations of such games for
various applications of the algorithmic theory of infinite games (see e.g., [6, 10]).
McNaughton considered games over ω. We consider such games over expansions
of ω by unary predicates.

Let M = (N, <, P) be the expansion of ω by a unary predicate P . Let
ϕ(X1,X2, Z) be a formula, where X1, X2 and Z are set (monadic predicate)
variables. The McNaughton game GM

ϕ is defined as follows.

1. The game is played by two players, called Player I and Player II.
2. A play of the game has ω rounds.
3. At round i ∈ N: first, Player I chooses ρX1

(i) ∈ {0, 1}; then, Player II chooses
ρX2

(i) ∈ {0, 1}. Both players can observe whether i ∈ P .
4. By the end of the play two predicates ρX1

, ρX2
⊆ N have been constructed1

5. Then, Player I wins the play if M |= ϕ(ρX1
, ρX2

, P); otherwise, Player II
wins the play.

What we want to know is: Does either one of the players have a winning strategy
in GM

ϕ ? If so, which one? That is, can Player I choose his moves so that, whatever
way Player II responds we have ϕ(ρX1

, ρX2
, P)? Or can Player II respond to

Player I’s moves in a way that ensures the opposite?
At round i, Player I has access only to ρX1

(0) . . . ρX1
(i−1), ρX2

(0) . . . ρX2
(i−

1) and P (0) . . . P (i).
Hence, a strategy of Player I can be defined as a function which assigns to

any finite sequence

(ρX1
(0), ρX2

(0), P (0)) . . . (ρX1
(i− 1), ρX2

(i− 1), P (i− 1)) (∗, ∗, P (i))

a value in {0, 1} which is taken to be ρX1
(i).

At round i, Player II has access only to ρX1
(0) . . . ρX1

(i), ρX2
(0) . . . ρX2

(i−1)
and P (0) . . . P (i).

Hence, a strategy of Player II can be defined as a function which assigns to
any finite sequence

(ρX1
(0), ρX2

(0), P (0)) . . . (ρX1
(i− 1), ρX2

(i− 1), P (i− 1)) (ρX1
(i), ∗, P (i))

a value in {0, 1} which is taken to be ρX2
(i).

Since strategies are functions from finite strings (over a finite alphabet) to
{0, 1} we can classify them according to their complexity. The recursive strate-
gies, the finite-memory strategies, i.e., the strategies computable by finite-state
transducers are defined in a natural way (see Sect. 3).

1 We identify monadic predicates with their characteristic functions.

We investigate the following parameterized version of the Church synthesis
problem.

Synthesis Problems for M = (N, <, P), where P ⊆ N

Input: an MLO formula ϕ(X1,X2, Z).
Task: Check whether Player I has a finite-memory winning strategy in GM

ϕ

and if there is such a strategy - construct it.

To simplify notations, games and the synthesis problem were previously de-
fined for formulas with three free variables X1, X2 and Z. It is easy to generalize
all definitions and results to formulas ψ(X1, . . . ,Xm, Y1, . . . Yn, Z1, . . . , Zl) with
many variables. In this generalization at round β, Player I chooses values for
X1(β), . . . ,Xm(β), then Player II replies by choosing the values to Y1(β), . . . , Yn(β)
and the structure M provides the interpretation for Z1, . . . Zl. Note that, strictly
speaking, the input to the synthesis problem is not only a formula, but a for-
mula plus a partition of its free-variables to Player I’s variables and Player II’s
variables and parameter’s variables.

In [2], Büchi and Landweber prove the computability of the synthesis problem
in ω = (N, <) (no parameters).

Theorem 1.1 (Büchi-Landweber, 1969). Let ϕ(X̄, Ȳ) be a formula, where
X̄ and Ȳ are disjoint lists of variables. Then:
Determinacy: One of the players has a winning strategy in the game Gω

ϕ .
Decidability: It is decidable which of the players has a winning strategy.
Finite-state strategy: The player who has a winning strategy, also has a finite-

state winning strategy.
Synthesis algorithm: We can compute for the winning player in Gω

ϕ a finite-
state winning strategy.

The determinacy part of the theorem follows from the topological arguments.
In particular for every expansion M of ω by unary predicates, the game GM

ϕ is
determinate.

Let M be an expansion of ω by unary predicates. We proved in [12], that
there is an algorithm which for every MLO formula ϕ decides who wins GM

ϕ if
and only if the monadic theory of M is decidable. Moreover, we proved that if the
monadic theory of M is decidable, then the player who has a winning strategy in
GM

ϕ has a recursive MLO-definable winning strategy which is computable from
ϕ.

The finite-state strategy part of Theorem 1.1 fails for decidable expansions
of ω. For example, let Fac = {n! | n ∈ N} be the set of factorial numbers. The
monadic theory of Mfac := (N, <,Fac) is decidable by [5]. Let ϕ(X1,X2, Z) be

a formula which specifies that t ∈ X1 iff t+1 ∈ Z (hence for the game G
Mfac
ϕ the

moves of Player II are irrelevant). It is easy to see that Player I has a winning

strategy in G
Mfac
ϕ , yet Player I has no finite-state winning strategy in this game.

The results of this paper imply that the synthesis problem for (N, <,Fac) is
decidable.

Main Result Our main result describes a large class of predicates P such that
the synthesis problem for (N, <, P) is decidable.

An ω-sequence ai is said to be ultimately periodic with lag l and period d if
ai = ai+d for i > l.

Definition 1.2. Let k̄ = (k1 < k2 < . . . ki < . . .) be an increasing ω-sequence
of integers.

1. k̄ is sparse if for each d there is n such that ki+1 − ki > d for each i > n.
k̄ is effectively sparse if there is an algorithm that for each d computes n
such that ki+1 − ki > d for each i > n.

2. k̄ is ultimately reducible if for every m > 1 the sequence ki mod m is ulti-
mately periodic. k̄ is effectively ultimately reducible if there is an algorithm
that for each m computes a lag and a period of ki mod m.

Definition 1.3. Let ER be the class of increasing recursive ω-sequences of in-
tegers which are effectively sparse and effectively ultimately reducible.

Let P ⊆ N be a predicate. We denote by Enum(P) the sequence (k1, k2 . . . ki . . .)
which enumerates the elements of P in the increasing order. Often we do not
distinguish between P and Enum(P), In particular we say that a predicate is
ER predicate if Enum(P) is in ER. The class ER contains many interesting
predicates. It contains the set Fact={n! | n ∈ N} of factorial numbers, the sets
{kn | n ∈ N}, the sets {nk | n ∈ N}. It has nice closure properties, e.g. if k̄ and
l̄ are in ER then {ki + li | i ∈ N}, {ki × li | i ∈ N}, and {kli

i | i ∈ N} are in ER.
In [18], Siefkes introduced ER predicates and generalized Elgot-Rabin con-

traction method to prove that for every ER predicate P the monadic theory of
M = (N, <, P) is decidable. Our main results show that the synthesis problem
for each predicate P ∈ ER is decidable.

Theorem 1.4 (Main). Let P be an ER predicate and let M = (N, <, P).
There is an algorithm that for every MLO formula ϕ(X1,X2, Z) decides whether
Player I has a finite-memory winning strategy in GM

ϕ , and if so constructs such
a strategy.

Our algorithm is based on game theoretical techniques and the composition
method developed by Feferman-Vaught, Shelah and others.

Organization of the paper The article is organized as follows. The next sec-
tion recalls standard definitions about the monadic second-order logic of order,
and summarizes elements of the composition method. In Section 3, we introduce
game-types, define games on game types and show that these game are reducible
to the McNaughton games. Section 4 consider games over finite chains. Sufficient
conditions are provided for existence of a finite state strategies which uniformly
wins over a class of finite chains.

Section 5 describes an algorithm for the synthesis problem over the expan-
sions of ω by ER predicates, and proves the soundness of the algorithm, i.e., if
the algorithm outputs a strategy for GM

ϕ , then it is a finite state strategy which
wins ϕ over M. The proof of completeness appears in the full version of this
paper [13]. Further results and open questions are discussed in Sect. 6.

2 Preliminaries and Background

We use i, j, n, k, l,m, p, q for natural numbers. We use N for the set of natural
numbers and ω for the first infinite ordinal. We use the expressions “chain” and
“linear order” interchangeably. A chain with m elements will be denoted by m.

We use P(A) for the set of subsets of A.

2.1 The Monadic Logic of Order (MLO)

Syntax The syntax of the monadic second-order logic of order - MLO has in
its vocabulary individual (first order) variables t1, t2 . . ., monadic second-order
variables X1,X2 . . . and one binary relation < (the order).

Atomic formulas are of the form X(t) and t1 < t2. Well formed formulas
of the monadic logic MLO are obtained from atomic formulas using Boolean
connectives ¬,∨,∧,→ and the first-order quantifiers ∃t and ∀t, and the second-
order quantifiers ∃X and ∀X. The quantifier depth of a formula ϕ is denoted by
qd(ϕ).

We use upper case letters X, Y , Z,... to denote second-order variables; with
an overline, X̄, Ȳ , etc., to denote finite tuples of variables.
Semantics A structure is a tuple M := (A,<M, P̄M) where: A is a non-empty
set, <M is a binary relation on A, and P̄M :=

(

PM
1 , . . . , PM

l

)

is a finite tuple
of subsets of A.

If P̄M is a tuple of l sets, we call M an l-structure. If <M linearly orders A,
we call M an l-chain. When the specific l is unimportant, we simply say that
M is a labeled chain.

Suppose M is an l-structure and ϕ a formula with free-variables among
X1, . . . ,Xl. We define the relation M |= ϕ (read: M satisfies ϕ) as usual, un-
derstanding that the second-order quantifiers range over subsets of A.

Let M be an l-structure. The monadic theory of M, MTh(M), is the set of
all formulas with free-variables among X1, . . . ,Xl satisfied by M.

From now on, we omit the superscript in ‘<M’ and ‘P̄M’. We often write
(A,<) |= ϕ(P̄) meaning (A,<, P̄) |= ϕ.

For a chain M = (A,<, P̄) and a subset I of A, we denote by M







I the

subchain of M over the set I.

2.2 Elements of the composition method

Our proofs make use of the technique known as the composition method de-
veloped by Feferman-Vaught and Shelah [8, 17]. To fix notations and to aid the
reader unfamiliar with this technique, we briefly review the definitions and re-
sults that we require. A more detailed presentation can be found in [19] or [7].

Let n, l ∈ N. We denote by Form
n
l the set of MLO formulas with free variables

among X1, . . . ,Xl and of quantifier depth ≤ n.

Definition 2.1. Let n, l ∈ N and let M,N be l-structures. The n-theory of M
is Thn(M) := {ϕ ∈ Form

n
l | M |= ϕ}. If Thn(M) = Thn(N), we say that M

and N are n-equivalent and write M ≡n N .

Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set Form
n
l is

infinite. However, it contains only finitely many semantically distinct formulas.
So, there are finitely many ≡n-equivalence classes of l-structures. In fact, we can
compute characteristic formulas for the ≡n-equivalence classes:

Lemma 2.2 (Hintikka Lemma). For n, l ∈ N, we can compute a finite set
Charn

l ⊆ Form
n
l such that:

– For every ≡n-equivalence class C there is a unique τ ∈ Charn
l such that for

every l-structure M: M ∈ C iff M |= τ .
– Every MLO formula ϕ(X1, . . . Xl) with qd(ϕ) ≤ n is equivalent to a (fi-

nite) disjunction of characteristic formulas from Charn
l . Moreover, there is

an algorithm which for every formula ϕ(X1, . . . Xl) computes a finite set

G ⊆ Char
qd(ϕ)
l of characteristic formulas, such that ϕ is equivalent to the

disjunction of all the formulas from G.

Any member of Charn
l we call a (n, l)-Hintikka formula or (n, l)-characteristic

formula. We use τ , τi, τ
j to range over the characteristic formulas and G,Gi, G

′

to range over sets of characteristic formulas.

Definition 2.3 (n-Type). For n, l ∈ N and an l-structure M, we denote by
typen(M) the unique member of Charn

l satisfied by M and call it the n-type of
M.

Thus, typen(M) determines Thn(M) and, indeed, Thn(M) is computable from
typen(M).

Definition 2.4 (Sum of chains). (1) Let l ∈ N, I := (I,<I) a chain and
S := (Mα | α ∈ I) a sequence of l-chains. Write Mα := (Aα, <

α, P1
α, . . . , Pl

α)
and assume Aα ∩ Aβ = ∅ whenever α 6= β are in I. The ordered sum of S is
the l-chain

∑

I

S := (
⋃

α∈I

Aα, <
I,S,

⋃

α∈I
P1

α, . . . ,
⋃

α∈I

Pl
α), where

if α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <I,S a iff β <I α or β = α and b <α a.

If the domains of the Mα’s are not disjoint, replace them with isomorphic l-
chains that have disjoint domains, and proceed as before.

(2) If for all α ∈ I, Mα is isomorphic to M for some fixed M, we denote
∑

I
S by M×I.
(3) If I = ({0, 1}, <) and S = (M0,M1), we denote

∑

I
S by M0 + M1.

We will use only special cases of this definition in which the index chain I and
the summand chains Mα are finite or of the order type ω.

The next proposition says that taking ordered sums preserves ≡n-equivalence.

Proposition 2.5. Let n, l ∈ N. Assume:

1. (I,<I) is a linear order,

2.
(

M0
α | α ∈ I

)

and
(

M1
α | α ∈ I

)

are sequences of l-chains, and
3. for every α ∈ I, M0

α ≡n M1
α.

Then,
∑

α∈I M
0
α ≡n

∑

α∈I M
1
α.

This allows us to define the sum of formulas in Charn
l with respect to any linear

order.

Definition 2.6. (1) Let n, l ∈ N, I := (I,<I) a chain, H := (τα | α ∈ I) a
sequence of (n, l)-Hintikka formulas. The ordered sum of H, (notations

∑

I
H or

∑

α∈I
τα), is an element τ of Charn

l such that:

if S := (Mα | α ∈ I) is a sequence of l-chains and typen(Mα) = τα for
α ∈ I, then

typen(
∑

I

S) = τ.

(2) If for all α ∈ I, τα = τ for some fixed τ ∈ Charn
l , we denote

∑

α∈I
τα

by τ × I.
(3) If I = ({0, 1}, <) and H = (τ0, τ1), we denote

∑

α∈I
τα by τ0 + τ1.

The following fundamental result of Shelah can be found in [17]:

Theorem 2.7 (Addition Theorem). The function which maps the pairs of
characteristic formulas to their sum is a recursive function. Formally, the func-
tion λn, l ∈ N.λτ0, τ1 ∈ Charn

l .τ0 + τ1 is recursive.

We often use the following well-known lemmas:

Lemma 2.8. For every n ∈ N there is N0(n) such that for every sentence ϕ of
the quantifier depth at most n and every m ≥ N0:

ϕ is satisfiable over the m-element chain iff it is satisfiable over the
m+N0-element chain, i.e., m ≡n m+N0.

Furthermore, N0 is computable from n.

Lemma 2.9. For every n ∈ N there is N1(n) such that for every M = (A,<, P):
if n1 > n2 ≥ N1 and n1 = n2 mod N1, then M× n1 ≡n M× n2. Moreover, N1

is computable from n.

3 Game types

In this section we introduce game-types; their role for games is similar to the role
of types for MLO . We define games on game types and show that these game
are reducible to the McNaughton games. But first we introduce a terminology,
define finite-memory strategies and fix some notational conventions.

Let M :=
(

N, <, P̄
)

be an l-chain and let ρ := (ρX1
(0), ρX2

(0)) . . . (ρX1
(i), ρX2

(i)) . . .
be a play. We denote by M⌢ρ the expansion of M by the predicates ρX1

and
ρX2

. We say that the m-type of ρ is τ if τ = typem(M⌢ρ). Whenever M is clear
from the context we write typem(ρ) for typem(M⌢ρ).

A strategy for Player I for games over l-chains is a transducer which consists
of a set Q - memory states, an initial state qinit, the memory update functions
µ1 : Q × {0, 1}l → Q and µ2 : Q × {0, 1} → Q, and the output function
θ : Q→ {0, 1}.

A strategy is finite-memory (or finite-state) if its set of memory states is
finite.

During a play at round i, Player I first updates the state according to µ1

and the values of predicates P̄ (i), then outputs its value according to θ , and
then after a move of Player II update the state according to µ2. Hence, a play
ρ := (ρX1

(0), ρX2
(0)) . . . (ρX1

(i), ρX2
(i)) . . . is consistent with such a strategy

if there are q0, q
′
0 . . . qiq

′
i such that q0 = µ1(qinit, P̄ (0)), ρX1

(i) = θ(qi), q
′
i =

µ2(qi, ρX2
(i)) and qi+1 = µ1(q

′
i, P̄ (i+ 1)).

Notational Conventions

1. In Hintikka’s Lemma we considered formulas with the free variables among
X1, . . . ,Xl. It is trivially can be extended to formulas with free second-order
variables in any finite list V̄ . In particular we use Chark(X,Y,Z) for the set
of Hintikka formulas of quantifier depth k with free variables X,Y,Z.

2. Whenever we deal with the synthesis problem over an l-chain M = (N, <, P1, . . . , Pl),
we will often replace variables Zi by the predicate Pi; in particular we will
write “ϕ(X1,X2, P1, . . . , Pl)” instead of “ϕ(X1,X2, Z1, . . . , Zl)”

3. By Lemma 2.2, for every formula ϕ(X1,X2, P) of a quantifier depth n there
is G ⊆ Charn(X1,X2, P) such that ϕ is equivalent to the disjunction of all
formulas from G. Moreover, G is computable from ϕ. We often identify ϕ

with this set G and write “GM
G ” instead of “GM

ϕ ”.

Definition 3.1. Let M be an l-chain, st be a strategy, and G ⊆ Charm(X1,X2, P̄).
st wins G over M iff the m-type of every play (on M) consistent with st is in
G.

Definition 3.2 (Game Types). Let n ∈ N.
Game type of a chain Let M :=

(

A,< P̄
)

be an l-chain, where (A,<) is
finite or of order type ω. The n-game-type of M is defined as:
game-typen(M) := {G ⊆ Charn(X1,X2, P̄) | Player I wins GM

G }.
Formal game-type A formal (n, l)-game-type is an element2 of P(P(Charn(X1,X2, P̄))),

where P̄ is an l-tuple (P1, . . . , Pl) of variables. We denote by Gtypen
l the set

of formal (n, l)-game-types.

Let F be a function from N into Gtypen
1 and G ⊆ Charn(X1,X2, P). We consider

the following ω-game Game(F,G).

Game(F,G): The game has ω rounds and it is defined as follows:
Round i: Player I chooses Gi ∈ F (i). Then, Player II chooses τi ∈ Gi.
Winning conditions: Let τi (i ∈ N) be the sequence of moves of Player II

in the play. Player I wins the play if Σiτi ∈ G.

2 recall that P(A) stands for the set of subsets of A.

The following lemma is immediate:

Lemma 3.3. if ∀i
(

F1(i) ⊆ F2(i)
)

, G1 ⊆ G2 and Player I wins Game(F1, G1),
then Player I wins Game(F2, G2).

The following proposition plays an important role in our proofs:

Proposition 3.4. Assume that F (i) (i ∈ N) is ultimately periodic. Then, it is
decidable which of the players wins Game(F,G), Moreover, the winner has a
finite-memory winning strategy which is computable from G.

4 Winning strategies over classes of finite chains

In the introduction we defined McNaugton’s games over expansions of ω. In this
subsection we will consider the games over expansions of finite chains. These
games are defined similarly. The only difference is that these games are of finite
length. The games over an l-chains with m elements have m rounds.

The following lemma says that there is a sentence which uniformly expresses
that Player I has a winning strategy in the game with winning condition ϕ.

Lemma 4.1. For every ϕ there is a formula win(ϕ) such that for every finite l-
chain M, Player I has a winning strategy in GM

ϕ iff M |= win(ϕ). Furthermore,
win(ϕ) is computable from ϕ.

Proof. (Sketch) In [11] we proved much stronger result (Theorem 2.3 in [11])
which says that there is a formula winϕ such if M is an expansion of ω, then
Player I has a winning strategy in GM

ϕ iff M |= winϕ. ⊓⊔

Recall that we identify a subset G of Charm(X1,X2, P̄) with the disjunction
∨τ∈Gτ . In particular, for G ⊆ Charm(X1,X2, P̄) we write win(G) for win(∨G).

For C ⊆ P(Charm(X1,X2, P̄)) we write Win(C) for ∧G∈Cwin(G). Win(C)
expresses that Player I has a winning strategy for every G ∈ C.

Definition 4.2 (Residual). For τ ∈ Charm and G ⊆ Charm, define resτ (G)
as resτ (G) := {τ ′ | τ + τ ′ ∈ G}; define Res(G) as Res(G) := {resτ (G) | τ ∈ G}.

Assume that ρ is a partial play of type τ . Player I can win resτ (G) after ρ iff he
has a strategy which ensures that every extension of ρ wins G.

Let st be a strategy of Player I and C be a class of chains. We say that st
wins ϕ over C iff st is a winning strategy in GM

ϕ for every M ∈ C.

Lemma 4.3. Assume that M0 and M1 are finite l-chains. If M0 |= win(G)
and M1 |= Win(Res(G)) then Player I has a finite-memory strategy which wins
G over the class {M0 + M1 × k | k ∈ N} of l-chains.

Proof. Let k0 and k1 be the length of M0 and M1 respectively. Consider the
following strategy of Player I:

Play first k0 rounds according to his winning strategy for win(G). For every
j ∈ N if the m-type of the play after k0 + jk1 rounds is τ then play the next k1

rounds according to the winning strategy for win(resτ (G)).
It is easy to show by the induction on j that if a play ρ is played according

to this strategy, then after k0 + jk1 rounds its m-type is in G. Therefore, it is a
winning strategy for Player I.

Player I needs only a finite memory to keep the information about the m-
type of the play τi up to each round i. After a round i he should add to τi−1

the type of the play during the round i, i.e., to add to τi−1 the m-type of one
element chain expanded by the predicates ρX1

(i), ρX1
(i) and P (i). Player I can

calculate in a finite memory whether the current round number is k0 + jk1 for
some j ∈ N. Hence, this strategy is a finite-memory strategy. ⊓⊔

Definition 4.4. Let M be an l-chain, st be a strategy, and G ⊆ Charm(X1,X2, P̄).
st realizes G on M if it wins GM

G and for every m-type τ ∈ G there is a play ρ
consistent with st such that typem(M⌢ρ) = τ ,

In other words st realizes G in M , if st wins GM
G and there is no G1 (G such

that st wins GM
G1

. Recall that for n ∈ N we also denote by n the finite chain with
n elements.

Lemma 4.5. 1. If for n1 < n2 a strategy realizes G over chains n1 and n2,
then Win(Res(G)) is satisfiable over the chain n2 − n1.

2. If for n1 < n2 a strategy realizes G over n1 and wins G over n2, then
Win(Res(G)) is satisfiable over n2 − n1.

Proof. (1) follows from (2). (2) follows from the definition of Win and Definitions
4.2 and 4.4. ⊓⊔

Proposition 4.6. For m ∈ N, let n be an upper bound on the quantifier depth
of win(G) for every G ⊆ Charm

2 , and let N0 be computed from n as in Lemma
2.8. For every i ∈ [0, N0 − 1) the following are equivalent:

1. Player I has a finite-memory strategy which wins G over the class {t > N0 |
t mod N0 = i} of finite chains.

2. Player I has a finite-memory strategy which wins G over an infinite subclass
of {t > N0 | t mod N0 = i}.

3. There is a finite-memory strategy which realizes G1 ⊆ G over n1 and over
n2 for some n2 > n1 ≥ N0 such that n1 mod N0 = n2 mod N0 = i.

4. There is G1 ⊆ G such that N0 |= win(G′) for every G′ ∈ Res(G1), and
N0 + i |= win(G1).

Proof. The implication (1) ⇒ (2) is immediate.
(2) ⇒ (3). If a strategy wins G over M then it realizes a subset of G. Since

the set of subset of G is finite, it follows that there is a subset of G which is
realized infinitely often and therefore at least twice.

(3) ⇒ (4) follows from Lemmas 2.8 and 4.5.
(4) ⇒ (1) follows from Lemma 4.3. ⊓⊔

Proposition 4.6 is crucial for the design of our algorithm, due the decidability of
(4).

5 Algorithm

In this section we describe an algorithm for the synthesis problem for the ex-
pansions of ω by ER predicates. For every MLO formula ϕ(X1,X2, P), first
construct a set of the characteristic formulas G such that ϕ is equivalent to their
disjunction and then use the following algorithm.

Synthesis algorithm over M := (N, <, P) where P is in ER

Instance: m ∈ N.
Task: Find the set Out = {G ⊆ Charm(X1,X2, P) | Player I has a finite-
memory winning strategy in GM

G }, and for each G ∈ Out construct a finite-
memory strategy st(G) which wins G over M.

We prove the soundness of the algorithm, i.e., if G ∈ Out , then there is a finite-
state strategy which winsG over M. The proof of the reverse implication appears
in the full version of this paper [13].

Let us first illustrate some ideas of the algorithm for Mex := (N, <, Pex),
where Pex := (kl | l ∈ N) and kl+1 − kl = l!. Let st be a finite-memory strat-
egy. Note that there is lst(m) such that for every G ⊆ Charm: st wins G on
Mex








[klst ,∞) iff st wins G on Mex








[kl,∞) for every l ≥ lst . Recall that

M







I is the subchain of M over the set I.

We can compute U∞
st := {G ⊆ Charm | st wins G on Mex








[kl,∞) for

every l ≥ lst}. For l ∈ N we can compute V l
st := {G ⊆ Charm | st wins

G on Mex








[0, kl)} which is a periodic sequence. From U∞

st and {V l
st}

∞
l=0

we can compute Outst := {G ⊆ Charm | st wins G on Mex}. Of course, we
could compute Outst directly from the description of st . However, our algorithm
computes U := {G ⊆ Charm | there is a finite-memory strategy st such that
G ∈ U∞

st }, and the sequence V l := {G ⊆ Charm | there is a finite-memory
strategy st which wins G on Mex








[0, kl)}. The sequence {V l}∞l=0 is periodic.

From U and {V l}∞l=0 we can compute the desirable Out.
An important property of Pex is that for every n, and every l > n the

distance between l-th and l + 1-th elements of Pex is equal modulo n to the
distance between n-th and the n + 1-th elements of Pex. Usually, this property
fails for ER predicates; however, the sequence of the distances modulo n behaves
periodically. Our algorithm is more subtle than the above sketch for Pex and
relies on this periodicity.
Conventions. Let τ(X1,X2) be an m-type for m > 0. There is a unique m-
type τ∗(X1,X2, P) such that τ → (τ∗(X1,X2, P) ∧ ∀t¬P (t)). We often will
not distinguish between τ and the corresponding τ∗. In particular, for m-type
τ1(X1,X2, P) we write τ+τ1 instead of τ∗+τ1. We also lift this correspondence to
sets ofm-types;; for a set G ⊆ Charm

2 we denote by G the set G∗ := {τ∗ | τ ∈ G}.
Now we are going to describe our algorithm.

Step 1

1. Compute One :=
{

G ⊆ Charm(X1,X2, P) | Player I has a strategy which
wins G over one element structure (0, <, {0}).

For G ∈ One, we denote by st1(One, G) the corresponding winning strategy.
2. Let N0 be defined from m as in Proposition 4.6. For i = 0, . . . N0−1 compute

CWIN i :=
{

G ⊆ Charm(X1,X2) | Player I has a finite-memory strategy

which winsG over the class {t > N0 | t mod N0 = i}
}

. This set is computable
by condition (4) of Proposition 4.6.
For G ∈ CWIN i, we denote by st1(i, G) the corresponding finite-memory
winning strategy; this strategy is computable by Lemma 4.3, since the con-
dition (4) of Proposition 4.6 holds.

Step 2 Let k̄ := k0 < k1 < · · · < ki < . . . be the enumeration of the elements of
P in the increasing order. Compute l and p such that for every n greater than l:

1. kn+1 − kn > N0 and
2. (kn+1 − kn) mod N0 = (kn+p+1 − kn+p) mod N0

3. For j < p, set dj := kl+j+1 − kl+j mod N0.

(To compute such l and p we need our assumption that P ∈ ER.)
Step 3 Let F : N → Gtypem(X1,X2, P) be defined as follows:

F (i) =

{

One if i is even

CWIN dj if i = 2s+ 1 and s mod p = j

Note that F is a periodic sequence.
Use Proposition 3.4 to compute the set U :=

{

G ⊆ Charm(X1,X2, P) |

Player I has a finite-memory strategy which wins Game(F,G)
}

.
For G ∈ U , we denote by stmain(F,G) the corresponding finite-memory

winning strategy.
Now, for G ∈ U we describe a finite-memory strategy st3(F,G) which wins

G over the class {Mi := M







[kl+pi,∞) | i ∈ N} of chains.

We organize our description of how strategy st3(F,G) behaves on Mi :=
M








[kl+pi,∞) in sessions. For s ∈ N, the session 2s is played on the one element

subchain of Mi isomorphic to (0, < {0}); the session 2s + 1 will be played on
the subchain M








(kl+pi+s, kl+pi+s+1) which is isomorphic to the (kl+pi+s+1 −

kl+pi+s)-element chain expanded by the empty predicate.
Session 0. Let G0 be the first move of stmain(F,G). Then Player I will move

according to his winning strategy in st1(One, G0). After a move of Player II, the
m-type of the partial play ρ0 is some τ0 ∈ G0.

Session 2s+ 1. Let G2s+1 be the move of Player I according to stmain(F,G)
after a partial play G0τ0G1τ1 . . . G2sτ2s. Then Player I will play according to his
strategy in st1(d(s mod p), G2s+1) until he reads one on P (recall that dj , were
defined in Step 2). At this point the type of a subplay ρ2s+1 during this round
will be τ2s+1 ∈ G2s+1.

Session 2s. (s > 0) Let G2s be the move of Player I according to stmain(F,G)
after a partial play G0τ0G1τ1 . . . G2s−1τ2s−1. Player I will move according to his
winning strategy in st1(One, G2s). After a move of Player II, the m-type of the
partial play ρ2s during this session will be some τ2s ∈ G2s.

Observe that this is indeed a finite-memory strategy. Like in the proof of
Lemma 4.3, Player I can compute in a finite memory at each session s the m-
type τs of the subplay during session s, and then after this session to supply
only this m-type to stmain(F,G) (and not the whole history G0τ0 . . . Gsτs).

This strategy wins G because the sequence G0τ0 . . . Gsτs . . . played over the
sessions is consistent with the wining strategy stmain(F,G) in Game(F,G).

Step 4 We are going to compute the set V :=
{

G ⊆ Charm(X1,X2, P) | Player

I has a strategy which wins G over M







[0, kl+pi) for some i ∈ N)

}

.

Let n be the quantifier depth of win(G).

By our choice of N0, l and p (in Step 1 and Step 2) we know that for every i:

M







[kl+i, kl+i+1) ≡n M








[kl+i+p, kl+i+1+p))

Hence, for every i:

M







[kl+pi, kl+pi+p) =

∑p−1
s=0 M








[kl+pi+s, kl+pi+s+1) ≡

n

≡n
∑p−1

s=0 M







[kl+s, kl+s+1) = M








[kl, kl+p)

Let N1 := N1(n) be defined as in Lemma 2.9. From the above equivalence,
Lemma 2.9 and Proposition 2.5, it follows that for every i there is j ≤ N1 such
that

M







[kl, kl+pi) ≡

n M







[kl, kl+pj)

and hence, M







[0, kl+pi) ≡

n M







[0, kl+pj).

Therefore, V =
{

G ⊆ Charm(X1,X2, P) | M







[0, kl+pj) |= win(G) for some j ≤

N1

}

. To compute the right hand side we need to check a finite set of games over
finite chains. Hence, this is computable and therefore, V is computable.

For G ∈ V , let lG ≤ N1 be such that M







[0, kl+plG) |= win(G) and let

st4(V,G) be the corresponding strategy which wins G over M







[0, kl+plG).

Step 5 Output Out := {G ⊆ Charm(X,Y, P) | ∃G1 ∈ V such that resτ (G) ∈ U

for every τ ∈ G1}.

For every G ∈ Out we describe a finite-memory strategy st(G) which wins G
over M. Assume G ∈ Out and let G1 ∈ V be such that resτ (G) ∈ U for every
τ ∈ G1. Since G1 ∈ V , there is lG1

and a strategy st4(V,G1) which wins G1 over
M








[0, kl+plG1

).

Player I will play the first l + p × lG1
rounds according to this winning

strategy. Let ρ be a play according to this strategy, and let τ be its m-type
and let G2 = resτ (G). The rest of the game Player I will play according to his
finite-memory strategy st3(F,G2) computed in the Step 3 Clearly, the described
strategy is a finite-memory strategy.

The m-type of the whole play is in τ + G2 = G. Therefore, the described
strategy is winning in GM

G . This completes the description of our algorithm and
the proof that if G ∈ Out , then Player I has a finite-memory winning strategy
in GM

G .

6 Further Results and Open Questions

We proved that the finite-memory synthesis problem is decidable for the expan-
sions of ω by the predicates from ER. In [12] it was proved that the decidability
of the monadic theory of M is equivalent to the decidability of the recursive
strategy synthesis problem for M.

The question whether the decidability of the monadic theory of M implies
the decidability of the finite-memory synthesis problem for M remains open.

A natural question to consider is the synthesis problem for strategies between
finite-memory and recursive ones, e.g., the strategies computable by push-down
automata.

There are some minor modifications of the McNaughton games to the games
with look-ahead. Let M = (N, <, P) be the expansion of ω by a unary predicate
P . Let h1, h2 be integers (look-ahead) of the players. Let ϕ(X1,X2, Z) be a
formula. The game GM

ϕ (h1, h2) with look-ahead h1 for Player I and look-ahead
h2 for Player II is defined as follows. The game is played by two players and each
of its plays has ω rounds.

1. At round i ∈ N: first, Player I chooses ρX1
(i) ∈ {0, 1}; then, Player II chooses

ρX2
(i) ∈ {0, 1}. Player I can observe whether i + h1 ∈ P and Player II can

observe whether i+ h2 ∈ P

2. By the end of the play two predicates ρX1
, ρX2

⊆ N have been constructed.
3. Then, Player I wins the play if M |= ϕ(ρX1

, ρX2
, P); otherwise, Player II

wins the play.

The proof of the next proposition is similar to the proof of Theorem 1.4.

Proposition 6.1. Let P be an ER predicate, and h1, h2 integers and let M =
(N, <, P). There is an algorithm that for every MLO formula ϕ(X1,X2, Z) de-
cides whether Player I has a finite-memory winning strategy in GM

ϕ (h1, h2), and
if so, constructs such a strategy.

It is easy to modify our proofs and to show that it is decidable whether Player
II has a finite-memory winning strategy.

Section 1 (page 3) gives an example of the game G
Mfac
ϕ where Player I has

a winning strategy, yet he has no finite-memory winning strategy. Note that
for this particular game, Player I has a finite-memory one-look-ahead winning

strategy, i.e., he has a finite-memory winning strategy in G
Mfac
ϕ (1, h2) for every

h2.
Relying on the definability results in [12] we can prove the following Propo-

sition.

Proposition 6.2 (Determinacy for look-ahead finite-memory strategy).
Let P be an ER predicate, and let M = (N, <, P). For every MLO formula
ϕ(X1,X2, Z) there is h such that one of the players has a finite-memory win-
ning strategy in GM

ϕ (h, h). Furthermore, there is an algorithm that computes

such h and a finite-memory winning strategy for the winner in GM
ϕ (h, h).

It is plausible that in our proofs the compositional methods can be hidden and
a presentation can be given based on automata theoretic concepts. The logical
n-types can be replaced by “n-types”, using semigroups or automata rather than
formulas to describe properties of words. The only place where automata based
techniques might fail is in the proof of Proposition 3.4.

References

1. J. R. Büchi. On a decision method in restricted second order arithmetic In Proc.

International Congress on Logic, Methodology and Philosophy of Science, E. Nagel
at al. eds, Stanford University Press, pp 1-11, 1960.

2. J. R. Büchi and L. H. Landweber. Solving sequential conditions by finitestate strate-
gies. Transactions of the AMS, 138(27):295–311, 1969.

3. O. Carton and W.Thomas. The Monadic Theory of Morphic Infinite Words and
Generalizations. Inf. Comput. 176(1), pp. 51-65, 2002.

4. A. Church. Logic, Arithmetic and Automata, Proc. Intrnat. Cong. Math. 1963,
Almquist and Wilksells, Uppsala, 1963.

5. C. Elgot and M. O. Rabin. Decidability and Undecidability of Extensions of Second
(First) Order Theory of (Generalized) Successor. J. Symb. Log., 31(2), pp. 169-181,
1966.

6. E. Grädel, W. Thomas and T. Wilke. Automata, Logics, and Infinite Games, LNCS
2500, 2002.

7. Y. Gurevich. Monadic second-order theories, in: J. Barwise, S. Feferman (eds.),
Model-Theoretic Logics, Springer-Verlag, pp. 479-506, 1985.

8. S. Feferman and R.L. Vaught. The first-order properties of products of algebraic
systems. Fundamenta Mathematica 47:57–103, 1959.

9. R. McNaughton. Finite-state infinite games, Project MAC Rep., MIT, 1965.
10. D. Perrin and J. E. Pin. Infinite Words Automata, Semigroups, Logic and Games.

Pure and Applied Mathematics Vol 141 Elsevier, 2004.
11. A. Rabinovich. On decidability of Monadic logic of order over the naturals extended

by monadic predicates. Information and Computation, 205(6):870-889, 2007.
12. A. Rabinovich. Church Synthesis Problem with Parameters. Logical Methods in

Computer Science, Vol. 3 (4:9):1-24, 2007, DOI: 10.2168/LMCS-3(4:9)2007.
13. A. Rabinovich. Decidable Extensions of Church’s Problem (full version),

http://www.cs.tau.ac.il/∼rabinoa/csl09a-full, 2009.
14. A. Rabinovich and W. Thomas. Decidable Theories of the Ordering of Natural

Numbers with Unary Predicates. In CSL 2006, Springer LNCS 4207, 562-574, 2006.
15. R. M. Robinson. Restricted Set-Theoretical Definitions in Arithmetic. In Proceed-

ings of the AMS Vol. 9, No. 2. pp. 238-242, 1958.
16. A. Semenov. Logical theories of one-place functions on the set of natural numbers.

Mathematics of the USSR - Izvestia, vol. 22, pp 587-618, 1984.
17. S. Shelah. The monadic theory of order. Ann. of Math. 102:379–419, 1975.
18. D. Siefkes. The recursive sets in certain monadic second order fragments of arith-

metic. Arch. Math. Logik,17, pp. 71-80, 1975.
19. W. Thomas, Ehrenfeucht games, the composition method, and the monadic theory

of ordinal words. In A Selection of Essays in Honor of A. Ehrenfeucht, Springer,
LNCS 1261 pp. 118-143, 1997.

20. B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. (Russian
version 1961). In AMS Transl. 59, pp. 23-55, 1966.

