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Abstract

We add to the standard temporal logic TL(U, S) a sequence of “count-
ing modalities”: For each n the modality C,(X), which says that X will
be true at least at n points in the next unit of time, and its dual @n,
which says that X has happened n times in the last unit of time. We show
that this temporal logic is expressively complete for the metric predicate
logic Q2MLO, which is expressive, decidable and easy to use. In particu-
lar the Pnueli modalities P, (X1, ..., Xn), “there is an increasing sequence
ti,...,t, of points in the unit interval ahead such that t; satisfies X;”,
are definable in TL(U, S) with the counting modalities.

1 Introduction

The temporal logic that is based on the two modalities “Since” and “Until”
is popular among computer scientists as a framework for reasoning about a
system evolving in time. By Kamp’s theorem [Kamp68] this logic has the same
expressive power as the first order monadic logic of order, whether the system
evolves in discrete steps or in continuous time. We will denote this logic by T'L.
For systems evolving in discrete steps, this logic seem to supply all the
expressive power needed. This is not the case for systems evolving in continuous
time, as the logic cannot express properties like: “X will occur soon” which can
be given the precise form “X will occur within one unit of time”. Over the
years different extensions of TL were suggested. Most extensively researched
was MITL [AH92, AFH96, Hen98]. Other logics are described in [BKPS85,
MP93]. We introduced the language QTL (quantitative temporal logic) [HR99a,
HRO04, HRO5], which we find natural and convenient. These extensions of TL
have the same expressive power, which indicates that they capture a natural
fragment of what can be said about a system which evolve in time. These “first
generation” metric extensions of TL can be called simple metric temporal logics.
More expressive logics involving second-order quantifiers and w-automata were
considered in [Wilke94, HRS98] and in our work (see e.g. survey [HR04]).



A. Pnueli was probably the first person to question if these simple logics are
expressive enough for our needs. The conjecture that they cannot express the
property “X and then Y will both happen in the coming unit of time” is usually
referred to as “Pnueli’s conjecture”.

In [HRO7] we proved Pnueli’s conjecture, and we showed a sequence of modal-
ities of the type that Pnueli suggested, such that no finite set of modalities can
express all of them. Specifically: For every natural n we defined the “Pnueli
modality” P,(Xi,...,X,), which states that there is an increasing sequence
t1,...,t, of points in the unit interval ahead such that ¢; satisfies X;. To deal
with the past we define also the dual past modality, P, (X1,...,X,): thereis
a decreasing sequence tq, . ..,t, of points in the previous unit interval such that
t; satisfies X;.

This yields a sequence of temporal logics T'LP,,, which is the standard tem-
poral logic, with “Until” and “Since”, and with the addition of the n-place
modalities P,, and (]3" We note that TLP, , is at least as strong as TLP,
since P, (X1,...,Xn) = Poy1(X1,..., Xpn, True). We note also that TLP; is
just the logic @TL and it represents the simple metric logics.

We proved in [HRO7] that:

e The sequence of temporal logics T'LP, is strictly increasing in expressive
power.

e Their union T'L P is not contained in any temporal logic with finitely many
modalities (this statement is made precise in [HROT7]).

The modalities P, are easily expressible in a small fragment of the monadic
logic with order and with the +1 function. It follows that Kamp’s theorem in
its fullest does not extend to the metric case: There is no finite metric temporal
logic that is equivalent to any monadic logic that can express all the operators
P,.

Is TLP as expressive as needed, and if it is, how do we prove it? If not,
what other modalities should be taken instead of the Pnueli modalities or in
addition?

In [HR99, HRO04] we defined the predicate logic Q2MLO. Tt allows mention
of the metric only in the form (Ht)ggﬂ’f@, where m and n are integers with
m < n, or with weak inequalities on one or both ends, provided the formula ¢
has at most tg and ¢ as free variables. We found this logic very useful for the
following reasons:

e It is powerful enough to subsume all the decidable temporal logics that
we found in the literature. In particular Pnueli’s modalities have a simple
definition in this logic [HR99a].

e If we use only the quantifiers (Elt)ggﬂgp and (Elt)fzg_lga (allowing only
strict inequalities and simple unit intervals) the resulting sublogic Q2ML O,
is as expressive as all of Q2MLO [HRO8].

e The logic is decidable (for satisfiability and validity) [HR99a)].



e Q2MLO can not be replaced by any temporal logic with finitely many
modalities [HRO7].

In this paper we prove that TLP is expressively complete for Q2MLO. In
fact a simpler infinite sequence modalities can replace the Pnueli modalities and
still produce an expressively complete for Q2MLO temporal logic. We define
the Counting modalities: For every n the statement C,(X) says that X will
be true at least at n points within the next unit of time. The dual modality
o
C',(X), says that X was true at least n times in the past unit of time. Hence,
Co(X) = Py(X,...,X) and Cp(X) = Po(X,...,X). We denote by TLC the
temporal logic with Until, Since and all the counting modalities C,, and ﬁn

The main theorem states that T LC' is expressively complete with respect to
Q2MLO.

This general theorem proves in particular that every temporal modality that
can be defined in Q2MLO is defined also in TLC. Thus for example Pnueli’s
modalities P, can be defined in terms of the counting modalities C,.

The proof uses the composition theory for logics of order, and it is quite
general: For any logic that obeys the appropriate composition rules the addition
of metric quantifiers of the kind that we define does not add more expressive
power than the ability to count.

The paper is divided as follows: In section 2 we recall the definitions and
the previous results which are needed. In section 3 we prove the main theorem.
In section 4 we discuss the applicability of our methods to obtain similar results
in a more general context.

2 Monadic Logic and Quantitative Temporal Logic

2.1 FOMLO - First-Order Monadic Logic of Order

We recall some definitions:

The monadic predicate logic of order - FOMLO has in its vocabu-
lary individual (first order) variables tg, ¢1 ... and monadic predicate variables
Xo, X7 ... finitely or infinitely many monadic predicate names Sy, St,,..., and
one binary relation < (the order).

The first order predicate language over this vocabulary is referred here as
the First-Order Monadic Logic of Order (FOMLO).

A structure for FOMLO is a tuple M = (R, <,Sy,...,S,), where R is
the real line, or the non negative segment of the real line, and 51,...,.S,, are
one-place predicates (sets) that correspond to the predicate names in the logic.

When the free variables of a formula ¢ are among tq,...,tx, X1,..., X
and if 71,...,7, are elements of M and Pi,..., P, are monadic predicates on
the domain of M, we will replace the exact yet tedious notation

M,Th...,Tk;Pl,...,Pm ): gD(tl,...,tk;Xh...,Xm),

MLO
by the notation
ME. o, ..., Py, Py),



Remark 2.1 (Finite Variability) Often it is assumed that all the unary pred-
icates that are involved have Finite Variability. This means that in any finite
interval of time the predicate changes only finitely often its truth value. We are
interested in first order logics, but even so a claim that involves all models in a
language, like questions concerning satisfiability and validity, may have different
answers if the claim is about general models with arbitrary unary predicates, or
about logics with finite variability, where only predicates with finite variability
are allowed. We consider general logics but everything that we do applies word
for word to the finite variability interpretation.

2.2 Temporal Logics

Temporal logics use logical constructs called “modalities” to create a language
that is free from quantifiers:

The syntax of the Temporal Logic TL(OY“), Og”), ...) has in its vocab-
ulary monadic predicate names Si,Ss,... and a (finite or infinite) sequence of

modality names O%kl), OékQ), .... The superscript k; denotes the intended arity
of the modality and it is usually omitted. The formulas of this temporal logic
are given by the grammar:

@ :=True| S| = | oA | O® (o1, -, pr)

A temporal logic with a finite set of modalities is called a finite temporal logic.

A structure for Temporal Logic, in this work, is the non negative real
line with monadic predicates M = (R, <,S1,S5s,...), where the predicate S;
are those which are mentioned in the formulas of the logic. Every modality
O™ is interpreted in the structure M as an operator OS\Z) : [P(R)]* — P(R)
which assigns “the set of points where O®)[Ay,..., A;] holds” to the k-tuple
(Aq,...,Ar) € P(R)®. ( P(R) denotes the set of all subsets of R). Once ev-
ery modality corresponds to an operator the semantics is defined by structural
induction:

e for atomic formulas: (M,t) £ S iff te€S.
e for Boolean combinations the definition is the usual one.

e for O(k)(%’...7<pk)
<M7t> ':TL O(k)(@lv"'awk) iff tEOng;)(Atpu"'vAtpk)

where A, = {7 : (M,7) 5, ¢ } (we suppressed predicate names that
may occur in the formulas).

For the modality to be of interest the operator O*) should reflect some intended
connection between the sets A, of points satisfying ¢; and the set of points
OlA,,,...,A,.]. The intended meaning is usually given by a formula in an
appropriate predicate logic:



Truth Tables: A formula O(t, X1, ... X}) in the predicate logic L is a Truth
Table for the modality O if for every structure M

Om(Ar,...,Ap)={r : M7 O[r,Ay,..., As]} .

MLO

The modalities until and since are most commonly used in temporal logic for
computer science. They are defined through the following truth tables:

e The modality XU Y, “X wuntil Y”, is defined by

’l/)(to,X, Y) = E'tl(to <t A Y(tl) /\vt(to <t<t; — X(t)))

e The modality XS Y, “X since Y”, is defined by

’lﬁ(to,X, Y) = Htl(t() >t A Y(t1) /\Vt(h <t<ty— X(t)))

We recall the terminology that is used when comparing the expressive power
of languages.

Let M be a class of structures (possibly with only one structure), let L
be fragment of a predicate logic and let L’ be a temporal logic. L and L’ are
expressively equivalent over M if

1. For every formula ¢ of L’ there is a formula ¢ (¢) in L with a single free
variable, such that for every structure M in M and for every 7 € M

(M,7) |5, » it M7= y(t)

2. For every formula t(t) of L there is a formula ¢ in L, such that for every
structure M in M and for every 7 € M

(M7) |, ¢ it M,7=9(t)

If a temporal logic L’ is equivalent over M to a predicate logic L then we
say that L’ is expressively complete for L over M.

Since the modalities “until” and “since” have truth tables in first-order
MLO, the temporal logic TL(U,S) satisfies the first condition and therefore
it corresponds to a fragment of first order MLO.

The two modalities U and S are also enough to express all the formulas of
first-order MLO (FOMLO) with one free variable, so that TL(U, S) is expres-
sively equivalent to first order MLO:

Theorem 2.2 ([Kamp68, GPSS80]) The temporal logic TL(U,S) is expres-
sively complete for FOMLO owver the two canonical structures: For every for-
mula of FOMLO with at most one free variable, there is a formula of TL(U,S),
such that the two formulas are equivalent to each other, over the positive integers
(discrete time) and over the real line (continuous time).



2.3 The simple metric logics: Quantitative Temporal Logic,
and Quantitative Monadic Logic of Order

The logics FOMLO and TL(U,S) are not suitable to deal with statements
like “X will occur within one unit of time”. For the last 20 years languages
that can express such properties were developed and investigated ([BKPS85,
MP93, GHR94] [Wilke94, Hen98, HR99a, HR05]), and most well-known, M ITL
[AH92, AFH96, Hen98]. We will use as a framework the Quantitative Temporal
Logic, QTL which was introduced in [HR99, HR99a, HR04]. All these logics are
basically equivalent [RSH98, HR99a|. QTL is defined as follows:

Definition 2.3 (Quantitative Temporal Logic) QTL, quantitative tempo-
ral logic is the logic TL(U,S) enhanced by the two modalities: $1X and ng,
These modalities are defined by the tables with free variable ty:

O X+ 3t((t <t<to+1)AX(E)
TiX: H(to—1<t<to) AX().

The temporal logic QTL is complete for a natural fragment of the monadic
logic of order, enriched with the 41 function:

Definition 2.4 (Quantitative Monadic Logic of Order) QMLO , quanti-
tative monadic logic of order s the predicate logic that has atomic formulas
t=s,t<s and X(t), is closed under Boolean connectors and first order quan-
tifications, and under the “metric quantifiers”:

If (t) is a formula in QMLO witht its only free variable then (3t)S1° o(t)
and (Ht)gg_lg&(t) are formulas of QMLO (in the free variable tg).

Theorem 2.5 [HR99a, HR05] The temporal logic QTL is expressively complete
for QMLO over the real line, or over the positive half real line.

2.4 The limited expressive power of the simple metric log-
ics

There was no reason to believe that the simple metric logics like @T'L have com-

prehensive expressive power. A. Pnueli raised this question, and he conjectured

that the modality P»(X,Y’) is not expressible in MITL, where P>(X,Y) says

that X and then Y will be true at points in the next unit of time.

In [HRO7] we proved Pnueli’s conjecture, and we strengthened it signifi-
cantly. To do this we defined for every natural number n the “Pnueli modality”
P,(X1,...,X,), which states that there is an increasing sequence t1, ..., &, of
points in the open unit interval ahead such that t; satisfies X;. We also defined
the weaker “Counting modalities” C,,(X) which state that X is true at least at
n points in the open unit interval ahead (so that C,(X) = P,(X,...,X)). In
[HROT] we proved that:



Theorem 2.6 1. QTL (or MITL) with the added Pnueli modalities P, ..., P,
can not express the modality Chy1

2. No finite temporal logic that can be defined in second order monadic logic
of order extended by the +1 function can express on the real line all the
modalities Cy,(X) for all natural numbers n.

This means that no finite temporal logic will suffice to express everything
that is of interest. We must either give up temporal logic as means for compre-
hensive expressive power, or allow infinitely many modalities. Our aim in this
work is to show that although an infinite collection of modalities is needed it
may be a very simple collection.

2.5 The predicate metric logic Q2MLO

We found the following logic @2MLO natural and suitable to deal with evolving
systems. It was introduced in [HR99)].

Definition 2.7 Q2MLO is the predicate logic that has atomic formulast = s,
t <s and X(t), is closed under Boolean connectors and first order quantifica-
tions, and under the “metric quantifiers”:

If o(to,t) is a formula in Q2MLO with t and to its only free variables and
m < m are integers then (Elt)iigfr;w(to,t) is a formula of Q2MLO (in the free
variable tg).

What looks like a minor difference between QMLO and Q2MLO is an essen-
tial difference. QMLO allows us to say that within one unit of time a punctual
event will occur at some point. In Q2MLO we can speak about the whole in-
terval from now up to that point. Thus each of the different Pnueli modalities
has a very simple truth table in Q2MLO : P,(Xi,...,X,) holds at ¢, iff

@S Gt ta)[(to <t <-- <ty <E)A(Xi(t1) Ao A Xn(tn))]
In [HR99, HR04, HRO8] it was shown that:

Theorem 2.8 The validity and satisfiability problems are decidable for Q2MLO,
over continuous time, whether we are interested in the class of models with finite
variability, or in the class of all models.

In [HROS] it was also shown that:

Theorem 2.9 FEvery formula of Q2MLO can be effectively replaced by an equiv-
alent formula of Q2MLO all of whose metric quantifications are of the form

(338 e(to, 1) and (354 ¢(to, 1).



2.6 Elements of composition method

The proof of theorems 2.8 and 2.9 uses the composition method. This method
is used in this paper for the proof of the main theorem. We describe the method
briefly: Families of structures of a type may be combined in different ways to
create a new structure of the same type. The “compositional method” applies to
the case where a structure is composed from simpler structures, and the theory
of the composite structure can be reduced to the theory of its components.
Ehrenfeucht used it in [Ehr61] for ordered structures, and our proofs follow his
steps. The method was developed and used by Feferman-Vaught [FV59], Shelah
[She75] and others (see surveys [Gur85, Tho97, Mak04]). We concentrate on the
case where two (or more) ordered structures are combined together to form a
new ordered structure, in which all the elements of the first structure precede
those of the second.

Here we need the method for a counting argument over the real line, and we
will state only the simplest of the composition theorems (cf. see Lemma 9.3.2 in
[GHR94]) in accordance with the way that we intend to use it in the real line.

Theorem 2.10 (Composition Theorem) For every formula ¢(x,y) of first
order monadic logic of order there is a finite set of pairs of formulas in the same
language

<041(1', Z)7ﬁl(za y)>7 ) <OZ(I($, 2)75(1(23 y)>
such that for every chain M = (A, <,S1,...,Sk) any three points a < c <b

M= p(a,b) iff M E\/(ala,c) ABi(eb)

i=1

We are going to use this theorem when A is the set of positive reals or reals and
< is the standard order relation on these sets.
3 Completeness of the counting modalities
For every n the modality C,,(X) is defined by the truth table in Q2MLO:

(Ft)SH 3ty -t ) [(E <ty <o <) AX(t1) Ao A X (L))]

Similarly 6n(X) is defined by the truth table in Q2MLO:
(Btn)Si_1 Gt b)) [(E>tr > - > t) AX () Ao AX (L))

We denote by TLC the temporal logic TL(U, S) with all the modalities C,,,
and C . By a straightforward induction it follows

Lemma 3.1 For every formula of TLC there is an equivalent formula in Q2MLO.

The main result of the paper is the converse:



Theorem 3.2 (Main Theorem) FEvery formula of Q2MLO with at most one
free variable is effectively equivalent in the class of all structures (with or without
finite variability) over RY (and over R), to a formula of TLC.

The main effort will be to prove the theorem for a simple formula with a
single metric quantifier. This will take up to proposition 3.8. We will then
extend the result to general formulas. Since the proof is involved, we start with
some notations and (ad hoc) definitions that will ease the discussion.

Definition 3.3 We consider formulas with at most two free variables, as spec-
ified.

1. A pure formula is a formula of the pure monadic logic of order (with no
metric quantifiers).

2. A functional formula is a pure formula ¢(t,s) for which every t has at
most one partner s that satisfies p(t,s). And in addition if o(t,s) holds
then t < s.

3. If p(t,s) is functional, and ¢(a,b) holds then we say that a and b are
partners (with respect to ), and that the interval [a,b] is a p-interval.
b is the right partner of a and a is a left partner of b . f,(t) is the partial
function that associates with every point its right partner, if it has one.
Note that a < f,(a), but they may be equal.

4. A simple metric formula is a formula of the form (Els)iiﬂgo(t, s), where

 is a pure formula.

5. Finally a special formula has the form (Els)gﬂgo(t, s), where @ is func-

tional (note that the lower inequality is weak inequality).

To further simplify the discussion, we will avoid the careful and cumbersome
distinction between the free variables of a formula ¢(¢,s) and their intended
interpretation in the model. We will speak freely of “the interval (¢,s)”, and
say that “the interval satisfies the formula ¢”, instead of “the interpretation
satisfies ¢(t,s)”.

We start with the following transformation:

Lemma 3.4 Fvery simple formula is equivalent to a special formula. Specifi-
cally:

Let ¢(t,s) be a first-order monadic logic of order formula. There is a
functional formula ' (t,s) with the same free variables such that the formu-
las (3s)SiTo(t,s) and (3s)SH1/(t,5) are equivalent (note the difference in
the lower inequality). -

Proof We define first " (¢, s) which says that ¢ < s and that either ¢ (¢, s)At < s
holds, or s is a limit of a decreasing sequence of points s, for which (¢, s,,)



holds. We will then define ¢’(t, s) to say that s is the first element that satisfies

¢"(t, ).
We define:
Inf ,(t,5) = (Vs' > 5)(3s")[(s < 8" < &) Np(t,s")]
and
@"(t,s) = [(t <) Np(t,s)] V[t < s A Inf,(t,s)]
and finally

Ot s) =" (t,s) N[V (t < 8" < s) = =" (t, )]

We will show that (3s)Sit o(t,s) «— (3s)SET1¢/(¢, s) holds for every t.
Indeed if (3s)SE (¢, s) and if s is the greatest lower bound of such elements
s, then t < sp < t+ 1, and either ¢(¢,s0) holds, or Inf,(t,so) holds. In
either case sg is the first element that satisfies ¢ (¢,s). On the other hand, if
(3s)SiH1y/(t, 5) is true then for some sg, with ¢ < so < ¢ + 1 we have ¢/(t, s0).
This means in particular that either (¢ < so < t+1) A (¢, s0), in which case we
are done, or Inf,(t,s). Since so < t+ 1 there is some s between s and ¢ + 1
that satisfies ¢(Z, s), so that (3s)SEH (¢, s) is true. ad

The main step in the proof of the theorem is a proposition that states that
every special formula (Hs)iiﬂap(t,s) is equivalent to a formula in TLC. We

must first gather some more information about the -intervals.

Lemma 3.5 Given a functional formula ¢(t,s) there is an integer q such that
for every structure M and every element ty in the structure, there are at most
q points s to the right of to which are right endpoints of a p-interval [t,s] that
includes ty. The integer q is computable from ¢ and it is simply the number q
of pairs in the decomposition of ¢ in theorem 2.10.

We call this integer the nesting bound of ¢.
Proof By theorem 2.10 there is a finite set of pairs

<0¢1($7 Z):ﬁl(z7y)>’ Ty <Oéq($, Z)vﬂq(za y)>

such that for every to € (¢, s)

a
MEe(ts) i M = \/ («ilt,to) A Bilto, 5))
i=1
Assume towards a contradiction that there are g+1 distinct points s1, -, 5441

to the right of ¢y, corresponding to the left partners ¢y, - - -, ¢,41, on the left of .
Then for each pair t;, s; there is a disjunct such that M |= ag, (¢;,t0) A Bk, (to, Si)-
Necessarily there are at least two elements s;, s; for which 8, = B¢;. But then
M ': Oékj(ti,to) A /Bki(t(),Si) so that w(t,,sz) is true, and M ': Oéki(ti,to) A

10



B, (to,s;) so that also ¢(t;,s;) is true. This contradicts the fact that ¢ is
functional. ad

We say that [a1,b1] is a p-interval of nesting at least ¢ if there is a
sequence a; < --- < a; < b; < --- < by such that ¢(a;,b;) is true for all j < i.
[a1,b1] is a p-interval of nesting i if it is at least of nesting ¢ and it is not at
least of nesting 7 + 1.

Next we want to show that the properties which we investigate are express-
ible in plain temporal logic TL(U, S).

Lemma 3.6 Let ¢(t,s) be a functional formula.

There is a formula R,(s) in first order monadic logic of order that says that
s s a right endpoint of a p-interval. Moreover, for each i there is a formula
pr(s) which says that s is a right endpoint of a p-interval of nesting i.

By Kamp’s theorem there are also formulas of TL(U,S) which say the same
things. We denote them also by R, and Riw.

Proof Clearly
R,(s) = 3t (t<s ANop(t,s))

Next we express the fact that s is the right end point of a y-interval of nesting
at least i, denoting it by RZ'(s):

(Ftyta, - tiy oy, 8) [(E<ta < - <t <8 <00 < 82,< 8) Ap(t, 8)A - -Ap(t;, 8;)]
The required formula R (s) is:

i _ p>i >(it1
R,(s) = RZ'(s) A _'R5(+ )(s)

Next comes another auxiliary property:

Lemma 3.7 Let o(t,s) be a functional formula, with nesting bound q. For
every structure M, point tg in M, and i < q, if some s > ty is a right endpoint
of a p-interval of nesting i, which contains ty then s is one of the first q points
to the right of to that satisfy RL(s).

Proof Suppose (t,s) is a @-interval of nesting ¢ containing a point tg. We
claim that any point s, tg < s’ < s, such that pr(s’) is the right endpoint of
a @-interval containing to. Indeed, let (¢, s’) be a p-interval of nesting 4; then
t' < to since otherwise (¢, s") would be contained in (¢,s), and a y-interval of
nesting ¢ cannot be contained in another @-interval of nesting . This proves the
claim, and it follows from Lemma 3.5 that s must be one of the first ¢ points to
the right of to satisfying R (s). i

We are ready for the main proposition:

Proposition 3.8 If ¢(t,s) is a functional formula then the special formula
(3s)Stp(t, s) is equivalent to a formula in TLC.

11



Proof (3s)SiM1p(t, s) is equivalent to (¢, t) V (35)StT p(t, s). By the Kamp
theorem, the first disjunct is equivalent to a TL(U,S) formula. We are going
to show that the second disjunct is equivalent to a TLC' formula. Therefore,
(3s)Stp(t, s) is equivalent to a TLC formula.

Suppose ¢(t, s) has a nesting bound ¢. For every j we denote by R;’j (t) the
formula that says that the j** solution s among those to the right of ¢ of the
formula R (s) satisfies ¢(t,s). Thus R} (t) is

Bs1---3s5) [(E<s1<---<s5) Aolt,s))

A

Yol(t <v <sj) — (Rfo(v) o Vigv= si)]]

From what we proved up to now, if (3s)Sit'¢(t,s) then this s is also the
solution to a formula Riw(s) for some i < ¢ and it must be one of the first
q solutions of R (s) to the right of ¢. Therefore (3s)StTp(t, s) implies the
following disjunction:

a q
\/ [\/ ((3s1,--,8)Si 51 <sa <. <55 A /\ R (sk) N R (t))]
i=1 j=1 k<j

On the other hand if this formula is satisfied then its witness s; is in par-
ticular smaller than ¢ 4+ 1 and satisfies ¢(t, s;). Therefore the two formulas are
equivalent. We may now translate the formula into T LC"

V [V (C(RY) A R
i=1 j=1

where the overline is the natural translation of a simple monadic formula to
temporal logic. O

Together with lemma 3.4 we proved that every simple metric formula (3s) S (¢, s)
is equivalent to formula of T'LC. We can now complete the proof of the main
theorem:

Proof of theorem 3.2: Assume for contradiction that 6 is a formula of
Q2MLO with one free variable, with the smallest number of metric quantifi-
cations which is not equivalent to a formula of TLC. Since formulas without
metric quantifiers are equivalent to TL(S, U) formulas by Kamp’s theorem we
conclude that 6 has at least one metric quantifier. We focus on some innermost
such quantifier, and we assume that the quantifier is (3s)Si™!, and that it is
the head of the subformula () = (3s)SiHp(¢, s), and ¢(t,s) has no metric
quantifiers (the case (Vs)ii“ follows easily and the past quantifiers are treated
similarly). Replacing this subformula by a new predicate symbol X we obtain
a formula 0'(X) such that 6 is obtained from 6§’ by substituting ¢ (¢) for X. Tt
suffices therefore to prove that '(X) and 9 (t) are equivalent to formulas 6’(X)
and 1) of TLC, so that @ is equivalent to the substitution of + for X in (X).
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0'(X) is equivalent to a TLC formula by the minimality of 6 as a counter
example. The formula (t) = (Is)SiH (2, s) is simple metric formula and it is
equivalent to a formula of T'LC by the long discussion above. This concludes
the proof.

4 Discussion and further results

We added to the temporal logic TL(U,S) all the modalities Cp,(X) - “X will
be true at least at n points in the next unit of time”, and 671()( ) -“X was
true at least at n points in the last unit of time”. The resulting temporal logic
is complete for a strong yet decidable monadic logic of order,Q2MLO. Some
remarks are in order:

1. If we tried to prove directly that Pnueli’s modalities can be expressed in
TLC, i.e. in terms of counting, the proof would be similar to the general
proof that we presented.

2. The proof does not use any special properties of first order monadic logic
of order, except for the composition property. It applies to general logics
that obey the composition rules. Specifically:

Notation: Let L be a logic. We denote by Q2L the minimal extension of
L defined as follows:

(a) Every formula of L is in Q2L.

(b) Q2L is closed under Boolean connectors and first order quantifica-
tions

(¢) Q2L is closed under applications of the “metric quantifiers”:

If o(to, t) is a formula in Q2L with ¢ and ¢g its only free first-
order variables and m < n are integers then (Ht)iﬁgiﬂw(tm t)
is a formula of Q2L (in the free variable #).

Assume that L satisfies the composition theorem 2.10, with Q2L as de-
scribed. Let QLC be the sublogic of Q2L that avoids the metric quantifiers
(3s)Si17 in front of a formula with two free variables, and allows instead
the quantifications which are definable in Q2L, (3,5)S,"" or (3,5)S!_; in
front of a formula ¢ that has only s free, claiming that there are at least
n points in the unit interval ahead (or back) that satisfy .

Then QLC is expressively complete for QQ2L. This is true whether we
assume that the second order quantifiers in L range over all subsets of the
model, over finite subsets, over countable subsets, or over subsets with
finite variability.

3. The proof does not use any property of the 41 function except for the
fact that t < t+ 1. We do not have an example of non monotone function
h(t) with t < h(t) for which it is interesting to replace ¢ 4+ 1 in the proof
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by h(t), but it is worth remembering that not even monotonicity of the
+1 function is used.

4. Tt seems that the expressive completeness result can be extended to the
rational time line when the Stavi modalities are added (see [GHR94]). The
adaptation is not entirely trivial since the proofs that we gave assumed
that bounded sets have least upper bounds. We therefore leave it as a
conjecture.

5. As with the pure temporal logic TL(U,S) there is a gap between the
complexity (and succinctness) of the temporal logic and that of the corre-
sponding predicate logic. Since Q2MLO contains the first-order monadic
logic of order, the complexity of the satisfiability problem for Q2MLO is
non-elementary. In [Rab08] it was shown that the satisfiability problem
for the temporal logic TL(U, S, {C,, ﬁn}i":l) is PSPACFE complete un-
der the unary coding of indices and it is EXPSPACE complete under the
binary coding of indices.
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