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ON COUNTABLE CHAINS HAVING DECIDABLE MONADIC THEORY
ALEXIS BES AND ALEXANDER RABINOVICH

Abstract. Rationals and countable ordinals are important examples of structures with decidable
monadic second-order theories. A chain is an expansion of a linear order by monadic predicates. We
show that if the monadic second-order theory of a countable chain C is decidable then C has a non-trivial
expansion with decidable monadic second-order theory.

§1. Introduction. The study of decidability of logical theories is a well-established
research topic with numerous applications in Computer Science, in particular in the
field of verification. Many techniques have been developed to build larger and
larger classes of structures with a decidable theory. For an overview of recent
related results in the framework of monadic second order (shortly: MSO) theories
we refer e.g.. to [4, 24]. It is interesting to explore the limit of specific decidability
techniques, and also to prove general results about the frontier between decidability
and undecidability.

In particular, Elgot and Rabin ask in [8] whether there exist maximal decidable
structures, i.e., structures M with a decidable first-order (shortly: FO) theory and
such that the FO theory of any expansion of M by a non-definable predicate is
undecidable. This question is still open. Let us mention some partial results:
Soprunov proved in [21] that every countable structure in which a regular ordering
is interpretable is not maximal. A partial ordering (B, <) is said to be regular if for
every a € B there exist distinct elements by, b, € B such that b; < a, b, < a, and
no element ¢ € B satisfies both ¢ < by and ¢ < b;. As a corollary he also proved
that there is no maximal decidable structure if we replace FO by weak MSO logic.
In [2] it was shown that there exists a structure M with a decidable MSO theory and
such that any expansion of M by a constant symbol has an undecidable FO theory.
Paper [1] gives a sufficient condition in terms of the Gaifman graph of M which
ensures that M is not maximal. The condition is the following: for every natural
number r and every finite set X of elements of the domain |M | of M there exists an
element x € |M| such that the Gaifman distance between x and every element of
X is greater than r.

In [3] we considered Elgot—Rabin’s question for chains, i.e., linear orderings
expanded with monadic predicates, in the framework of MSO theory. The class
of chains is interesting with respect to the above results, since on the one hand
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no regular ordering seems to be interpretable in such structures (this intuition is
supported by the fact that the full binary tree is not interpretable in a chain [18]).
and on the other hand their associated Gaifman distance is trivial; thus, they do not
satisfy the criterion given in [1]. We proved in [3] that for every chain M = (4. <. P)
such that (4, <) contains a sub-interval of type @ or —w, M is not maximal with
respect to MSO logic, i.e.. there exists an expansion M’ of M by a predicate which
is not MSO definable in M, and such that the MSO theory of M’ is recursive in the
one of M.

In this paper we prove that this property holds for every infinite countable chain,
namely that no infinite countable chain is maximal with respect to MSO logic.
The proof relies on the composition method developed by Feferman—Vaught [9],
Léuchli [15] and Shelah [20], which reduces the MSO theory of a sum of ordered
structures to the one of its components.

The MSO logic of chains has a special interest as it provides prominent examples
of decidable MSO theories, and also for the variety of approaches for proving de-
cidability, such as Ehrenfeucht—Fraissé games, automata, or composition methods
(see e.g.. [24]). Let us recall some important decidability results. In his seminal
paper [5], Biichi proved that languages of w-words recognizable by automata coin-
cide with languages definable in the MSO theory of (w, <), from which he deduced
decidability of the theory. The result (and the automata method) was then extended
to the MSO theory of any countable ordinal [6], to w;, and to any ordinal less than
wy [7]. Gurevich, Magidor and Shelah prove [12] that decidability of MSO theory
of w, is independent of ZFC. Let us mention results for linear orderings beyond
ordinals. Using automata, Rabin [17] proved decidability of the MSO theory of the
binary tree, from which he deduces decidability of the MSO theory of Q, which in
turn implies decidability of the MSO theory of the class of countable linear order-
ings. Shelah [20] improved model-theoretical techniques that allow him to reprove
almost all known decidability results about MSO theories, as well as new decid-
ability results for the case of linear orderings, and in particular dense orderings.
He proved in particular that the MSO theory of R is undecidable. The frontier
between decidable and undecidable cases was specified in later papers by Gurevich
and Shelah [10, 13, 14]; we refer the reader to the survey [11].

§2. Preliminaries. This section contains standard definitions, notations and some
useful results.

2.1. Linear orderings and chains. We first recall useful definitions and results
about linear orderings. A good reference on the subject is Rosenstein’s book [19].

A linear ordering J is a total ordering. The order types of N, Z, Q are denoted by
w, { and 7, respectively. Given a linear ordering J, we denote by —J the backwards
linear ordering obtained by reversing the ordering relation.

Given two elements j, k of a linear ordering J, we denote by [, k] (respectively
(j, k)) the interval [min (j, k), max (j. k)] (resp. (min (. k), max (j. k))). An order-
ing is dense if it contains no pair of consecutive elements. An ordering / is scattered
if there is no order-preserving mapping from # into 1.

Given an ordering Y and a sub-ordering X of Y, we say that X is dense in Y if
[x,¥]1 N X # @ for every pair x, y of distinct elements of Y, and that X is nowhere
dense in Y if for every open interval Z of Y, X N Z is not dense in Z.
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We say that X is co-dense in Y if Y\ X isdensein Y.

In this paper we consider chains (or, labelled linear orderings). i.e., linear order-
ings (4. <) equipped with a function f: 4 — T where T is a finite (nonempty)
set.

Given a dense ordering 7, a finite set 7', and a coloring C: I — T, we say that
aninterval J C I is C-uniform if for every ¢ € T the set J N C ~!(¢) is either empty
or dense in J. We shall use the following result (see [15]).

ProPOSITION 2.1. Let I be a dense ordering. For every finite set T and every
coloring C: I — T, I contains an infinite C-uniform interval.

2.2. Logic. Let us briefly recall useful elements of monadic second-order logic,
and settle some notations. For more details about MSO logic see e.g., [11, 23].
Monadic second-order logic is an extension of first-order logic that allows to quan-
tify over elements as well as subsets of the domain of the structure. Given a signature
L., one can define the set of (MSO) formulas over L as well-formed formulas that
can use first-order variable symbols x. y, ... interpreted as elements of the domain
of the structure, monadic second-order variable symbols X, Y,... interpreted as
subsets of the domain, symbols from L, and a new binary predicate x € X inter-
preted as “x belongs to X . A sentence is a formula without free variable. As usual,
we often identify logical symbols with their interpretation. Given a signature L and
an L-structure M with domain D. we say that a relation R C D™ x (2°)" is (MSO)
definable in M if and only if there exists a formula ¢(x;...., X, X1.....X,) over
L which is true in M if and only if (xi,.... Xm. X1.....X,) is interpreted by an
(m + n)-tuple of R. Given a structure M we denote by MSO(M) (respectively
FO(M)) the monadic second-order (respectively first-order) theory of M.

We say that M is maximal if MSO(M ) is decidable and MSO(M') is undecidable
for every expansion M’ of M by a predicate which is not definable in M.

We can identify labelled linear orderings with structures of the form M = (4, <,
Py.....P,) where < is a binary relation interpreted as a linear ordering over 4, and
the P;’s denote unary predicates. We use the notation P as a shortcut for the n-tuple
(Py.....P,).

Let X and ¥’ be relational signatures, M a X-structure with domain 4 and M’ a
¥/-structure with domain A’. We say that M is (MSO) interpretable in M’ if there
exist a subset D of 4’ and a surjective map .#: D — A such that:

e D is MSO definable in M’;

e The equivalence relation EQy = {(x,y) € 4": F(x) = #(y)} is MSO
definable in M’;

e For every m-ary symbol R of Z, there exists a MSO X'-formula g such that

M E R(F(ay),....F(am) & M = pr(ay.....an)

forall ai,....a, € D.
The following property of interpretations is well-known.
LemMA 2.2. If M is interpretable in M' then MSO(M ) is recursive in MSO(M”).
Let us recall the following result.
THEOREM 2.3 (Rabin [17]). MSO(n. <) is decidable.

We shall use the following easy corollary of Theorem 2.3.
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COROLLARY 2.4. Let M = (5, <.Py.....P,) be such that (Py,...,P,) is a parti-
tion and every P; is non-empty and dense in y. Then MSO(M) is decidable.

PrOOF. We prove that MSO(M ) is recursive in MSO(#, <), and use Theorem 2.3.
For every n, all structures (5. <. Py, . ... P,)suchthat (Py,.... P,)is a partition and
every P; is non-empty and dense in #, are isomorphic. Moreover there exists an
MSO-formula U(Xj.....X,) which expresses that (Xi,....X,) is a partition and

that every X; is non-empty and dense. Hence for every sentence ¢, we obtain that
M = piff

(1.<) £ 3X1 ... 3 (U(X1. ... X)) A ™))

where ¢* is obtained from ¢ by replacing every atomic formula of the form P;(x)
by x € X;. -

2.3. Elements of composition method. In this paper we rely heavily on compo-
sition methods, which allow to compute the theory of a sum of structures from
the ones of its summands. For an overview of the subject see [4, 22, 16]. In this
section we recall useful definitions and results. The quantifier depth of a formula ¢
is denoted by ¢d (¢). Let n € N, A any finite signature that contains only relational
symbols. and M), M, be A-structures. We say that M| and M, are n-equivalent,
denoted M| =" Mo, if for every sentence ¢ of quantifier depth at most n, M; | ¢
iff Mz ': ®.

Clearly, =" is an equivalence relation. For any n € Nand A, the set of sentences of
quantifier depth < # is infinite. However, it contains only finitely many semantically
distinct sentences, so there are only finitely many ="-classes of A-structures. In fact,
we can compute representatives for these classes.

LemMa 2.5 (Hintikka Lemma). For each n € N and a finite signature A that
contains only relational symbols, we can compute a finite set H,(A) of A-sentences of
quantifier depth at most n such that:

o If11,15 € H,(A) and t| # 1. then 71 A 13 is unsatisfiable.

o Ift € Hy(A) and qd () < n, thent — ¢ or t — —p. Furthermore, there is an
algorithm that, given such t and @, decides which of these two possibilities holds.

o For every A-structure M there is a unique t € H,(A) such that M = <.

Elements of H,(A) are called (n, A)-Hintikka sentences.

Given a A-structure M we denote by 7" (M ) the unique element of H,,(A) satisfied
in M and call it the n-type of M. Thus, T"(M) determines (effectively) which
sentences of quantifier-depth < » are satisfied in M.

As a simple consequence, note that the MSO theory of a structure M is decidable
if and only if the function k — T* (M) is recursive.

The sum of chains corresponds to concatenation. Let us recall a general defini-
tion.

DEFINITION 2.6 (sum of chains). Consider anindex structure Ind = (I, <') where
<! is a linear ordering. Consider a signature A = {<.Py,...,P;}, where P;
are unary predicate names, and a family (M;);c; of A-structures M; = (A4;; <',
Py',.... P) with disjoint domains and such that the interpretation <’ of < in each
M; is a linear ordering. We define the ordered sum of the family (M;);cr as the
A-structure M = (4: <M . p\M ... . PM) where
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e A equals the union of the 4;’s

e x <M yholdsifandonlyif (x € 4;and y € 4; forsomei <! j),or(x,y € 4;
and x <' y)

e forevery x € A and every k € {1.....1}, PM(x) holds if and only if M; |=
P,{(x) where j is such that x € 4;.

If the domains of the M; are not disjoint, replace them with isomorphic chains that
have disjoint domains, and proceed as before.

We shall use the notation M = >_._, M; for the ordered sum of the family
(Mi)ier -

If 7 = {1.2} has two elements, we denote ) _,, M; by M + M,.

icl

We shall use Shelah’s composition method [20, Theorem 2.4] (see also [11, 22])
which allows to reduce the MSO theory of a sum of chains to the MSO theories of
the summands and the MSO theory of the index structure.

TaeOREM 2.7 (Composition Theorem [20]). There exists a recursive function f
and an algorithm which. given k.l € N, computes the k-type of any sum M = 3, ., M,
of chains over a signature {<. Py, ..., P;} from the f (k,[)-type of the structure

where
Q={ie:T"(Mi) =1} j=1...p

and . ..., T, is the list of all (k. A)-Hintikka sentences with A = {<., Py, ..., P;}.

The two following results ([20, Sections 5 and 6], see also [25, Theorem 5.6 p. 41])
specifies Theorem 2.7 in case I = # and all sets Q; are either empty or dense in 7.

THEOREM 2.8 (Shuffle). Let k.l € N, and S be a nonempty set of k-types over the
signature A = {<, Py, ..., P;}. For every sum M = Zie” M, of chains over A such
that S = {T*(M;): i € n},and {i € n: T*(M;) = t} is dense in n for every T € S,
the k-type of M is completely determined by S, k and [. Moreover it can be computed
from S,k and [. This k-type is called shuffle of S and is denoted by shuffle(S).

2.4. Decomposition of a chain. Let M be a chain and let ~ be an equivalence
relation on the domain of M. If the ~-equivalence classes are intervals in M we say
that ~ is a convex equivalence relation. In this case the set of ~-equivalence classes
can be naturally ordered by i < i> iff 3x; € i13x; € ir(x; < x2). We denote by
M/ . the linear order of ~-equivalence classes. The mapping that assigns to every
x € M its ~-equivalence class is said to be canonical.

Let ~ be a convex equivalence relation on M. Then M = >
is the subchain of M over the equivalence class i.

eM). M;, where M;
LemMMmA 2.9. If ~ is a convex equivalence relation which is definable in M, then

1. M/ is interpretable in M .
2. Let g1, ... gy be sentences in the signature of M. Let a chain C be the expansion
of M/~ by unary predicates Q,,. . ...Q,, defined as

Qo ={i € M/~ | Mi = @1}
Then C is interpretable in M .
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§3. Non-maximality for MSO theories of countable chains.

3.1. Main result. An expansion of M by a predicate R is non-trivial if R is not
MSO-definable in M.

The next theorem is our main result.

THEOREM 3.1. Let M = (A, <, P) be an infinite countable chain. There exists
a non-trivial expansion M' of M by a monadic predicate such that MSO(M') is
recursive in MSO(M). In particular if MSO(M ) is decidable, then MSO(M') is
decidable.

In this section we prove Theorem 3.1. We shall use the following result from [3].

LemMa 3.2. Let M = (A, <, P) be an infinite chain which contains an interval

of order type w or —w. There exists a non-trivial expansion M' of M such that
MSO(M') is recursive in MSO(M ).

In the rest of this section we prove Theorem 3.1.

Let P = (Py.....P;). We can assume w.l.o.g. that P is a partition of 4. The
structure M’ will be defined as the expansion of M with some unary predicate R.

Consider the equivalence relation ~ defined on 4 which holds between x and
y if either [x, y] is finite, or [x, y] is contained in an open dense interval which is
C-uniform with respect to the coloring C: 4 — {1...., ¢} which maps every x € 4
to the unique i such that x € P;. Observe that the relation x ~ y is MSO-definable
in M. Each =s-equivalence class has one of the following forms:

1. orderings of type —w, or w, or {:;
2. an interval of order type # which is C-uniform;
3. finite orderings.

We denote by J the linear order M/, of the ~~-equivalence classes. We can write
M=35%,,M, (respectively M’ = > jer M), where for every j € J the domain
of M; (resp. M /’) corresponds to an ~~-equivalence class.

Hence, at least one of the following cases holds:

1. Atleast one ~-equivalence class has order-type —w, or w, or {;
2. atleast one ~-equivalence class has order-type #:
3. all ~-equivalence classes are finite.

We prove Theorem 3.1 for each of these cases separately.

If there exists at least one ~~-equivalence class of order-type —w. or w, or {, then
the result follows from Lemma 3.2.

The case when at least one ~-equivalence class has order-type # is considered in
the next subsection. The case when all ~-equivalence classes are finite is considered
in subsection 3.3.

3.2. Second case: there exists at least one ~-equivalence class of order type 7.
In this case we can expand M with any predicate R which satisfies the following
conditions:

1. If j is an ~-equivalence class of type (1) or (3) then RN j = @.
2. If j is an ~-equivalence class of type (2) and Y; = {/ | P, N j # @}, then R
is dense and co-dense in j N P; forevery / € Y;.

LemMA 3.3. The set R is not definable in M .
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PrOOF. Assume that a unary predicate H is definable in a chain M by an MSO
formula ¢(x). Let g be an automorphism on M. Then H should be invariant
under g. i.e., g maps H onto H.

Let j be an ~-equivalence class of type (2). It is order-isomorphic to . Let M;
be the substructure of M over j. For every/ € Y;, P; is dense and co-dense in ;.
Then, by (2), there are a;,a, € j such that a; € P, N R and a; € P; \ R for some
| € Y;, and there exists an automorphism f of M ;. which maps a; to a,. Hence, R
is not invariant under . We can extend f to an automorphism g of M. Since R is
not invariant under g, we derive that R is not MSO-definable in M . -

The next definition introduces notations which will be used throughout the paper.

DEFINITION 3.4 (Chains N and N;). Let M be a chain in a signature A and let
M’ be an expansion of M by a predicate R. For k > 0 we define chains Ny and N}
as follows. Let (J. <) be the chain M/, of ~-equivalence classes.

1. Ny is the expansion (J. <) by predicates {Type, . | T € Hi(A)} defined as:

Type, . (j) holds iff T#(M;) = t.
2. N/ is the expansion (J, <) by predicates {Dype, . | T € H (AU {R})} defined
as: Type . (j) holds iff T*(M}) = z.

Note that Ni and N, are chains over the same domain, however they have different
signature. The following lemma is a consequence of Lemma 2.9.

Lemma 3.5. 1. Ny is interpretable in M .

2. N/ is interpretable in M'.

3. Ny is interpretable in Ny, for every m > k.

LeMMA 3.6. MSO(M”) is recursive in MSO(M).

PrOOF. We show how to reduce 7" (M’) to MSO(M ) for every n > 3. Note that
T°(M’) is always empty (since there is no sentence with quantifier depth 0 in the
signature of M’), and moreover T'(M’) and T?(M’) clearly reduce to T3(M").
The main reduction steps can be represented as follows:

T"(M') — MSO(N!) — MSO(N,) — MSO(M).
Let n > 3. By Theorem 2.7, T"(M’) is recursive in MSO(N,).
By Lemma 3.5 there is an interpretation of N, in M, therefore MSO(N,) is
recursive in MSO(M).
It remains to show that MSO(N}) is recursive in MSO(N,,).
Let us prove that forevery j € J, T" (M/’) can be computed from 7" (M;). First

of all, using 73(M;) we can check whether the ~-class j has type (2). Indeed, only
classes of type (2) are dense. thus

T3(M;) - VxVy(x <y = 3z(x <z Az <))
iff j has type (2).

If j is not of type (2), then by definition of R we have R N j = &. In this case
for every sentence ¢ we have M} |= ¢ iff M; |= ™ where o™ is obtained from ¢ by
replacing every atomic formula of the form R(x) by =(x = x). This shows that in
this case 7" (M) can be computed from 7" (M;).

Assume now that j has type (2). Let Y; ={i: P;nj # @}. Theset ¥;
is computable from T'!(M 7). Let us denote by ij.....i the (distinct) elements
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of ¥Y;. Foru =1.....t,let P,; = P, N R and P;,» = P;, \ R. It follows
from our assumptions that all sets P;, ; and P;, » are non-empty and dense in the
domain of M; (which we identify with 7). By Corollary 2.4 it follows that the
MSO theory of the structure S = (. <, P;, 1, Pi,2.. ... Pi,.1, Pi, 2) is decidable. We
have R = Ui<y<,Pi, 1. and P;, = P;, 1 U P;, 1, thus R and all predicates P;, are
MSO-definable in S. It follows that MSO(M) is recursive in MSO(S).

We proved that for every j € J, T"(M j’) is computable from 7"(M;). This
implies that every predicate Type . in the signature of N, is equivalent to a boolean
combination of predicates Type, . in the signature of N, and thus is definable in N,,.
It follows that N} is interpretable in N,, and Lemma 2.2 yields that MSO(N,) is
recursive in MSO(N,,). 4

This completes the proof for the second case.

3.3. Third case: all ~-equivalence classes are finite. The construction in this case
shares some ideas with the previous one but is more involved.

Since every ~-equivalence class is finite, there are no consecutive ~-equivalence
classes. Therefore, the ordering J of ~~-equivalence classes is infinite, countable and
dense (i.e., it is isomorphic with 7, 1 +#n, 7 +1or 1 +#5 +1).

We shall expand M with a unary predicate R which will be defined “at the level
of J”, i.e., for every j we will have (j N R) € {@, j}. Thus we actually define a set
R’ C J,and then define Rby: jN R =jif j € R".and j N R = & otherwise.

For every n > 0 let C, denote the coloring which maps every j € J to T"(M;).
Consider the equivalence relation j ~, k which holds between elements j. k € J
iff (j = k. or there exists a C,-uniform open interval of J which contains both j
and k). Each ~,-equivalence class is either a singleton, which we call an n-point,
or a (maximal) C,-uniform open interval, which we call an n-interval. 1f I is an
n-interval and S = {t | there is j € I such that 7"(M;) = 7}, then [ is said to be
an S-interval. Note that if 7 is an S-interval and t € S, then {j | T"(M;) =t} is
dense in 1.

The main idea is to define R’ in such a way that the following property holds:

*) For every n > 0, every n-interval I of J.,
and every n-typet € {T"(M;) | i € I},
the set R’ is both dense and co-dense in I N {i | T"(M;) = t}.

This property will ensure that R’ is not definable in M (see Proposition 3.12), and on
the other hand, will allow to reduce the computation of the n-type of the expansion
of M by R to MSO(M) (see Proposition 3.13).

For every n > 0 let T, (respectively, I,) denote the set of n-points (respectively
n-intervals), and let IT = | J, IT,,. The definition of R’ proceeds in two main stages:
we first define the restriction of R’ to J \ TI, and then the restriction of R’ to IT (by
defining it on every IT,,, by induction over n).

The following is easy:

LemMa 3.7 (properties of I1,,). 1. II, is MSO definable in N,, for m > n.
2. I, is nowhere dense in J .

ProOF. (1) is immediate. (2) Assume for a contradiction that I, is dense in
some open interval I of J. Then by Proposition 2.1, the interval / contains some
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C,-uniform open subinterval I’, and I’ is simultaneously contained in some 7-
interval, and contains n-points, which is impossible. -

First stage: definition of R’ on J \ II:

Let J/ = J\II. If J' is empty then we are done. Otherwise, let ~; be an
equivalence relation on J defined as follows: x =; y if x = y or there is an open
interval / C J of order type # such that x,y € I, M, and M, are isomorphic,
and the set {z € I \ IT | M. and M, are isomorphic} is dense in /. Note that an
~1-equivalence class is either a singleton or of order type 7.

Now we define R’ on J' as any set that contains all singleton =¢-equivalence
classes and is dense and co-dense in every ~j-equivalence class of order type #.

The following lemma is crucial in order to prove (x).

LemMma 3.8. Let n > 0, I be an open sub-interval of an n-interval, T be an n-type
which appears (densely and co-densely) in I, and

Y. =In{j: T"(M;) =1}

If Y. N 11 = @, then every element x of Y, belongs to an ~-equivalence class C of
order type n, and Y, has a non-empty intersection with both R’ and its complement.

Proor. Let x € Y;. The structure M, is finite. Therefore, there is a sentence
¢ such that a chain satisfies ¢ iff it is isomorphic to M. Let m = gd(y). Since
x ¢ II,, it follows that x belongs to an m-interval I,,. Hence, the set E, = {z |
M and M, are isomorphic} is dense in I,, N 1. Now every element z of E, satisfies
T"(M,) = t. thus Ex NI C Y,. By our assumption Y; NII = &, from which it
follows that all elements of E, N I N I,,, (which is an infinite set) are ~-equivalent
to x. Thus the ~-equivalence class of x is of order type #. hence E, NI NI, hasa
non-empty intersection with both R’ and its complement. -

Second stage: definition of R’ on IT:

We define by induction on n the set R;, C I1,,\IT,,_;, and define then the restriction
of R to IT as U,enR),.

Let us first explain the definition informally. We want that eventually R’ satis-
fies (). Let us start with a simple example. Consider the case n = 1, and the
partition of J into l-intervals and 1-points. Consider a 1-interval 7. It does not
contain any 1-point (by definition), but it can contain m-points for some m > 1.
Thus if we want that (x) holds for n = 1 and I, we have to ensure that the definition
of R’ for m-points is compatible with (x). If the set I N IT is finite, or even nowhere
dense in 7, then the definition of R’ on I \ I given during the first stage suffices to
ensure that (x) holds for n = 1. Thus we could simply choose to put all elements
of I NITin R’ (or all in the complement of R'). However it can happen that all
elements of I belong to I1. Thus we need some convenient strategy for defining R’
onl NIL

Let us consider the following example.

ExampLE 3.1. Let (4;) ;>0 be a family of disjoint subsets of 7. For every i > 0 let
A<i = U_ A;. Assume that the two following properties hold:

1. foreveryi > 0. A<; is order-isomorphic to a subset of the integers.

2. UAi is dense in 7.

i>0
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We define the sets R; C A; as follows:
e R =0
o foreveryi > 0, x € R4 iff x € A4;4 and there are y, z € A<; such that
l. y<x<zand(y,z) N A<, = @ (note that this implies that y and z are
unique) and
2. y and z belong to the complement of U;:le.

It is easy to see that R; is MSO-definable in (7. <) with parameters 4y, ..., A;.
Let us show that the set R = U;»oR; is dense and co-dense in the set 4 = U;s04;.

Take any open interval I C 5. We have to show that thereisa pointin/ N AN R
and a pointin (I N 4) \ R.

Toward a contradiction assume that / N 4 N R = &. Since A4 is dense in # there
is i such that / N A<; contains at least two points. These points do not belong to R.
Let us consider two consecutive points y < zin I N A<;. Since I NANR = O
we obtain that y, z ¢ U}le/% Since A is dense in (y, z) there is a minimal m > i
such that 4,, N (y,z) # @. Then according to the definition of R,, all points of
A,, N (. z) should be in R,, and hence in R. This contradicts the assumption that
INANR=2.

Similar arguments show that (1 N 4) \ R # @. Hence R is dense and co-dense
in A.

Our definition of R! refines the definition of R; in the above example. First
obstacle we have to overcome is to generalize the definition given for the family
(A;)i>0 to the family (IT;);-0. Note that a set I1; is not necessarily order isomorphic
to a subset of integers, though I1; is nowhere dense. The second obstacle, in order
to prove (), is that even in the case when J = II = 7, we have to ensure that R’
is dense in # N Y and the construction in the example only ensures that R is dense
in 7.

For every n > 1let A, = I, \ T1,,_;. We say that y is an (m, n)-left bound for x
(and denote it as BL], (y. x)) if the following conditions hold:

. y<x

2. x € A,

3. y e I,

4. [y, x]is a subinterval of some m-interval and 7" (M,) = T™(M,,)

Note that by (4) if BL], (. x) then m < n. The predicate BR);, (y. x) for the relation
“y is an (m, n)-right bound for x” is defined similarly.

Define lrank,(x) and rrank),(x) as

Irank,,(x) := 3yBL},(y.x) A —3yBL}, . (y.x).

m

rrank,,(x) := 3yBR},(y.x) A=3yBR}, . (y.x).

m

If Irank,, (x) (respectively, rrank),(x)) we say that the left rank (respectively, right
rank) of x is (m. n).

We are going to define R}, C A, by induction on ».

We say that R”, holds at the left bound for x if lrank;,(x) and

e cither {y | BL},(y.x)} has a maximal element z and z € U_’};ll R’

e or {y | BL,,(y.x)} N U_’};IR_’/ is co-finalin {y | BL},(y.x)}.
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One defines similarly “R’, holds at the right bound for x”.

We define the sets R} C A; as follows

e Rl =0.

e Foreveryi>0and x € 4;,1. x ¢ R, iff (lranki,fll(x) and rrankintl(x) hold
for some m1.m,. and R, holds at the left bound for x, and R, | holds at
the right bound for x).

Recall that the structure N, was defined in Definition 3.4. The following lemma

is immediate.

LEMMA 3.9. For every m > n > 1 the relation R, is MSO definable in N,,.

The following lemma describes a property of R’ which is an instance of (*) and
is central for our proof of (*).

LemMaA 3.10. Let n > 0 and let I be an open subinterval of an n-interval. Let t be
an n-type such that the set Y. = I N{x: T"(M,) = t} is dense in I. Assume that T1
is dense in Y;. Then, R’ is both dense and co-dense in Y.

ProoF. We are going to prove that Y, contains a point in R’ and a point outside
R’. Since I is an arbitrary non-empty open interval this implies the conclusion of
the lemma.

Since IT is dense in Y, the set IT N Y, contains at least two points ¢ < b. Let
a € Ay, N Y, and b € Ay, N Y;. Note that ki, ky > n.

Toward a contradiction assume

(1) RnY.N(ab)=0.
We shall prove the following:

2) for every s > max(k, k;) and every x € A, N Y, N (a.b).
there exists / < k; such that /rank;] (x) holds.

Let s, x beasin (2). Both elements a and x belong to I, thus [a, x] is a subinterval
of an n-interval. Moreover we have T"(M,) = T"(M,) since a, x € Y,. Finally
we have a € Ay, with k; < s, thus a € TI,_;. It follows that BL}(a, x) holds.
Therefore, lrank; (x) holds for some / > n. Since a € Il,. by condition 4 in the
definition of BL] we obtain that =BLj (. x). Therefore,

(3) If / > k; and y satisfies BL)(y, x) then y > a.

By (1) we have x ¢ R/, therefore by the definition of R}, we obtain that R’
holds at the left bound for x. If / > ki then by (3) and (1), it follows that R’ does
not hold at the left bound for x. Hence, a contradiction. Therefore, / < k;, which
yields (2).

Recall that IT is dense in Y;. It follows from (2) that there exists /; < k; and
a non-empty open interval ¥ C (a.b) such that {x € II | lrank) (x) A s > ky} is
densein V' N Y.

Since for every i the set I1; is nowhere dense and 4, = I, \ I1;, we obtain that
for every r, there exist integers s; < s, < --- < §, and elements x| < xp < --- < X,
of V' N Y. such that lrank;’ (x;) holds for every i.

Let u be the number of (/;, {<,?})-Hintikka sentences, and let » > 2u. We
obtain that there is an /;-type 7’ and x; < x, < x; such that

U =T"(M,,) =T"(M,) = T"(M,,).



12 ALEXIS BES AND ALEXANDER RABINOVICH

First observe
(4) {(y|y>xi NBL(y.x;)} # @

Indeed, on the one hand if BL;'l’ (x;.x;), then (x;,x;) is a sub-interval of an /-
interval, and therefore BL)/ (x,. x;). Since x; < x,, it follows that

xpe{y|ly>ux ABLff(y,xj)},

and therefore (4) holds.

On the other hand. if =BL)’ (x;.x;) then (x;,x;) is not a sub-interval of any
l-interval, and in this case {y | y > x; A BL/ (y.x;)} = {y | BL)(y. x;)} # 2.

Next, observe that, by (1). no element of (a. x j) N Y, belongs to R’, and hence
no element of (x;, x;) N Y; belongs to R'.

Recall that for every s > max(k;. k>) and every x € A; N Y, N (a.b) we proved
that /rank; (x) holds for some / > n. Therefore, /; € [n.k;) and 7’ — 7. In addition,
(x;.x;) is an sub-interval of an n-interval, therefore (x;, x;) N Yz C (x;,x;) N Y;.
Hence, no element of (x;, x;) N Y, belongs to R’, and

(5) {y |y>xiANBL)(y.x;)}NR' = @.

Finally by (4) and (5), R, does not hold at the left bound for x;, and by the
definition of R} , we obtain that x; € R . This contradicts (1).

We have proved that Y, contains a point in R’. The proof that Y, contains a
point outside R’ is similar. !

LemMA 3.11. R’ satisfies (*).

PrOOF. Let n > 0 and let 7 be some n-interval. Then [ is an S-interval for some
set S = {r1.....7,} of n-types. We have to prove that for every 7 € S the set R’ is
both dense and co-dense in the set Y; = I N{x: T"(M,) = t}. Let us fix 7, and let
us consider an open interval Z of I. We shall prove that Z N Y; has a non-empty
intersection with both R’ and the complement of R’.

If IT is not dense in Z N Y;, then there exists an open interval K of Z such that
K contains no element of I1. Then, by Lemma 3.8, K N Y, contains both elements
from R’ and the complement of R’.

If ITis dense in Z N Y7, then the result follows from Lemma 3.10. B

PropoOSITION 3.12. R is not MSO definable in M .

ProOF. The proof'is similar to the one of Lemma 3.3. Assume for a contradiction
that R is definable in M by some formula ¢(x) with quantifier depth k. For every
j € J we have j € R'iff there exists x in j N R, i.e. iff T¥*1(M;) — 3yp(y). The
latter property is expressible in the structure Ny, ;. Therefore R’ is definable in the
structure Ny (even with a quantifier-free formula).

Letn = k + 1, and let K C J be an infinite C,-uniform interval. The set R’ is
dense and co-dense in every set S, = {a € K | C,(a) = ¢} for ¢ in the range of C,.
thus there exist a; € R’ N S,, and a; € S. \ R’. Now K is C,-uniform, thus there
exists an automorphism g of the sub-structure of N, with domain K which maps a;
to ay. and R’ is not invariant under g, which contradicts the fact that R’ is definable
innN,. -

PRrOPOSITION 3.13. MSO(M') is recursive in MSO(M ).
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ProoF. We show how to reduce T"(M') to MSO(M ) for every n > 1.

Let us denote by (J,,. <) the linear order of ~,-equivalence classes. Letn,: J —J,
denote the corresponding canonical mapping. For I € J, letd,(I) = Uje;j. Note
that §,(7) is an interval in M. We denote by O, the subchain of M’ over d,(I).

Observe that
=M
JjeI
and

M =Y 0,

1€J,

Let O), be the expansion of (J,, <) by monadic predicates

{Qn‘r’ | (S HH(A U {R})}

where A is the signature of M. and Q, ./ (1) holds iff 7"(0,, ;) = 7'
The main reduction steps can be represented as follows:

T"(M') — MSO(0,,) — MSO(N,) — MSO(M).

The first reduction step is a consequence of Theorem 2.7, which shows that the
computation of 7" (M) reduces to the one of 7/ */)(0?).

By Lemma 3.5 there is an interpretation of N, in M, therefore MSO(N,,) is
recursive in MSO(M).

To complete the proof it is sufficient to show that that MSO(O),) is recursive in
MSO(N,). This immediately follows from the next Lemma.

LemMA 3.14. There exists an interpretation of O), in N,. Moreover, there is an
algorithm which computes such an interpretation from n.

Proor. We consider the interpretation map ¥ = x,. The domain D = J, the
relation EQ s, as well as the ordering relation between ~,-equivalence classes, are
definable in N,,. Thus it remains to provide an interpretation in N, of each predicate
Q,.v» 1.e., to show that for every n-type 7’ in the signature of M’, one can define in
N, the predicate P, .. which holds at j iff (j € I € J, and T"(0,, ;) = 7').

First note that for every © € H,(A) there are t®, 7R € H,(A U {R}) such that

™ & (t AVIR(t)) and 178 & (1 AVI-R(1))
Moreover, t%, 77R are computable from .
We claim
7/ = t® and j is an n-point such that
Type,.(j) and j € R,
7/ = t7R and j is an n-point such that
Type,.(j) and j ¢ R.,
v = shuffle({z® |t € S}U{c"F |z € S}),
where S C H,(A) and j belongs to an S-interval

Observe that

e Predicates Type,, , for t € H,(A) are in the signature of N,,.
e theset R, = Ui<i<, R} is definable in N, by Lemma 3.9.
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e foreverysubset.S = {7i....,7,} of n-typesin the signature of M, the predicate
“j belongs to an S-interval of N,,” is definable in N,,.

These observations together with (6) imply that the predicates P, .. are definable
in N,, thus O, is interpretable in N,.

It remains to show that (6) holds.

Assume that j is an n-point. Let / be the ~,-equivalence class of j. Then j is the
only element of 1. If j € R/Sn then O),; is the expansion of M; by R which holds
at every point. Therefore, if 7"(M;) = t. then T"(0,, ;) = . Hence. (6) holds in
this case. The case when j is an n-point and j ¢ R, is similar.

Assume now that j is not an n-point. Then the ~, equivalence class / of j is an
S-interval for some S C H, (A). Hence. I is order-isomorphic to 5. the predicates
Type, . (for T € S) partition I, and each of these predicates is dense in /.

Recall that R’ satisfies (), thus R’ is both dense and co-dense in each Type, , N1
(forz € S). If j € Type,, NI N R, then T"(M}) = z*;if j € (Type,, NI)\ R,
then 7"(M}) = =~k

Since O, ; = >_;c; M;. we obtain by Theorem 2.8 that

T"(0), ;) = shufffe({z® |t € S}U{t7® | r € S}).
This completes the proof of (6), of Lemma 3.14 and of Proposition 3.13. -

Third case follows from Proposition 3.12 and Proposition 3.13. -

§4. Further results and open questions. We proved that if the monadic second-
order theory of a countable chain C is decidable, then C has a non-trivial expansion
with decidable monadic second-order theory.

It would be interesting to obtain a version of our result for first-order logic.
However, such a proof requires some new ideas. One obstacle is that there is no
first-order formula that expresses that an interval (x, y) is finite. This is expressible
in MSO and allowed us to consider three types of intervals.

We also do not know whether the main result of [3] can be extended to first-order
logic, namely whether decidability of the first-order theory of a chain which contains
an interval of order type w or —w implies that it has non-trivial expansion with
decidable first-order theory.

Another interesting issue is to remove the assumption that the ordering is count-
able and to prove that every chain C has a non-trivial expansion C’ such that the
monadic theory of C’ is recursive in the monadic theory of C. Note that the MSO
theory of the real line is undecidable [20].
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