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Abstract. Consider a linear ordering equipped with a finite sequence of monadic predi-
cates. If the ordering contains an interval of order type ω or −ω, and the monadic second-
order theory of the combined structure is decidable, there exists a non-trivial expansion
by a further monadic predicate that is still decidable.

Introduction

In this paper we address definability and decidability issues for monadic second order
(shortly: MSO) theories of labelled linear orderings. Elgot and Rabin ask in [10] whether
there exist maximal decidable structures, i.e., structures M with a decidable first-order
(shortly: FO) theory and such that the FO theory of any expansion ofM by a non-definable
predicate is undecidable. This question is still open. Let us mention some partial results:

• Soprunov proved in [30] that every structure in which a regular ordering is interpretable
is not maximal. A partial ordering (B,<) is said to be regular if for every a ∈ B there
exist distinct elements b1, b2 ∈ B such that b1 < a, b2 < a, and no element c ∈ B satisfies
both c < b1 and c < b2. As a corollary he also proved that there is no maximal decidable
countable structure if we replace FO by weak MSO logic.

• In [2], Bès and Cégielski consider a weakening of the Elgot-Rabin question, namely the
question of whether all structures M whose FO theory is decidable can be expanded by
some constant in such a way that the resulting structure still has a decidable theory.
They answer this question negatively by proving that there exists a structure M with a
decidable MSO theory and such that any expansion ofM by a constant has an undecidable
FO theory.
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• The paper [1] gives a sufficient condition in terms of the Gaifman graph of M which
ensures that M is not maximal. The condition is the following: for every natural number
r and every finite set X of elements of the base set |M | of M there exists an element
x ∈ |M | such that the Gaifman distance between x and every element of X is greater
than r.

We investigate the Elgot-Rabin problem for the class of labelled linear orderings, i.e., infinite
structures M = (A;<,P1, . . . , Pn) where < is a linear ordering over A and the Pi’s denote
unary predicates. This class is interesting with respect to the above results, since on one
hand no regular ordering seems to be FO interpretable in such structures, and on the other
hand their associated Gaifman distance is trivial, thus they do not satisfy the criterion given
in [1].

In this paper we focus on MSO logic rather than FO. The main result of the paper is
that for every labelled linear orderingM such that (A,<) contains an interval of order type
ω or −ω and the MSO theory of M is decidable, there exists an expansion M ′ of M by a
monadic predicate which is not MSO-definable in M , and such that the MSO theory of M ′

is still decidable. Hence, M is not maximal. The result holds in particular when (A,<) is
order-isomorphic to the order of the naturals ω = (N, <), or to the order ζ = (Z, <) of the
integers, or to any infinite ordinal, or more generally any infinite scattered ordering (recall
that an ordering is scattered if it does not contain any dense sub-ordering).

The structure of the proof is the following: we first show that the result holds for ω
and ζ. For the general case, starting fromM , we use some definable equivalence relation on
A to cut A into intervals whose order type is either finite, or of the form −ω, ω, or ζ. We
then define the new predicate on each interval (using the constructions given for ω and ζ),
from which we get the definition of M ′. The reduction from MSO(M ′) to MSO(M) uses
Shelah’s composition theorem, which allows us to reduce the MSO theory of an ordered
sum of structures to the MSO theories of the summands.

The main reason to consider MSO logic rather than FO is that it actually simplifies
the task. Nevertheless we discuss some partial results and perspectives for FO logic in the
conclusion of the paper.

Let us recall some important decidability results for MSO theories of linear orderings
(the case of labelled linear orderings will be discussed later for ω and ζ). In his seminal
paper [5], Büchi proved that languages of ω−words recognizable by automata coincide
with languages definable in the MSO theory of ω, from which he deduced decidability
of the theory. The result (and the automata method) was then extended to the MSO
theory of any countable ordinal [6], to ω1, and to any ordinal less than ω2 [7]. Gurevich,
Magidor and Shelah prove [15] that decidability of MSO theory of ω2 is independent of
ZFC. Let us mention results for linear orderings beyond ordinals. Using automata, Rabin
[21] proved decidability of the MSO theory of the binary tree, from which he deduces
decidability of the MSO theory of Q, which in turn implies decidability of the MSO theory
of the class of countable linear orderings. Shelah [28] improved model-theoretical techniques
that allowed him to reprove almost all known decidability results about MSO theories, as
well as new decidability results for the case of linear orderings, and in particular dense
orderings. He proved in particular that the MSO theory of R is undecidable. The frontier
between decidable and undecidable cases was specified in later papers by Gurevich and
Shelah [13, 16, 17]; we refer the reader to the survey [14].
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Our result is also clearly related to the problem of building larger and larger classes of
structures with a decidable MSO theory. For an overview of recent results in this area see
[4, 34].

1. Preliminaries

1.1. Labelled Linear Orderings. We first recall useful definitions and results about linear
orderings. A good reference on the subject is Rosenstein’s book [25].

A linear ordering J is a total ordering. We denote by ω (respectively ζ) the order type
of N (respectively Z). Given a linear ordering J , we denote by −J the backwards linear
ordering obtained by reversing the ordering relation.

Given a linear ordering J and j ∈ J , we denote by [j] the interval [j, j]. An ordering is
dense if it contains no pair of consecutive elements. An ordering is scattered if it contains
no dense sub-ordering.

In this paper we consider labelled linear orderings, i.e., linear orderings (A,<) equipped
with a function f : A→ Σ where Σ is a finite nonempty set.

1.2. Logic. Let us briefly recall useful elements of monadic second-order logic, and settle
some notations. For more details about MSO logic see e.g. [14, 33]. Monadic second-
order logic is an extension of first-order logic that allows to quantify over elements as
well as subsets of the domain of the structure. Given a signature L, one can define the
set of (MSO) formulas over L as well-formed formulas that can use first-order variable
symbols x, y, . . . interpreted as elements of the domain of the structure, monadic second-
order variable symbols X,Y, . . . interpreted as subsets of the domain, symbols from L, and
a new binary predicate x ∈ X interpreted as “x belongs to X”. A sentence is a formula
without free variable. As usual, we often confuse logical symbols with their interpretation.
Given a signature L and an L−structure M with domain D, we say that a relation R ⊆
Dm × (2D)n is (MSO) definable in M if and only if there exists a formula over L, say
ϕ(x1, . . . , xm,X1, . . . ,Xn), which is true in M if and only if (x1, . . . , xm,X1, . . . ,Xn) is
interpreted by an (m + n)−tuple of R. Given a structure M we denote by MSO(M)
(respectively FO(M)) the monadic second-order (respectively first-order) theory of M . We
say that M is maximal if MSO(M) is decidable and MSO(M ′) is undecidable for every
expansion M ′ of M by a predicate which is not definable in M .

We can identify labelled linear orderings with structures of the form M = (A,<
,P1, . . . , Pn) where < is a binary relation interpreted as a linear ordering over A, and
the Pi’s denote unary predicates. We use the notation P as a shortcut for the n-tuple
(P1, . . . , Pn). The structure M can be seen as a word indexed by A and over the alphabet
Σn = {0, 1}n; this word will be denoted by w(M). For every interval I of A we denote by
MI the sub-structure of M with domain I.

Let Σ and Σ′ be relational signatures, M a Σ-structure with domain A and M ′ a Σ′-
structure with domain A′. We say that M is (MSO) interpretable in M ′ if there exist a
subset D of A′ and a surjective map I : D → A such that:

• D is MSO definable in M ′;
• The equivalence relation EQI = {(x, y) ∈ A′ : I(x) = I(y)} is MSO definable in M ′;
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• For every m-ary symbol R of Σ, there exists a MSO Σ′−formula ϕR such that

M |= R(I(a1), . . . ,I(am)) ⇔M ′ |= ϕR(a1, . . . , am)

for all a1, . . . , am ∈ D.

The following property of interpretations is well-known.

Lemma 1.1. If M is interpretable in M ′ then MSO(M) is recursive in MSO(M ′).

1.3. Elements of the Composition Method. In this paper we rely heavily on compo-
sition methods, which allow us to compute the theory of a sum of structures from the ones
of its summands. For an overview of the subject see [4, 32, 18]. In this section we recall
useful definitions and results.

The quantifier depth of a formula ϕ is denoted by qd(ϕ). Let n ∈ N, ∆ any finite
signature that contains only relational symbols, and M1,M2 be ∆-structures. We say that
M1 and M2 are n-equivalent, denoted M1 ≡

n M2, if for every sentence ϕ of quantifier depth
at most n, M1 |= ϕ iff M2 |= ϕ.

Clearly, ≡n is an equivalence relation. For any n ∈ N and ∆, the set of sentences
of quantifier depth ≤ n is infinite. However, it contains only finitely many semantically
distinct sentences, so there are only finitely many ≡n-classes of ∆-structures. In fact, we
can compute representatives for these classes.

Lemma 1.2 (Hintikka Lemma). For each n ∈ N and a finite signature ∆ that contains only
relational symbols, we can compute a finite set Hn(∆) of ∆-sentences of quantifier depth at
most n such that:

• If τ1, τ2 ∈ Hn(∆) and τ1 6= τ2, then τ1 ∧ τ2 is unsatisfiable.
• If τ ∈ Hn(∆) and qd(ϕ) ≤ n, then either τ → ϕ or τ → ¬ϕ. Furthermore, there is an
algorithm that, given such τ and ϕ, decides which of these two possibilities holds.

• For every ∆-structure M there is a unique τ ∈ Hn(∆) such that M |= τ .

Elements of Hn(∆) are called (n,∆)-Hintikka sentences.

Given a ∆-structure M we denote by T n(M) the unique element of Hn(∆) satisfied in
M and call it the n-type of M . Thus, T n(M) determines (effectively) which sentences of
quantifier-depth ≤ n are satisfied in M .

As a simple consequence, note that the MSO theory of a structure M is decidable if
and only if the function k 7→ T k(M) is recursive.

The sum of structures corresponds to concatenation; let us give a general definition.

Definition 1.3 (sum of chains). Consider an index structure Ind = (I,<I) where <I is
a linear ordering. Consider a signature ∆ = {<,P1, . . . , Pl}, where Pi are unary predicate
names, and a family (Mi)i∈I of ∆-structuresMi = (Ai;<

i, P1
i, . . . , P i

l ) with disjoint domains
and such that the interpretation <i of < in each Mi is a linear ordering. We define the
ordered sum of the family (Mi)i∈I as the ∆−structure M = (A;<M , P1

M , . . . , PM
l ) where

• A equals the union of the Ai’s
• x <M y holds if and only if (x ∈ Ai and y ∈ Aj for some i <I j), or (x, y ∈ Ai and x <

i y)

• for every x ∈ A and every k ∈ {1, . . . , l}, PM
k (x) holds if and only if Mj |= P j

k (x) where
j is such that x ∈ Aj .
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If the domains of the Mi are not disjoint, replace them with isomorphic chains that have
disjoint domains, and proceed as before.

We shall use the notation M =
∑

i∈I Mi for the ordered sum of the family (Mi)i∈I .
If I = {1, 2} has two elements, we denote

∑
i∈I Mi by M1 +M2.

We need the following composition theorem on ordered sums (see e.g. [32]):

Theorem 1.4.
(a) The k-types of labelled linear orderings M0,M1 determine the k-type of the ordered sum
M0 +M1, which moreover can be computed from the k-types of M0 and M1.
(b) If the labelled linear orderings M0,M1, . . . all have the same k-type, then this k-type
determines the k-type of Σi∈NMi, which moreover can be computed from the k-type of M0.

Part (a) of the theorem justifies the notation s + t for the k-type of a linear ordering
which is the sum of two linear orderings of k-types s and t, respectively. Similarly, we write
t× ω for the k-type of a sum Σi∈NMi where all Mi have k-type t.

For every linear ordering (A,<) and every x ∈ A let I<x = {y ∈ A : y < x} and
I≥x = {y ∈ A : y ≥ x}. The following is a well-known consequence of Theorem 1.4(a) (see
e.g [12, Theorem A.1]).

Corollary 1.5. Let M = (A,<,P ), k ≥ 1, and a, b ∈ A be such that I<a and I<b are
nonempty sets. Assume that T k(MI<a) = T k(MI<b

) and T k(MI≥a
) = T k(MI≥b

). Then for
every formula ϕ(x) such that qd(ϕ) < k, we have

M |= ϕ(a) if and only if M |= ϕ(b).

We shall use the following result.

Proposition 1.6. Let M = (A,<,P ), I be an interval of A, and Q ⊆ A. If Q is definable
in M then Q ∩ I is definable in MI .

Proof. Assume that the formula ϕ(x) defines Q in M . Note that Q is the unique predicate
which satisfies the formula ψ(X) ≡ ∀x(x ∈ X ↔ ϕ(x)). Let m = qd(ψ). For every R ⊆ A,
let us denote by MR the expansion of M with a new monadic predicate X interpreted by
R. By our hypothesis, we have Tm(MR) = Tm(MQ) if and only if Q = R.

Let J1 (respectively J2) be the set of elements of A less than (respectively greater than)

every element of I. We have MR =MR
J1

+MR
I +MR

J2
. We claim that Tm(MR

I ) = Tm(MQ
I )

if and only if R ∩ I = Q ∩ I. Indeed assume for a contradiction that there exists R such

that Tm(MR
I ) = Tm(MQ

I ) and R∩ I 6= Q∩ I. Consider Q′ ⊆ A such that Q′ ∩ J1 = Q∩ J1,
Q′ ∩ J2 = Q ∩ J2 and Q′ ∩ I = R ∩ I. On the one hand we have Q′ 6= Q, and on the other
hand by Theorem 1.4(a) we have

Tm(MQ′
) = Tm(MQ

J1
)+Tm(MR

I )+Tm(MQ
J2
) = Tm(MQ

J1
)+Tm(MQ

I )+Tm(MQ
J2
) = Tm(MQ)

which contradicts the fact that Q is the unique predicate which satisfies ψ(X) in M .

The type Tm(MQ
I ) is a sentence θ over the signature {<,P} ∪ {X}. We can see it

as a formula θ(X) with one free monadic variable X over the signature {<,P}. We have
MI |= θ(X) if and only if X = Q ∩ I. Thus the formula γ(x) defined as ∃X(θ(X) ∧ x ∈ X)
defines Q ∩ I in MI .
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1.4. Decomposition of a labelled linear ordering. Let M = (A,<,P ) be a labelled
linear ordering and let ∼ be an equivalence relation on A. If the ∼ −equivalence classes
are intervals of A we say that ∼ is a convex equivalence relation. In this case the set of
∼-equivalence classes can be naturally ordered by i1 ≤ i2 iff ∃x1 ∈ i1 ∃x2 ∈ i2 (x1 ≤ x2).
We denote by M/∼ the linear order of ∼-equivalence classes. The mapping that assigns to
every x ∈ A its ∼-equivalence class is said to be canonical.

Let ∼ be a convex equivalence relation on A. Then M =
∑

i∈M/∼
Mi, where Mi is the

substructure of M with domain the equivalence class i.

Lemma 1.7. If ∼ is a convex equivalence relation which is definable in M , then

(1) M/∼ is interpretable in M .
(2) Let ϕ1, . . . ϕk be sentences in the signature of M . Let

N = (M/∼, <,Qϕ1
, . . . , Qϕk

)

where Qϕl
= {i ∈M/∼ |Mi |= ϕl} for every l. Then N is interpretable in M .

2. The Case of N

In this section we prove that there is no maximal structure of the form (N, <, P ) with
respect to MSO logic. The proof is based upon results from [22] . Let us first briefly review
results related to the decidability of the MSO theory of expansions of (N, <). Büchi [5]
proved decidability of MSO(N, <) using automata. On the other hand it is known that
MSO(N,+), and even MSO(N, <, x 7→ 2x), are undecidable [24]. Elgot and Rabin study in
[10] the MSO theory of structures of the form (N, <, P ), where P is some unary predicate.
They give a sufficient condition on P which ensures decidability of the MSO theory of
(N, <, P ). In particular the condition holds when P denotes the set of factorials, or the
set of powers of any fixed integer. The frontier between decidability and undecidability of
related theories was explored in numerous later papers [8, 11, 27, 26, 23, 22, 29, 31]. Let
us also mention that [27] proves the existence of unary predicates P and Q such that both
MSO(N, <, P ) and MSO(N, <,Q) are decidable while MSO(N, <, P,Q) is undecidable.

Most decidability proofs for MSO(N, <, P ) are related somehow to the possibility of
cutting N into segments whose k−type is ultimately constant, from which one can compute
the k−type of the whole structure (using Theorem 1.4). This connection was specified in
[22] (see also [23]) using the notion of homogeneous sets.

Definition 2.1 (k-homogeneous set). Let k ≥ 0. A set H = {h0 < h1 < . . .} ⊆ N is called
k-homogeneous for M = (N, <, P ), if all sub-structures M[hi,hj [ for i < j (and hence all

sub-structures M[hi,hi+1[ for i ≥ 0) have the same k-type.

This notion can be refined as follows.

Definition 2.2 (uniformly homogeneous set). A set H = {h0 < h1 < . . .} ⊆ N is called
uniformly homogeneous for M = (N, <, P ) if for each k the set Hk = {hk < hk+1 < . . .} is
k-homogeneous.

The following result [22] settles a tight connection between MSO(N, <, P ) and uni-
formly homogeneous sets.
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Theorem 2.3. ([22]) For every M = (N, <, P ), the MSO theory of M is decidable if and
only if (the sets P are recursive and there exists a recursive uniformly homogeneous set for
M).

The proof of Theorem 2.3 given in [22] actually shows the following.

Theorem 2.4. ([22]) For every M = (N, <, P ), there exists H which is uniformly homo-
geneous for M and recursive in MSO(M).

We shall prove that any set H which is uniformly homogeneous for M and recursive in
MSO(M) can be used to expand M and get non-maximality.

Lemma 2.5. For every M = (N, <, P ), if H is uniformly homogeneous for M then H is
not definable in M .

Proof. Let H be uniformly homogeneous for M , and let h0 < h1 < ... be the sequence of
elements of H. Assume for a contradiction that H is definable in M . Then it follows that
the set Heven = {h2i : i ∈ N} is also definable in M . We shall prove that for every k ≥ 2,
the elements ak = h2k and bk = h2k+1 satisfy in M the same formulas ϕ(x) with quantifier
depth k. Since ak ∈ Heven and bk 6∈ Heven, it follows that Heven is not definable in M by
any formula ϕ(x) with quantifier depth less than k, from which we get a contradiction.

For every i ≥ 0 let us denote by τi the i−type of M[hi,hi+1[. Let k ≥ 2. We have
ak−1 = h2(k−1) and 2(k − 1) ≥ k, therefore by definition of H we have

T k(M[ak−1,ak[) = τk = T k(M[ak−1,bk[)

thus

T k(M[0,bk[) = T k(M[0,ak−1[) + T k(M[ak−1,bk[)

= T k(M[0,ak−1[) + T k(M[ak−1,ak[)

= T k(M[0,ak [). (2.1)

On the other hand by definition of H we also have

T k(M[ak ,∞[) = τk × ω = T k(M[bk ,∞[). (2.2)

It follows from Equations (2.1) and (2.2), and Corollary 1.5 that ak and bk satisfy in
M the same formulas ϕ(x) with quantifier depth less than k.

Lemma 2.6. Let H be a uniformly homogeneous set for M = (N, <, P ). Then the MSO
theory of M ′ = (N, <,H,P ) is recursive in (H,P ).

Proof. Let us denote by h0 < h1 < ... the sequence of elements of H. We have

T k(M ′) = T k(M ′
[0,hk+2[

) +
∑

i≥k+2

T k(M ′
[hi,hi+1[

)

For every i ≥ k + 2, the only element of H in the interval [hi, hi+1[ is hi. This implies that
for every MSO-sentence ϕ in the signature of M ′ such that qd(ϕ) = k, we have

M ′
[hi,hi+1[

|= ϕ

if and only if

M[hi,hi+1[ |= ∃x((∀y x ≤ y) ∧ ϕ∗) (2.3)
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where x is any variable which does not appear in ϕ, and ϕ∗ is obtained by replacing in ϕ
every atomic formula of the form H(z) (where z denotes any first-order variable) by z = x.

The formula in (2.3) has quantifier depth ≤ k + 2. This implies that the k−type
of M ′

[hi,hi+1[
can be computed from the (k + 2)−type of M[hi,hi+1[. Since H is uniformly

homogeneous there is a (k + 2)−type τk+2 such that the (k + 2)−type of M[hi,hi+1[ equals

τk+2 for every i ≥ k + 2. Moreover, from H and P we can compute hk+2 and hk+3, and
then the (k + 2)−type of M[hk+2,hk+3[, which equals τk+2. Thus one can compute τ ′ such

that the k−type of M ′
[hi,hi+1[

equals τ ′ for every i ≥ k + 2. Therefore we have

T k(M ′) = T k(M ′
[0,hk+2[

) +
∑

i≥k+2

τ ′ = T k(M ′
[0,hk+2[

) + τ ′ × ω

Moreover one checks that T k(M ′
[0,hk+2[

) is computable from H and P .

Finally T k(M ′) is computable by Theorem 1.4.

The previous results allow us to show that no structure M = (N, <, P ) is maximal.

Proposition 2.7. For every structure M = (N, <, P ) there exists an expansion M ′ of M
by a predicate Pn+1 such that Pn+1 is not definable in M and MSO(M ′) is recursive in
MSO(M). In particular, if MSO(M) is decidable, then MSO(M ′) is decidable.

Proof. By Theorem 2.4, there exists a set H which is uniformly homogeneous for M and
recursive in MSO(M). We set Pn+1 = H. By Lemma 2.5, H is not definable in M . By
Lemma 2.6, MSO(M ′) is recursive in H and P , which are both recursive in MSO(M).

In the proof of the general result (see Sect. 4), we start from a labelled linear ordering
M = (A,<,P ) and try to define an expansion M ′ such that MSO(M ′) is recursive in
MSO(M). In some case the expansion M ′ of M will be defined by applying the above
construction to infinitely many intervals of A of order type ω. In order to get a reduction
from MSO(M ′) to MSO(M), we need that the reduction algorithm for such intervals is
uniform. This leads to the following Proposition, which can be seen as a uniform version of
Proposition 2.7.

Proposition 2.8. There exists a function E and two recursive functions g1, g2 such that
E maps every structure M = (N, <, P ) to an expansion M ′ of M by a predicate Pn+1 such
that

(1) Pn+1 is not definable in M ;

(2) g1 computes T k(M ′) from k and T g2(k)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decidable, then
MSO(M ′) is decidable.

The proof of the above proposition relies on the construction of a special uniformly
homogeneous set H for M .

Proposition 2.9. ([22]) There exists a recursive function which maps every k ≥ 0 to some
formula ϕk(X) such that

(1) for every structure M = (N, <, P ) there exists a unique X ⊆ N such that ϕk(X) holds
in M . This set will be denoted by Hk.

(2) For every k ≥ 0, the sets Hk and Hk+1 have the same k first elements.
(3) The set H = {hk : hk is the k−th element of Hk} is uniformly homogeneous.
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In the above Proposition, for every i ∈ N the i−th element hi of H is the i−th element
of the unique set X ⊆ N such that ϕi(X) holds in M . This implies that for every i ∈ N,
one can compute a formula αi(x) which defines hi in every M .

Corollary 2.10. ([22]) There exist recursive functions q and f such that for every structure
M = (N, <, P ), and corresponding H as in Proposition 2.9, f computes the i-th element of
H from i and T q(i)(M).

Proof of Proposition 2.8. Let M = (N, <, P ). Let Pn+1 = H where H is the set
associated to M as stated in Proposition 2.9, and let M ′ be the expansion of M by Pn+1.
Let E be the function which maps M to M ′. By Lemma 2.5, Pn+1 is not MSO definable in
M .

In order to show that there exist recursive functions g1, g2 such that g1 computes T k(M ′)

from k and T g2(k)(M), we have to revise the proof of Lemma 2.6. In this proof the reduction
from T k(M ′) to MSO(M) comes from the fact that the types τk+2 = T k+2(M[hk+2,hk+3[),

and T k(M ′
[0,hk+2[

), are computable from H and P . We shall prove that for our specific

choice of H, these types are computable from T g2(k)(M) for some recursive function g2.
First, let us consider the type T k+2(M[hk+2,hk+3[). For every sentence ϕ in the signature

of M such that qd(ϕ) = k + 2, we have

M[hk+2,hk+3[ |= ϕ (2.4)

if and only if
M |= ∃x∃y(αk+2(x) ∧ αk+3(y) ∧ ϕ

′) (2.5)

where x and y are variables which do not appear in ϕ, and ϕ′ is obtained from ϕ by
relativizing all quantifiers to the interval [x, y[. The formula in (2.5) has quantifier depth

q1(k) = 2 + max(qd(αk+2), qd(αk+3), k + 2)

since qd(ϕ′) = qd(ϕ). The equivalence between (2.4) and (2.5) implies that τk+2 is com-

putable from T q1(k)(M).
Consider now the type T k(M ′

[0,hk+2[
). For every sentence ϕ in the signature of M ′ such

that qd(ϕ) = k, we have
M ′

[0,hk+2[
|= ϕ (2.6)

iff
M |= ∃x(αk+2(x) ∧ ϕ

′′) (2.7)

where x is a variable which does not appear in ϕ, and ϕ′′ is obtained from ϕ by relativizing
all quantifiers to the interval [0, x[, and replacing (in the resulting formula) every atomic
formula of the formH(z) by the formula

∨
0≤i≤k+1 αi(z). The formula in (2.7) has quantifier

depth
q2(k) = 1 + max(qd(αk+2), k +max(qd(αi) : 0 ≤ i ≤ k + 1)).

The equivalence between (2.6) and (2.7) implies that T k(M ′
[0,hk+2[

) is computable from

T q2(k)(M).
Finally we obtain that τk+2 and T k(M ′

[0,hk+2[
), and thus T k(M ′), are computable from

T g2(k)(M) where g2 = max(q1, q2) is recursive. Moreover the existence of g1 clearly follows
from the construction.
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3. The Case of Z

Decidability of the MSO theory of structures M = (Z, <, P ) was studied in particular
by Compton [9], Semënov [27, 26], and Perrin and Schupp [20] (see also [19, chapter 9]).
These works put in evidence the link between decidability ofMSO(M) and computability of
occurrences and repetitions of finite factors in the word w(M). Let us state some notations
and definitions (see e.g. [19, chapter 9]) . A set X of finite words over a finite alphabet Σ
is said to be regular if it is recognizable by some finite automaton. The length of a finite
word u is denoted by |u|.

Given a Z−word w and a finite word u, both over the alphabet Σ, we say that u occurs
in w if w = w1uw2 for some words w1 and w2. We say that w is recurrent if for every regular
language X of finite words over Σ, either no element of X occurs in w, or in every prefix
and every suffix of w there is an occurrence of some element of X.

In particular in a recurrent word w, every finite word u either has no occurrence in
w, or occurs in every prefix and every suffix of w. We say that w is rich if every finite
word occurs in every prefix and every suffix of w. Given M = (Z, <, P ), we say that M is
recurrent if w(M) is.

We have the following result.

Theorem 3.1. ([27, 20]) Given M = (Z, <, P1, . . . , Pn),

(1) If M is not recurrent, then every c ∈ Z is definable in M .
(2) If M is recurrent, then no element is definable in M , and MSO(M) is computable

relative to an oracle which, given any regular language X of finite words over Σn =
{0, 1}n, tells whether some element of X occurs in w(M).

In this section we prove the following result.

Proposition 3.2. Let M = (Z, <, P1, . . . , Pn). There exists an expansion M ′ of M by some
unary predicate Pn+1 such that Pn+1 is not definable in M , and MSO(M ′) is recursive in
MSO(M). In particular, if MSO(M) is decidable, then MSO(M ′) is decidable.

Our proof of Proposition 3.2 is based on a definition of M ′ which depends on whether
M is recurrent or not. Proposition 3.4 deals with the non-recurrent case, and Proposition
3.6 with the recurrent case. These two propositions yield immediately Proposition 3.2.

Remark 3.3. Let us discuss uniformity issues related to Proposition 2.8 and Proposi-
tion 3.2. Proposition 2.8 implies that there is an algorithm which reduces MSO(M ′)
to MSO(M). This reduction algorithm is independent of M ; it only uses an oracle for
MSO(M). Proposition 3.2 implies a weaker property. It can be shown indeed that the
property for M to be recurrent is not expressible with a MSO sentence in M . As a conse-
quence, the algorithm which reduces MSO(M ′) to MSO(M) depends on M .

3.1. Non-recurrent case. We first deal the case when M = (Z, <, P1, . . . , Pn) is not
recurrent.

Proposition 3.4 (Expansion of non-recurrent structures). There are two recursive func-
tions g1, g2 such that if M = (Z, <, P1, . . . , Pn) is not recurrent, and c ∈ Z is definable in
M by a formula of quantifier depth m, then there exists a function Ec which maps M to an
expansion M ′ by a predicate Pn+1 such that

(1) Pn+1 is not definable in M ;
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(2) g1 computes T k(M ′) from k and T g2(k+m)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decidable, then
MSO(M ′) is decidable.

Proof. Let c ∈ Z, and let M1 be defined as M1 = M]−∞,c[ and M2 be defined as M[c,∞[.
Then M =M1 +M2. Let M

′
1 be the expansion of M1 by the empty predicate Pn+1 and let

M ′
2 be obtained by applying the construction of Proposition 2.8 to M2. LetM

′ =M ′
1+M

′
2.

Note that the above construction of M ′ from M depends on c. We denote by Ec the
function described above that maps every M = (Z, <, P1, . . . , Pn) to its expansion M ′ by
Pn+1.

By definition, Pn+1 ∩ [c,∞[ is not definable in M2, thus Pn+1 is not definable in M by
Proposition 1.6. Hence M ′ is a non-trivial expansion of M .

By Theorem 3.1, c is definable in M . Hence, M1 and M2 can be interpreted in M ,
which yields that MSO(M1) and MSO(M2) are recursive in MSO(M). Therefore,

MSO(M ′
1) and MSO(M ′

2) are recursive in MSO(M). Finally, applying Theorem 1.4(a)
we obtain that MSO(M ′) is recursive in MSO(M).

3.2. Recurrent case. Now we consider the case when M = (Z, <, P ) is recurrent. Let
us explain why the construction of the previous sub-section cannot be used in this case.
Consider a recurrent structure M and let M ′ = Ec(M) for some c ∈ Z. We claim that it is
possible that MSO(M ′) is not recursive in MSO(M). Indeed, using ideas from [1] we can
prove that there exists a recurrent structure M over Z such that MSO(M) is decidable,
and MSO(M[c′,∞[) is undecidable for every c′ ∈ Z. Now let c′ be the minimal element of
Pn+1. Observe that c′ is definable in M ′ and therefore, M[c′,∞[ can be interpreted in M ′.

Since, MSO(M[c′,∞[) is undecidable, we derive that MSO(M ′) is undecidable. Hence, Ec

does not preserve decidability of recurrent structures. Thus we need a different construction
for the recurrent case.

To describe our construction we introduce first some notations. For every word w over
the alphabet Σn+1 = {0, 1}n+1 which is indexed by some linear ordering (A,<) we denote
by π(w) the word w′ indexed by A and over the alphabet Σn = {0, 1}n, which is obtained
from w by projection over the n first components of each symbol in w. The definition
and notation extend to π(X) where X is any set of words over the alphabet Σn+1. Given
M = (Z, <, P ) where P is an n−tuple of sets, and any expansion M ′ of M by a predicate
Pn+1, by definition w(M) and w(M ′) are words over Σn and Σn+1, respectively, and we
have π(w(M ′)) = w(M).

Lemma 3.5. If M = (Z, <, P1, . . . , Pn) is recurrent, then there is an expansion M ′ of M
by a predicate Pn+1 which has the following property:

(*): for every u ∈ Σ∗
n, if u occurs in every prefix and every suffix of w(M), then the

same holds in w(M ′) for every word u′ ∈ Σ∗
n+1 such that π(u′) = u.

Proof. The proof is similar to the proof of Proposition 2.8 in [1], which roughly shows how
to deal with the case when w(M) is rich.

Let X be the set of nonempty words u ∈ Σ∗
n+1 such that π(u) occurs in (every prefix

and every suffix of) w(M). We define the expansion M ′ of M by Pn+1 in such a way that
every element of X occurs in every prefix and every suffix of w(M ′). This can be done as
follows.
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We first define the restriction of Pn+1 to the interval [0,∞[. Let (ui)i∈N be any sequence
of elements of Σ∗

n+1 such that X = {ui : i ≥ 0}, and for every u ∈ X the set {i : ui = u}
is infinite. We shall define sequences of integers (am)m∈N and (bm)m∈N and the restriction
of Pn+1 to [0, bm] in such a way that each um occurs in w(M ′

[0,bm]), and am corresponds to

some position in [0, bm] at which um starts. We proceed by induction over m.

• Case m = 0: we have u0 ∈ X, therefore the word π(u0) has an occurrence in w(M[0,∞[).
Let a0 ≥ 0 be the least non-negative integer such that π(u0) = w(M[a0,a0+|u0|[), and
let b0 = a0 + |u0| − 1. We define the restriction of Pn+1 to [a0, a0 + |u0|[ such that
w(M ′

[a0,a0+|u0|[
) = u0. Moreover we set Pn+1 ∩ [0, a0[= ∅.

• Induction step: let m ≥ 1. We have um ∈ X, therefore the word π(um) has an occur-
rence in w(M[bm−1,∞[). We define am as the least integer greater than bm−1 such that
π(um) = w(M[am,am+|um|[). We set bm = am + |um| − 1. We then define the restriction
of Pn+1 to [am, am + |um|[ in such a way that w(M ′

[am,am+|um|[) = ui. Moreover we set

Pn+1∩]bm−1, am[= ∅.

This construction, and the definition of the sequence (ui), guarantee that every word u ∈ X
occurs in every suffix of w(M ′).

We can proceed in a similar way for the definition of the restriction of Pn+1 to the
interval ]−∞, 0[, in such a way that every word u ∈ X occurs in every prefix of w(M ′).

Proposition 3.6 (Expansion of recurrent structures). There are two recursive function
g1, g2 such that if M = (Z, <, P1, . . . , Pn) is recurrent and M ′ is an expansion of M which
has property (*), then

(1) Pn+1 is not definable in M ;
(2) g1 computes T k(M ′) from k and T g2(k)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decidable, then
MSO(M ′) is decidable.

Remark 3.7. Proposition 3.6 implies that there is an algorithm which reduces MSO(M ′)
to MSO(M). This reduction algorithm (like the algorithm from Proposition 2.8) is inde-
pendent of M ; it only uses an oracle for MSO(M).

The proof of Proposition 3.6 relies on a refinement of Theorem 3.1. The analysis of
Semënov’s proof [27] of the latter shows that for a given k ≥ 0, the k-type of MSO(M) can
actually be computed as soon as we can decide, for finitely many regular languages L (which
can be computed from k), whether some element of L occurs in w(M). More precisely we
have the following.

Proposition 3.8. (Semënov [27], Perrin-Schupp [20]) There exists a recursive function
which maps every k ≥ 0 to a finite sequence Sk = (Lk,0, . . . , Lk,ak) of regular languages
of finite words over Σn such that for every structure M = (Z, <, P1, . . . , Pn) with w(M)
recurrent, T k(M) is computable relative to the set

Ik = {i : some element of Lk,i occurs in w(M)}.

Proof of Proposition 3.6.
Let M = (Z, <, P1, . . . , Pn) be recurrent, and let M ′ be an expansion of M which has

property (*).
First let us prove that Pn+1 is not definable in M . For simplicity we use the notations

w,w′ for w(M), w(M ′), respectively. For a fixed k ≥ 0 there exist finitely many (k, {<
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, P1, . . . , Pn})-Hintikka sentences, say mk. Let u be any finite word over Σn such that u is
recurrent in w and 2|u| > (mk)

2. Since u is recurrent in w, it follows from the construction

of w′ that every word u′ over Σn+1 such that π(u′) = u is also recurrent in w′. There are 2|u|

distinct such words, say u′1, . . . , u
′
2|u|

. For i = 1, . . . , 2|u|, let (si, ti) be such that w′([si, ti[) =

u′i (which implies w([si, ti[) = u). By definition of u we have 2|u| > (mk)
2, which implies

that there exist i < j such that T k(M[0,si[) = T k(M[0,sj [) and T k(M[ti,∞[) = T k(M[tj ,∞[).

We have w([si, ti[) = w([sj , tj [) = u, hence the T k(M[si,ti[) = T k(M[sj ,tj [). It follows from

w′([si, ti[) 6= w′([sj , tj [) that there exists l ∈ {0, ti − si − 1} such that w′(si + l) 6= w′(sj + l)
(where w′(x) denotes the letter at position x in w′). Assume that l 6∈ {0, ti − si − 1} (the
case l ∈ {0, ti − si − 1}) is similar).

We have w([si, si + l[) = w([sj , sj + l[) thus T k(M[si,si+l[) = T k(M[sj ,sj+l[). It follows
that

T k(M[0,si+l[) = T k(M[0,si[) + T k(M[si,si+l[)

= T k(M[0,sj [) + T k(M[sj ,sj+l[)

= T k(M[0,sj+l[). (3.1)

Moreover w([si + l, ti[) = w([sj + l, tj [) thus T
k(M[si+l,ti[) = T k(M[sj+l,tj [). Hence

T k(M[si+l,∞[) = T k(M[si+l,ti[) + T k(M[ti,∞[)

= T k(M[sj+l,tj [) + T k(M[tj ,∞[)

= T k(M[sj+l,∞[) (3.2)

If k ≥ 1, it follows from (3.1), (3.2) and Corollary 1.5 that the elements si + l and sj + l
cannot be distinguished by any formula ϕ(x) with quantifier depth less than k. Since
w′(si + l) 6= w′(sj + l) this implies that Pn+1 is not definable by any formula of quantifier
depth less than k. Since this holds for every k, we conclude that Pn+1 is not definable in
M .

Let us now prove that one can compute T k(M ′) from k and T g2(k)(M), for some recur-
sive function g2. Let k ≥ 1. Using Proposition 3.8 we can compute Sk = (L′

k,0, . . . , L
′
k,ak

)

such that T k(M ′) is computable relative to the set

Ik = {i : some element of L′
k,i occurs in w(M

′)}.

Observe that Pn+1 satisfies (∗), thus for every regular language X ′ ⊆ Σ∗
n+1, some element

of X occurs in w(M ′) iff some element of π(X) occurs in w(M ′). It follows that if we set
Lk,i = π(L′

k,i) for every i, then we have

Ik = {i : some element of Lk,i occurs in w(M)}.

Every language L′
k,i is regular, and thus the same holds for Lk,i. Given any Lk,i, we can

compute a sentence Fi such that M |= Fi iff some element of Lk,i occurs in w(M). It
follows that Ik is recursive in MSO(M). Moreover the computation involves only deciding

sentences of the form Fi, i.e. uses an oracle for T g2(k)(M) where g2(k) is the maximal
quantifier depth of sentences of the form Fi. This completes the proof.
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4. Main Result

The next theorem is our main result.

Theorem 4.1. Let M = (A,<,P1, . . . , Pn) where (A,<) contains an interval of type ω or
−ω. There exists an expansion M ′ of M by a unary predicate Pn+1 such that Pn+1 is not
definable in M , and MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is
decidable, then MSO(M ′) is decidable.

As an immediate consequence we obtain the following corollary.

Corollary 4.2. Let M = (A,<,P1, . . . , Pn) where (A,<) is an infinite scattered linear
ordering. There exists an expansion M ′ of M by some unary predicate Pn+1 not definable
in M such that MSO(M ′) is recursive in MSO(M).

We shall use Shelah’s composition method [28, Theorem 2.4] (see also [14, 32]) which
allows us to reduce the MSO theory of a sum of chains to the MSO theories of the summands
and the MSO theory of the index structure.

Theorem 4.3 (Composition Theorem [28]). There exists a recursive function f and an
algorithm which, given k, l ∈ N, computes the k-type of any sum M =

∑
i∈I Mi of chains

over a signature {<,P1, . . . , Pl} from the f(k, l)-type of the structure

(I,<I , Q1, . . . , Qp)

where
Qj = {i ∈ I : T k(Mi) = τj} j = 1, . . . , p

and τ1, . . . , τp is the list of all (k,∆)-Hintikka sentences with ∆ = {<,P1, . . . , Pl}.

Proof of Theorem 4.1.
Let M = (A,<,P ) where (A,<) contains an interval of type ω or −ω. The main idea

is to use a definable equivalence relation on A to cut A into intervals which are either finite,
or have order type ω, −ω or ζ, and then use the previous constructions to define Pn+1 in
these intervals.

Consider the binary relation defined on A by x ≈ y iff [x, y] is finite. The relation ≈ is
a convex equivalence relation, and is definable in M .

Let I be the linear order of the ≈-equivalence classes for (A,<). Then M =
∑

i∈I MAi

where the Ai’s correspond to equivalence classes of ≈. Using the definition of ≈ and our
assumption on A, it is easy to check that the Ai’s are either finite, or of order type ω, or
−ω, or ζ, and that not all Ai’s are finite.

We define the interpretation of the new predicate Pn+1 in every interval Ai. The
definition proceeds as follows:

(1) if some Ai has order type ω or −ω, then we consider two subcases:
(a) if some Ai has order type ω, then we apply to each substructure MAi

of order type
ω the construction given in Proposition 2.8, and add no element of Pn+1 elsewhere.

(b) if no Ai has order type ω, we proceed in a similar way with each substructure MAi

of order type −ω, but using the dual of Proposition 2.8 for −ω.
(2) if no Ai has order type ω or −ω, then at least one ≈ −equivalence class Ai has order

type ζ. We consider two subcases:
(a) if all Ai with order type ζ are such that MAi

is recurrent, then we apply to each
substructure MAi

of order type ζ the construction given in Proposition 3.6, and
add no element of Pn+1 elsewhere.
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(b) otherwise there exists some Ai with order type ζ and such thatMAi
is not recurrent.

Let ϕ(x) be a formula with minimal quantifier depth such that ϕ(x) defines an
element in some MAi

where Ai has order type ζ. For every MAi
such that Ai has

order type ζ and ϕ(x) defines an element ci in MAi
, we apply the construction Eci

from Proposition 3.4 to MAi
, and add no element of Pn+1 elsewhere.

Lemma 4.4. Pn+1 is not definable in M .

Proof. This is easy to deduce from the construction: by Proposition 1.6, if Pn+1 was defin-
able in M then the same would hold for Pn+1 ∩Ai in every sub-structure MAi

.
If we are in case (1), that is, if some Ai has order type ω or −ω, then we applied the

construction of Proposition 2.8 to at least one substructureMAj
, therefore Pn+1∩Aj is not

definable in MAj
, which leads to a contradiction. Case 2(b) is similar. For case 2(a) the

contradiction arises from Proposition 3.4 instead of Proposition 2.8.

Lemma 4.5. Let M ′ be the expansion of M by the predicate Pn+1. Then MSO(M ′) is
recursive in MSO(M).

Proof. For every i ∈ I we denote byM ′
i (respectively Mi) the substructure of M

′ (resp. M)
with domain Ai. Let k ≥ 1, and let us compute T k(M ′). By Theorem 4.3, T k(M ′) can be
computed from the f(k, n+ 1)−type of the structure (I,<,Q′

1, . . . , Q
′
p) where

Q′
j = {i ∈ I : T k(M ′

i) = τ ′j} j = 1, . . . , p

and τ ′1, . . . , τ
′
p denote the list of all (k,∆′)-Hintikka sentences with ∆′ = {<,P , Pn+1}.

Let l = f(k, n+1). Let us prove that for every i ∈ I, the l−type ofM ′
i can be computed

from the g(l)−type of Mi for some recursive function g. Note that g depends on M , namely
whether we used case (1) or (2) to construct M ′.

Assume first that we are in case (1)(a). In this case we first check whether the order
type of the domain Ai of Mi has order type ω; that is, we check whether Mi |= F where F
expresses that the domain of the structure has order type ω. If the answer is positive, then
it means that M ′

i was defined by using the construction given in the proof of Proposition
2.8, and thus it follows from item (2) in the latter proposition that T l(M ′

i) is computable

from T g2(l)(Mi). Otherwise we have set Pn+1 ∩ Ai = ∅, and in this case the l-type of M ′
i

can be computed directly from the l−type of Mi.
Case (1)(b) is similar to the previous one.
For Case (2)(a), we first check whether the order type of the domain Ai is ζ. If the

answer is positive, then it means that M ′
i was defined by using the construction given in

the proof of Proposition 3.6, and thus the reasoning is similar to the one for case (1)(a).
For Case (2)(b), we first check whether the order type of the domain Ai is ζ. If the

answer is positive, then we also check whether the formula ϕ(x) (which was used in the
description of case 2(b)) defines an element in Mi. Namely, we test whether the sentence
ψ ≡ ∃x(ϕ(x) ∧ ∀y (ϕ(y) → y = x)) holds in Mi. Note that qd(ψ) = l + 2. If the answer
is positive again, then it means that M ′

i was defined by using the construction given in the
proof of Proposition 3.4, which implies that the l-type ofM ′

i is computable from the r−type
of Mi, with r = max(l + 2, g2(l + k)). Otherwise we have set Pn+1 ∩ Ai = ∅, and in this
case the l-type of M ′

i can be computed directly from the l−type of Mi.

Since for every i ∈ I, T l(M ′
i) is computable from T g(l)(Mj) for some recursive function

g, every formula Q′
i(x) is equivalent to a boolean combination of predicates of the form



16 A. BÈS AND A. RABINOVICH

Qj(x) where

Qj = {i ∈ I : T g(l)(Mi) = τj} j = 1, . . . , r

and τ1, . . . , τr denote the sequence of (g(l),∆)−Hintikka sentences with ∆ = {<,P}.
It follows that (I,<,Q′

1, . . . , Q
′
p) is interpretable in the structureN = (I,<,Q1, . . . , Qr),

and Lemma 1.1 yields that MSO(I,<,Q′
1, . . . , Q

′
p) is recursive in MSO(N). Now the

relation ≈ is a convex equivalence relation and is definable in M . Thus by Lemma 1.7, the
structure N is interpretable inM , andMSO(N) is recursive inMSO(M) by Lemma 1.1.

Theorem 4.1 follows from Lemmas 4.4 and 4.5.

Remark 4.6. Let us discuss uniformity issues related to Theorem 4.1.

• The choice to expand “uniformly” all ≈ −equivalence classes is crucial for the reduction
from MSO(M ′) to MSO(M). For example, if some Ai has order type ω and we choose
to expand only one such Ai then MSO(M ′) might become undecidable. This is the case
for the structure M considered in [2] (Definition 2.4), which has decidable MSO theory,
and is such that the MSO (and even FO) theory of any expansion of M by a constant is
undecidable. For this structure all Ai’s have order type ω. If we consider the structure
M ′ obtained from M by an expansion of only one Ai, then Pn+1 has a least element,
which is definable in M ′, thus MSO(M ′) is undecidable.

• The definition of Pn+1 in case (2) depends on whether all components Ai with order type
ζ are such that w(MAi

) is recurrent, which is not a MSO definable property. Thus the
reduction algorithm from MSO(M ′) to MSO(M) depends on M .

5. Further Results and Open Questions

Let us mention some possible extensions and related open questions.
First of all, most of our results can be easily extended to the case when the signature

contains infinitely many unary predicates.
Our results can be extended to the Weak MSO logic. In the case M is countable this

follows from Soprunov result [30]. However, our construction works for labelled orderings
of arbitrary cardinality.

An interesting issue is to prove uniform versions of our results in the sense of items
(2) in Propositions 2.8 and 3.6. A first step would be to generalize Proposition 3.6 to all
structures (Z, <, P ).

One can also ask whether the results of the present paper hold for FO logic. Let us
emphasize some difficulties which arise when one tries to adapt the main arguments. A
FO version of Theorem 2.3 (about the recursive homogeneous set) was already proven in
[23]. Moreover, using ideas from [27] one can also give a characterization of structures
M = (Z, <, P ) with a decidable FO theory, in terms of occurrences and repetitions of finite
words in w(M). This allows us to give a FO version of our non-maximality results for
labelled orders over ω or ζ. However for the general case of (A,<,P ), two problems arise:
(1) the constructions for N and Z cannot be applied directly since they are not uniform,
and (2) the equivalence relation ≈ used in the proof of Theorem 4.1 to cut A into small
intervals is not FO definable. We currently investigate these issues.

Finally, we also study the case of labelled linear orderings (A,<,P ) which do not contain
intervals of order types ω or −ω. In this case the construction presented in Sect. 4 does
not work since the restriction of Pn+1 to each Ai will be empty, i.e., our new relation is
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actually empty. In a forthcoming paper we show that it is possible to overcome this issue
for countable orders, and prove that no infinite countable structure (A,<,P ) is maximal.
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