
A Proof of Stavi’s Theorem

Alexander Rabinovich
The Blavatnik School of Computer Science, Tel Aviv University,

email: rabinoa@post.tau.ac.il

Abstract

Kamp’s theorem established the expressive equivalence of the tem-
poral logic with Until and Since and the First-Order Monadic Logic of
Order (FOMLO) over the Dedekind-complete time flows. However, this
temporal logic is not expressively complete for FOMLO over the rationals.
Stavi introduced two additional modalities and proved that the temporal
logic with Until, Since and Stavi’s modalities is expressively equivalent
to FOMLO over all linear orders. We present a simple proof of Stavi’s
theorem.

1 Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [Pnu77] is
a convenient framework for reasoning about “reactive” systems. This has made
temporal logics a popular subject in the Computer Science community, enjoying
extensive research. In TL we describe basic system properties by atomic pro-
positions that hold at some points in time, but not at others. More complex
properties are conveyed by formulas built from the atoms using Boolean con-
nectives and Modalities (temporal connectives): A k-place modality M trans-
forms statements ϕ1, . . . , ϕk possibly on ‘past’ or ‘future’ points to a statement
M(ϕ1, . . . , ϕk) on the ‘present’ point t0. The rule to determine the truth of a
statement M(ϕ1, . . . , ϕk) at t0 is called a Truth Table. The choice of particular
modalities with their truth tables yields different temporal logics. A temporal
logic with modalities M1, . . . ,Mk is denoted by TL(M1, . . . ,Mk).

The simplest example is the one place modality ✸P saying: “P holds some
time in the future.” Its truth table is formalized by ϕ

✸
(t0, P) ≡ (∃t > t0)P (t).

This is a formula of the First-Order Monadic Logic of Order (FOMLO) - a
fundamental formalism in Mathematical Logic where formulas are built using
atomic propositions P (t), atomic relations between elements t1 = t2, t1 < t2,
Boolean connectives and first-order quantifiers ∃t and ∀t. Most modalities used
in the literature are defined by such FOMLO truth tables, and as a result,
every temporal formula translates directly into an equivalent FOMLO formula.
Thus, different temporal logics may be considered as a convenient way to use
fragments of FOMLO . FOMLO can also serve as a yardstick by which one is

1

able to check the strength of temporal logics: A temporal logic is expressively
complete for a fragment L of FOMLO if every formula of L with a single free
variable t0 is equivalent to a temporal formula.

Actually, the notion of expressive completeness refers to a temporal logic
and to a model (or a class of models) since the question whether two formulas
are equivalent depends on the domain over which they are evaluated. Any (par-
tially) ordered set with monadic predicates is a model for TL and FOMLO, but
the main, canonical , linear time intended models are the non-negative integers
〈N, <〉 for discrete time and the non-negative reals 〈R≥0, <〉 for continuous
time.

A major result concerning TL is Kamp’s theorem [Kam68], which implies
that the pair of modalities “P Until Q” and “P Since Q” is expressively com-
plete for FOMLO over the above two linear time canonical models.

The temporal logic with the modalities Until and Since is not expressively
complete for FOMLO over the rationals [GHR94].

Stavi introduced two additional modalities Untils and Since
s (see Sect. 2.2.2)

and proved that TL(Until, Since,Untils, Sinces) is expressively complete for FOMLO
over all linear orders. There are only two published proofs of Stavi’s theorem
[GHR93, GHR94]; however, none is simple.

The objective of this paper is to present a simple proof of Stavi’s theorem.
The rest of the paper is organized as follows: In Sect. 2 we recall the defi-

nitions of the monadic logic, the temporal logics and state Kamp’s and Stavi’s
theorems. In Sect. 3 we introduce partition formulas which play an important
role in our proof of Stavi’s theorem. In Sect. 4 we prove Stavi’s theorem. The
proof of one proposition is postponed to Sect. 5. Sect. 6 comments on the
previous proofs of Stavi’s theorem.

2 Preliminaries

In this section we recall the definitions of linear orders, the first-order monadic
logic of order, the temporal logics and state Kamp’s and Stavi’s theorems.

2.1 Intervals and gaps in linear orders

A subset I of a linear order (T,<) is an interval, if for all t1 < t < t2 with
t1, t2 ∈ I also t ∈ I. For intervals with endpoints a, b ∈ T , whether open or
closed on either end, we will use the standard notation, such as [a, b) := {t ∈ T |
a ≤ t < b}, (a, b) := {t ∈ T | a < t < b}, etc. For a ∈ T let [a,∞) := {t | t ≥ a}
and, similarly, (−∞, a) := {t ∈| t < a}.

A Dedekind cut of a linearly ordered set (T,<) is a downward closed non-
empty set C ⊆ T such that its complement is non-empty and if C has a least
upper bound in (T,<), then it is contained in C. A proper cut or a gap is a cut
that has no least upper bound in (T,<), i.e., one that has no maximal element.

A linear order is Dedekind complete if it has no gaps; equivalently, if for every
non-empty subset S of T , if S has a lower bound in T , then it has a greatest

2

lower bound, written inf(S), and if S has an upper bound in T , then it has a
least upper bound, written sup(S).

For a gap g and an element t ∈ T we write t < g (respectively, g < t) if t ∈ g
(respectively, t /∈ g). We also write (t, g) for the interval {a ∈ T | a > t∧a ∈ g};
similarly, (g, t) is {a ∈ T | a < t ∧ a /∈ g}. Finally, for gaps g1 and g2 we write
g1 ≤ g2 if g1 ⊆ g2, and the interval (g1, g2) is defined as {a ∈ T | a /∈ g1∧a ∈ g2}.

2.2 First-order Monadic Logic and Temporal Logics

We present the basic definitions of First-Order Monadic Logic of Order (FOMLO)
and Temporal Logic (TL), and well-known results concerning their expressive
power. Fix a set Σ of atoms. We use P,Q,R, . . . to denote members of Σ. The
syntax and semantics of both logics are defined below with respect to such a Σ.

2.2.1 First-Order Monadic Logic of Order

Syntax: In the context of FOMLO the atoms of Σ are referred to (and used) as
unary predicate symbols. Formulas are built using these symbols, plus two
binary relation symbols: < and =, and a set of first-order variables (denoted:
x, y, z, . . .). Formulas are defined by the grammar:

atomic ::= x < y | x = y | P (x) (where P ∈ Σ)

ϕ ::= atomic | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ1 | ∀xϕ1

The notation ϕ(x1, . . . , xn) implies that ϕ is a formula where the xi are the only
variables occurring free; writing ϕ(x1, . . . , xn, P1, . . . , Pk) additionally implies
that the Pi are the only predicate symbols that occur in ϕ. We will also use
the standard abbreviated notation for bounded quantifiers, e.g.: (∃x)>z(. . .)
denotes ∃x((x > z)∧ (. . .)) and (∀x)<z

>z1(. . .) denotes ∀x((z1 < x < z)→ (. . .)),
etc.

Semantics: Formulas are interpreted over labeled linear orders which are
called chains. A Σ-chain is a triplet M = (T,<, I) where T is a set - the
domain of the chain, < is a linear order relation on T , and I : Σ→ P(T) is the
interpretation of Σ (where P is the powerset notation). We use the standard
notationM, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn) to indicate that the formula ϕ with
free variables among x1, . . . , xn is satisfiable in M when xi are interpreted as
elements ti ofM. For atomic P (x) this is defined by: M, t |= P (x) iff t ∈ I(P);
The semantics of <,=,¬,∧,∨, ∃ and ∀ is defined in a standard way.

2.2.2 Temporal Logics

Syntax: In the context of TL the atoms of Σ are used as atomic propositions
(also called propositional atoms). Formulas are built using these atoms and a
set (finite or infinite) B of modality names, where an integer arity, denoted |M|,
is associated with each M ∈ B. The syntax of TL with the basis B, denoted
TL(B), is defined by the grammar:

F ::= P | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | M(F1, F2, . . . , Fn),

3

where P ∈ Σ and M ∈ B an n-place modality (with arity |M| = n). As usual,
True denotes P ∨¬P and False denotes P ∧¬P ; we will use infix notation for
binary modalities, where F1 M F2 is an alternative notation for M(F1, F2).

Semantics: Formulas are interpreted at time-points (ormoments) in chains
(elements of the domain). The domain T of M = (T,<, I) is called the time
domain, and (T,<) - the time flow of the chain. The semantics of each n-
place modality M ∈ B is defined by a ‘rule’ specifying how the set of moments
where M(F1, . . . , Fn) holds (in a given structure) is determined by the n sets of
moments where each of the formulas Fi holds. Such a ‘rule’ for M is formally
specified by an operator OM on time flows, where given a time flow F = (T,<),
OM(F) is an operator in (P(T))n −→ P(T).

The semantics of TL(B) formulas is then defined inductively. Given a chain
M = (T,<, I) and a moment t ∈M, define when a formula F holds inM at t
- denotedM, t |= F :

• M, t |= P iff t ∈ I(P), for any propositional atom P .

• M, t |= F ∨G iffM, t |= F orM, t |= G; similarly for ∧ and ¬.

• M, t |= M(F1, . . . , Fn) iff t ∈ [OM(T,<)](T1, . . . , Tn) where M ∈ B is an n-
place modality, F1, . . . , Fn are formulas and Ti =def {s ∈ T :M, s |= Fi}.

Truth tables: Practically most standard modalities studied in the literature
can be specified in FOMLO : A FOMLO formula ϕ(x, P1, . . . , Pn) (with a single
free first-order variable x and with n predicate symbols Pi) is called an n-place
first-order truth table . Such a truth table ϕ defines an n-ary modality M

(whose semantics is given by an operator OM) iff for any time flow (T,<), for
any T1, . . . , Tn ⊆ T and for any structureM = (T,<, I) where I(Pi) = Ti:

[OM (T,<)](T1, . . . , Tn) = {t ∈ T :M, t |= ϕ(x, P1, . . . , Pn)}

Example 2.1. Below are truth-table definitions for the (binary) strict-Until

and strict-Since and the (unary) �,
←−
� , K+ and K

−:

• P Until Q is defined by : ϕ
Until

(x, P,Q) := (∃x′)>x(Q(x′) ∧ (∀y)<x′

>x P (y)).

• P Since Q is defined by: ϕ
Since

(x, P,Q) := (∃x′)<x(Q(x′) ∧ (∀y)<x
>x′P (y)).

• �(P) (respectively,
←−
�(P)) - “P holds everywhere after (respectively, be-

fore) the current moment”:

ϕ
�
(x, P) := (∀x′)>xP (x

′)

ϕ←−
�
(x, P) := (∀x′)<xP (x

′)

• K
+ defined by: ϕ

K+
(x, P) := (∀x′)>x(∃y)

<x′

>x P (y)).

• K
− defined by: ϕ

K−
(x, P) := (∀x′)<x(∃y)<x

>x′P (y)).

4

Formula K
−(P) holds at a moment t iff t = sup({t′ | t′ < t∧P (t′)}). Dually,

K
+(P) holds at t iff t = inf({t′ | t′ > t∧P (t′)}). Note that K+(P) is equivalent

to ¬((¬P)UntilTrue) and �P is equivalent to ¬(TrueUntil(¬P)).
Let γ

+ be a unary modality such that γ
+(P) holds at t if there is a gap

g > t in the order such that g = sup({t′ | (∀y)<t′

>t P (y)}). We say that g is the
gap left definable by P that succeeds t, or just that g is P -gap that succeeds t; P
holds everywhere on the interval (t, g), and for every t1 > g, there is t′ ∈ (g, t1)
such that t′ /∈ P .

A natural formalization of γ
+ semantics uses a second-order quantifier -

“there is a gap”; however, γ+(P) is equivalent to the conjunction of the following
formulas [GHR94]:

1. (PUntilP) ∧ ¬(PUntil¬P).

2. ¬�P - “¬P holds somewhere in the future.”

3. ¬(PUntil(P ∧K
+(¬P))).

Since � and K
+ are equivalent to TL(Until) formulas, γ+(P) can be considered

as an abbreviation of a TL(Until) formula, and γ
+ has a first-order truth table

ϕγ+(x, P).
γ
− is the mirror image of γ+, i.e., going into the past instead of into the

future. γ
−(P) holds at t if there is a gap g < t in the order such that P holds

everywhere on the interval (g, t), and for every t1 < g, there is t′ ∈ (t1, g) such
that t′ /∈ P . We say that g is the (right definable) P -gap that precedes t, or
just that g is P -gap that precedes t.

The modalities Untils and Since
s were introduced by Stavi. PUntilsQ holds

at t if there is a gap g > t such that:

• P is true on (t, g).

• In the future of the gap, P is false arbitrarily close to the gap, and

• Q is true from g into the future for some uninterrupted stretch of time.

Until
s has a first-order truth table ϕUntils(x, P,Q) which is the conjunction

of the following formulas:

1. ϕγ+(x, P).

2. (∃x1)>x

(

¬P (x1) ∧ (∀y)<x1

>x [(¬P (y))→ (∀z)<x1

>y Q(z)]
)

.

Since
s is the mirror image of Untils.

2.3 Kamp’s and Stavi’s Theorems

We are interested in the relative expressive power of TL (compared to FOMLO)
over the class of linear structures, where the time flow is an irreflexive linear
order.

5

Equivalence between temporal and monadic formulas is naturally defined:
F is equivalent to ϕ(x) over a class C of structures iff for anyM∈ C and t ∈M:
M, t |= F ⇔M, t |= ϕ(x). If C is the class of all chains, we will say that F is
equivalent to ϕ.

Expressive completeness/equivalence : A temporal language TL(B) is
expressively complete for FOMLO over a class C of structures iff for every
FOMLO formula ϕ(z) with one free variable there is a ψ ∈ TL(B) such that ϕ
is equivalent to ψ over C. Similarly, one may speak of expressive completeness
of FOMLO for some temporal language. If we have expressive completeness in
both directions between two languages, then they are expressively equivalent.

If every modality in B has a FOMLO truth-table, then it is easy to translate
every formula of TL(B) to an equivalent FOMLO formula. Hence, in this case
FOMLO is expressively complete for TL(B).

The fundamental theorem of Kamp’s states:

Theorem 2.2 ([Kam68]). TL(Until, Since) is expressively equivalent to FOMLO
over Dedekind complete chains.

TL(Until, Since) is not expressively complete for FOMLO over the rationals.
Stavi introduced two new modalities Until

s and Since
s (see Sect. 2.2.2) and

proved:

Theorem 2.3. TL(Until, Since,Untils, Sinces) is expressively equivalent to FOMLO
over all chains.

As Until, Since and Stavi’s modalities are definable in FOMLO, it follows
that FOMLO is expressively complete for TL(Until, Since,Untils, Sinces). The
contribution of our paper is a proof that TL(Until, Since,Untils, Sinces) is ex-
pressively complete for FOMLO.

3 Partition Formulas

In this section we introduce partition formulas and state their properties. They
will play an important role in our proof of Stavi’s theorem. The basic partition
formulas generalize the Decomposition formulas of [GPSS80].

Definition 3.1 (Partition expressions). Let Σ be a set of monadic predicate
names, and δ1(x), . . . δn(x) are quantifier free first-order formulas over Σ with
one free variable, and O ⊆ {1, . . . , n}. An expression Part(〈δ1, . . . , δn〉, O) is
called a partition expression over Σ.

Semantics. Let I be an interval of a Σ-chain M. A partition expression
Part(〈δ1, . . . , δn〉, O) holds on I in M (notation M, I |= Part(〈δ1, . . . , δn〉, O)
if I can be partitioned into n non-empty intervals I1, . . . , In such that δj holds
on all points in Ij , and Ii precedes Ij for i < j, and Ij a one-point interval
for j ∈ O. Note that we do not require that if Ij is a one-point interval, then

6

j ∈ O. Observe that the semantics of partition expressions does not depend on
the names of the variables that appear in δi.

For example, Part(〈P1(x), P2(x) ∨ P3(x)〉, {1, 2}) holds over I iff I is a two
point interval and P1 holds over its first point and P2 or P3 holds over its second
point. Part(〈True,True〉, {1}) holds over I iff I has a minimal point and at
least two points.

Definition 3.2 (Partition Formulas). Let Σ be a set of monadic predicate na-
mes.

Basic Partition Formulas A basic partition formula (over Σ) is an expres-
sion of one of the following forms:

1. z = y or z < y

2. Part(〈δ1, . . . , δn〉, O)[y, z]

3. Part(〈δ1, . . . , δn〉, O)[z,∞) or Part(〈δ1, . . . , δn〉, O)(−∞, z] or
Part(〈δ1, . . . , δn〉, O)(−∞,∞),

where Part(〈δ1, . . . , δn〉, O) are partition expressions.

Partition Formulas are constructed from the basic partition formulas by Bool-
ean connectives and existential quantifier.

Simple Partition Formulas are constructed from the basic partition formulas
by conjunction and disjunction.

Normal Partition Formulas A Normal Partition Formula is a partition for-
mula of the form:

E(z1, . . . , zm) :=

(

m
∧

k=n+1

zk = zik

)

∧ (z1 < z2 < · · · < zn)

∧
n
∧

j=2

Wj [zj−1, zj]

∧ Wn+1[zn,∞) ∧W1(−∞, z1]

∧ W0(−∞,∞)

whereWj are basic partition formulas, n ≤ m and in+1, . . . , im ∈ {1, . . . n}.

The semantics of the partition formulas will not depend on the names of
variables that occur in partition expressions. These occurrences of the variables
are considered to be bound. For other occurrences of variables the definition
whether occurrences are free or bound is standard.

7

Semantics. Partition formulas are interpreted over Σ-chains. LetM = (T,<
, I) be a Σ-chain. We use the standard notationM, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn)
to indicate that the formula ϕ with free variables among x1, . . . , xn is satisfiable
inM when xi are interpreted as elements ti ofM. For basic partition formulas
this is defined by: M, t |= Part(〈δ1, . . . , δn〉, O)[x,∞) iff the partition expres-
sion Part(〈δ1, . . . , δn〉, O) holds on the interval [t,∞) in M; similarly, M, t |=
Part(〈δ1, . . . , δn〉, O)(−∞, x] (respectively,M |= Part(〈δ1, . . . , δn〉, O)(−∞,∞))
iff Part(〈δ1, . . . , δn〉, O) holds on the interval (−∞, t] (respectively, the interval
(−∞,∞)) inM; andM, t1, t2 |= Part(〈δ1, . . . , δn〉, O)[x1, x2] iff Part(〈δ1, . . . , δn〉, O)
holds on the interval [t1, t2] inM; the semantics of <,=,¬,∧,∨, and ∃ is defi-
ned in a standard way.

The following lemmas immediately follow from the definitions and standard
logical equivalences.

Lemma 3.3. 1. Every simple formula is equivalent to a disjunction of nor-
mal formulas.

2. For every normal formula ϕ, the formula ∃xϕ is equivalent to a disjunction
of normal formulas.

3. For every simple formula ϕ, the formula ∃xϕ is equivalent to a simple
formula.

Lemma 3.4 (Closure properties). The set of simple formulas is (semantically)
closed under disjunction, conjunction, and existential quantifier.

The set of simple formulas is not closed under negation. However, we show
later (see Proposition 4.2) that the negation of a simple formula is equivalent to a
simple formula in the expansion of the chains by all TL(Until, Since,Untils, Sinces)
definable predicates.

In the rest of this section we explain how to translate a simple partition
formula with one free variable into an equivalent TL(Until, Since,Untils, Sinces)
formula.

Let δ1, . . . , δk be quantifier free first-order formulas with one free variable
and O ⊆ {1, . . . , k}. For i = 1, . . . k, let Di be a temporal formula equivalent to
δi. Define:

Fk := Dk (1)

Fi−1 := Di−1 ∧















FalseUntilFi if i− 1 ∈ O and i ∈ O;
DiUntilFi if i− 1 ∈ O and i /∈ O;
Di−1UntilFi if i− 1 /∈ O and i ∈ O;
Di−1Until

∗Fi if i− 1 /∈ O and i /∈ O,

(2)

where PUntil∗Q holds at t if there is t′ > t such that Part(〈P (x), Q(x)〉, ∅) holds
on the interval [t, t′]; PUntil∗Q can be expressed as disjunction of the following
formulas:

• P ∧
(

(PUntilQ) ∨ (QUntilQ) ∨ PUntil
(

P ∧ (QUntilQ)
))

• P ∧ (PUntilsQ)

8

Lemma 3.5. 1. Assume that there is t and a partition of [t1, t] into non-
empty intervals I1, . . . , Ik such that δj holds on Ij and Ii precedes Ij for
i < j, and Ii is a one-point interval for i ∈ O. Then Fk−j holds on Ik−j.

2. if Fk−j holds at tk−j then there is t ≥ tk−j such that Part(〈δk−j , . . . , δk〉, Ok−j)
holds on [tk−j , t], where l ∈ Ok−j iff l + k − 1− j ∈ O.

3. F1 holds at t1 iff there is t ≥ t1 such that Part(〈δ1, . . . , δk〉, O) holds on
[t1, t].

Proof. (1) and (2) by induction on j. (3) immediately from (1) and (2).

Let δ′k be a quantifier-free first-order formula with one free variable and D′
k be

a temporal formula equivalent to δ′k. If k /∈ O and we set Dk := D′
k ∧ �D′

k in
equation (1), then F1 holds at t1 iff Part(〈δ1, . . . , δk−1, δ

′
k〉, O) holds on [t1,∞);

if k ∈ O and we set Dk := D′
k ∧�False in equation (1), then F1 holds at t1 iff

Part(〈δ1, . . . , δk−1, δ
′
k〉, O) holds on [t1,∞). Hence, we obtained:

Lemma 3.6. For every δ1, . . . , δk and O ⊆ {1, . . . , k} there is a TL(Until,Untils)
formula F such that F holds at t iff Part(〈δ1, . . . , δk〉, O) holds on [t,∞).

By Lemma 3.6 and standard logical equivalences we obtain:

Proposition 3.7 (From simple formulas to TL). Every simple formula with at
most one free variable is equivalent to a TL(Until, Since,Untils, Sinces) formula.

Proof. Note that every simple partition formula with at most one free variable z
is equivalent to a boolean combination of basic partition formulas of the forms:
Part(〈δ1〉, O)[z, z], Part(〈δ1, . . . , δn〉, O)[z,∞), Part(〈δ1, . . . , δn〉, O)(−∞, z], or
Part(〈δ1, . . . , δn〉, O)(−∞,∞). Let D1 be a temporal formula equivalent to the
first-order quantifier free formula δ1. A formula of the form Part(〈δ1〉, O)[z, z]
is equivalent to D1. By Lemma 3.6 and its mirror variant the formulas of the
second and the third forms are equivalent to TL(Until, Since,Untils, Sinces) for-
mulas. A formula of the form Part(〈δ1, . . . , δn〉, O)(−∞,∞) is equivalent to
“Part(〈δ1〉, O)(−∞, z] ∧ Part(〈δ1, . . . , δn〉, O)[z,∞) for some z.” Since each of
the conjuncts is equivalent to a temporal formula, the conjunction is also equi-
valent to a temporal formula A, and Part(〈δ1, . . . , δn〉, O)(−∞,∞) is equivalent

to ¬(�¬A ∧ ¬A ∧
←−
�¬A). Hence, every simple formula with at most one free

variable is equivalent to a TL(Until, Since,Untils, Sinces) formula.

4 Proof of Stavi’s Theorem

The next definition plays a major role in our proof of Stavi’s theorem; a similar
definition is used in the proof of Kamp’s theorem [GPSS80].

Definition 4.1. Let M be a Σ chain. We denote by E [Σ] the set of unary
predicate names Σ ∪ {A | A is an TL(Until, Since,Untils, Sinces)-formula over

9

Σ }. The canonical TL(Until, Since,Untils, Sinces)-expansion ofM is an expan-
sion ofM to an E [Σ]-chain, where each predicate name A ∈ E [Σ] is interpreted
as {a ∈M | M, a |= A}1.

Note that if A is a TL(Until, Since,Untils, Sinces) formula over E [Σ] predi-
cates, then it is equivalent to a TL(Until, Since,Untils, Sinces) formula over Σ,
and hence to an atomic formula in the canonical TL(Until, Since,Untils, Sinces)-
expansions.

From now on we say “formulas are equivalent in a chainM” instead of “for-
mulas are equivalent in the canonical TL(Until, Since,Untils, Sinces)-expansion
ofM.” The partition formulas are defined as previously, but now they can use
as atoms TL(Until, Since,Untils, Sinces) definable predicates.

It is clear that the results stated in Sect. 3 hold for this modified notion
of partition formulas. In particular, every simple formula with at most one
free variable is equivalent to a TL(Until, Since,Untils, Sinces) formula, and the
set of simple formulas is closed under conjunction, disjunction and existential
quantification. However, now the set of simple formulas is also closed under
negation, due to the next proposition whose proof is postponed to Sect. 5.

Proposition 4.2 (Closure under Negation). The negation of every simple par-
tition formula is equivalent to a simple partition formula.

As a consequence we obtain:

Proposition 4.3. Every first-order formula is equivalent to a simple formula.

Proof. We proceed by structural induction.

Atomic It is clear that every atomic formula is equivalent to a simple formula.

Negation By Proposition 4.2.

∃-quantifier and disjunction This follows from Lemma 3.4.

Proposition 4.3 and Proposition 3.7 immediately imply Stavi’s Theorem:

Theorem 4.4. Every FOMLO formula with one free variable is equivalent to
a TL(Until, Since,Untils, Sinces) formula.

This completes our proof of Stavi’s theorem except for Proposition 4.2 which
is proved in Sect. 5.

5 Proof of Proposition 4.2

Throughout our proof we will freely use that the following assertions and their
negations are expressible by simple formulas:

1. (z0, z1) contains a point in P .

1We often use “a ∈ M” instead of “a is an element of the domain of M.”

10

2. suc(z0, z1) - z1 is a successor of z0.

3. interval (z0, z1) contains exactly k points.

4. interval (z0, z1) contains at most k points.

Let us introduce some helpful notations.

Notations 5.1. We use the abbreviated notations Part(〈δ1, . . . , δn〉, O)(z0, z1)
for Part(〈True, δ1, . . . , δn,True〉, O

′)[z0, z1], where O
′ := {1, n + 2} ∪ {i + 1 |

i ∈ O}. Hence,M, t0, t1 |= Part(〈δ1, . . . , δn〉, O)(z0, z1) iff Part(〈δ1, . . . , δn〉, O)
holds on the open interval (t0, t1) inM. Similarly, Part(〈δ1, . . . , δn〉, O)(z0, z1]
stands for Part(〈True, δ1, . . . , δn〉, O

′)[z0, z1], where O
′ := {1}∪{i+1 | i ∈ O};

and Part(〈δ1, . . . , δn〉, O)[z0, z1) for Part(〈δ1, . . . , δn,True〉, O
′)[z0, z1], where

O′ := {n+ 1} ∪O.

By Proposition 3.7 and standard logical equivalences we obtain:

Lemma 5.2. If every formula of the form ¬Part(〈δ1, . . . , δn〉, O)(z0, z1) is equi-
valent to a simple formula, then the negation of every simple formula is equiva-
lent to a simple formula.

Proof. 1. Every basic partition formula ϕ either (a) has at most one free va-
riable and then ϕ and ¬ϕ are equivalent to simple formulas by Proposition
3.7, or (b) is equivalent to a formula of the form Part(〈δ1, . . . , δk〉, O)[z0, z1].

2. A formula of the form Part(〈δ1, . . . , δk〉, O)[z0, z1] is equivalent to a for-
mula constructed by disjunction and conjunction from formulas of the
forms: (a) Part(〈δ1, . . . , δn〉, O

′)(z0, z1) and (b) suc(z0, z1), z0 < z1, z0 =
z1, δ1(z0) and δk(z1), where δi(z) is a quantifier-free first-order formula.
Formulas of the form (b) and their negations are equivalent to simple
formulas.

Hence, if every formula of the form ¬Part(〈δ1, . . . , δk〉, O)(z0, z1) is equiva-
lent to a simple formula, by the definition of simple formulas, (1)-(2) and De
Morgan’s laws we obtain the conclusion of the Lemma.

Lemma 5.2 and the next proposition immediately imply Proposition 4.2.

Proposition 5.3 (Closure under negation). Every formula of the form
¬Part(〈δ1, . . . , δn〉, O)(z0, z1) is equivalent to a simple formula.

Sect. 5.3 contains a proof of Proposition 5.3. In the next subsection we pro-
vide some useful temporal logic formalizations. A proof of the next proposition,
which is very similar to the proof of Proposition 5.3 is presented in Sect. 5.2.

Proposition 5.4. ¬∃x1 . . . ∃xn (z0 < x1 < · · · < xn < z1)∧
∧n

i=1 Pi(xi) is equi-
valent to a simple formula.

11

5.1 Some formalizations in TL(Until, Since,Untils, Sinces)

First, observe that there is a TL(Until,Untils) formula that holds at t if t succeeds
by a (left definable) P1-gap and until this gap P1∧P2 holds. Indeed, the required
formula is Until-gap(P1, P2) := γ

+(P1) ∧ γ
+(P1 ∧ P2) ∧ ¬((P1 ∧ P2)Until

sP1).
Let δ and δ′1, . . . , δ

′
k be quantifier free first-order formulas with one free

variable. For i = 1, . . . k, let D′
i be a temporal formula equivalent to δ′i and

let D be a temporal formula equivalent to δ.
If we set Dk := Until-gap(D,D′

k) in equation (1) (see page 8) and Di :=
D′

i ∧D for i = 1, . . . , k− 1 in equation (2), then Fj(tj) holds iff there is a δ-gap
g that succeeds tj such that Part(〈δ′j , . . . , δ

′
k〉, O) holds on [tj , g). Hence, we

obtained the following Lemma:

Lemma 5.5. For every k-tuple 〈δ1, . . . , δk〉, O ⊆ {1, . . . , k} and δ there is a
TL(Until,Untils) formula F such that F holds at t iff there is a δ-gap g that
succeeds t such that Part(〈δ1, . . . , δk〉, O) holds on [t, g).

Lemma 5.6. Suppose we are given k ≥ 1 quantifier-free formulas δ1, . . . , δk
with one free variable, a set O ⊆ {1, . . . , k}, and points a1, d with a1 ≤ d. Let
F1, . . . , Fk be defined as in equations (1) and (2) on page 8. Then the following
are equivalent:

1. There are points a1 < a2 < · · · < ak ≤ d such that ∧ki=1Fi(ai).

2. There is b ∈ [a1, d] such that Part(〈δ1, . . . , δk〉, O) holds on [a1, b].

Proof. ⇐ direction. Let I1, . . . , Ik be a partition of [a1, b] into non-empty inter-
vals such that δj holds on all points in Ij and Ii precedes Ij for i < j, and Ii is
a one-point interval for i ∈ O. Let us choose any ai ∈ Ii for i = 2, . . . , k. Then
∧ki=1Fi(ai) holds by Lemma 3.5(1).
⇒ direction. Let Fi for i = 1, . . . , k be as in the lemma. By induction on

l ≤ k we prove that if there are points a1 < a2 < · · · < al such that ∧li=1Fi(ai)
then there is b ≤ al such that Part(〈δ1 ∧ F1, . . . , δl ∧ Fl〉, O ∩ {1, . . . , l}) holds
on [a1, b].

The basis is immediate, take b := a1.
Inductive step: l 7→ l + 1.
By the inductive assumption there is b′ ≤ al and a partition of [a1, b

′] into l
non-empty intervals I ′1, . . . , I

′
l such that δi ∧ Fi holds on I

′
i for i ≤ l and I

′
i is a

one-point interval for every i ∈ O ∩ {1, . . . , l}.
In particular, Fl(b

′) holds. Now, by inspecting the definition of Fl according
to Equation (2) on page 8, it is easy to construct the required interval and its
partition. In all four cases Ii is defined as I ′i for i < l and we explain how Il
and Il+1 are defined.

If l ∈ O and l + 1 ∈ O, then Fl := Dl ∧ FalseUntilFl+1. Note that Fl,
holds at b′, therefore b′ has a successor c and c ≤ al+1 because b′ ≤ al < al+1.
Define Il := I ′l , b := c and Il+1 := {b}. It is clear that I1, . . . , Il+1 is a required
partition.

12

If l ∈ O and l + 1 /∈ O, then Fl := Dl ∧ Dl+1UntilFl+1; hence, there is
c > b′ such that Fl+1(c) and δl+1 holds on (b′, c]. Define Il := I ′l . Define
b := min(c, al+1), and Il+1 as (b′, b]. It is clear that I1, . . . , Il+1 is a required
partition.

If l /∈ O and l + 1 ∈ O, then Fl := Dl ∧DlUntilFl+1; hence, there is c > b′

such that Fl+1(c) and δl holds on (b′, c]. Define b := min(c, al+1). Define Il as
I ′l ∪ (b′, b) and Il+1 as {b}.

If l /∈ O and l + 1 /∈ O, then Fl := Dl ∧DlUntil
∗Fl+1. Since Fl holds at b′

there is c > b′ and a partition of [b′, c] into two non-empty intervals J1 and J2
such that J1 < J2 and Dl holds at all points of J1 and Fl+1 holds at all points
of J2. If c < al+1 define Il := I ′l ∪ J1 and Il+1 := J2 and b := c. If al+1 ∈ J2
define Il := I ′l ∪ J1, Il+1 := J2 ∩ {a | a ≤ al+1} and b := al+1. If al+1 ∈ J1,
define Il := I ′l ∪ (J1 ∩ {a | a < al+1}), Il+1 := {al+1} and b := al+1. It is clear
that b ≤ al+1 and I1, . . . , Il+1 is a required partition.

5.2 Proof of Proposition 5.4

LetAn(P1, . . . , Pn, z0, z1) be ∃x1 . . . ∃xn (z0 < x1 < · · · < xn < z1)∧
∧n

i=1 Pi(xi).
We have to prove that ¬An is equivalent to a simple formula.
¬An is equivalent to the disjunction of (z0, z1) = ∅ and of (z0, z1) 6= ∅∧¬An.

The first disjunct is equivalent to a simple formula. Therefore, it is sufficient to
prove that the second disjunct is equivalent to a simple formula.

Below we assume that (z0, z1) is non-empty, and prove by induction on n.
Basis : The case n = 1 is trivial.
Inductive step: n 7→ n+ 1.
Since (z0, z1) is non-empty, then one of the following cases holds:

Case 1 There is no occurrence of P1 in (z0, z1) or there is no occurrence of
Pn+1 in (z0, z1).

Case 2 z0 = inf{z ∈ (z0, z1) | P1(z)}.

Case 2′ z1 = sup{z ∈ (z0, z1) | Pn+1(z)}. This case is dual to case 2.

Case 3 inf{z ∈ (z0, z1) | P1(z)} is an element in (z0, z1).

Case 3′ sup{z ∈ (z0, z1) | Pn+1(z)} is an element in (z0, z1). This case is dual
to case 3.

Case 4 1. Both c := inf{z ∈ (z0, z1) | P1(z)} and d := sup{z ∈ (z0, z1) |
Pn+1(z)} are gaps in (z0, z1) and

2. c ≥ d.

Case 5 1. Both c := inf{z ∈ (z0, z1) | P1(z)} and d := sup{z ∈ (z0, z1) |
Pn+1(z)} are gaps in (z0, z1) and

2. c < d.

13

For each of these cases we construct a simple formula Condi which describes it
(i.e., Case i holds iff Condi holds), and show that if Condi holds, then ¬An+1 is
equivalent to a simple formula Formi. Hence, ¬An+1 is equivalent to a simple
formula ∨i[Condi ∧ Formi].

Case 1 This case holds iff Part(〈¬P1(x)〉, ∅)(z0, z1)∨Part(〈¬Pn+1(x)〉, ∅)(z0, z1)
In this case ¬An+1 is equivalent to True.

Case 2 Case 2 holds iffK
+(P1)(z0). In this case ¬An+1 iff ¬An(P2, . . . , Pn+1, z0, z1)

which is equivalent to a simple formula by the inductive assumption.

Case 2′ This case is dual to Case 2.

Case 3 This case holds iff there is (a unique) r0 ∈ (z0, z1) such that ¬P1 holds
along (z0, r0) and either P1(r0) or K

+(P1)(r0).
This r0 is definable by the following simple formula, i.e., r0 is a unique z

which satisfies it:

INF (P1, z0, z, z1) := z0 <z < z1 ∧ “no P1 in (z0, z)”∧

∧ (P1(z) ∨K
+(P1)(z))

Hence, this case is described by (∃z)<z1
>z0INF (P1, z0, z, z1) which is equivalent to

a simple formula.
In this case ¬An+1 iff (∃z)<z1

>z0

(

INF (P1, z0, z, z1) ∧ ¬An(P2, . . . , Pn, z, z1)
)

.
The inductive assumption and Lemma 3.4 imply that this formula is equivalent
to a simple formula.

Case 3′ This case is dual to Case 3.

Case 4 The first condition holds iff

• z0 succeeded by ¬P1 gap in (z0, z1), i.e. γ
+(¬P1)(z0) and P1 holds at

some point in (z0, z1), and

• z1 preceded by ¬Pn+1 gap in (z0, z1), i.e., γ
−(¬Pn+1)(z1) and Pn+1 holds

at some point in (z0, z1).

(Modalities γ+ and γ
− were defined in Sect. 2.2.2.) Hence, the first condition

is equivalent to a simple formula.
If the first condition holds, then the second condition holds iff in (z0, z1) no

occurrence of P1 precedes an occurrence of Pn+1, i.e., iff Part(〈¬P1,¬Pn+1〉, ∅)(z0, z1).
Hence, Case 4 is described by a simple formula.

In Case 4 ¬An+1(P1, . . . , Pn+1, z0, z1) is equivalent to True.

Case 5 The first condition is the same as in Case 4. If the first condition holds,
then z is between c and d iff z satisfies the formula:

Between(z0, z, z1) := (∃x1)
<z
>z0

P1(x1) ∧ (∃xn+1)
<z1
>z Pn+1(xn+1).

Hence, this case can be described as the conjunction of the first condition and
∃zBetween(z0, z, z1) and this is equivalent to a simple formula.

14

Note that in this case ∃x1 . . . ∃xn+1 (z0 < x1 < · · · < xn+1 < z1)∧
∧n+1

j=1 Pj(xj)
holds iff for every z between c and d one of the following 2n−1 conditions holds:
for i = 1, . . . , n:

∃x1 . . . ∃xn+1 (z0 < x1 < · · · < xn+1 < z1) ∧ xi < z < xi+1 ∧
n+1
∧

j=1

Pj(xj)

for i = 2, . . . , n:

∃x1 . . . ∃xn+1 (z0 < x1 < · · · < xn+1 < z1) ∧ xi = z ∧
n+1
∧

j=1

Pj(xj)

Hence, ¬∃x1 . . . ∃xn+1 (z0 < x1 < · · · < xn+1 < z1)∧
∧n+1

j=1 Pj(xj) is equivalent
to

∃z(Between(z) ∧
n
∧

k=1

[

¬Ak(P1, . . . , Pk, z0, z) ∨ ¬An+1−k(Pk+1, . . . , Pn+1, z, z1)
]

∧
n
∧

k=2

[

¬Ak−1(P1, . . . , Pk−1, z0, z) ∨ ¬Pk(z) ∨ ¬An+1−k(Pk+1, . . . , Pn+1, z, z1)
]

By the inductive assumption ¬Ak and ¬An+1−k are simple for k = 1, . . . , n.
Since Between is a simple formula, and the set of simple formulas is closed under
conjunction, disjunction and existential quantifier, we obtain a formalization of
this case by a simple formula. This completes the proof of Proposition 5.4.

By Proposition 5.4, Lemma 5.6 and standard logical equivalences we derive:

Corollary 5.7. 1. ¬(∃z)<z1
>z0Part(〈δ

′
1, . . . , δ

′
n〉, O

′)(z0, z] is equivalent to a sim-
ple formula.

2. ¬(∃z)<z1
>z0Part(〈δ

′
1, . . . , δ

′
n〉, O

′)[z, z1) is equivalent to a simple formula.

Proof. (1) Set k := n+1, δ1 := True, δi+1 := δ′i for i = 1, . . . , n and O := {1}∪
{i+1 | i ∈ O′}. Observe: Part(〈δ′1, . . . , δ

′
n〉, O

′)(z0, z] iff Part(〈δ1, . . . , δk〉, O)[z0, z].
Let Fi be defined as in Lemma 5.6. Then ∃x2 . . . ∃xk−1z0 < x2 < · · · <

xk−1 < xk∧F1(z0)∧
∧k

i=2 Fi(xi) iff ∃z(z0 < z ≤ xk∧Part(〈δ1, . . . , δk〉, O)[z0, z]).
Hence, ¬(∃z)<z1

>z0Part(〈δ
′
1, . . . , δ

′
n〉, O

′)(z0, z] is equivalent to ¬F1(z0)∨¬ ∃x2 . . . ∃xkz0 <

x2 < · · · < xk−1 < xk < z1 ∧
∧k

i=2 Fi(xi). The first disjunct is an atom (in the
canonical expansion) and the second disjunct is equivalent to a simple formula
by Proposition 5.4. Therefore, ¬(∃z)<z1

>z0Part(〈δ
′
1, . . . , δ

′
n〉, O

′)(z0, z] is equiva-
lent to a simple formula.

(2) is the mirror image of (1).

5.3 Proof of Proposition 5.3

Convention. We often will say “a formula is simple” instead of “a formula
is equivalent to a simple formula.” In all such cases equivalence to a simple

15

formula is proved by standard logical transformations and/or using the inductive
hypotheses.

We proceed by induction on n.
Basis. The case n = 1 is immediate.
Inductive step n 7→ n+ 1.
¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to the disjunction of (z0, z1) =

∅ and of (z0, z1) 6= ∅ ∧ ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1). The first disjunct is
equivalent to a simple formula. Therefore, it is sufficient to prove that the
second disjunct is equivalent to a simple formula.

From now on we assume that (z0, z1) is non-empty.
Observe that one of the following cases holds:

Case 1 δ1 holds on all points in (z0, z1).

Case 1′ δn+1 holds on all points in (z0, z1). This case is dual to case 1.

Case 2 z0 = inf{z ∈ (z0, z1) | ¬δ1(z)} or z1 = sup{z ∈ (z0, z1) | ¬δn+1(z)}.

Case 3 inf{z ∈ (z0, z1) | ¬δ1(z)} is an element in (z0, z1).

Case 3′ sup{z ∈ (z0, z1) | ¬δn+1(z)} is an element in (z0, z1). This case is dual
to case 3.

Case 4 Both c := inf{z ∈ (z0, z1) | ¬δ1(z)} and d := sup{z ∈ (z0, z1) |
¬δn+1(z)} are gaps in (z0, z1) and c > d.

Case 5 Both c := inf{z ∈ (z0, z1) | ¬δ1(z)} and d := sup{z ∈ (z0, z1) |
¬δn+1(z)} are gaps in (z0, z1) and c < d.

Case 6 Both c := inf{z ∈ (z0, z1) | ¬δ1(z)} and d := sup{z ∈ (z0, z1) |
¬δn+1(z)} are gaps in (z0, z1) and c = d.

For each of these cases we construct a simple formula Condi which descri-
bes it (i.e., Case i holds iff Condi holds), and show that if Condi holds, then
¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to a simple formula Formi. Hence,
¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to a simple formula ∨i[Condi ∧
Formi].

Case 1 is described by Part(〈δ1〉, ∅)(z0, z1). In this case ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1)
is equivalent to ¬(∃z)<z1

>z0Part(〈δ1, . . . , δn+1〉, O)[z, z1), and by Corollary 5.7 this
is a simple formula.

Case 1′ This case is dual to Case 1.

Case 2 This case is described by K
+(¬δ1)(z0) ∨K

−(¬δn+1)(z1). In this case
¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to True.

Note that in the above cases we have not used the inductive assumption.
Case 6 will be also proved directly. However, in cases 3-5 we will use the
inductive assumption.

16

We introduce notations and state an observation which will be used several
times.

For a set O of natural numbers and i ∈ N, we denote by Osh(i) the set O
shifted by i, i.e., Osh(i) := {j | j > 0 ∧ j + i ∈ O}.

Define

C<i(z0, z) :=

{

“z is the successor of z0” for i = 1

Part(〈δ1, . . . , δi−1〉, O ∩ {1, . . . , i− 1})(z0, z) for i = 2, . . . , n+ 2

C>i(z, z1) :=

{

“z1 is the successor of z” for i = n+ 1

Part(〈δi+1, . . . , δn+1〉, Osh(i))(z, z1) for i = 0, . . . , n

For i = 1, . . . , n+ 1 define

C≤i(z0, z) :=C
<i(z0, z) ∨ C

<i+1(z0, z)

C≥i(z, z1) :=C
>i(z, z1) ∨ C

>i−1(z, z1)

Ai(z0, z, z1) :=

{

C<i(z0, z) ∧ δi(z) ∧ C
>i(z, z1) if i ∈ O

C≤i(z0, z) ∧ δi(z) ∧ C
≥i(z, z1) otherwise

From these definitions we obtain the following equivalences:

Part(〈δ1, . . . , δn+1〉, O)(z0, z1)⇔ (∃z)<z1
>z0Ai for i ∈ 1, . . . , n+ 1 (3)

and if (z0, z1) 6= ∅, then

Part(〈δ1, . . . , δn+1〉, O)(z0, z1)⇔ (∀z)<z1
>z0

(

∨

i

Ai

)

(4)

Since, we assumed that (z0, z1) is non-empty, by (3)-(4) we have

¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1)

is equivalent to

(∃z)<z1
>z0

(

∧

i

¬Ai

)

and to

(∀z)<z1
>z0

(

∧

i

¬Ai

)

Hence, for every ϕ(z0, z, z1)

(∃z)<z1
>z0ϕ(z) ∧ ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1)

17

is equivalent to

(∃z)<z1
>z0

(

ϕ(z) ∧
(

∧

i

¬Ai

)

)

is equivalent to

(∃z)<z1
>z0

(

(

ϕ(z) ∧
∧

i∈{2,...,n}

¬Ai

)

∧
(

ϕ(z) ∧ ¬A1 ∧ ¬An+1

)

)

By the inductive assumption, the definition of Ai, and Lemma 3.4, we obtain
that ¬Ai are simple formulas for i ∈ {2, . . . , n}. Similarly, if 1 ∈ O (respectively,
n + 1 ∈ O), then ¬A1 (respectively, ¬An+1) is equivalent to a simple formula.
The set of simple formulas is closed under ∧, ∨ and ∃. Hence,

Observation 5.8. Assume that ϕ(z) is equivalent to a simple formula, and
if 1 /∈ O, then ϕ(z) ∧ ¬A1 is equivalent to a simple formula, and if n + 1 /∈
O, then ϕ(z) ∧ ¬An+1 is equivalent to a simple formula. Then (∃z)<z1

>z0ϕ(z) ∧
¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to a simple formula.

In cases 3-5 we will use this observation with some instances of ϕ.

Case 3 This case holds iff there is (a unique) r0 ∈ (z0, z1) such that δ1 holds
along (z0, r0) and ¬δ1(r0) ∨K

+(¬δ1)(r0).
This r0 is definable by the following simple formula, i.e., r0 is a unique z

which satisfies it:

INF¬δ1(z0, z, z1) := z0 <z < z1 ∧ (suc(z0, z) ∨ Part(〈δ1〉, ∅)(z0, z))∧

∧ (¬δ1(z) ∨K
+(¬δ1)(z))

Hence, this case is described by a simple formula (∃z)<z1
>z0INF¬δ1(z0, z, z1).

By Observation 5.8 it is sufficient to prove that (1) if 1 /∈ O then INF¬δ1 ∧
¬A1 is equivalent to a simple formula, and (2) if n+1 /∈ O, then INF¬δ1∧¬An+1

is equivalent to a simple formula.
Note that ¬δ1(z)∨K

+(¬δ1)(z) implies ¬
(

δ1(z)∧Part(〈δ1, . . . , δn+1〉, O)(z, z1)
)

.
Therefore, by the definition of A1 for the case when 1 /∈ O, and standard logical
transformations we obtain that INF¬δ1∧¬A1 is equivalent to INF¬δ1∧

(

¬C≤1∨
¬δ1(z)∨¬Part(〈δ2, . . . , δn+1〉, Osh(1))(z, z1). The last formula is equivalent to a
simple formula by the inductive assumption and standard logical equivalences.

If n+ 1 /∈ O, then INF¬δ1 ∧ ¬An+1 is equivalent to

INF¬δ1(z0, z, z1) ∧ (¬C≥n+1(z, z1) ∨ ¬δn+1(z) ∨ ¬C
≤n+1(z0, z)).

¬C≥n+1(z, z1) is a simple formula by the induction basis. Note that INF¬δ1(z0, z, z1)
implies suc(z0, z) or “δ1 holds along the interval (z0, z).” By Case 1 the con-
junction of “δ1 holds along the interval (z0, z)” and ¬C≤n+1(z0, z)) is a simple
formula. Therefore, INF¬δ1 ∧ ¬An+1 is equivalent to a simple formula.

18

Case 3′ This case is dual to case 3.

Case 4 The conjunction of the following conditions expresses by a simple for-
mula that z is in the interval (d, c):

• z0 succeeded by δ1 gap in (z0, z1) - γ
+(δ1)(z0) and ¬δ1 holds at some point

in (z0, z1).

• z1 preceded by δn+1 gap in (z0, z1) - γ
−(δn+1)(z1) and ¬δn+1 holds at

some point in (z0, z1).

• δ1 holds along (z0, z) and δn+1 holds along (z, z1).

Let us denote this conjunction by In(d,c)(z0, z, z1).

Hence, this case holds iff (∃z)<z1
>z0 In(d,c)(z0, z, z1).

By Observation 5.8 it is sufficient to show that (1) if 1 /∈ O, then In(d,c)(z0, z, z1)∧
¬A1 is equivalent to a simple formula, and (2) if n+1 /∈ O, then In(d,c)(z0, z, z1)∧
¬An+1 is equivalent to a simple formula.

if 1 /∈ O then In(d,c)(z0, z, z1) ∧ ¬A1(z0, z, z1) is equivalent to

In(d,c)(z0, z, z1) ∧
(

¬δ1(z) ∨ ¬C
≤1(z0, z) ∨ (¬C>1(z, z1) ∧ ¬C

>0(z, z1))
)

.

In(d,c)(z0, z, z1) implies that δn+1 holds along (z, z1), therefore, by Case 1′ both
In(d,c) ∧ ¬C

>0(z, z1) and In(d,c) ∧ ¬C
>1(z, z1) are simple. By the basis of

induction ¬C≤1 is simple. Hence, In(d,c)(z0, z, z1) ∧ ¬A1(z0, z, z1) is simple.
Similar arguments show that if n+1 /∈ O, then In(d,c)(z0, z, z1)∧¬An+1(z0, z, z1)

is simple.

Case 5 It is easy to write a simple formula Between(z0, z, z1) which expresses
that z is in the interval (c, d). Between(z0, z, z1) can be defined as the con-
junction of z0 < z < z1 of

• z0 succeeded by δ1 gap in (z0, z) - γ
+(δ1)(z0) and ¬δ1 holds at some point

in (z0, z).

• z1 preceded by δn+1 gap in (z, z1) - γ
−(δn+1)(z1) and ¬δn+1 holds at some

point in (z, z1).

Hence, this case holds iff (∃z)<z1
>z0Between(z0, z, z1).

By Observation 5.8 it is sufficient to show that (1) if 1 /∈ O, then Between(z0, z, z1)∧
¬A1(z0, z, z1) is equivalent to a simple formula, and (2) if n + 1 /∈ O, then
Between(z0, z, z1) ∧ ¬An+1(z0, z, z1) is equivalent to a simple formula. Since
Between implies ¬C≤1 it follows that Between ∧ ¬A1 is equivalent to Between.
Since Between implies ¬C≥n+1 it follows that Between ∧ ¬An+1 is equivalent
to Between. Therefore, both Between ∧ ¬A1 and Between ∧ ¬An+1 are simple.

Case 6 Both c := inf{z ∈ (z0, z1) | ¬δ1(z)} and d := sup{z ∈ (z0, z1) |
¬δn+1(z)} are gaps in (z0, z1) and c ≥ d iff the conjunction of the following
holds:

1. z0 succeeded by δ1 gap in (z0, z1).

19

2. z1 preceded by δn+1 gap in (z0, z1).

3. Part(〈δ1, δn+1〉, ∅)(z0, z1).

If (1)-(3) holds, then d < c iff F (z0) defined as δ1Until(δ1∧Until-gap(δ1, δ2))(z0)
holds, where Until-gap is defined on page 12.

Hence, this case can be described by the conjunction of (1)-(3) and ¬F (z0).
(1) and (2) are expressed by simple formulas like in Case 4; (3) and ¬F (z0) are
simple formulas. Therefore, this case is described by a simple formula.

In this case Part(〈δ1, . . . , δn+1〉, O)(z0, z1) holds iff there is i such that Part(〈δ1, . . . , δi〉, O)
holds on (z0, c) and Part(〈δi, . . . , δn+1〉, O) or Part(〈δi+1, . . . , δn+1〉, O) holds on
(c, z1). Applying Lemma 5.5 to the tuple 〈True, δ1, . . . , δi〉, O := {1} ∪ {j + 1 |
j ∈ O ∧ j ≤ i} and δ1, we obtain a temporal formula Fi such that Fi(z0) iff
Part(〈δ1, . . . , δi〉, O) holds on (z0, c). By the mirror arguments there is a tem-
poral formula Hi such that Hi(z1) iff Part(〈δi, . . . , δn+1〉, O) holds on (c, z1).
Hence, in this case ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to

n
∧

i=1

(

¬Fi(z0) ∨ (¬Hi(z1) ∧ ¬Hi+1(z1))
)

.

6 Related Works

Our proof is very similar to the proof of Kamp’s theorem in [Rab14]. The only
novelty of our proof are partition formulas. Simple partition formulas generalize
−→
∃ ∀-formulas which played a major role in the proof of Kamp’s theorem [Rab14].

Roughly speaking an
−→
∃ ∀-formula is a normal partition formula which uses only

basic partition expressions Part(〈δ1, . . . , δn〉, O) with the following restriction:
for i < n, if i /∈ O then i + 1 ∈ O. This restriction implies that if a partition
I1, . . . , In witnesses that an interval [t, t′] of M satisfies Part(〈δ1, . . . , δn〉, O),
then all intervals Ii have endpoints inM. Over the Dedekind complete orders
all intervals have end-points and every partition expression is equivalent to a
disjunction of the restricted partition expressions; however, over general linear
orders Part(〈P1(x), P2(x)〉, ∅) is not equivalent to a positive boolean combina-
tion of restricted partition expressions.

As far as we know, there are only two published proofs of Stavi’s theorem.
One is based on separation in Chapter 11 of [GHR94], and the other is based
on games in [GHR93] (reproduced in Chapter 12 of [GHR94]). They are much
more complicated than the proofs of Kamp’s theorem in [GHR94].

A temporal logic has the separation property if its formulas can be equiva-
lently rewritten as a boolean combination of formulas, each of which depends
only on the past, present or future. The separation property was introduced by

Gabbay [Gab81], and surprisingly, a temporal logic which can express � and
←−
�

has the separation property (over a class C of structures) iff it is expressively
complete for FOMLO over C.

In the proof based on separation, a special temporal language L∗ is carefully
designed. The formulas of L∗ are evaluated over Dedekind-complete chains.

20

For every chain M its completion Mc is defined. It is shown: (1) L∗ has the
separation property over the completions of chains; (2) for every ϕ ∈ L∗ there is
a formula ψ ∈ TL(Until, Since,Untils, Sinces) such thatM, t |= ψ iffMc, t |= ϕ,
and (3) for every formula ξ(x) ∈ FOMLO there is ϕ ∈ L∗ such that M, t |= ξ
iffMc, t |= ϕ.

In the game-based proof for every chainM and r ∈ N a chainMr is defined.
Mr is the completion ofM by the gaps definable by TL(Until, Since,Untils, Sinces)
formulas of the nesting depth r. Then, special games on the temporal structures
are considered. The game arguments are easier to grasp, then the separation
ones, but they use complicated inductive assertions.

Our proof avoids completions and games and separates general logical equi-
valences and temporal arguments. The proof is similar to our proof of Kamps
theorem [Rab14]; yet it is longer because it treats some additional cases related
to gaps in time flows.

Acknowledgement

I would like to thank an anonymous referee for insightful suggestions.

References

[Gab81] D. Gabbay. Expressive functional completeness in tense logic (prelimi-
nary report). In U. Monnich, editor, Aspects of Philosophical Logic, pages
91-117. Reidel, Dordrecht, 1981.

[GHR93] D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds Temporal ex-
pressive completeness in the presence of gaps In Logic Colloquium ’90,
Lecture Notes in Logic 2, Springer-Verlag, 1993, pp. 89-121.

[GHR94] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal logic: Mat-
hematical Foundations and Computational Aspects. Oxford University
Press, 1994.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi. On the Temporal
Analysis of Fairness. In POPL 1980, pp. 163-173, 1980.

[Kam68] H.W. Kamp. Tense logic and the theory of linear order. Phd thesis,
University of California, Los Angeles, 1968.

[Pnu77] A. Pnueli (1977). The temporal logic of programs. In Proc. IEEE 18th
Annu. Symp. on Found. Comput. Sci., pages 46–57, New York, 1977.

[Rab14] A. Rabinovich. A Proof of Kamp’s Theorem. Logical Methods in
Computer Science 10(1), 2014.

21

