A Proof of Stavi’s Theorem

Alexander Rabinovich
The Blavatnik School of Computer Science, Tel Aviv University,
email: rabinoa@post.tau.ac.il

Abstract

Kamp’s theorem established the expressive equivalence of the tem-
poral logic with Until and Since and the First-Order Monadic Logic of
Order (FOMLO) over the Dedekind-complete time flows. However, this
temporal logic is not expressively complete for FOMLO over the rationals.
Stavi introduced two additional modalities and proved that the temporal
logic with Until, Since and Stavi’s modalities is expressively equivalent
to FOMLO over all linear orders. We present a simple proof of Stavi’s
theorem.

1 Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [Pnu77] is
a convenient framework for reasoning about “reactive” systems. This has made
temporal logics a popular subject in the Computer Science community, enjoying
extensive research. In TL we describe basic system properties by atomic pro-
positions that hold at some points in time, but not at others. More complex
properties are conveyed by formulas built from the atoms using Boolean con-
nectives and Modalities (temporal connectives): A k-place modality M trans-
forms statements 1, ..., ¢ possibly on ‘past’ or ‘future’ points to a statement
M(p1,...,¢k) on the ‘present’ point ty. The rule to determine the truth of a
statement M (p1,...,¢k) at to is called a Truth Table. The choice of particular
modalities with their truth tables yields different temporal logics. A temporal
logic with modalities My, ..., My, is denoted by TL(Mjy,..., My).

The simplest example is the one place modality OP saying: “P holds some
time in the future.” Its truth table is formalized by ¢, (to, P) = (3t > to)P(%).
This is a formula of the First-Order Monadic Logic of Order (FOMLO) - a
fundamental formalism in Mathematical Logic where formulas are built using
atomic propositions P(t), atomic relations between elements t; = to, t1 < to,
Boolean connectives and first-order quantifiers 3¢ and V¢. Most modalities used
in the literature are defined by such FOMLO truth tables, and as a result,
every temporal formula translates directly into an equivalent FOMLO formula.
Thus, different temporal logics may be considered as a convenient way to use
fragments of FOMLO. FOMLO can also serve as a yardstick by which one is

able to check the strength of temporal logics: A temporal logic is expressively
complete for a fragment L of FOMLO if every formula of L with a single free
variable g is equivalent to a temporal formula.

Actually, the notion of expressive completeness refers to a temporal logic
and to a model (or a class of models) since the question whether two formulas
are equivalent depends on the domain over which they are evaluated. Any (par-
tially) ordered set with monadic predicates is a model for TL and FOMLO, but
the main, canonical, linear time intended models are the non-negative integers
(N, <) for discrete time and the non-negative reals (R=°, <) for continuous
time.

A major result concerning TL is Kamp’s theorem [Kam68], which implies
that the pair of modalities “P Until Q7 and “P Since Q" is expressively com-
plete for FOMLO over the above two linear time canonical models.

The temporal logic with the modalities Until and Since is not expressively
complete for FOMLO over the rationals [GHR94].

Stavi introduced two additional modalities Until® and Since® (see Sect. 2.2.2)
and proved that TL(Until, Since, Until®, Since®) is expressively complete for FOMLO
over all linear orders. There are only two published proofs of Stavi’s theorem
[GHR93, GHRY4[; however, none is simple.

The objective of this paper is to present a simple proof of Stavi’s theorem.

The rest of the paper is organized as follows: In Sect. 2 we recall the defi-
nitions of the monadic logic, the temporal logics and state Kamp’s and Stavi’s
theorems. In Sect. 3 we introduce partition formulas which play an important
role in our proof of Stavi’s theorem. In Sect. 4 we prove Stavi’s theorem. The
proof of one proposition is postponed to Sect. 5. Sect. 6 comments on the
previous proofs of Stavi’s theorem.

2 Preliminaries

In this section we recall the definitions of linear orders, the first-order monadic
logic of order, the temporal logics and state Kamp’s and Stavi’s theorems.

2.1 Intervals and gaps in linear orders

A subset I of a linear order (T, <) is an interval, if for all t; < ¢t < to with
ti,to € I also t € I. For intervals with endpoints a,b € T, whether open or
closed on either end, we will use the standard notation, such as [a,b) :== {t € T |
a<t<b}, (a,b):={teT|a<t<b},etc. ForaeTlet[a,c0):={t|t>a}
and, similarly, (—oo,a) := {t €| t < a}.

A Dedekind cut of a linearly ordered set (T, <) is a downward closed non-
empty set C' C T such that its complement is non-empty and if C' has a least
upper bound in (7', <), then it is contained in C. A proper cut or a gap is a cut
that has no least upper bound in (7, <), i.e., one that has no maximal element.

A linear order is Dedekind complete if it has no gaps; equivalently, if for every
non-empty subset S of T, if S has a lower bound in 7', then it has a greatest

lower bound, written inf(S), and if S has an upper bound in T, then it has a
least upper bound, written sup(5).

For a gap g and an element ¢t € T we write ¢t < g (respectively, g < t) ift € g
(respectively, t ¢ g). We also write (t, g) for the interval {a € T | a > tAa € g};
similarly, (g,t) is {a € T |a <t Aa ¢ g}. Finally, for gaps g1 and g2 we write
g1 < g2 if g1 C g9, and the interval (g1, g2) is defined as {a € T' | a ¢ g1 A\a € ga}.

2.2 First-order Monadic Logic and Temporal Logics

We present the basic definitions of First-Order Monadic Logic of Order (FOMLO)
and Temporal Logic (TL), and well-known results concerning their expressive
power. Fix a set X of atoms. We use P,Q, R, ... to denote members of Y. The
syntax and semantics of both logics are defined below with respect to such a 3.

2.2.1 First-Order Monadic Logic of Order

Syntax: In the context of FOMLO the atoms of ¥ are referred to (and used) as
unary predicate symbols. Formulas are built using these symbols, plus two
binary relation symbols: < and =, and a set of first-order variables (denoted:
x,Y,%,...). Formulas are defined by the grammar:

atomic:= z<y | x=y | Px) (where P e X)

pu= atomic | —p1 | o1 Vs | w1 Aea | Fzpr | Ve
The notation ¢(x1, ..., x,) implies that ¢ is a formula where the z; are the only
variables occurring free; writing ¢(x1,...,x,, P1,..., Py) additionally implies
that the P; are the only predicate symbols that occur in ¢. We will also use
the standard abbreviated notation for bounded quantifiers, e.g.: (3z)s.(...)
denotes Jz((x > z)A(...)) and (Vz)SZ,(...) denotes Va((z1 <z < z) = (...)),
ete.

Semantics: Formulas are interpreted over labeled linear orders which are
called chains. A Y-chain is a triplet M = (T,<,Z) where T is a set - the
domain of the chain, < is a linear order relation on T', and Z : ¥ — P(T) is the
interpretation of ¥ (where P is the powerset notation). We use the standard
notation M, ty,ta,...t, = @(x1,x2,...2,) to indicate that the formula ¢ with
free variables among x1,...,x, is satisfiable in M when z; are interpreted as
elements ¢; of M. For atomic P(z) this is defined by: M, t |= P(z) iff t € Z(P);
The semantics of <,=,—,A,V,3 and V is defined in a standard way.

2.2.2 Temporal Logics

Syntax: In the context of TL the atoms of X are used as atomic propositions
(also called propositional atoms). Formulas are built using these atoms and a
set (finite or infinite) B of modality names, where an integer arity, denoted |M|,
is associated with each M € B. The syntax of TL with the basis B, denoted
TL(B), is defined by the grammar:

F.:= P | - | Fi Vv Fy ‘ Fi N Fy | M(F17F2,...,Fn),

where P € ¥ and M € B an n-place modality (with arity |M| = n). As usual,
True denotes PV —P and False denotes P A —P; we will use infix notation for
binary modalities, where F; M F; is an alternative notation for M(Fy, F3).

Semantics: Formulas are interpreted at time-points (or moments) in chains
(elements of the domain). The domain T of M = (T,<,Z) is called the time
domain, and (T,<) - the time flow of the chain. The semantics of each n-
place modality M € B is defined by a ‘rule’ specifying how the set of moments
where M(Fy, ..., F},) holds (in a given structure) is determined by the n sets of
moments where each of the formulas F; holds. Such a ‘rule’ for M is formally
specified by an operator Oy on time flows, where given a time flow F = (T}, <),
Om(F) is an operator in (P(T))" — P(T).

The semantics of TL(B) formulas is then defined inductively. Given a chain
M = (T,<,Z) and a moment ¢t € M, define when a formula F' holds in M at t
- denoted M, t |= F:

e M.t | Piff t € Z(P), for any propositional atom P.
e Mt EFVGifft M,tEF or M,t | G, similarly for A and —.

o Mt =M(F,...,F,)iff t € [Om(T, <)|(Th,...,T,) where M € B is an n-
place modality, F1,. .., F, are formulas and T; =4cf {s € T : M, s = F;}.

Truth tables: Practically most standard modalities studied in the literature
can be specified in FOMLO: A FOMLO formula ¢(z, Py, ..., P,) (with a single
free first-order variable x and with n predicate symbols P;) is called an n-place
first-order truth table. Such a truth table ¢ defines an n-ary modality M
(whose semantics is given by an operator Oy) iff for any time flow (T, <), for
any 11,...,T, € T and for any structure M = (T, <,Z) where Z(P;) = T;:

(Oa (T, O|(Th,..., T = {t e T: M.t = (x,Py,...,Pn)}

Example 2.1. Below are truth-table definitions for the (binary) strict-Until
and strict-Since and the (unary) O, E, Kt and K™ :

o P Until Q is defined by : ¢, (x, P,Q) := (32')>,(Q(z) A (Vy);;/P(y))
e P Since Q is defined by: ¢, (x, P,Q) == (32')<*(Q(2") A (Vy) S5 P(y))-

e [I(P) (respectively, E(P)) - “P holds everywhere after (respectively, be-
fore) the current moment”:

Yo (];7P) = (VZ‘/)>IP(Z‘/)
(pﬁ(a’;,P) = (V.’L‘/)<$P(.’L‘/)
e K" defined by: @ (@, P) = (Vm’)>z(3y)§§/P(y)).

o K defined by: ¢ _(x,P):= (Va')<*(3y)S5 P(y)).

>’

Formula K™ (P) holds at a moment ¢ iff t = sup({t' | ¢’ <t AP(t')}). Dually,
K™ (P) holds at t iff t = inf({t | ' > t A P(t')}). Note that K¥(P) is equivalent
to =((=P)UntilTrue) and OJP is equivalent to —(TrueUntil(—P)).

Let v7 be a unary modality such that 4" (P) holds at ¢ if there is a gap
g > t in the order such that g = sup({t’ | (Vy)ifP(y)}) We say that g is the
gap left definable by P that succeeds t, or just that g is P-gap that succeeds t; P
holds everywhere on the interval (¢, g), and for every ¢; > g, there is t' € (g, 1)
such that ¢’ ¢ P.

A natural formalization of 4" semantics uses a second-order quantifier -
“there is a gap”; however, v+ (P) is equivalent to the conjunction of the following
formulas [GHR94]:

1. (PUntilP) A =(PUntil=P).
2. =OP - “=P holds somewhere in the future.”
3. =(PUntil(P A KY(=P))).

Since (0 and K™ are equivalent to TL(Until) formulas, 4+ (P) can be considered
as an abbreviation of a TL(Until) formula, and 4T has a first-order truth table

Pyt (I7 P)

~~ is the mirror image of 4™, i.e., going into the past instead of into the
future. v~ (P) holds at ¢ if there is a gap g < t in the order such that P holds
everywhere on the interval (g,t), and for every ¢; < g, there is t’ € (¢1,g) such
that ¢ ¢ P. We say that ¢ is the (right definable) P-gap that precedes t, or
just that g is P-gap that precedes t.

The modalities Until® and Since® were introduced by Stavi. PUntil’Q holds
at t if there is a gap g > t such that:

e P is true on (,g).
e In the future of the gap, P is false arbitrarily close to the gap, and
e () is true from ¢ into the future for some uninterrupted stretch of time.

Until® has a first-order truth table @y (x, P, Q) which is the conjunction
of the following formulas:

L. @yt (z, P).
2. (Fw1)50 (2P (21) A ()33 [(-P() — (V2)35' Q(2)])-

Since® is the mirror image of Until®.

2.3 Kamp’s and Stavi’s Theorems

We are interested in the relative expressive power of TL (compared to FOMLO)
over the class of linear structures, where the time flow is an irreflexive linear
order.

Equivalence between temporal and monadic formulas is naturally defined:
F' is equivalent to ¢(z) over a class C of structures iff for any M € C and t € M:
Mt = F & Mt | o(x). If C is the class of all chains, we will say that F is
equivalent to ¢.

Expressive completeness/equivalence: A temporal language TL(B) is
expressively complete for FOMLO over a class C of structures iff for every
FOMLO formula ¢(z) with one free variable there is a ¢ € TL(B) such that ¢
is equivalent to ¥ over C. Similarly, one may speak of expressive completeness
of FOMLO for some temporal language. If we have expressive completeness in
both directions between two languages, then they are expressively equivalent.

If every modality in B has a FOMLO truth-table, then it is easy to translate
every formula of TL(B) to an equivalent FOMLO formula. Hence, in this case
FOMLO is expressively complete for TL(B).

The fundamental theorem of Kamp’s states:

Theorem 2.2 ([Kam68]). T'L(Until, Since) is expressively equivalent to FOMLO
over Dedekind complete chains.

TL(Until, Since) is not expressively complete for FOMLO over the rationals.
Stavi introduced two new modalities Until® and Since® (see Sect. 2.2.2) and
proved:

Theorem 2.3. TL(Until, Since, Until®, Since®) is expressively equivalent to FOMLO
over all chains.

As Until, Since and Stavi’s modalities are definable in FOMLO, it follows
that FOMLO is expressively complete for TL(Until, Since, Until®, Since®). The
contribution of our paper is a proof that TL(Until, Since, Until®, Since®) is ex-
pressively complete for FOMLO.

3 Partition Formulas

In this section we introduce partition formulas and state their properties. They
will play an important role in our proof of Stavi’s theorem. The basic partition
formulas generalize the Decomposition formulas of [GPSS80].

Definition 3.1 (Partition expressions). Let ¥ be a set of monadic predicate
names, and 01(x),...0,(x) are quantifier free first-order formulas over ¥ with
one free variable, and O C {1,...,n}. An expression Part((d1,...,0,),0) is
called a partition expression over Y.

Semantics. Let I be an interval of a Y-chain M. A partition expression
Part({d1,...,d,),0) holds on I in M (notation M, I = Part({dy,...,d,),0)
if I can be partitioned into n non-empty intervals I, ..., I, such that J; holds
on all points in I, and I; precedes I; for i < j, and I; a one-point interval
for j € O. Note that we do not require that if I; is a one-point interval, then

j € O. Observe that the semantics of partition expressions does not depend on
the names of the variables that appear in d;.

For example, Part((P;(z), P2(z) V P3(z)),{1,2}) holds over T iff T is a two
point interval and P; holds over its first point and P> or P53 holds over its second
point. Part((True, True), {1}) holds over I iff I has a minimal point and at
least two points.

Definition 3.2 (Partition Formulas). Let ¥ be a set of monadic predicate na-
mes.

Basic Partition Formulas A basic partition formula (over ¥) is an expres-
sion of one of the following forms:

1. z=yorz<y

2. Part({01,...,0,),0)y, 2]
3. Part((01,...,0n),0)|z,) or Part({d1,...,0n), 0)(—00,z] or
Part({d1,...,0n),0)(—00,00),
where Part((01,...,0n),0) are partition expressions.

Partition Formulas are constructed from the basic partition formulas by Bool-
ean connectives and existential quantifier.

Simple Partition Formulas are constructed from the basic partition formulas
by conjunction and disjunction.

Normal Partition Formulas A Normal Partition Formula is a partition for-
mula of the form:

E(z1,...2m :< /\ zk—zzk> (71 <22 <+ < 2zp)

k=n-+1
A A Wilzion, 2]

j=2
A Wn-l—l[znaoo) /\Wl(_ooazl]
A Wo(—o0,00)

where W, are basic partition formulas, n < m and in41,...,0m € {1,...n}.

The semantics of the partition formulas will not depend on the names of
variables that occur in partition expressions. These occurrences of the variables
are considered to be bound. For other occurrences of variables the definition
whether occurrences are free or bound is standard.

Semantics. Partition formulas are interpreted over X-chains. Let M = (T, <
,Z) be a ¥-chain. We use the standard notation M, t1,ta,...t, &= @(x1,22,...2,)
to indicate that the formula ¢ with free variables among x4, ..., z,, is satisfiable
in M when x; are interpreted as elements ¢; of M. For basic partition formulas
this is defined by: M.t = Part({d1,...,0,),0)[z,00) iff the partition expres-
sion Part((dy,...,d,),0) holds on the interval [t,00) in M; similarly, M, ¢ |=
Part((d1,...,0n), O)(—o0, z] (respectively, M = Part({dy,...,d,), 0)(—00,0))
iff Part((d1,...,d,),0) holds on the interval (—oo } (respectively, the interval
(=00, 0)) in M; and M, t1,ts = Part((d1,...,0,),0)[x1, xo] iff Part((d1,...,0,),0)
holds on the interval [t,t2] in M; the semantics of <,=,—,A,V, and 3 is defi-
ned in a standard way.

The following lemmas immediately follow from the definitions and standard
logical equivalences.

Lemma 3.3. 1. Every simple formula is equivalent to a disjunction of nor-
mal formulas.

2. For every normal formula o, the formula xp is equivalent to a disjunction
of normal formulas.

3. For every simple formula o, the formula Jx¢ is equivalent to a simple
formula.

Lemma 3.4 (Closure properties). The set of simple formulas is (semantically)
closed under disjunction, conjunction, and existential quantifier.

The set of simple formulas is not closed under negation. However, we show
later (see Proposition 4.2) that the negation of a simple formula is equivalent to a
simple formula in the expansion of the chains by all TL(Until, Since, Until®, Since®)
definable predicates.

In the rest of this section we explain how to translate a simple partition
formula with one free variable into an equivalent T'L(Until, Since, Until®, Since®)
formula.

Let d1,...,0, be quantifier free first-order formulas with one free variable
and O C{1,...,k}. Fori=1,...k, let D; be a temporal formula equivalent to
6;. Define:

Fk = Dk (1)
FalseUntilF; ifi—1€ O andi€ O;
D;UntilF; ifi—1€0 andi¢ O; @)
D;_1UntilF; ifi—1¢ O andie€ O;
Di,lUntiI*Fi ifi—1 ¢ O and ¢ ¢ O,
where PUntil*@ holds at t if there is ¢’ > ¢ such that Part((P(x), Q(z)),) holds

on the interval [t,#']; PUntil*@ can be expressed as disjunction of the following
formulas:

e PA((PUntilQ) vV (QUntilQ) v PUntil(P A (QUntilQ)))
e PA(PUntil*Q)

Fi 1:=D; 1 A

Lemma 3.5. 1. Assume that there is t and a partition of [t1,t] into non-
empty intervals Iy, ..., I such that §; holds on I; and I; precedes I; for
1 < j, and I; is a one-point interval for i € O. Then Fj,_; holds on I,_;.

2. if Fi,_; holds at ty_; then there ist > t,_; such that Part((0x—j,...,0k), Or—j)
holds on [ty—;,t], where l € Op—; iff l+k—1—j € O.

3. Fy holds at t1 iff there is t > t1 such that Part((d1,...,0k),O) holds on
[tl,t}.

Proof. (1) and (2) by induction on j. (3) immediately from (1) and (2). O

Let ¢}, be a quantifier-free first-order formula with one free variable and Dj, be
a temporal formula equivalent to ;. If £ ¢ O and we set Dy, := D;, AOD;j, in
equation (1), then F; holds at ¢ iff Part((di,...,0k_1,6}),O) holds on [t;, 00);
if k € O and we set Dy, := D) A OFalse in equation (1), then F; holds at ¢; iff
Part((d1,...,0,—1,0}),0) holds on [t1,00). Hence, we obtained:

Lemma 3.6. For everydy,...,0p and O C {1,...,k} there is a TL(Until, Until®)
formula F such that F holds at t iff Part({d1,...,dx),O) holds on [t,o0).

By Lemma 3.6 and standard logical equivalences we obtain:

Proposition 3.7 (From simple formulas to T'L). Every simple formula with at
most one free variable is equivalent to a TL(Until, Since, Until®, Since®) formula.

Proof. Note that every simple partition formula with at most one free variable z
is equivalent to a boolean combination of basic partition formulas of the forms:
Part((d1),0)[z, 2], Part((d1,...,dn), 0)[z,00), Part((dy,...,d0,), O)(—00, 2], or
Part((d1,...,0,), 0)(—00,00). Let D; be a temporal formula equivalent to the
first-order quantifier free formula é;. A formula of the form Part((d1),0)|z, 2]
is equivalent to D;. By Lemma 3.6 and its mirror variant the formulas of the
second and the third forms are equivalent to TL(Until, Since, Until®, Since®) for-
mulas. A formula of the form Part({dy,...,d,),O0)(—00,00) is equivalent to
“Part((d1),0)(—o0, z] A Part({01,...,0,),0)[z,00) for some z.” Since each of
the conjuncts is equivalent to a temporal formula, the conjunction is also equi-
valent to a temporal formula A, and Part({dy,...,d,), O)(—oc0, 00) is equivalent
to =(O0-A A -AA EﬂA). Hence, every simple formula with at most one free
variable is equivalent to a TL(Until, Since, Until®, Since®) formula. O

4 Proof of Stavi’s Theorem

The next definition plays a major role in our proof of Stavi’s theorem; a similar
definition is used in the proof of Kamp’s theorem [GPSS80].

Definition 4.1. Let M be a ¥ chain. We denote by E[X] the set of unary
predicate names X U {A | A is an TL(Until, Since, Until®, Since®)-formula over

Y }. The canonical TL(Until, Since, Until®, Since®)-expansion of M is an expan-
sion of M to an E[X]-chain, where each predicate name A € E[X] is interpreted
as {a € M | M,a = A}

Note that if A is a T'L(Until, Since, Until*, Since®) formula over £[X] predi-
cates, then it is equivalent to a TL(Until, Since, Until®, Since®) formula over ¥,
and hence to an atomic formula in the canonical TL(Until, Since, Until®, Since®)-
expansions.

From now on we say “formulas are equivalent in a chain M” instead of “for-
mulas are equivalent in the canonical TL(Until, Since, Until®, Since®)-expansion
of M.” The partition formulas are defined as previously, but now they can use
as atoms TL(Until, Since, Until®, Since®) definable predicates.

It is clear that the results stated in Sect. 3 hold for this modified notion
of partition formulas. In particular, every simple formula with at most one
free variable is equivalent to a TL(Until, Since, Until®, Since®) formula, and the
set of simple formulas is closed under conjunction, disjunction and existential
quantification. However, now the set of simple formulas is also closed under
negation, due to the next proposition whose proof is postponed to Sect. 5.

Proposition 4.2 (Closure under Negation). The negation of every simple par-
tition formula is equivalent to a simple partition formula.

As a consequence we obtain:
Proposition 4.3. FEvery first-order formula is equivalent to a simple formula.
Proof. We proceed by structural induction.
Atomic It is clear that every atomic formula is equivalent to a simple formula.
Negation By Proposition 4.2.
F-quantifier and disjunction This follows from Lemma 3.4. U
Proposition 4.3 and Proposition 3.7 immediately imply Stavi’s Theorem:

Theorem 4.4. Every FOMLO formula with one free variable is equivalent to
a TL(Until, Since, Until®, Since®) formula.

This completes our proof of Stavi’s theorem except for Proposition 4.2 which
is proved in Sect. 5.

5 Proof of Proposition 4.2

Throughout our proof we will freely use that the following assertions and their
negations are expressible by simple formulas:

1. (20, 21) contains a point in P.

LWe often use “a € M” instead of “a is an element of the domain of M.”

10

2. suc(zg,21) - 21 18 a successor of zg.

3. interval (zg, z1) contains exactly k points.

4. interval (zp,2z1) contains at most k points.
Let us introduce some helpful notations.

Notations 5.1. We use the abbreviated notations Part((dy,...,0,),0)(z0, 21)
for Part({True,o,...,0,, True),0')[zo, z1], where O' := {1,n+2} U{i+ 1|
i € O}. Hence, M, tg,t1 = Part({01,...,0n),0)(20,21) iff Part((01,...,0n),0)
holds on the open interval (to,t1) in M. Similarly, Part({(d1,...,0n),O)(z0,21]
stands for Part((True,o1,...,0,),0")[z0, 21], where O := {1} U{i+1]i € O};
and Part((01,...,0n),0)[z0, 21) for Part({d1,...,dn, True),O’)[zo, z1], where
O ={n+1}UO0.

By Proposition 3.7 and standard logical equivalences we obtain:

Lemma 5.2. If every formula of the form —Part({d1,...,0,),0)(z0, 21) is equi-
valent to a simple formula, then the negation of every simple formula is equiva-
lent to a simple formula.

Proof. 1. Every basic partition formula ¢ either (a) has at most one free va-
riable and then ¢ and = are equivalent to simple formulas by Proposition
3.7, or (b) is equivalent to a formula of the form Part((d1, ..., dx), O)[zo, 21].

2. A formula of the form Part({(di,...,dx), O)[z0, 21] is equivalent to a for-
mula constructed by disjunction and conjunction from formulas of the
forms: (a) Part({d1,...,0n),0")(z0,21) and (b) suc(zo, 21), 20 < 21, 20 =
21, 01(20) and dx(z1), where 0;(2) is a quantifier-free first-order formula.
Formulas of the form (b) and their negations are equivalent to simple
formulas.

Hence, if every formula of the form —Part((dy,...,d;), O)(z0,21) is equiva-

lent to a simple formula, by the definition of simple formulas, (1)-(2) and De
Morgan’s laws we obtain the conclusion of the Lemma. O

Lemma 5.2 and the next proposition immediately imply Proposition 4.2.

Proposition 5.3 (Closure under negation). Every formula of the form
—Part({01,...,0n),0)(20,21) is equivalent to a simple formula.

Sect. 5.3 contains a proof of Proposition 5.3. In the next subsection we pro-
vide some useful temporal logic formalizations. A proof of the next proposition,
which is very similar to the proof of Proposition 5.3 is presented in Sect. 5.2.

Proposition 5.4. =3z ...3z, (20 < 21 < -+ <@, < 20)A Ny Pi(z;) is equi-
valent to a simple formula.

11

5.1 Some formalizations in T'L(Until, Since, Until®, Since®)

First, observe that there is a TL(Until, Until®) formula that holds at ¢ if ¢ succeeds
by a (left definable) Pj-gap and until this gap Py A P2 holds. Indeed, the required
formula is Until—gap(Pl, P2) = ")’+(P1) A ’}’+(P1 A Pg) A _\((Pl A Pg)Unt“SPl).

Let 6 and 67,...,d; be quantifier free first-order formulas with one free
variable. For ¢ = 1,...k, let D} be a temporal formula equivalent to §; and
let D be a temporal formula equivalent to J.

If we set Dy := Until-gap(D, D},) in equation (1) (see page 8) and D, :=
D;AD fori=1,...,k—11in equation (2), then F}(¢;) holds iff there is a §-gap
g that succeeds t; such that Part((d},...,d;),0) holds on [t;,g). Hence, we
obtained the following Lemma:

Lemma 5.5. For every k-tuple (61,...,0;), O C {1,...,k} and ¢ there is a
TL(Until, Until®) formula F such that F holds at t iff there is a 6-gap g that
succeeds t such that Part({d1,...,dx),O) holds on [t,g).

Lemma 5.6. Suppose we are given k > 1 quantifier-free formulas 01,...,05
with one free variable, a set O C {1,...,k}, and points ai,d with a1 < d. Let
Fy, ..., Fy be defined as in equations (1) and (2) on page 8. Then the following
are equivalent:

1. There are points a; < ag < --- < aj, < d such that \¥_, F;(a;).
2. There is b € [a1,d] such that Part({(d1,...,dx),0) holds on [a1,D].

Proof. < direction. Let Iy,..., I be a partition of [a1,b] into non-empty inter-
vals such that d; holds on all points in /; and I; precedes I; for i < j, and I; is
a one-point interval for i € O. Let us choose any a; € I; for i = 2,..., k. Then
AF_, Fi(a;) holds by Lemma 3.5(1).

= direction. Let F; for ¢ = 1,...,k be as in the lemma. By induction on
I < k we prove that if there are points a; < az < --- < a; such that Al_, F;(a;)
then there is b < a@; such that Part((dy A F1,...,0 A F;),ON{l,...,1}) holds
on [aj,b].

The basis is immediate, take b := a;.

Inductive step: [+ [+ 1.

By the inductive assumption there is b’ < a; and a partition of [ay, V'] into
non-empty intervals I7,. .., I] such that §; A F; holds on I} for ¢ <[and I} is a
one-point interval for every i € ON{1,...,l}.

In particular, F;(b') holds. Now, by inspecting the definition of F; according
to Equation (2) on page 8, it is easy to construct the required interval and its
partition. In all four cases I; is defined as I/ for ¢ < [and we explain how I
and ;41 are defined.

Ifl e Oand I +1 € O, then F; := D; A FalseUntilF;,;. Note that Fj,
holds at o', therefore b’ has a successor ¢ and ¢ < a;41 because V' < a; < ajiq.
Define I; := I}, b := c and I;4 := {b}. It is clear that Iy,..., ;1; is a required
partition.

12

Ifl e Oand I+ 1 ¢ O, then F; := D; A Dj41UntilFj41; hence, there is
¢ > U such that Fj41(c) and &;41 holds on (V/,¢]. Define I; := I]. Define
b := min(c,a;41), and I;11 as (V/,b]. Tt is clear that Iy,...,I;11 is a required
partition.

Ifl ¢ Oand I+ 1 € O, then F; := D; A D;UntilFy1; hence, there is ¢ >
such that Fjy1(c) and ¢; holds on (¥, ¢]. Define b := min(c, a;+1). Define I; as
IJU(b,b) and I;44 as {b}.

Ifl ¢ Oand l+1¢ O, then F; := D; A D;Until*F ;1. Since F; holds at b’
there is ¢ > V' and a partition of [/, ¢] into two non-empty intervals J; and Jo
such that J; < Jy and D; holds at all points of J; and Fj41 holds at all points
of Jo. If ¢ < aj4q define I; := I/ U Jy and ;41 == Je and b :=c. If a;41 € Jo
define Iy := I U Jy, 141 == JoN{a | a < ajpa} and b := a1, If ai41 € J4,
define I; := I U (J1 N{a | a < ai41}), Iiy1 = {ai41} and b := az41. It is clear
that b < ajyq and Iy,..., ;41 is a required partition.]

5.2 Proof of Proposition 5.4

Let 1471(1317 e ,Pn,ZO,Zl) be dxq ... 3z, (Z() < <<y < Zl)/\ /\?:1 P,(xl)
We have to prove that —A,, is equivalent to a simple formula.

—A, is equivalent to the disjunction of (29, z1) = 0 and of (29, 21) # 0A—A,,.
The first disjunct is equivalent to a simple formula. Therefore, it is sufficient to
prove that the second disjunct is equivalent to a simple formula.

Below we assume that (zo, z1) is non-empty, and prove by induction on n.

Basis: The case n =1 is trivial.

Inductive step: n+— n + 1.

Since (zp, z1) is non-empty, then one of the following cases holds:

Case 1 There is no occurrence of Py in (zp,21) or there is no occurrence of
P71 in (20, 21)-

Case 2 zp = inf{z € (20,21) | P1(2)}.
Case 2’ z; =sup{z € (20, 21) | Ph+1(%)}. This case is dual to case 2.
Case 3 inf{z € (20,21) | P1(2)} is an element in (2o, 21).

Case 3’ sup{z € (20,21) | Pot1(2)} is an element in (z¢, z1). This case is dual
to case 3.

Case 4 1. Both ¢ := inf{z € (z0,21) | Pi(2)} and d := sup{z € (20,21) |
P,+1(2)} are gaps in (2q, 21) and
2. ¢>d.
Case 5 1. Both ¢ := inf{z € (z0,21) | Pi(2)} and d := sup{z € (z0,21) |
P,+1(2)} are gaps in (29, 21) and
2. ¢c<d.

13

For each of these cases we construct a simple formula Cond; which describes it
(i.e., Case ¢ holds iff Cond; holds), and show that if Cond; holds, then —A,,;; is
equivalent to a simple formula Form;. Hence, —A, 11 is equivalent to a simple
formula V;[Cond; A Form,].

Case 1 This case holds iff Part((—P;(x)), 0)(20, z1) VPart((— P41 (x)), 0)(20, 21)
In this case 4,41 is equivalent to True.

Case 2 Case 2 holds iff K+(P1)(zo). In this case = A, 41 iff 2 A, (Pa, ..., Pyy1,20,21)
which is equivalent to a simple formula by the inductive assumption.

Case 2’ This case is dual to Case 2.

Case 3 This case holds iff there is (a unique) ro € (2o, z1) such that =P, holds
along (zg,70) and either P;(rg) or KT (P;)(ro).

This 7y is definable by the following simple formula, i.e., rg is a unique z
which satisfies it:

INF(Py,20,2,21) := 20 <z < z1 A “no Py in (29, 2)" A
A (Pr(z) VKT (P)(2))

Hence, this case is described by (Elz)iié INF (Py, 29, 2, z1) which is equivalent to
a simple formula.

In this case = A, 41 iff (Hz)izé (INF(P1,zo,z,zl) A=A, (P, ... ,Pn,z7z1)).
The inductive assumption and Lemma 3.4 imply that this formula is equivalent
to a simple formula.

Case 3’ This case is dual to Case 3.
Case 4 The first condition holds iff

e 2o succeeded by =P gap in (zg,21), i.e. Y7 (=P1)(29) and P; holds at
some point in (2, z1), and

e z; preceded by =P, 11 gap in (20, 21), i.e., ¥~ (—Pny1)(21) and P41 holds
at some point in (zp, z1).

(Modalities v and v~ were defined in Sect. 2.2.2.) Hence, the first condition
is equivalent to a simple formula.

If the first condition holds, then the second condition holds iff in (zg, 21) no
occurrence of Pj precedes an occurrence of P41, i.e., iff Part((—Py, = P,41),0)(20,21)-
Hence, Case 4 is described by a simple formula.

In Case 4 =A,,41(P1, ..., Pnt1, 20, 21) is equivalent to True.

Case 5 The first condition is the same as in Case 4. If the first condition holds,
then z is between ¢ and d iff z satisfies the formula:

Between(z0, z, 21) = (321)SZ Pr(21) A (3n41)S2 Prga (Tns1)-

Hence, this case can be described as the conjunction of the first condition and
3z Between(zg, 2, z1) and this is equivalent to a simple formula.

14

Note that in this case Iz ... 341 (20 < 21 < - < Tpy1 < 21)A /\;1;1 Pj(x;)
holds iff for every z between ¢ and d one of the following 2n — 1 conditions holds:
fori=1,...,n:

n+1
E|£C1...E|(En+1(2()<$1<"'<{L'n+1<2’1)/\$i<z<l'i+1/\ /\Pj(ifj)
j=1
fori=2,...,n:
n+1
Jz1.. 3z (2o < a1 < < Tpp1 < 21) Ax; =2 A /\Pj(;vj)
j=1

Hence, =3z ... 3xp41 (20 < @1 < -+ < Zpp1 < 21) A /\;lill Pj(x;) is equivalent
to

Jz(Between(z) A /\ [Ae(Pr, ..., Pr,z0,2) V = Ang1—k(Pest, -5 Pay1, 2, 21)]
k=1

n

A /\ [Ak—1(P1, ..., Pi_1,20,2) V2 Pi(2) V" Aps1-k(Prs1, - - -, Pot1,2,21)]
k=2

By the inductive assumption = A, and —A,,+1_j are simple for £ = 1,...,n.
Since Between is a simple formula, and the set of simple formulas is closed under
conjunction, disjunction and existential quantifier, we obtain a formalization of
this case by a simple formula. This completes the proof of Proposition 5.4.

By Proposition 5.4, Lemma 5.6 and standard logical equivalences we derive:

Corollary 5.7. 1. —(32)SZ Part((d],...,0,),0") (20, 2] is equivalent to a sim-
ple formula.

2. =(32)SE Part((8],...,0,),0")[z, 21) is equivalent to a simple formula.

Proof. (1) Set k:=n+1, §; := True, §;41 :=9d, fori=1,...,nand O := {1}U
{i+1]i € O'}. Observe: Part((d},...,0,),0") (20, z] it Part({dy, ..., 0k), O)[z0, 2]
Let F; be defined as in Lemma 5.6. Then Jzo...3xp_120 < 22 < -+ <
Th_1 < 371@/\F1(Zo)/\/\f:2 Fi(z;) iff 32(20 < z < apAPart({d1,...,), O)|z0, 2]).
Hence, ~(3z)SZ Part ({0}, ..., 4,), O")(z0, 2] is equivalent to ~Fy (z0) V- 3za . .. Jxpz <
Ty < oo < Tp_1 < X < 21 A /\f:2 F;(x;). The first disjunct is an atom (in the
canonical expansion) and the second disjunct is equivalent to a simple formula
by Proposition 5.4. Therefore, ~(3z)SZPart((4],...,d,),0')(20, 2] is equiva-
lent to a simple formula.
(2) is the mirror image of (1). O

5.3 Proof of Proposition 5.3

Convention. We often will say “a formula is simple” instead of “a formula
is equivalent to a simple formula.” In all such cases equivalence to a simple

15

formula is proved by standard logical transformations and/or using the inductive
hypotheses.

We proceed by induction on n.

Basis. The case n =1 is immediate.

Inductive step n +— n + 1.

—Part((d1,...,0n+1), O)(20,21) is equivalent to the disjunction of (zg, z1) =
(0 and of (z0,21) # 0 A —Part({d1,...,0n+1),0)(20,21). The first disjunct is
equivalent to a simple formula. Therefore, it is sufficient to prove that the
second disjunct is equivalent to a simple formula.

From now on we assume that (zg, 21) is non-empty.

Observe that one of the following cases holds:

Case 1 4; holds on all points in (zo, z1).

Case 1’ §,,41 holds on all points in (zg, z1). This case is dual to case 1.
Case 2 zp = inf{z € (20,21) | 701(2)} or z1 = sup{z € (20,21) | 70n+1(2)}.
Case 3 inf{z € (z0,21) | 701(2)} is an element in (2, z1).

Case 3’ sup{z € (20, 21) | 70n+1(2)} is an element in (zp, z1). This case is dual
to case 3.

Case 4 Both ¢ := inf{z € (z0,21) | =01(2)} and d := sup{z € (z0,21) |
—0n+1(2)} are gaps in (zp,z1) and ¢ > d.

Case 5 Both ¢ := inf{z € (20,21) | =d1(2)} and d := sup{z € (20,21) |
—0n+41(2)} are gaps in (zp,21) and ¢ < d.

Case 6 Both ¢ := inf{z € (z9,21) | =01(2)} and d := sup{z € (z0,21) |
—0n+1(2)} are gaps in (zp,21) and ¢ = d.

For each of these cases we construct a simple formula Cond; which descri-
bes it (i.e., Case 7 holds iff Cond; holds), and show that if Cond; holds, then

—Part({d1,...,0n+1),0)(20, 21) is equivalent to a simple formula Form;. Hence,
—Part({d1,...,0n+1),0)(20,21) is equivalent to a simple formula V;[Cond; A
Form;).

Case 1 is described by Part ({1}, 0)(z0, z1). In this case =Part((d1, ..., 0n11), O)(z0,21)
is equivalent to =(32)SZPart({(dy,. .., 0n11), O)[z,21), and by Corollary 5.7 this
is a simple formula.

Case 1’ This case is dual to Case 1.

Case 2 This case is described by KT (=d1)(20) V K™ (=8,41)(21). In this case
—Part({01,...,0n+1),0)(20, 21) is equivalent to True.

Note that in the above cases we have not used the inductive assumption.
Case 6 will be also proved directly. However, in cases 3-5 we will use the
inductive assumption.

16

We introduce notations and state an observation which will be used several

times.

For a set O of natural numbers and ¢ € N, we denote by Ogp,(;) the set O

shifted by 4, i.e., Ogp) :={j | >0Aj+i€ O}
Define

“z is the successor of zy” fori=1

C<(20, 2) ::{

“z1 is the successor of z” fori=n+1

C”(z,2) =
(1) {Part(<5i+1,...,§n+1>,05h(i))(z,z1) fOI‘?::O,...,TL
Fori=1,...,n+ 1 define

C=¥(2, 2) :=C<%(2,
CZH(z,21) :=C~(2, 2

(
“(z, 2
[C<i(z0,2) ABi(2) ACPi(z,2) (i€ O
Ai(z@’z’zl)'_{cﬁ(m) 0i(2) ACZi(2,21) otherwise

From these definitions we obtain the following equivalences:
Part({d1,...,0n41), 0)(20,21) & (32)SILA; foriel,...,n+1

and if (29, 21) # 0, then

Part((01,...,0n41),0)(20,21) & (Vz)ijg(\/Ai)

Since, we assumed that (2, z1) is non-empty, by (3)-(4) we have

—|Part(<51, ey 5n+1>7 O)(Zo, Zl)

is equivalent to
(355 (\-4)

and to

(V2)S2 (/\ ~4))

i
Hence, for every ¢(zo, 2, 21)

(Hz)izégp() A =Part({01,...,0n+1),0)(20,21)

17

Part(<51, .. ~75i—1>30 N {1, N 1})(20,2) for i = 2,....n

+2

is equivalent to

3255 (¢) A (N -4)

%

is equivalent to

EAZ (A A ~4) A (0(2) A AL A= Ani))

i€{2,...,n}

By the inductive assumption, the definition of A;, and Lemma 3.4, we obtain
that —A; are simple formulas for i € {2,...,n}. Similarly, if 1 € O (respectively,
n+1¢€ O), then —=A; (respectively, =4,,1+1) is equivalent to a simple formula.
The set of simple formulas is closed under A, V and 3. Hence,

Observation 5.8. Assume that ¢(z) is equivalent to a simple formula, and
if 1 ¢ O, then o(z) A=Ay is equivalent to a simple formula, and if n+1 ¢
O, then ¢(z) A =Any1 is equivalent to a simple formula. Then (32)SZtp(z) A

=Part({d1,...,0ns1),0)(20,21) is equivalent to a simple formula.
In cases 3-5 we will use this observation with some instances of ¢.

Case 3 This case holds iff there is (a unique) 79 € (29, 21) such that ¢; holds
along (zo,70) and =01 (7o) V KT (=81)(r0).

This 7o is definable by the following simple formula, i.e., ry is a unique =z
which satisfies it:

INF_s,(20,2,21) := 20 <z < 21 A (suc(zo,2) V Part((d1),0)(20, 2))A
A (201(2) V KT (=61)(2))

Hence, this case is described by a simple formula (32)S3 INF s, (20, 2, 21).

By Observation 5.8 it is sufficient to prove that (1) if 1 ¢ O then INF_;5, A
—A; is equivalent to a simple formula, and (2) if n+1 ¢ O, then INF 5, A=A, 11
is equivalent to a simple formula.

Note that 01 (2) VK™ (=d1)(z) implies — (81 (2)APart ({01, ..., 6p+1), O)(2, 21)).
Therefore, by the definition of A; for the case when 1 ¢ O, and standard logical
transformations we obtain that INF 5, A—A; is equivalent to INF _5, A (ﬁCgl vV
—01(2) V—Part((02,...,0n+1), Osn(1))(2, 21). The last formula is equivalent to a
simple formula by the inductive assumption and standard logical equivalences.

Ifn+1¢ O, then INF_5, A=A, 41 is equivalent to

INF_5,(20,2,21) A (mCZ" (2, 21) V =6, 41(2) V 2C="T1 (2, 2)).

~CZ"*1(z, 21) is a simple formula by the induction basis. Note that INF _s, (29, 2, 21)
implies suc(zo,z) or “4; holds along the interval (zp,z).” By Case 1 the con-
junction of “§; holds along the interval (zg,2)” and ~C<"*1(zg,2)) is a simple
formula. Therefore, INF_5, A A, +1 is equivalent to a simple formula.

18

Case 3’ This case is dual to case 3.

Case 4 The conjunction of the following conditions expresses by a simple for-
mula that z is in the interval (d, ¢):

e 2z succeeded by &1 gap in (29, 21) - ¥ (01)(20) and —d; holds at some point
in (zo, 21).

e z; preceded by d,11 gap in (20,21) - ¥ (6ns1)(21) and =6, 41 holds at
some point in (2o, z1).

e 07 holds along (zo,z) and 4,41 holds along (z, z1).

Let us denote this conjunction by In(d’c)(zo, 2,21).

Hence, this case holds iff (Hz)iﬁé In(g,c)(20, 2, 21)-

By Observation 5.8 it is sufficient to show that (1) if 1 ¢ O, then In(g (20, 2, 21)A
=4, is equivalent to a simple formula, and (2) if n+1 ¢ O, then In(g) (20, 2, 21)A
= A, 41 is equivalent to a simple formula.

if 1 ¢ O then Ingg (20,2, 21) A 2A1(20, 2, 21) is equivalent to

In(g,e) (20, 2, 21) A (—\51(2) V =CSY (20, 2) V (2C7 Y (2, 21) A =C70(2, zl)))

In(g,¢)(20, 2, 21) implies that d,,1 holds along (2, 21), therefore, by Case 1’ both
Ingey A ~C>%(z,21) and Ingg e A -C>'(z,21) are simple. By the basis of
induction =C<! is simple. Hence, Ing,c) (20, 2, 21) A 2 A1 (20, 2, 21) is simple.

Similar arguments show that if n+1 ¢ O, then Ingg 0y(20, 2, 21) A= An11(20, 2, 21)
is simple.

Case 5 It is easy to write a simple formula Between(zo, z, z1) which expresses
that z is in the interval (¢,d). Between(zo,z,21) can be defined as the con-
junction of 2y < z < 21 of

e 2o succeeded by §; gap in (2o, 2) - ¥ (81)(20) and —d; holds at some point
in (zp,2).

e z; preceded by 0,41 gap in (2, 21) - ¥~ (6n+1)(21) and —d,,41 holds at some
point in (z, z1).

Hence, this case holds iff (32)3Z! Between (2o, 2, 21).

By Observation 5.8 it is sufficient to show that (1) if 1 ¢ O, then Between(zo, z, 21)A
—A1(20,2,21) is equivalent to a simple formula, and (2) if n + 1 ¢ O, then
Between(zo, z,21) N 7 Ant1(z0,2,21) is equivalent to a simple formula. Since
Between implies ~C=! it follows that Between A —A; is equivalent to Between.

Since Between implies ~C="*+1 it follows that Between A A, 1 is equivalent
to Between. Therefore, both Between A —A; and Between A —A, 11 are simple.

Case 6 Both ¢ := inf{z € (20,21) | =1(2)} and d := sup{z € (z0,21) |
—0n+1(2)} are gaps in (zp,z1) and ¢ > d iff the conjunction of the following
holds:

1. zg succeeded by &1 gap in (2, 21).

19

2. z1 preceded by 0,41 gap in (2o, 21).
3. PaI“t(<(517 5n+1>> @)(Zo, Z1).

If (1)-(3) holds, then d < c iff F(z) defined as 61 Until(d; A Until-gap(d1,d2))(20)
holds, where Until-gap is defined on page 12.

Hence, this case can be described by the conjunction of (1)-(3) and —F(zp).
(1) and (2) are expressed by simple formulas like in Case 4; (3) and —F'(zg) are
simple formulas. Therefore, this case is described by a simple formula.

In this case Part ({01, ..., 0nt1), O) (20, z1) holds iff there is i such that Part({d, ...

holds on (zg, ¢) and Part({d;, ..., 0nyt1), O) or Part((d;11,...,0n11), O) holds on
(¢, z1). Applying Lemma 5.5 to the tuple (True, d1,...,0;), O :={1}U{j+1]
Jj € ONj < i} and §;, we obtain a temporal formula F; such that F;(zg) iff
Part((dq,...,d;),0) holds on (zg,c). By the mirror arguments there is a tem-
poral formula H; such that H;(z1) iff Part({d;,...,dn41),0) holds on (¢, z1).
Hence, in this case =Part((d1,...,dn+1), O)(20, 21) is equivalent to

(=Fi(20) V (=Hi(21) A=Hiy1(21))).

~.

=1

6 Related Works

Our proof is very similar to the proof of Kamp’s theorem in [Rabl14]. The only
novelty of our proof are partition formulas. Simple partition formulas generalize

V-formulas which played a major role in the proof of Kamp’s theorem [Rab14].

Roughly speaking an 3 V-formula is a normal partition formula which uses only
basic partition expressions Part({(d,...,d,),0) with the following restriction:
for i < mn, if i ¢ O then i +1 € O. This restriction implies that if a partition
I,...,I, witnesses that an interval [¢,t'] of M satisfies Part({(d1,...,0,),0),
then all intervals I; have endpoints in M. Over the Dedekind complete orders
all intervals have end-points and every partition expression is equivalent to a
disjunction of the restricted partition expressions; however, over general linear
orders Part(({P;(z), P(z)),?) is not equivalent to a positive boolean combina-
tion of restricted partition expressions.

As far as we know, there are only two published proofs of Stavi’s theorem.
One is based on separation in Chapter 11 of [GHR94], and the other is based
on games in [GHR93| (reproduced in Chapter 12 of [GHR94]). They are much
more complicated than the proofs of Kamp’s theorem in [GHR94].

A temporal logic has the separation property if its formulas can be equiva-
lently rewritten as a boolean combination of formulas, each of which depends
only on the past, present or future. The separation property was introduced by
Gabbay [Gab81], and surprisingly, a temporal logic which can express [J and
has the separation property (over a class C of structures) iff it is expressively
complete for FOMLO over C.

In the proof based on separation, a special temporal language Lx is carefully
designed. The formulas of L are evaluated over Dedekind-complete chains.

20

75i>7 O)

For every chain M its completion M€ is defined. It is shown: (1) Lx has the
separation property over the completions of chains; (2) for every ¢ € Lx there is
a formula ¢ € TL(Until, Since, Until®, Since®) such that M, t = ¢ iff Mt = ¢,
and (3) for every formula &(x) € FOMLO there is ¢ € Lx such that M,t |= &
iff Mt = .

In the game-based proof for every chain M and r € N a chain M, is defined.
M, is the completion of M by the gaps definable by T'L(Until, Since, Until®, Since®)
formulas of the nesting depth r. Then, special games on the temporal structures
are considered. The game arguments are easier to grasp, then the separation
ones, but they use complicated inductive assertions.

Our proof avoids completions and games and separates general logical equi-
valences and temporal arguments. The proof is similar to our proof of Kamps
theorem [Rab14]; yet it is longer because it treats some additional cases related
to gaps in time flows.

Acknowledgement

I would like to thank an anonymous referee for insightful suggestions.

References

[Gab81] D. Gabbay. Expressive functional completeness in tense logic (prelimi-
nary report). In U. Monnich, editor, Aspects of Philosophical Logic, pages
91-117. Reidel, Dordrecht, 1981.

[GHR93] D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds Temporal ex-
pressive completeness in the presence of gaps In Logic Colloquium ’90,
Lecture Notes in Logic 2, Springer-Verlag, 1993, pp. 89-121.

[GHR94] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal logic: Mat-
hematical Foundations and Computational Aspects. Ozford University
Press, 1994.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi. On the Temporal
Analysis of Fairness. In POPL 1980, pp. 163-173, 1980.

[Kam68] H.W. Kamp. Tense logic and the theory of linear order. Phd thesis,
Uniwversity of California, Los Angeles, 1968.

[Pnu77] A. Pnueli (1977). The temporal logic of programs. In Proc. IEEE 18th
Annu. Symp. on Found. Comput. Sci., pages 46-57, New York, 1977.

[Rab14] A. Rabinovich. A Proof of Kamp’s Theorem. Logical Methods in
Computer Science 10(1), 2014.

21

