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Abstract. We add to the standard temporal logic with the modalities
”Until” and ”Since”, a sequence of “counting modalities”: For each n the
modality Cn(X), which says that X will be true at least at n points in
the next unit of time, and its past counterpart ←−

C n, which says that X
has happened at least n times in the last unit of time. We prove that this
temporal logic is as expressive as can be hoped for; all the modalities that
can be expressed in a strong natural decidable predicate logic framework,
are expressible in this temporal logic.

1 Introduction

Temporal Logic based on the two modalities “Since” and “Until” (TL) is a pop-
ular among computer scientists as the framework for reasoning about a system
evolving in time. By Kamp’s theorem [18] this logic has the same expressive
power as the first order monadic logic of order.

The two logics are (expressive) equivalentwhether the system evolves in discrete
steps or in continuous time, but for continuous time both logics can not express
properties like: “X will happen within 1 unit of time”. A natural metric modality
say “X will happen exactly after one unit of time.” Unfortunately, the extension
of TL by this modality is undecidable. Over the years different decidable exten-
sions of TL were suggested. The logic which was most extensively discussed was
MITL [2,1,10]. Other logics are described in [4,19,24]. We find the language QTL
(quantitative temporal logic) which is presented in [13,14,15] more natural and
convenient, and we will use it in the discussion. QTL has the two modalities “Un-
til” and “Since”, and two more modalities: ♦1X - X will be true sometime within
the next unit of time, and ←−♦1X - X was true sometime in the last unit of time.

We call these metric extensions of the pure temporal logic the simple metric
temporal logics. They all have the same expressive power, which indicates that
they capture a natural fragment of what can be said about the systems. This
does not mean that they express all that needs to be said, and it was left to be
determined whether these language are as expressive as can be hoped for, and if
not, what needs to be added. Two important questions were not answered:

1. Is this logic expressive enough to express all the important properties about
evolving systems?

2. If not, which modalities should we add?
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Apparently A. Pnueli was the first to ask these questions, when he conjectured
that the simple metric logics cannot express the requirement that X and then
Y will both happen in the coming unit of time [2,24].

In [16] we proved Pnueli’s conjecture, and we showed a sequence of modalities
of the type that Pnueli suggested, such that no finite set of modalities can express
all of them. Specifically: For every natural n we defined the “Pnueli modality”
Pnun(X1, . . . , Xn), which states that there is an increasing sequence t1, . . . , tn
of points in the unit interval ahead such that ti satisfies Xi. We also defined the
weaker “Counting modalities” Cn(X) which states that X will be true at least
at n points in the unit interval ahead. We proved in [16] that:

– QTL (or MITL) with the added modalities Pnu1, . . . ,Pnun can not express
the modality Cn+1

– No temporal logic with finitely many modalities can express all the modali-
ties Cn(X) for all natural numbers n.

This answers the first of the two questions above as negatively as can be imag-
ined. It seemed to bring an end to the hope to extend Kamp’s result, to define
a simple temporal logic that extends plain temporal logic and is equivalent to a
strong metric predicate logic.

In [12,14] we tried to identify the metric predicate logic that is best suited to
deal with systems that evolve in time. A logic that is as expressive as possible,
and yet simple to have a decidable validity and satisfiability problem. This logic
can then serve to define modalities that will produce temporal logics that are
decidable.

We started with the predicate logic that has also the +1 function alongside the
order relation and the unary predicate variables. This language is too strong, as
the +1 function allows for the encoding of Turing computations, and is clearly
undecidable. We first identified the fragment of the predicate logic that cor-
responds to the temporal logic QTL (and to MITL). This is the “Quantified
Monadic Logic of Order”, QMLO that has atomic formulas t = s, t < s and
X(t), is closed under Boolean connectors and first order quantifications, and
under the ‘‘metric quantifiers”: If ϕ(t) is a formula in QMLO with t its only
free variable then (∃t)<t0+1

>t0 ϕ(t) is a formula of QMLO (in the free variable t0).
“Metric quantifiers” are just notations: (∃t)<t0+1

>t0 ϕ is shorthand for (∃t)[(t0 <
t < t0 + 1) ∧ ϕ]. This is a restricted form to use +1 function.

To extend the expressive power we then modified QMLO into Q2MLO;
Q2MLO has the same atomic formulas as QMLO and is closed under the
Boolean connectives, and first-order quantifiers, however the rule for metric
quantifiers is changed to:

If ϕ(t0, t) is a formula in Q2MLO with t and t0 its only free variable then
(∃t)<t0+1

>t0 ϕ(t0, t) and (∃t)<t0
>t0−1ϕ(t0, t) are formulas of Q2MLO.

At first glance the difference between QMLO and Q2MLO may look small,
but it is actually very big. In particular for every (non metric) first order property
ϕ we can state: “ϕ holds on some short interval (of length less than 1) that starts
here”.
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In [12] we proved that Q2MLO has a decidable validity and satisfaction prob-
lem. Simple attempts to further modify Q2MLO like non trivial properties of
the whole interval ahead, or permitting an additional third first-order variable
to be free inside metric quantifier would make the logic as expressive as FOMLO
with the function +1 (hence undecidable).

We demonstrated that Q2MLO is expressive decidable predicate logic in which
modalities can be defined with the assurance that the resulting temporal logic
is decidable. Therefore the second question above becomes:

Can we add a nice (necessarily infinite) family of modalities to the pure
temporal logic TL(Until, Since) and obtain a temporal logic that is com-
plete for Q2MLO?

Here we give the surprising answer:
Theorem: The pure temporal logic TL(Until, Since) together with all the
counting modalities Cn and ←−

C n is expressively equivalent to Q2MLO.
The paper is divided as follows: In section 2 we recall the definitions and the
previous results concerning the continuous time logics. Section 3 recalls the com-
positional method, which is a main tool in the proof of the theorem. In section
4 we prove the main theorem. Section 5 states further results.

2 Monadic Logic and Quantitative Temporal Logic

2.1 MLO - Monadic Logic of Order

We start with the standard definitions.
The monadic predicate logic of order - MLO has in its vocabulary in-

dividual (first order) variables t0, t1, . . . ,, monadic predicate names X0, X1, . . . ,,
and one binary relation < (the order).

The first order predicate language over this vocabulary is called the (first
order) Monadic Logic of Order (FOMLO). Note that since we are interested
only in the first order language, X0, X1, . . . , is a chosen sequence of constant
predicate names, and not of set variables.

In this work a structure for FOMLO is a tuple M = 〈R, <, P1, . . . , Pn〉,
where R is real line, with and P1, · · · , Pn, are one-place predicates (sets) that
correspond to the predicate names in the logic.

As is common we will use the assigned formal names to refer to objects in the
meta discussion. Thus we will write: M |= ϕ[τ1, . . . , τk; P1, . . . , Pm] where M is
a structure, ϕ a formula, τ1, · · · , τk elements of M and X1, . . . , Xm predicates in
M , instead of the correct but tedious form:

M, τ1, . . . , τk; P1, . . . , Pm |=
MLO

ϕ(t1, . . . , tk; X1, . . . , Xm),

where τ1, . . . , τk and P1, · · · , Pm are names in the metalanguage for elements and
predicates in M .

Everything in this paper remains true if we consider the class of structures
whose domain is the non negative part of the real line, with 0 as first element.
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In surveying the background, we will mention two more classes of structures:
The class of Rational time, whose structures have the rational numbers as their
domain, and the Finite Variability class, which is the of structures over the real
line, such that every unary predicate changes its value only finitely often in any
bounded interval of time.

2.2 Temporal Logics

Temporal logics use logical constructs called “modalities” to create a language
that is free from variables and quantifiers:

The syntax of the Temporal Logic TL(O(k1)
1 , . . . , O

(kn)
n , . . .) has in its vo-

cabulary monadic predicate names P1, P2, . . . and a sequence of modality names
with prescribed arity, O

(k1)
1 , . . . , O

(kn)
n , . . . (the arity notation is usually omitted).

The formulas of this temporal logic are given by the grammar:

ϕ ::= True| P | ¬ϕ | ϕ ∧ ϕ | O(k)(ϕ1, · · · , ϕk)

A temporal logic with a finite set of modalities is called a finite (base) temporal
logic.

A structure for Temporal Logic, in this work, is the real line with monadic
predicates M = 〈R, <, P1, P2, . . . , Pn〉, where the predicate Pi are those which
are mentioned in the formulas of the logic. Every modality O(k) is interpreted in
the structure M as an operator O

(k)
M : [P(A)]k → P(A) which assigns “the set of

points where O(k)[S1, . . . , Sk] holds” to the k-tuple 〈S1, . . . , Sk〉 ∈ P(R)k. (Here
P(R) denotes the set of all subsets of R). Once every modality corresponds to
an operator the semantics is defined by structural induction:

– for atomic formulas: 〈M, t〉 |=
T L

P iff t ∈ P .
– for Boolean combinations the definition is the usual one.
– for O(k)(ϕ1, · · · , ϕk)

〈M, t〉 |=
T L

O(k)(ϕ1, · · · , ϕk) iff t ∈ O
(k)
M (Aϕ1 , · · · , Aϕk

)

where Aϕ = { τ : 〈M, τ〉 |=
T L

ϕ } (we suppressed predicate parameters
that may occur in the formulas).

For the modality to be of interest the operator O(k) should reflect some intended
connection between the sets Aϕi of points satisfying ϕi and the set of points
O[Aϕ1 , . . . , Aϕk

]. The intended meaning is usually given by a formula in an
appropriate predicate logic:

Truth Tables: A formula O(t0, X1, . . .Xk) in the predicate logic L is a Truth
Table for the modality O(k) if for every structure M

OM (A1, . . . , Ak) = {τ : M |=
MLO

O[τ, A1, . . . , Ak]} .

The modalities until and since are most commonly used in temporal logic for
computer science. They are defined through the following truth tables:
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– The modality X U Y - “X until Y ”, is defined by

ψ(t0, X, Y ) ≡ ∃t1(t0 < t1 ∧ Y (t1) ∧ ∀t(t0 < t < t1 → X(t))).

– The modality X S Y - “X since Y ”, is defined by

ψ(t0, X, Y ) ≡ ∃t1(t0 > t1 ∧ Y (t1) ∧ ∀t(t1 < t < t0 → X(t))).

A central issue in this work is whether some temporal logic is equivalent to a
fragment of predicate logic. We will define exactly what is meant by it:

Definition 1 (Expressive Equivalence). Let L be a a fragment of predicate
logic, and let TL be some temporal logic. Let M be a class of structures such
that interprets both logics.

1. If for every formula ϕ(t) of L with a single free variable there is a formula
φ of TL, such that for every structure M in M and for every t ∈ M

〈M, t〉 |=
T L

φ iff M |= ϕ[t]

then we say that TL is at least as expressive as L in the class M.
2. A similar condition says when L is at least as expressive as TL over M.
3. If both conditions hold we say that TL and L are expressively equivalent over

M, or that they have the same expressive power.

If the modalities of a temporal logic have truth tables in a predicate logic then
the temporal logic is equivalent to a fragment of the predicate logic. Formally:

Proposition 1. If every modality in the temporal logic TL has a truth table in
the logic FOMLO then to every formula ϕ(X1, . . . , Xn) of TL there corresponds
effectively (and naturally) a formula ϕ(t0, X1, . . .Xn) of FOMLO such that for
every M , τ ∈ M and predicates P1, . . . , Pn

〈M, τ, P1, . . . , Pn〉 |=
T L

ϕ iff 〈M, τ, P1, . . . , Pn〉 |=
MLO

ϕ .

In particular the temporal logic TL( U , S ) with the modalities “until” and
“since” corresponds to a fragment of first-order MLO .

The two modalities U and S are also enough to express all the formulas
of first-order FOMLO with one free variable:

Theorem 2. ([18,9]) The temporal logic TL( U , S ) is expressively complete
for FOMLO over the two canonical structures: For every formula of FOMLO
with at most one free variable, there is a formula of TL( U , S ), such that the
two formulas are equivalent to each other, over the positive integers (discrete
time) and over the real line (continuous time).

2.3 The Simple Metric Logics: Quantitative Temporal Logic, and
Quantitative Monadic Logic of Order

The logics MLO and TL( U , S ) are not suitable to deal with statements like
“X will occur within one unit of time”. It might be tempting to include in
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the monadic logic of order also a unary function symbol to denote the function
t + 1. This however makes the language undecidable. Moreover, seemingly weak
fragments of this logic are undecidable. The corresponding modification of the
temporal logic would add to the logic the modality S(X) that holds at a point
t if t + 1 ∈ X . This also results in an undecidable logic. For the last 20 years
languages that can express such properties and are decidable were proposed
and investigated ([4,19,8,24,10,13,15]), and most notorious, logic MITL [2,1,10].
We will use as a framework the Quantitative Temporal Logic, QTL which was
introduced in [12,13,14]. All these logics are expressively equivalent [13]. QTL is
defined as follows:

Definition 3 (Quantitative Temporal Logic). QTL, quantitative temporal
logic is the logic TL( U , S ) enhanced by the two modalities: ♦1X and ←−♦1X.
These modalities are defined by the tables with free variable t0:

(3) ♦1X : ∃t((t0 < t < t0 + 1) ∧ X(t))

(4) ←−♦1X : ∃t((t − 1 < t < t0) ∧ X(t)) .

The temporal logic QTL is complete for a natural fragment of the monadic logic
of order, enriched with the +1 function:

Definition 4 (Quantitative Monadic Logic of Order). QMLO , quantita-
tive monadic logic of order is the predicate logic that has atomic formulas t = s,
t < s and X(t), where X ranges over unary predicate names; it is closed under
Boolean connectors and first order quantifications, and has the following rule
for the “metric quantifiers”:

If ϕ(t) is a formula in QMLO with t its only free variable and m < n
are integers then (∃t)<t0+n

>t0+mϕ(t) is a formulas of QMLO .

Recall that the metric quantifier (∃t)<t0+n
>t0+mϕ is shorthand for ∃t(t0 + m < t <

t0 + n ∧ ϕ).

Theorem 5. ([13,15]) The temporal logic QTL is expressively equivalent to
QMLO over the full, or positive half, real line.

2.4 The Limited Expressive Power of the Simple Metric Logics

There was no reason to believe that the simple metric logics like QTL have com-
prehensive expressive power. A. Pnueli raised this question, and he conjectured
that the modality Pnu2(X, Y ) is not expressible in MITL, where Pnu2(X, Y )
says that X and then Y will be true at points in the next unit of time [2,24].

In [16] we proved Pnueli’s conjecture, and we strengthened it significantly. To
do this we defined for every natural n the “Pnueli modality” Pnun(X1, . . . , Xn),
which states that there is an increasing sequence t1, . . . , tn of points in the unit
interval ahead such that ti satisfies Xi. We also defined the weaker “Counting
modalities” Cn(X) which states that X is true at least at n points in the unit
interval ahead. I.e, Cn(X) = Pnun(X, . . . , X). With these modalities we proved:
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Theorem 6. 1. QTL (or MITL) with the added modalities Pnu1, . . . ,Pnun

can not express the modality Cn+1.
2. No temporal logic with finitely many modalities can express all the modalities

Cn(X) for all natural numbers n. Hence no finite temporal logic will suffice
to express everything of interest.

2.5 The Predicate Metric Logic Q2MLO

In classical monadic logic there is a natural logic suitable to deal with evolving
systems, the logic Q2MLO , which was introduced in [12] .

Definition 7. Q2MLO is the predicate logic that has atomic formulas t = s,
t < s and X(t), where X ranges over unary predicate names; it is closed under
Boolean connectors and first order quantifications, and has the following rule
for the “metric quantifiers”:

If ϕ(t0, t) is a formula in Q2MLO with free first-order variables in {t0, t}
and m < n are integers then (∃t)<t0+n

>t0+mϕ(t0, t) is a formulas of Q2MLO.

In [12] it was shown that:

Theorem 8. The validity and satisfiability problem is decidable for Q2MLO,
over continuous time, whether we are interested in the class of models with finite
variability, or in the class of all models.

QMLO and Q2MLO are both decidable, and they look similar. But there are
some major differences:

1. It is very easy to express in Q2MLO properties that are not expressible in
QMLO . Thus for example Pnueli’s modality Pnun(X1, . . . , Xn) has Q2MLO
truth table (∃t)<t0+1

>t0 (∃t1, · · · , tn)[(t0 < t1 < · · · < tn < t) ∧ (X1(t1) ∧ · · · ∧
Xn(tn))]

2. Q2MLO seems strong enough to express all the decidable modalities that
we found in the literature, and we have yet to see a natural formula in some
decidable logic that cannot be expressed in Q2MLO.

3. QMLO is expressively equivalent to QTL that has four modalities only.
Q2MLO is not equivalent to any temporal logic with a finite number of
modalities.

3 Elements of Composition Method

Here we recall some elements of the compositional method. This method will
play an important role in the proofs of Section 4.

The “compositional method” applies to the case where a structure is com-
posed from simpler structures, and the theory of the composite structure can be
reduced to the theory of its components. Ehrenfeucht used it in [6] and our proofs
follow his work. The method was developed and used by Fefeman-Vaught [7],



An Expressive Temporal Logic for Real Time 499

Shelah [22] and others (see e.g., surveys [11,23,20]). Here is an introduction to
what we need:

The structures of the form M = (A, <, P1, . . . , Pm), where < is a linear order
on a set A and Pi ⊆ A are called m-labelled chains.

Two m-labelled chains M, M ′ are called k-equivalent (written: M ≡k M ′) if
M |= ϕ ⇔ M ′ |= ϕ for every sentence ϕ of quantifier depth k. This is an
equivalence relation between labelled chains; its equivalence classes are called
k-types for the given signature with < and m unary predicate symbols. Let us
list some fundamental and well-known properties of k-types.

Proposition 9. 1. For every m and k there are only finitely many k-types of
m-labelled chains.

2. For each k-type τ there is a sentence (called ”characteristic sentence”) which
defines τ (i.e., is satisfied by a labelled m-chain iff it belongs to τ). For given
k and m a finite list of characteristic sentences for all the possible k-types
can be computed. (We take the characteristic sentences as the canonical rep-
resentations of k-types. Thus, for example, transforming a type into another
type means to transform sentences.)

3. Each sentence ϕ is equivalent to a (finite) disjunction of characteristic sen-
tences; moreover, this disjunction can be computed from ϕ.

Given m-labelled chains M0, M1 we write M0 + M1 for their concatenation (or-
dered sum); the domain of M0 + M1 is the union of the domains of M0 and
M1 (we assume that these domains are disjoint), the interpretation of a unary
predicates P is the union of its interpretation in M0 and in M1, all elements of
M0 are less than all elements of M1 and if two elements are in Mi, then their
order in M0 + M1 is the same as in Mi.

We need the following composition theorem for ordered sums:

Theorem 10 (Composition Theorem). The k-types of m-labelled chains
M0, M1 determine the k-type of the ordered sum M0 + M1:

This theorem justifies the notation τ1 + τ2 for the k-type of an m-chain which is
the sum of two m-chains of k-types τ1 and τ2.

Corollary 11. For every formula ϕ(s, t) with free first-order variables s and t
there is a finite list of pairs of formulas τ1(s, t), σ1(s, t), . . . , τk(s, t), σk(s, t), such
that for any labelled chain M and three points p < q < r:

M |= ϕ(p, r) iff for some i ≤ k, M |= τi(p, q) and M |= σi(q, r).

Moreover, the list τi(s, t), σi(s, t) is computable from ϕ.

4 Completeness of the Counting Modalities

Let TLC be the temporal logic TL( U , S ) together with all the counting
modalities Cn(X) and ←−

C n(X). We start to prove that TLC is equivalent to
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Q2MLO. First we state two lemmas, that improve our understanding of the
logic Q2MLO. The first lemma allows us to replace Q2MLO by a large temporal
logic, whose modalities are all the modalities that can be defined by Q2MLO
formulas with some restriction.

Lemma 12. Let Γ be the set of all modalities with truth table of the form
(∃t)<t0+n

>t0+mφ(t0, t, X1, . . . , Xk) and (∃t)<t0−m
>t0−n φ(t0, t, X1, . . . , Xk), with 0 ≤ m <

n, and where φ is a formula of FOMLO with the free first-order variables in
{t0, t}. Then, TL(Γ, Until, Since) is expressively equivalent to Q2MLO.

We omit the proof of Lemma 12 for lack of space; it proceeds by the induction
of nesting of metric quantifiers. The second lemma shows that Q2MLO can be
defined using only simple intervals of length 1 in the definition. It will be the
first of three applications of the composition method.

Lemma 13. For every Q2MLO formula ψ there exists an equivalent Q2MLO
formula φ which uses only metric quantifiers of the form (∃t)<t0+1

>t0 and (∃t)<t0
>t0−1.

Proof. (Sketch) We exemplify the method proving the following two statement.
Let ϕ(t, s) be a pure FOMLO formula.

1. if n > 1 then (∃s)<t0+n
>t0 ϕ(t0, s) is equivalent to a formula which uses metric

quantifiers (∃s)t+m
t where m < n.

2. if n > 0 then (∃s)<t0+n+1
>t0+n ϕ(t0, s) is equivalent to a formula which uses metric

quantifiers (∃s)t+n
t+n−1 and (∃s)t+1

t .

All other cases can be treated similarly, or proven from these cases by induction
on the numbers that appears in the metric quantifiers together with the technique
used in the proof of Lemma 12.

(1) By Corollary 11 there are formulas τ1, σ1, . . . , τk, σk, such that for any
three points p < q < r, ϕ(p, r) is true iff for some i ≤ k, τi(p, q) and σi(q, r)
hold. It follows that

(∃s)<t0+n+1
>t0 ϕ(t0, s) ≡

k∨

i=1

(∃q)<t0+n
>t0 (τi(t0, q) ∧ (∃s)<q+1

>q σi(q, s))

Indeed if the right side of the equivalence is true then for the q and s that
satisfy it there is some i such that τi(t0, q) and σi(q, s) and therefore ϕ(t0, s).
The distance from t0 to q is less than n and the further distance to s is less than
1. Hence s testifies the left side of the equivalence. If on the other hand s testifies
the property on the left, then if t0 + n < s we choose any q between s − 1 and
t0 + n. If s ≤ t0 + n then we may choose any q smaller than s which is larger
than s − 1 (and t0). This will satisfy the right side.

(2) We deal similarly with (∃s)<t0+n+1
>t0+n ϕ(t0, s): By the corollary to the compo-

sitional theorem there are pairs of formulas: σ1, τ1, . . . σk, τk, such that for every
three points t < p < s we have ϕ(t, s) iff for some i ≤ k , τi(t, p) and σi(p, s). Fur-
thermore for every i < k there are mi pairs of formulas πi,1, ηi,1, . . . πi,mi , ηi,mi
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such that for every point q between p and s, σi(p, s) holds iff for some j ≤ mi

both πi,j(p, q) and ηi,j(q, s) hold. We will show that

(∃s)<t0+n+1
>t0+n ϕ(t0, s) ≡

k�

i=1

(∃p)<t0+n

>t0+n−1[τi(t0, p) ∧ (∀q)<p+1
>p

mi�

j=1

(πi,j(p, q) ∧ (∃s)<q+1
>q ηi,j(q, s))]

The expression on the right is already of the right form. Assume that there
is some s that makes the left side true. Then we choose p = s − 1 and we
will show that this p satisfies the right formula. Indeed for every q such that
p < q < p + 1 = s < q + 1 the point s is the unit interval to the right of
q, and since ϕ(t0, s) is true there is some i < k for which τi(t0, p) and σi(p, s)
hold. And since q lies between p and s, there is some j < mi for which πi,j(p, q)
and ηi,j(q, s) hold. Therefore the right statement is true. In the other direction,
assume that the i-th disjunct of the right statement is true. Hence, there is some
p in the interval (t0 +n− 1, t0 +n) such that τi(t0, p) is true and q = t0 +n is in
the interval (p, p + 1) and therefore there is s in the interval (t0 + n, t0 + n + 1)
and there is an index j < mi for which πi,j(p, q) and ηi,j(q, s) is true. It follows
from the main property of the formulas τ, π and η that ϕ(t0, s) is true. Since s
is the interval (t0 + n, t0 + n + 1), the left statement is true. ��

Theorem 14 (Main theorem). The temporal logic TLC and the monadic
logic Q2MLO are expressively equivalent.

Proof. (Sketch) In one direction, every formula of TLC is equivalent to a formula
of Q2MLO as all its modalities have truth tables in Q2MLO.

For the other direction, by the last lemma, it suffices to prove that every
Q2MLO formula φ with metric quantifiers of the form (∃s)<t+1

>t and (∃s)<t
>t−1,

can be expressed in TLC. To simplify the discussion, we avoid the careful yet
cumbersome distinction between the free variables of a formula ϕ(t, s) and their
intended interpretation in the model. We will speak freely of “the interval (t, s)”,
and say that “the interval satisfies the formula ϕ”, instead of “the interpretation
satisfies ϕ(t, s)”. We must show that (∃s)<t+1

>t ϕ(t, s) can be expressed by a TLC
formula, that holds at t. Following a technical inductive argument we may assume
that ϕ is of pure monadic logic. We divide the proof into steps.

1. It maybe that (∃s)<t+1
>t ϕ(t, s) holds because there is a sequence of points s to

the right of t that converge to t, and such that ϕ(t, s) holds. We call such t a
ϕ-limit. This property can be written in pure “Until, Since” temporal logic.
We may therefore look for a TLC formula that expresses (∃s)<t+1

>t ϕ(t, s)
under the assumption that t is not a ϕ-limit. We can then add the temporal
formula that says that t is a ϕ-limit, as a disjunct.

2. An interval [x, y] will be called a ϕ-interval if
(a) either ϕ(x, y) holds, or y is a limit of points z to the right, for which

ϕ(x, z) holds.
(b) [x, y] is minimal, in that no x < z < y satisfies ϕ(x, z).
If [x, y] is a ϕ-interval, then x will be called a left ϕ point and y is a right ϕ
point. x is the left ϕ-partner of y, and y is the right ϕ-partner of x.
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Every left ϕ point has a unique ϕ-interval and a unique right partner. (the
dual does not hold for a right ϕ point).
Claim: Assume that ϕ(x, y) holds, and x is not a ϕ-limit. Then:
(a) x is a left ϕ point, of some ϕ-interval.
(b) If x < y < x + 1 then x < y′ < x + 1, where y′ is the right ϕ partner for

x .
(Just choose y′ to be the greatest lower bound of the points y that satisfy
ϕ(x, y)). Therefore from now on we replace ϕ(t, s) in (∃s)<t+1

>t ϕ(t, s) by ([t, s]
is a ϕ-interval). From now on when we say ϕ we mean this formula. It is
not difficult to see that the properties : “x is a left ϕ point”, “x is a right
ϕ point” and “x, y is a ϕ pair”, can be expressed in pure monadic logic of
order.

3. The crucial property is that there is a simple computable bound on the length
of a proper decreasing sequence of ϕ-intervals. We say that the interval [x, y]
is greater than [x′, y′] if x < x′ < y′ < y. Let τ1, σ1, . . . , τk, σk as in the
composition theorem 10, be the formulas such that for x < z < y, ϕ(x, y)
holds, iff one of the pairs σi(x, z) and τi(z, y) hold. Then:
Claim: Every proper decreasing sequence of ϕ-intervals has depth at most
k.
Proof: if x1 < · · · < xk+1 < yk+1 < · · · < y1 is such that [xi, yi] is a ϕ
interval and if z is in all these intervals then for every i there is some formula
τj such that [z, yi] satisfies τj . By the pigeonhole principle there are some
yi < yi′ such that both [z, yi] and [z, yi′ ] satisfy the same τj . Therefore both
[xi′ , yi] and [xi′ , yi′ ] satisfy ϕ, which is impossible, as [xi′ , yi′ ] is a minimal
such interval.

4. For every ϕ-interval [t, s] we define its rank to be the length of the longest
proper decreasing sequence of ϕ-intervals that starts with [t, s]. We denote
by ϕi(t, s) the claim that [t, s] is a ϕ-interval of rank i, and by ri(s) the claim
that s is the right endpoint of such an interval. Clearly:
(a) Every ϕ-interval has rank between 1 and k.
(b) The formulas ϕi(x, y) and ri(s) are expressible in pure monadic logic of

order.
5. We come to a third application of the composition theorem:

Claim: Let t be a point, and let i be some rank. Let τ1, σ1, . . . , τp, σp as
in the composition theorem 10, be the formulas such that for x < z < y,
ϕi(x, y) holds, iff one of the pairs σj(x, z) and τj(z, y) hold. Then only the
first p + 1 points to the right of t that satisfy ri(s) can be right endpoints of
a ϕ-interval [u, s] of rank i, such that u ≤ t.
Proof: Assume that s1 < s2 < · · · < sl is a sequence of points satisfying
ri(s), and t1, · · · , tl are the corresponding left hand partners. Then t1 <
· · · < tl, or else one interval would contain another, and their rank would
not be the same. It follows that all the right hand points of intervals of rank
i that correspond to partners up to t come before those that correspond to
partners greater than t. Moreover, there are at most p + 1 of them, or else
there would be j �= j′ such that [t, sj ] and [t, sj′ ] that satisfy the same τv,
and [tj , t] and [tj′ , t] satisfy σv, therefore [tj , sj ] and [tj , sj′ ] are ϕ-intervals
of rank i with the same left endpoint which is impossible.
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6. We may now collect the pieces: (∃s)<t+1
>t ϕi(t, s) holds iff one of the following

disjuncts for j = 1, . . . , p + 1 holds:
There are at least j points between t and t+1 that satisfy ri(s) and t together
with the jth point among the points larger than t that satisfies ri(s), satisfy
also ϕi(t, s).
Note that everything is pure monadic logic (and hence pure temporal), ex-
cept the claim of the existence of j points with a pure monadic property,
between t and t + 1. Therefore this can be expressed by an TLC formula. It
remains now to take the disjunction of these formulas,over the ranks (and
add one disjunct for the case that t is a ϕ-limit, as in item 1).

5 Conclusion and Further Results

We added to the temporal logic TL(Until, Since) all the modalities Cn(X) - “X

will be true at least at n points in the next unit of time”, and ←−
C n(X) -“X was

true at least at n points in the last unit of time”. The resulting temporal logic
is complete for a strong, yet decidable monadic logic of order,Q2MLO.

The expressive completeness result can be extended to the rational time line.
However, TL(Until, Since) is not expressively complete for the FOMLO over
the rational line. Stavi found two modalities UntilSt, SinceSt which have the
same expressive power over the class of all linear orders as the FOMLO [8]. We
can prove that the Stavi modalities together with Cn(X) and ←−

C n(X) have the
same expressive power over the rationals as Q2MLO.

As with the pure temporal logic TL(Until, Since) there is a gap between
the complexity (and succinctness) of the temporal logic and that of the corre-
sponding predicate logic. In [17] we proved that the satisfiability problem for the
temporal logic TL(Until, Since, {Cn,

←−
C n}∞n=1) is PSPACE complete.
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