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Abstract

Kamp’s theorem established the expressive completeness of the temporal modalities Until and Since for
the First-Order Monadic Logic of Order (FOMLO) over real and natural time flows. Over natural time, a
single future modality (Until) is sufficient to express all future FOMLO formulas. These are formulas whose
truth value at any moment is determined by what happens from that moment on. Yet this fails to extend to
real time domains: here no finite basis of future modalities can express all future FOMLO formulas. In this
paper we show that finiteness can be recovered if we slightly soften the requirement that future formulas
must be totally past-independent: we allow formulas to depend just on the arbitrarily recent past, and
maintain the requirement that they be independent of the rest – actually – of most of the past. We call
them ‘almost future’ formulas, and show that there is a finite basis of almost future modalities which is
expressively complete (over all Dedekind complete time flows) for the almost future fragment of FOMLO.

1. Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [Pnu77] is a convenient framework for
reasoning about “reactive” systems. This made temporal logics a popular subject in the Computer Science
community, enjoying extensive research in the past 30 years. In TL we describe basic system properties
by atomic propositions that hold at some points in time, but not at others. More complex properties are
expressed by formulas built from the atoms using Boolean connectives and Modalities (temporal connectives):
A k-place modality M transforms statements ϕ1 . . . ϕk possibly on ‘past’ or ‘future’ points to a statement
M(ϕ1 . . . ϕk) on the ‘present’ point t0. The rule to determine the truth of a statement M(ϕ1 . . . ϕk) at t0 is
called a Truth Table. The choice of particular modalities with their truth tables yields different temporal
logics. A temporal logic with modalities M1, . . . ,Mk is denoted by TL(M1, . . . ,Mk).

The simplest example is the one place modality FX saying: “X holds some time in the future”. Its truth
table is formalized by ϕ

F
(t0, X) ≡ (∃t > t0)X(t). This is a formula of the First-Order Monadic Logic of

Order (FOMLO) – a fundamental formalism in Mathematical Logic where formulas are built using atomic
propositions P (t), atomic relations between elements t1 = t2, t1 < t2, Boolean connectives and first-order
quantifiers ∃t and ∀t. Most modalities used in the literature are defined by such FOMLO truth tables,
and as a result every temporal formula translates directly into an equivalent FOMLO formula. Thus, the
different temporal logics may be considered a convenient way to use fragments of FOMLO. FOMLO can
also serve as a yardstick by which to check the strength of temporal logics: A temporal logic is expressively
complete for a fragment L of FOMLO if every formula of L with a single free variable t0 is equivalent to a
temporal formula.

Actually, the notion of expressive completeness is with respect to the type of the underlying model since
the question whether two formulas are equivalent depends on the domain over which they are evaluated. Any

∗Corresponding author
Email addresses: dorit.pardo@gmail.com (Dorit Pardo (Ordentlich)), rabinoa@post.tau.ac.il (Alexander Rabinovich)

Preprint submitted to Elsevier December 27, 2015



(partially) ordered set with monadic predicates is a model for TL and FOMLO, but the main, canonical ,
linear time intended models are the naturals 〈N, <〉 for discrete time and the reals 〈R, <〉 for continuous
time.

A major result concerning TL is Kamp’s theorem [Kam68, GHR94], which states that the pair of modal-
ities “X until Y ” and “X since Y ” is expressively complete for FOMLO over the above two linear time
canonical models.

Many temporal formalisms studied in computer science concern only future formulas – whose truth value
at any moment is determined by what happens from that moment on. For example the formula X until Y
says that X will hold from now (at least) until a point in the future when Y will hold. The truth value
of this formula at a point t0 does not depend on the question whether X(t) or Y (t) hold at earlier points
t < t0.

Over the discrete model 〈N, <〉 Kamp’s theorem holds also for future formulas of FOMLO : The future
fragment of FOMLO has the same expressive power as TL(Until) [GPSS80, GHR94]. The situation is
radically different for the continuous time model 〈R, <〉. In [HR03] it was shown that TL(Until) is not
expressively complete for the future fragment of FOMLO and there is no easy way to remedy it. In fact it
was shown in [HR03] that there is no temporal logic with a finite set of future modalities which is expressively
equivalent to the future fragment of FOMLO over the reals.

The proof there goes (roughly) as follows: define a sequence of future formulas φi(z) such that given any
set B of modalities definable in the future fragment of FOMLO by formulas of quantifier depth at most n,
the formula φn+1(z) is not expressible in TL(B).

The interesting point is that these formulas are all expressible in a temporal language based on the future
modality Until plus the modality K− of [GHR94]. The formula K−(P ) holds at a time point t0 if given any
‘earlier’ t, no matter how close, we can always come up with a t′ in between (t < t′ < t0) where P holds.
This is of course not a future modality: the formula K−(P ) is past-dependent. And it turns out that not
only the above mentioned sequence of future formulas – but all future formulas – can be expressed (over
real time) in TL(Until,K−). This is a consequence of Gabbay’s separation theorem [GHR94].

This future-past mixture of Until and K− is somewhat better than the standard Until-Since basis in the
following sense: Although K− is (like Since) a past modality, it does not depend on much of the past: The
formula K−(P ) depends just on an arbitrarily short ‘recent past’, and is actually independent of most of the
past. In this sense we may say that it is an “almost future” formula (see Section 3.1 for precise definitions).

In [HR03] it was conjectured that TL(Until,K−) is expressively complete for almost future formulas of
FOMLO. Our main result here affirms this conjecture with respect to all Dedekind complete time domains.
An extended abstract concerning the particular case of real time domains was published in [PR12].

The rest of the paper is organized as follows: In Section 2 we recall the definitions of the monadic logic,
the temporal logics and Kamp’s theorem. In Section 3.1 we define “almost futureness” and make a trivial
small step towards the proof. Most of the ‘machinery’ needed for the proof is in Sections 3.2 and 3.3, with
the heart of the proof in Lemma 3.25. Section 3.4 then just puts it all together to complete the proof.
Finally, Section 4 states further results and comments.

2. Preliminaries

We start with the basic definitions of First-Order Monadic Logic of Order (FOMLO) and Temporal
Logic (TL), and some well-known results concerning their expressive power. Fix a signature (finite or
infinite) S of atoms. We use P,Q,R, S . . . to denote members of S. Syntax and semantics of both logics
are defined below with respect to such a fixed signature.
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2.1. First-Order Monadic Logic of Order

Syntax: In the context of FOMLO, the atoms of S are referred to (and used) as unary predicate
symbols. Formulas are built using these symbols, plus two binary relation symbols, < and =, and a finite
set of first-order variables (denoted by x, y, z, . . . ). Formulas are defined by the grammar:

atomic ::= x < y | x = y | P (x) (where P ∈ S)

ϕ ::= atomic | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ1 | ∀xϕ1

The notation ϕ(x1, . . . , xn) implies that ϕ is a formula where the xi’s are the only variables that may occur
free; writing ϕ(x1, . . . , xn, P1, . . . , Pk) additionally implies that the Pi’s are the only predicate symbols
that may occur in ϕ. We will also use the standard abbreviated notation for bounded quantifiers, e.g.:
(∃x)>z(. . . ) denotes ∃x((x > z) ∧ (. . . )), (∀x)≤z(. . . ) denotes ∀x((x ≤ z) → (. . . )), (∀x)<u>l (. . . ) denotes
∀x((l < x < u) → (. . . )), etc. Finally, as usual, True(x) denotes P (x) ∨ ¬P (x) and False(x) denotes
P (x) ∧ ¬P (x).

Semantics: Formulas are interpreted over structures. A structure over S is a triplet M = (T , <, I)
where T is a set – the domain of the structure, < is an irreflexive partial order relation on T , and
I : S → P(T ) is the interpretation of the atoms in the structure (where P is the powerset notation). We
use the standard notationM, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn). The semantics is defined in the standard way.
Notice that for formulas with at most one free first-order variable , this reduces to:

M, t |= ϕ(x).

We will often abuse terminology, and shortly refer to such formulas as monadic formulas (or to the
corresponding syntactical fragment – as FOMLO).

2.2. Propositional Temporal Logics

Syntax: In the context of TL, the atoms of S are used as atomic propositions (also called proposi-
tional atoms). Formulas are built using these atoms, and a set (finite or infinite) B of modality names,
where a non-negative integer arity is associated with each M ∈ B. The syntax of TL with the basis B over
the signature S, denoted by TL(B), is defined by the grammar:

F ::= P | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | M(F1, F2, . . . , Fn)

where P ∈ S and M ∈ B an n-place modality (that is, with arity n). As usual True denotes P ∨ ¬P and
False denotes P ∧ ¬P .

Semantics: Formulas are interpreted at time-points (or moments) in structures (elements of the
domain). The domain T of M = (T , <, I) is called the time domain , and (T , <) – the time flow of the
structure. The semantics of each n-place modality M ∈ B is defined by a ‘rule’ specifying how the set of
moments where M(F1, . . . , Fn) holds (in a given structure) is determined by the n sets of moments where
each of the formulas Fi holds. Such a ‘rule’ for M is formally specified by an operator OM on time flows,
where given a time flow F = (T , <), OM(F) is yet an operator in (P(T ))n −→ P(T ).

The semantics of TL(B) formulas is then defined inductively: Given a structure M = (T , <, I) and
a moment t ∈ M (read t ∈ M as t ∈ T ), define when a formula F holds in M at t, which we denote
M, t |= F , as follows:

• M, t |= P iff t ∈ I(P ), for any propositional atom P .

• M, t |= F ∨G iff M, t |= F or M, t |= G; similarly (“pointwise”) for ∧, ¬.

• M, t |= M(F1, . . . , Fn) iff t ∈ [OM(T , <)](T1, . . . , Tn) where M ∈ B is an n-place modality, F1, . . . , Fn
are formulas and Ti =def {s ∈ T :M, s |= Fi}.
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Truth tables: Most standard modalities studied in the literature can be specified in FOMLO : A FOMLO
formula ϕ(x, P1, . . . , Pn) with a single free first-order variable x and with n predicate symbols Pi is called
an n-place first-order truth table . Such a truth table ϕ defines an n-ary modality M (whose semantics
is given by an operator OM) iff for any time flow (T , <), for any T1, . . . , Tn ⊆ T and for any structure
M = (T , <, I) where I(Pi) = Ti:

[OM(T , <)](T1, . . . , Tn) = {t ∈ T :M, t |= ϕ(x, P1, . . . , Pn)}

Example 2.1. Below are truth-table definitions for the well-known “Eventually” and “Globally”, the
(binary) strict-Until and strict-Since of [Kam68] and for K+ and K− of [GHR94]:

• 3 (“Eventually”) defined by: ϕ
3

(x, P ) =def (∃x′)>xP (x′)

• 2 (“Globally”) defined by: ϕ
2

(x, P ) =def (∀x′)>xP (x′)

• Until defined by : ϕ
Until

(x,Q, P ) =def (∃x′)>x(Q(x′) ∧ (∀y)<x
′

>x P (y))

• Since defined by: ϕ
Since

(x,Q, P ) =def (∃x′)<x(Q(x′) ∧ (∀y)<x>x′P (y))

• K+ defined by: ϕ
K+

(x, P ) =def (∀x′)>x(∃y)<x
′

>x P (y)

• K− defined by: ϕ
K−

(x, P ) =def (∀x′)<x(∃y)<x>x′P (y)

The first four modalities above are most commonly denoted by F,G,U,S. We will rather use the old-
fashioned notations 3 and 2; and we will use infix notation for the binary modalities Until and Since:
P Until Q denotes Until(Q,P ), meaning “there is some future moment where Q holds, and P holds all along
till then”. The non-strict version Untilns is defined as P ∧ (P Until Q), requiring that P should hold at
the “present moment” as well.

The formula K−(P ) holds at the “present moment” t0 iff given any earlier t < t0 – no matter how close
– there is a moment t′ in between (t < t′ < t0) where the formula P holds. Notice that K+ and K− are
definable in terms of Until and Since:

K+(P ) ≡ ¬(¬P Until True)

K−(P ) ≡ ¬(¬P Since True)

In [GHR94] these two modalities are actually defined as abbreviations in TL(Until,Since).

2.3. Kamp’s Theorem

We are interested in the relative expressive power of TL (compared to FOMLO) over the class of linear
structures. Major results in this area are with respect to the subclass of Dedekind complete structures
– where the order is Dedekind complete, that is, where every non empty subset (of the domain) which has
an upper bound has a least upper bound.

Equivalence between temporal and monadic formulas is naturally defined: F ≡ ϕ(x) iff for anyM and
t ∈ M: M, t |= F ⇔ M, t |= ϕ(x). We will occasionally write ≡L , ≡DC , ≡C to distinguish equivalence
over linear structures, over Dedekind complete structures, over any class C of structures, respectively.

Definability : A temporal modality is definable in FOMLO iff it has a FOMLO truth table; a temporal
formula F is definable in FOMLO over a class C of structures iff there is a monadic formula ϕ(z) such
that F ≡C ϕ(z). In this case we say that ϕ defines F over C. Similarly, a monadic formula ϕ(z) may be
definable in TL(B) over C.

Expressive completeness/ equivalence : A temporal language TL(B) (as well as the basis B) is
expressively complete for (a fragment of) FOMLO over a class C of structures iff all monadic formulas (of
that fragment) ϕ(z) are definable over C in TL(B). Similarly, one may speak of expressive completeness of
FOMLO for some temporal language. If we have expressive completeness in both directions between two
languages – they are expressively equivalent .
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As Until and Since are definable in FOMLO, it follows that FOMLO is expressively complete for
TL(Until,Since). The fundamental theorem of Kamp shows that for Dedekind complete structures the
opposite direction holds as well:

Theorem 2.2 ([Kam68]). TL(Until,Since) is expressively equivalent to FOMLO over Dedekind complete
structures.

This was further generalized by Stavi who introduced two new modalities Until′ and Since′ and proved
that TL(Until,Since,Until′,Since′) and FOMLO have the same expressive power over all linear time flows
[GPSS80, GHR94].

2.4. In Search of a Finite Basis for Future Formulas

We use standard interval notations and terminology for subsets of the domain of a structure M =
(T , <, I), e.g.: (t,∞) =def {t′ ∈ T |t′ > t}; similarly we define (t, t′), [t, t′), (t,∞), [t,∞), etc., where t < t′

are the endpoints of the interval. The sub-structure of M restricted to an interval is defined naturally.
In particular: M|

>t0
denotes the sub-structure of M restricted to (t0,∞): Its domain is (t0,∞) and its

order relation and interpretation are those of M, restricted to this interval. M|≥t0
is defined similarly

with respect to [t0,∞). Notice that if M is Dedekind complete then so is any sub-structure obtained by
restricting M to an interval of its domain. If structures M,M′ have domains T , T ′, and if I is an interval
ofM, with endpoints t1 < t2 inM, such that I∪{t1, t2} ⊆ T ∩T ′ and the order relations of both structures
coincide on I ∪ {t1, t2} – we will say that I is a common interval of both structures. This is defined
similarly for intervals with ∞ or −∞ as either endpoint. Two structures coincide on a common interval
iff the interpretations coincide there. Two structures agree on a formula at a given common time-point (or
along a common interval) iff the formula has the same truth value at that point (or along that interval) in
both structures.

Definition 2.3 (Future / past formulas and modalities). A formula (temporal, or monadic with at
most one free variable) F is (semantically):

• A future formula iff whenever two linear structures coincide on a common interval [t0,∞) they agree
on F at t0.

• A pure future formula iff whenever two linear structures coincide on a common interval (t0,∞) they
agree on F at t0.

Past and pure past formulas are defined similarly. A temporal modality is a first-order future (past)
modality iff it is definable in FOMLO by a future (past) truth table.

Note that ‘future’ can be characterized also as follows: A formula ϕ(x0) is a future formula iff it is equivalent
to a formula with all quantifiers relativized to [x0,∞), that is, all quantifiers are of the form (∀x)≥x0(. . . )
or (∃x)≥x0(. . . ).

Looking at their truth tables, it is easy to verify that Until is a future modality and Since is a past modality.
This pair {Until,Since} forms an expressively complete (finite) basis in the sense of Kamp’s theorem. Do
we have a finite basis of future modalities which is expressively complete for all future formulas? Here are
some answers:

Theorem 2.4 ([GPSS80]). TL(Until) is expressively equivalent to the future fragment of FOMLO over
discrete time flows (naturals, integers, finite).

Theorem 2.5 ([HR03]). There is no temporal logic with a finite basis of future modalities which is ex-
pressively equivalent to the future fragment of FOMLO over real time flows.

Theorem 2.6 ([GHR94], [Ra14]). TL(Until,K−) is expressively complete for the future fragment of
FOMLO over Dedekind complete time flows.
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In Theorem 2.6 we don’t have expressive equivalence, as not all TL(Until,K−) formulas are future formulas.
This theorem offers a finite basis {Until,K−}, but just like Kamp’s {Until,Since} – this is a ‘mixed’ future-
past basis. [HR03] points out that in spite of its ‘past’ nature, K− is almost a future modality because it
depends just on an arbitrarily small portion of the recent past, and is independent of most of the past. It
is conjectured there that this “almost future” basis generates only such “almost future” formulas, and that
it generates all of them. In this paper we show that this conjecture holds over all Dedekind complete time
domains.

Although not explicitly stated in [GHR94], Theorem 2.6 easily follows their work along the proof of their
separation theorem1. Another proof for Theorem 2.6 can be found in [Ra14]2.

3. A Finite Basis for Almost Future Formulas over Dedekind Complete Time

In Section 3.1 below we give a formal definition for “almost futureness” and formulate the main result
(Theorem 3.11). Section 3.2 “decomposes” monadic formulas to reach the very specific normal form of
Corollary 3.21. Then the most technical part of the proof is in Section 3.3, with the heart of the proof in
Lemma 3.25 which, eventually, will allow the translation of this normal form into TL(Until,K−). Section
3.4 finally puts it all together to complete the proof.

3.1. Almost Future Formulas

Definition 3.1 (Almost future formulas, modalities, bases). A formula (temporal, or monadic with
at most one free variable) F is an almost future formula iff whenever two linear structures coincide on a
common interval (t,∞) they agree on F all along (t,∞). A temporal modality is almost future iff it has an
almost future truth table in FOMLO. A basis is almost future iff all its modalities are.

Clearly, all pure future formulas are in particular future formulas and all future formulas are almost future.
Note that we can give an alternative (equivalent) definition for future and pure future formulas in the style
of Definition 3.1 as follows (compare with Definition 2.3): A formula F is

• Future iff whenever two linear structures coincide on a common interval [t,∞) they agree on F all
along [t,∞).

• Pure future iff whenever two linear structures coincide on a common interval (t,∞) they agree on F
all along [t,∞).

Remark 3.2. The next two facts and the lemma below follow immediately:

1. If an almost future formula holds at t0 in a substructure M|≥t
of a linear structure M where t < t0

then it holds there in M as well.

2. If an almost future formula holds at t0 in a linear structure M then it holds at t0 in all substructures
M|≥t

, where t < t0.

Lemma 3.3. If a basis B is almost future then so are all of TL(B) formulas. In particular: Until, K− and
all the formulas of TL(Until,K−) are almost future.

Example 3.4. Consider a structure with a real time domain and a point t0 that satisfies the condition:
“Any open interval (t, t0) contains a proper subinterval (t2, t1) such that P (an atomic property) holds at
the ends t1 and t2, but doesn’t hold anywhere inside (t2, t1)”. This is an almost future property expressible
in FOMLO. In TL(Until,K−) it is expressed by the following formula (evaluated at t0):

K−(P ∧ (¬P Until P ))

1 [GHR94] Theorem 10.3.20.
2 [Ra14] Theorem 7.4
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It turns out that studying “almost futureness” requires a close examination of how the recent past looks
like. Considering various kinds of linear time flows, we classify time points according to their recent past:

Definition 3.5. Given a linear structure M: If M has a minimal element we call it a first moment in
M. If t1 < t2 in M and the interval (t1, t2) is empty we say that t2 is the successor of t1 in M and t1 is
the predecessor of t2 in M. If t ∈ M is not a first moment in M and for any t′ < t the interval (t′, t) is
non-empty we say that t is a left-limit in M.

The natural time flow 〈N, <〉, for example, demonstrates successors, predecessors and a first moment;
while in the real time flow 〈R, <〉 all moments are left-limits. The following example illustrates this classifi-
cation, as well as the subtleties of ‘almost future’ and the expressivity of TL(Until,K−).

Example 3.6. The formulas FM, SC, LL defined below are almost future (and let fm(z), sc(z), ll(z)
denote particular, equivalent FOMLO versions, respectively); But Pred(Q) below (with Q atomic) is not
almost future (compare it with the almost future SC):

FM =def K−(False) “I am a first moment”

SC =def ¬K−(True) “I am a successor”

LL =def ¬K−(False) ∧ K−(True) “I am a left-limit”

Pred(Q) =def (False Since Q) “My predecessor is Q”

Pred(True) = (False Since True) Equivalent to the almost future SC !

Remark 3.7. Any point in any linear structure is (exclusively) either a first moment or a successor or a
left-limit. These three ‘types’ of points are indeed characterized by the corresponding TL(Until,K−) formulas:
M, t |= FM iff t is a first moment in M.
M, t |= SC iff t is a successor in M.
M, t |= LL iff t is a left-limit in M.

Remark 3.8. As first moments have actually no past, formulas ‘behave’ at first moments as if they were

future formulas: for every FOMLO formula ψ(z) there is a future formula
7→
ψ (z) such that

ψ(z) ∧ fm(z) ≡L
7→
ψ (z) ∧ fm(z)

Take for
7→
ψ the ‘relativised’ version of ψ, where all quantifiers are bounded by ‘≥ z’.

Almost future formulas demonstrate a similar phenomenon with respect to successor moments: successors
do have a past; but we may say that they have no recent past: the entire past of a successor resides ‘beyond’
its predecessor. Thus, the evaluation of an almost future formula to True or False at a successor point
depends only on the present and future. Formally:

Lemma 3.9. For every almost future FOMLO formula ψ(z) there is a future formula
→
ψ (z) such that

ψ(z) ∧ sc(z) ≡L
→
ψ (z) ∧ sc(z)

To prove this lemma we ‘borrow’ the following from the work of [GHR94] concerning separation of
formulas into past, present and future formulas:
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Proposition 3.10 ([GHR94] Semantical Separation in FOMLO). Every FOMLO formula ψ(z) is

equivalent over linear time to a finite disjunction of the form:
∨
i

(πi(z) ∧ γi(z) ∧ ϕi(z)) with pure past,

present, pure future FOMLO formulas πi, γi, ϕi, respectively.

The proposition and a hint to its proof is embedded in the proof of [GHR94] Theorem 9.3.4.

Proof. (of Lemma 3.9) Given almost future ψ(z), by Proposition 3.10 we have ψ(z) ≡L
∨

(πi(z) ∧ ϕi(z))
with pure past πi and future (possibly non-pure) ϕi. Denote: good =def {i : πi(z) is consistent with sc(z)};
by consistent here we mean that the conjunction πi(z) ∧ sc(z) is satisfiable. Now denote:

→
ψ (z) =def

∨
i∈good

ϕi(z)

Then ψ(z) ∧ sc(z) ≡L
→
ψ (z) ∧ sc(z). The ⇒ direction is trivial. For the ⇐ direction assume that M, t |=

ϕi(z) ∧ sc(z) for some i ∈ good and a linear structure M. Then the corresponding πi is consistent with sc,
i.e., M′, t′ |= πi(z) ∧ sc(z) for some M′, t′ (where t′ is a successor moment). Replace the interval [t′,∞)
of M′ by the corresponding interval [t,∞) of M. Denote the structure obtained this way by M′′. Then
M′′, t |= πi(z) because πi is a pure past formula. Also, as ϕi is a future formula, independent of past –
M′′, t |= ϕi(z). So we have M′′, t |= πi(z) ∧ ϕi(z), hence M′′, t |= ψ(z). Finally, as ψ(z) is almost future,
and asM andM′′ coincide on the common interval (t1,∞) where t1 is the predecessor3 of t –M, t |= ψ(z)
as well. 2

We have seen some examples of almost future properties expressed in TL(Until,K−). Our main result states
that any almost future property expressible in FOMLO can be translated to TL(Until,K−):

Main Theorem 3.11. TL(Until,K−) is expressively equivalent to the almost future fragment of FOMLO
over Dedekind complete structures.

As Until and K− are definable in FOMLO, the expressive completeness of almost future FOMLO for
TL(Until,K−) over all linear structures (and in particular over Dedekind complete ones) follows immediately
by Lemma 3.3. For the opposite direction we have to show how almost future monadic formulas translate
into TL(Until,K−).

Remark 3.8 and Lemma 3.9 suggest two semantics-preserving translations: over first moments (for
all formulas) and over successor moments (for almost future formulas). Indeed, over Dedekind complete
structures:

Lemma 3.12 (Translations over first moments and successors). There are translations Transfm

and Transsc from FOMLO into TL(Until,K−), such that for any ϕ(z) and for any almost future ψ(z):

ϕ(z) ∧ fm(z) ≡DC Transfm(ϕ) ∧ FM
ψ(z) ∧ sc(z) ≡DC Transsc(ψ) ∧ SC

where the formulas FM,SC, fm, sc are as defined in Example 3.6

Proof. Immediate by Remark 3.8, Lemma 3.9 and Theorem 2.6. 2

Most of our effort will now be in finding a translation for left-limit points.

3 Identifying the predecessor of t in M with its predecessor in M′′ – a harmless abuse of notations.
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3.2. Decomposition

Expressive completeness proofs often go through manipulating formulas to reach some (equivalent) stan-
dard form that can then be translated to the target language. Here we start with a special case of ‘decom-
position formulas’ used by [GPSS80] in their proof for Theorem 2.4. This will be further ‘decomposed’ to
reach the normal form of Corollary 3.21, which plays a key role in the proof of our main result.

Definition 3.13 ([GPSS80] ∃∀∃∀∃∀-formulas).

1. An ∃∀∃∀∃∀-formula is a formula of the following form, where n,m ≥ 0 and αi, βi, α
∗
i , β
∗
i are FOMLO

formulas with (at most) a single free first-order variable:

ψ(z) := ∃p0∃p1 . . . ∃pn∃f0∃f1 . . . ∃fm
[(pn < pn−1 < · · · < p1 < p0 = z = f0 < f1 < f2 · · · < fm) “Ordering”

∧
n∧
i=0

αi(pi) “All αi
′s held at the points pi (α0 holds at z)”

∧ (∀y)<pnβn(y) “βn held ‘ever before’ pn”

∧
n−1∧
i=0

[(∀y)<pi>pi+1
βi(y)] “Each βi held along (pi+1, pi)”

∧
m∧
i=1

α∗i (fi) “All α∗i
′s will hold at the points fi”

∧
m−1∧
i=0

[(∀y)
<fi+1

>fi
β∗i (y)] “Each β∗i will hold along (fi, fi+1)”

∧ (∀y)>fmβ
∗
m(y)] “β∗m will hold held ‘ever after’ fm”

2. An
←−
∃∀
←−
∃∀←−∃∀-formula is an ∃∀-formula as above, where m = 0 and β∗0 = True.

3. Given a temporal basis B, an ∃∀∃∀∃∀-formula over TL(B) is an ∃∀-formula where the formulas involved
(αi, βi, α

∗
i , β
∗
i ) are all definable over Dedekind complete structures in TL(B).

4. Similarly, given a basis B, an
←−
∃∀
←−
∃∀←−∃∀-formula over TL(B) is an

←−
∃∀-formula where αi, βi are all definable

over Dedekind complete structures in TL(B).

Notice that the first two definitions above are purely syntactical. p0 and f0 are dummy variables, introduced
here to simplify notations.

Notation 3.14. We use the following abbreviated notation for ∃∀-formulas and for
←−
∃∀-formulas ψ(z) as

above:

ψ(z) = (〈βn, αn〉 , . . . , 〈β1, α1〉 , 〈β0, α0, β
∗
0〉 , 〈α∗1, β∗1〉 , . . . , 〈α∗m, β∗m〉) (∃∀)

ψ(z) = (〈βn, αn〉 , . . . , 〈β1, α1〉 , 〈β0, α0〉) (
←−
∃∀)

Notice that we omit β∗0 (True) in
←−
∃∀-formulas. We will occasionally write

ψn(z) = (〈βn, αn〉 , . . . , 〈β0, α0〉)

to explicitly reflect the length of the quantifier prefix of an
←−
∃∀-formula.
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The next lemma is an instance of Lemma 3.2 (1) of [Ra14]: the more general context there involves a
form similar to ∃∀-formulas, but with any number of free first-order variables z0, z1, . . . , zk.

Lemma 3.15. Given a temporal basis B, any finite conjunction of ∃∀-formulas over TL(B) is equivalent
to a finite disjunction of ∃∀-formulas over TL(B).

Proof. (Hint). Consider, for example, ψ and ψ′ below, with atomic pi, qi, ri, p
′
i, q
′
i, r
′
i:

ψ(z) = (〈q1, p1〉, 〈q0, p0, r0〉)
ψ′(z) = (〈q′1, p′1〉, 〈q′0, p′0, r′0〉)

It is easy to verify that ψ(z) ∧ ψ′(z) ≡L δ1(z) ∨ δ2(z) ∨ δ3(z), where

δ1(z) = (〈q1 ∧ q′1, p1 ∧ q′1〉, 〈q0 ∧ q′1, q0 ∧ p′1〉, 〈q0 ∧ q′0, p0 ∧ p′0, r0 ∧ r′0〉)
δ2(z) = (〈q1 ∧ q′1, p1 ∧ p′1〉, 〈q0 ∧ q′0, p0 ∧ p′0, r0 ∧ r′0〉)
δ3(z) = (〈q1 ∧ q′1, q1 ∧ p′1〉, 〈q1 ∧ q′0, p1 ∧ q′0〉, 〈q0 ∧ q′0, p0 ∧ p′0, r0 ∧ r′0〉)

Extending this example to the general case is straight forward. Notice also that, given a basis B, if ψ and
ψ′ are both ∃∀-formulas over TL(B) then so are the disjuncts constructed as illustrated above. 2

Unsurprisingly, with the presence of Until, the above two forms – ∃∀-formulas and
←−
∃∀-formulas – are equally

expressive:

Lemma 3.16. Let B be any temporal basis such that Until ∈ B. Then every ∃∀-formula over TL(B) is

equivalent (over all linear structures) to an
←−
∃∀-formula over TL(B).

Proof. Let δ(z) = (〈βn, αn〉 , . . . , 〈β1, α1〉 , 〈β0, α0, β
∗
0〉 , 〈α∗1, β∗1〉 , . . . , 〈α∗m, β∗m〉) be an ∃∀-formula over

TL(B), and let Ai, Bi, A
∗
i , B

∗
i be TL(B) formulas defining αi, βi, α

∗
i , β
∗
i , respectively. Let ψ be the fol-

lowing
←−
∃∀-formula:

ψ(z) =def (〈βn, αn〉 , . . . , 〈β1, α1〉 , 〈β0, α∗0〉)
where:

α∗0(x) =def α0(x) ∧ ∃f0∃f1 . . . ∃fm[(x = f0 < f1 < f2 · · · < fm)

∧
m∧
i=1

α∗i (fi)

∧
m−1∧
i=0

[(∀y)
<fi+1

>fi
β∗i (y)]

∧ (∀y)>fmβ
∗
m(y)]

Then clearly, δ(z) ≡L ψ(z), and:

α∗0(x) ≡DC A0 ∧
[
B∗0 Until (A∗1 ∧ (B∗1 Until (A∗2 ∧ (B∗2 Until . . . Until (A∗m−1 ∧ (B∗m−1 Until

[A∗m ∧ ¬(True Until ¬B∗m)])) . . . ))))
]

Hence α∗0 is definable over Dedekind complete structures in TL(B) and thus ψ above is an
←−
∃∀-formula over

TL(B). 2

While ∃∀-formulas provide a convenient decomposition over Kamp’s basis {Until,Since}, this no longer
holds if we restrict the temporal basis to {Until,K−}: in this case, as mentioned in [Ra14], a specific form
of ‘unbounded sentences’ remains inexpressible by ∃∀-formulas. These are sentences that assert that “π is
unbounded from below” for some property π:

10



Definition 3.17 ([Ra14] “Unbounded from Below” Sentences).

1. An unbounded sentence is a sentence of the form:

η := ∀x(∃y)<xπ(y)

where π is any FOMLO formula with (at most) a single free variable.

2. Given any temporal basis B, an unbounded sentence over TL(B)TL(B)TL(B) is an unbounded sentence as
above, where the formula π is definable over Dedekind complete structures in TL(B).

[Ra14] shows that every FOMLO formula is equivalent over Dedekind complete structures to a positive
boolean combination of unbounded sentences over TL(Until,K−) and a generalized form of ∃∀-formulas (with
possibly more than one free variable) over TL(Until,K−). The next proposition is an instance of this result
– a restricted version concerning formulas with a single free variable.

Proposition 3.18 ([Ra14]). Every FOMLO formula with (at most) a single free first-order variable is
equivalent over Dedekind complete structures to a positive boolean combination of ∃∀-formulas over
TL(Until,K−) and unbounded sentences over TL(Until,K−).

Consider a formula ϕ(z) represented by the above proposition as:

ϕ(z) ≡DC
∨
i

∧
j

ϕij(z) (1)

where each ϕij is either an unbounded sentence over TL(Until,K−) or an ∃∀-formula over TL(Until,K−).
Some of the disjuncts here may be ‘pure’ – consisting of ∃∀-conjuncts only, while others may be ‘mixed’ –
including at least one ‘unbounded’ conjunct. And we can assume without loss of generality that at least one
disjunct is ‘pure’: otherwise, add to (1) a dummy disjunct in the form of an unsatisfiable ∃∀-formula, for
example (〈True, False, T rue〉). Thus, (1) above with k ≥ 1 ‘pure’ disjuncts can be rearranged as:

ϕ(z) ≡DC
k∨
i=1

∧
j

ψij(z) ∨
∨
i

(
ηi ∧

∧
j

χij(z)
)

where ψij are all ∃∀-formulas over TL(Until,K−), ηi are all unbounded sentences over TL(Until,K−) and χij
are of either type. And by Lemma 3.15 and Lemma 3.16, conclude:

Corollary 3.19. Every FOMLO formula ϕ(z) with (at most) a single free first-order variable is equivalent
over Dedekind complete structures to a formula in the following form:

ϕ(z) ≡DC
k∨
i=1

ψi(z) ∨
∨
i

(
ηi ∧

∧
j

χij(z)
)

where k ≥ 1, ψi are all
←−
∃∀-formulas over TL(Until,K−), ηi are all unbounded sentences over TL(Until,K−)

and χij are of either type.

Now, consider an
←−
∃∀-formula ψn(z) = (〈βn, αn〉 , . . . , 〈β0, α0〉). Clearly, for any arbitrary formulas χ1(x) and

χ2(x):
ψn(z) ≡L (〈χ1, αn ∧ fm〉 , . . . , 〈β0, α0〉) ∨ (〈βn, αn ∧ ¬fm〉 , . . . , 〈β0, α0〉) ≡L

(〈χ1, αn ∧ fm〉 , . . . , 〈β0, α0〉) ∨

(〈βn ∧ ¬fm,αn ∧ ¬fm〉 , . . . , 〈β0, α0〉) ∨

(〈χ2, βn ∧ fm〉 , 〈βn ∧ ¬fm,αn ∧ ¬fm〉 , . . . , 〈β0, α0〉)
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where fm(x) is the monadic formula characterizing first moments (recall Example 3.6). In particular, let
χ1 = χ2 = True and then by Remark 3.8:

ψn(z) ≡L (〈True, α′n ∧ fm〉 , . . . , 〈β0, α0〉) ∨ (2)

(〈βn ∧ ¬fm,αn ∧ ¬fm〉 , . . . , 〈β0, α0〉) ∨

(〈True, β′n ∧ fm〉 , 〈βn ∧ ¬fm,αn ∧ ¬fm〉 , . . . , 〈β0, α0〉)

where α′n, β
′
n are future formulas. And notice that if ψn(z) is an

←−
∃∀-formula over TL(Until,K−), then (2)

above is a disjunction of three
←−
∃∀-formulas over TL(Until,K−): α′n and β′n are definable over Dedekind

complete structures in TL(Until,K−) by Theorem 2.6; and the formulas fm and True are clearly definable
in TL(Until,K−) as well. Notice also that the first and third disjuncts in (2) have a leftmost component in
the form: 〈True, future-formula ∧ fm〉, while the second disjunct has a leftmost component in the form:
〈β ∧ ¬fm,α ∧ ¬fm〉.

Corollary 3.19 can now be refined, using these observations, to reach the normal form of Corollary 3.21
below. First, we introduce the necessary definitions:

Definition 3.20 (FM-
←−
∃∀-formulas and non-FM-

←−
∃∀-formulas).

1. An FM-
←−
∃∀
←−
∃∀←−∃∀-formula is an

←−
∃∀-formula of the form:

ψn = (〈True, αn ∧ fm〉 , 〈βn−1, αn−1〉 , . . . , 〈β0, α0〉)

where αi, βi are all definable over Dedekind complete structures in TL(Until,K−), αn is a future for-
mula, and fm is the monadic formula characterizing first moments (see Example 3.6).

2. A non-FM-
←−
∃∀
←−
∃∀←−∃∀-formula is an

←−
∃∀-formula of the form:

ψn = (〈βn ∧ ¬fm,αn ∧ ¬fm〉 , 〈βn−1, αn−1〉 , . . . , 〈β0, α0〉)

where αi, βi are all definable over Dedekind complete structures in TL(Until,K−), and fm as above.

We will refer to these two specific types of
←−
∃∀-formulas over TL(Until,K−) as FM-type and non-FM-

type . Notice that, in general,
←−
∃∀-formulas over TL(Until,K−) don’t have to be of either type. For example:

ψ1 = (〈β, α〉 , 〈β, α〉) with α(x) = (∀x′)<x(∃y)<x>x′P (y) and β(x) = Q(x) (where P,Q are atoms) is of neither

type. But, as we have just seen, every
←−
∃∀-formula over TL(Until,K−) is equivalent to a disjunction of FM

and non-FM
←−
∃∀-formulas. Hence, from Corollary 3.19 we derive:

Corollary 3.21. Every FOMLO formula ϕ(z) with (at most) a single free first-order variable is equivalent
over Dedekind complete structures to a formula in the following form:

ϕ(z) ≡DC
k∨
i=1

ψi(z) ∨
∨
i

(
ηi ∧

∧
j

χij(z)
)

(3)

where k ≥ 1, ψi are all
←−
∃∀-formulas of type FM or non-FM, ηi are all unbounded sentences over TL(Until,K−)

and χij are either unbounded sentences over TL(Until,K−) or
←−
∃∀-formulas over TL(Until,K−).

In the following sections we will see that what really matters in (3) above is the disjunction
∨
ψi(z) of

FM-type and non-FM type
←−
∃∀-formulas.
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3.3. Formulas that Hold “Regardless of Most of the Past”

A formula F “holds inM at t0 regardless of most of the past” if we can truncate the past as close as we
wish to the left of t0, and F persistently holds at t0 in all such truncated structures. To simplify terminology
we will just say that, in such case, F “almost-holds in M at t0”. Formally:

Definition 3.22 (‘Almost-holding’). Given a formula (temporal, or monadic with at most one free vari-
able) F , and given a linear structure M and a left-limit moment t0 ∈M, we will say that F almost-holds
in M at t0 iff for every t < t0 in M there is a t′ ∈ (t, t0) such that M|≥t′ , t0 |= F .

Remark 3.23.

1. If F is an almost future formula and t0 is a left-limit moment in a linear structure M then: F holds
in M at t0 iff it almost-holds there.

2. In general, it might be the case that a formula F (which is not almost future) almost-holds in M
at a left-limit moment t0, yet F does not hold in M at t0. Examples: “P always held in the past”
((∀x)<zP (x)), “There was a first moment” (∃x((x < z)∧ ∀y(x < y))). Similarly, “P once held in the
past” ((∃x)<zP (x)) demonstrates the converse situation.

3. Notice also that, by definition, non-FM
←−
∃∀-formulas and unbounded sentences are unsatisfiable in

structures that have a first moment, and therefore don’t almost-hold anywhere. Similarly, ‘short’ FM←−
∃∀-formulas of the form ψ0 = (〈True, α0 ∧ fm〉) are unsatisfiable over left-limits, and thus cannot
almost-hold anywhere.

Lemma 3.24. If a finite disjunction of FOMLO formulas ϕ(z) =
∨
δi(z) is almost future, then for every

left-limit moment t0 in every linear structure M:

M, t0 |= ϕ(z) iff some δi(z) almost-holds in M at t0

Proof. Given an almost future ϕ(z) =
∨
δi(z) as above, and given a left-limit moment t0 in a linear

structure M:
Proof of ⇐: t0 is a left-limit, so there is an earlier moment t < t0. Assume that some δi(z) almost-holds

in M at t0, then there is a t′ ∈ (t, t0) such that M|≥t′ , t0 |= δi(z), hence M|≥t′ , t0 |= ϕ(z), and as ϕ is
almost future – M, t0 |= ϕ(z) as well (Remark 3.2 (1)).

Proof of ⇒: Assume that M, t0 |= ϕ(z), then (by Remark 3.2 (2)) for every t < t0 in M: M|≥t
, t0 |=

ϕ(z), hence for every t < t0:

M|≥t
, t0 |= δi(z) for some index i (4)

Now, assume to the contrary that none of the disjuncts δi almost-holds in M at t0. Then for each i there
is a point – denote it by ti – such that ti < t0 and for all t′ ∈ (ti, t0): δi(z) does not hold in M|≥t′ at t0.
Let t̄ denote the largest (‘latest’) ti (we started off with a finite disjunction). t0 is a left-limit, so there is a
moment t ∈ (t̄, t0). Thus for each i: ti ≤ t̄ < t < t0, and therefore for each i δi(z) does not hold in M|≥t

at
t0. This contradicts (4) above. Thus, we conclude that (at least) one of the disjuncts δi does almost-hold
in M at t0. 2

The above lemma motivates us to seek a way to express in TL(Until,K−) the fact that “a formula almost-

holds in M at t0”. The main technical lemma below shows that this is possible for
←−
∃∀-formulas of both

types, FM and non-FM:
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Main Lemma 3.25. For every FM-type or non-FM type
←−
∃∀-formula ψn(z) there is a TL(Until,K−) formula

Fψn such that for every Dedekind complete structure M and every left-limit moment t0 ∈M:

M, t0 |= Fψn iff ψn(z) almost-holds in M at t0 (5)

Proof. If ψn(z) is a non-FM type, or a ‘short’ FM-type of the form ψ0 = (〈True, α0 ∧ fm〉) let Fψn =def

False, and then (5) above immediately follows by Remark 3.23 (3).

It remains to handle ‘longer’ FM-
←−
∃∀-formulas:

Let ψn(z) = (〈βn, αn ∧ fm〉 , 〈βn−1, αn−1〉 , . . . , 〈β0, α0〉) be an FM-
←−
∃∀-formula where n ≥ 1, βn = True

and αn is a future formula (see Definition 3.20). Let Ai, Bi be TL(Until,K−) formulas defining αi, βi for

0 ≤ i ≤ n, and let An+1 =def True. Define TL(Until,K−) formulas Gψ
n

0 , Gψ
n

1 , . . . , Gψ
n

n , Gψ
n

n+1 and Fψn as
follows:

Gψ
n

0 =def A0

Gψ
n

j+1 =def Aj+1 ∧ (Bj Until G
ψn

j ) for j = 0, 1, . . . , n

Fψn =def A0 ∧ ¬K−(¬B0) ∧
n+1∧
j=1

K−(Gψ
n

j )

Now let t0 be a left-limit moment in a Dedekind complete structure M. We show that Fψn satisfies the
required property (5).

Proof of property (5), ⇒:

Assume that M, t0 |= Fψn . Let t < t0. To show that ψn(z) almost-holds in M at t0 we must find a
t′ ∈ (t, t0) such that M|≥t′ , t0 |= ψn(z).

Below we will show how to find n + 1 points: t1, . . . , tn+1 in M such that (i) t < tn+1 < · · · < t1 < t0
and (ii) for each 0 ≤ i ≤ n: Bi holds in M along (ti+1, ti) and M, ti |= Gψ

n

i (and thus, in particular
M, ti |= Ai). Having these points, let t′ = tn (recall that n ≥ 1), and then:

• For 0 ≤ i < n: As Ai, Bi are almost future, they hold in the corresponding points and intervals in
the truncated structureM|≥t′ as well (see Remark 3.2 (2)), and therefore αi, βi also hold in the same
points and intervals in M|≥t′ .

• Additionally, we have M, tn |= An. But this is a future formula, and as M and M|≥t′ coincide
on [tn,∞) it follows that M|≥t′ , tn |= An as well, and therefore M|≥t′ , tn |= αn. And as tn is a
first-moment in M|≥t′ , clearly: M|≥t′ , tn |= αn ∧ fm.

• Finally, βn holds along (−∞, tn) in M|≥t′ , as t′ = tn is a first-moment in this structure.

• Thus we have shown that M|≥t′ , t0 |= ψn(z) as required.

It remains to show there are points ti as promised above. First, asM, t0 |= ¬K−(¬B0), we have an interval

(t̄, t0) where B0 holds and t < t̄ < t0. Second (recall that n ≥ 1), asM, t0 |= K−(Gψ
n

n+1), we have a ṫ ∈ (t̄, t0)

where Gψ
n

n+1 holds, that is: M, ṫ |= (Bn Until Gψ
n

n ). For tn+1 we simply pick ṫ. Next, we construct tn: We

have M, tn+1 |= (Bn Until Gψ
n

n ), hence, Gψ
n

n holds at some t′′ > tn+1 and Bn holds along (tn+1, t
′′). Now,

if t′′ < t0 denote: tn = t′′. Otherwise, as M, t0 |= K−(Gψ
n

n ), there is a t∗ ∈ (tn+1, t0) where Gψ
n

n holds, and
in this case denote: tn = t∗. In any case, we have t < t̄ < tn+1 < tn < t0, Bn holds along (tn+1, tn) and
M, tn |= Gψ

n

n . Repeat the above arguments (induction, down-counting from tn to t1) to construct the rest
of the ti’s. Finally, B0 clearly holds along (t1, t0) and M, t0 |= A0, so the points ti indeed satisfy (i) and
(ii) as required.
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Proof of property (5), ⇐:

Recall that t0 is a left-limit moment in M, and assume that ψn(z) almost-holds in M at t0. We prove
that all three conjuncts of Fψn hold in M at t0:

• Third conjunct
n+1∧
j=1

K−(Gψ
n

j ):

Let 1 ≤ j ≤ n + 1 and let t̄ < t0 in M. To show that M, t0 |= K−(Gψ
n

j ), we must find a t′ ∈ (t̄, t0)

such that M, t′ |= Gψ
n

j . As t0 is a left-limit, there is some t∗ ∈ (t̄, t0), and as ψn(z) almost-holds in
M at t0, there is a t ∈ (t∗, t0) such that M|≥t

, t0 |= ψn(z). Thus (recall that n ≥ 1), there are points
t1, . . . , tn in M|≥t

such that in M: t̄ < t∗ < t ≤ tn < · · · < t1 < t0, and in M|≥t
:

– t ≤ tn < · · · < t1 < t0.

– For 0 ≤ i < n: αi (and therefore Ai) holds at ti, and βi (and therefore Bi) holds along (ti+1, ti).
And as these are all almost future formulas (and as t < ti), we conclude by Remark 3.2 (1) that
Ai, Bi hold in the corresponding points and intervals in M as well.

– αn ∧ fm holds at tn. Thus, tn must be a first moment in M|≥t
, that is:

t = tn

So, we have M|≥t
, tn |= αn (a future formula), and as M and M|≥t

coincide on [tn,∞), we conclude
thatM, tn |= αn as well, and thereforeM, tn |= An. And as Bn = True, Bn clearly holds inM along
(t∗, tn).

Now, if 1 ≤ j ≤ n let t′ = tj and if j = n+ 1 let t′ = t∗. In either case we clearly have M, t′ |= Gψ
n

j ,

and thus, by the definition of K− it follows that:

M, t0 |= K−(Gψ
n

j )

• First conjunct A0:

t0 is a left-limit in M, so indeed there is some t̄ < t0 in M, and we have already shown above that
(given such t̄) M, t0 |= A0.

• Second conjunct ¬K−(¬B0):

Let t̄ < t0. We have actually shown above (along the proof for the third conjunct) that there is a
t1 ∈ (t̄, t0) such that B0 holds in M all along the interval (t1, t0). By the definition of K− it follows
that:

M, t0 |= ¬K−(¬B0)

Thus, M, t0 |= Fψ
n

.

2
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3.4. Putting it all together

Lemma 3.25 renders the desired semantics-preserving translation over left-limit moments for almost
future formulas:

Corollary 3.26 (Translation over left-limit points). There is a translation Transll of FOMLO for-
mulas into TL(Until,K−), such that for every almost future formula ϕ(z):

ϕ(z) ∧ ll(z) ≡DC Transll(ϕ) ∧ LL (6)

Proof.

1. Given an almost future ϕ(z), by Corollary 3.21 we have:

ϕ(z) ≡DC
k∨
i=1

ψi(z) ∨
∨
i

(
ηi ∧

∧
j

χij(z)
)

(7)

where k ≥ 1, ψi are all
←−
∃∀-formulas of type FM or non-FM, ηi are all unbounded sentences and χij

are either unbounded sentences or
←−
∃∀-formulas.

2. By Lemma 3.25, each ψi has a ‘representative’ Fψi in TL(Until,K−) that satisfies property (5) of the
lemma, or, in other words, that asserts that “ψi(z) almost-holds in M at t0”. Define:

Transll(ϕ) =def

∨
Fψi

3. Notice that so far we haven’t used the fact that ϕ is almost future: steps 1 and 2 above hold for any
monadic ϕ(z). Now verify that (6) above indeed holds: let t0 be a left-limit moment inM. By Lemma
3.24 (and this is the point where the “almost futureness” of ϕ is crucial), M, t0 |= ϕ(z) iff at least
one of the disjuncts of (7) above almost-holds in M at t0. But recall that by Remark 3.23 (3) none
of the ηi’s can almost-hold anywhere, and by similar considerations none of the disjuncts of (7) that
includes an ‘unbounded’ conjunct ηi can almost-hold anywhere. Thus M, t0 |= ϕ(z) iff at least one of
the ψi’s almost-holds in M at t0, in other words (by Lemma 3.25), iff there is a disjunct ψi(z) such
that M, t0 |= Fψi

, that is, iff M, t0 |= Transll(ϕ).

2

Now we are ready to complete the proof of our main result (Theorem 3.11): let Transfm, Transsc be as in
Lemma 3.12; and let Transll be as in Corollary 3.26 above. Given an almost future FOMLO formula ϕ(z),
denote:

Fϕ =def (FM ∧ Transfm(ϕ)) ∨ (SC ∧ Transsc(ϕ)) ∨ (LL ∧ Transll(ϕ)) (8)

Then Fϕ is a TL(Until,K−) formula and, as every point in a Dedekind complete structure is (exclusively)
either a first-moment or a successor or a left-limit (Remark 3.7), it follows by Lemma 3.12 and Corollary
3.26 that:

ϕ(z) ≡DC Fϕ

2
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4. Further Results and Comments

We have shown expressive equivalence of TL(Until,K−) and almost future FOMLO over Dedekind com-
plete time flows. The notion of past, future, almost future formulas is defined with respect to the class of
all linear structures. One may as well consider similar notions relative to specific classes of structures. For
example, a formula is a future formula over the class DC of all Dedekind complete time flows if any pair of
Dedekind complete structures that coincide on the future of some point t agree on the formula at t. Clearly,
every future formula over the class of all linear structures is also a future formula over DC. The converse
doesn’t hold: The formula P Until′ Q for example, which uses Stavi’s modality to refer to ‘gaps’ in time, is
unsatisfiable over DC, and therefore a future formula over DC, but this is not a future formula over linear
time domains.

We have stated our main result (Theorem 3.11) with respect to formulas which are almost future over
all linear structures. The proof remains valid if, instead, we require “almost futureness” over the subclass
DC. Thus we have actually established a stronger version of the main result: every formula which is almost
future over DC has a TL(Until,K−)-equivalent over DC. Theorem 3.11 then immediately follows, as every
almost future formula is in particular almost future over Dedekind complete structures.

It is decidable whether a formula ϕ(x) is almost future over Dedekind complete time. Indeed, let Fϕ
be obtained from any monadic formula ϕ(x) as in (8) above, and let ϕ′(x) be the standard translation of
Fϕ back into FOMLO. Then clearly the original ϕ(x) is almost future over Dedekind complete time iff the
formula ϕ(x) ↔ ϕ′(x) is valid over Dedekind complete structures. Since the validity of a FOMLO formula
over Dedekind complete structures is decidable [BG85], we conclude that it is decidable whether a formula
is almost future over Dedekind complete structures.

In this paper we generalize the proof concerning real time domains which was presented in an extended
abstract ([PR12]). The core translation we give here for left-limit points is the same construction presented
there for real time domains. Still, the correctness proof for left-limit points had to be carefully adapted.
Additionally, Proposition 3.18 (as already stated in [Ra14]) corrects a mistake in [PR12], where we have
erroneously presented a decomposition of monadic formulas into ∃∀-formulas over TL(Until,K−).

Over linear structures in general, {Until,K−} is not expressive enough: It is not a basis for almost
future formulas. Stavi generalized Kamp’s theorem by enhancing {Until,Since} to obtain a basis expressively
equivalent to FOMLO over linear time [GHR94]. Unfortunately, {Until,K−} cannot be extended in a similar
manner: no finite basis of almost future modalities is expressively equivalent to almost future FOMLO over
linear time. A proof for this negative result was presented in [Ra15].

Table 1 summarizes which fragments of FOMLO can be accurately captured by an expressively equivalent
Temporal Logic with a finite basis, depending on the kind of time flow in question:

Fragment of Expressively Equivalent
Time Flows FOMLO Temporal Basis

Kamp (1968) Dedekind complete FOMLO { Until,Since }
Stavi (1980) Linear FOMLO { Until,Since,Until′,Since′}
[GPSS80] Discrete (N,Z, . . . ) Future { Until }
[HR03] Real Future No finite basis
Current paper Dedekind complete Almost future { Until,K− }
[Ra15] Linear Almost future No finite basis

Table 1: The Expressive Power of Temporal Logics

Acknowledgments We are very grateful to Yoram Hirshfeld for numerous insightful discussions and to the
anonymous referees for their helpful suggestions.
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