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Abstract

We investigate the complexity of the satisfiability problem of temporal logics with a finite set of modalities
definable in the existential fragment of monadic second-order logic. We show that the problem is in pspace
over the class of all linear orders. The same techniques show that the problem is in pspace over many
interesting classes of linear orders.

1. Introduction

A major result concerning linear-time temporal logics is Kamp’s theorem [12, 10, 9] which states that
TL(Until,Since), the temporal logic having Until and Since as the only modalities, is expressively complete
for first-order monadic logic of order over the class of Dedekind-complete linear orders.

The order of natural numbers ω = (N, <) and the order of the real numbers (R, <) are both Dedekind-
complete. Another important class of Dedekind-complete orders is the class of ordinals. However, the order
of the rationals is not Dedekind-complete. Stavi introduced two modalities UntilStavi and SinceStavi and
proved that the temporal logic having the four modalities Until, Since, UntilStavi and SinceStavi is expressively
complete for first-order monadic logic of order over the class of all linear orders [10, 9].

Our concern in this paper will be with the complexity of the satisfiability problem for temporal logics
over various classes of linear orders.

Sistla and Clarke [22] proved that the satisfiability problem for TL(Until,Since) over ω-models is pspace-
complete. This proof was based on automata theoretical techniques.

Burgess and Gurevich [5] proved that TL(Until,Since) is decidable over the reals. They provided two
proofs. The first involves an indirect reduction to Rabin’s theorem on the decidability of the monadic second-
order logic over the full binary tree [14]. The second one is based on the model-theoretical composition
method. Both proofs provide algorithms of non-elementary complexity.

Reynolds [17, 16] proved that the satisfiability problem for TL(Until,Since) over the reals is pspace-
complete and that the temporal logic with only the Until modality is pspace-complete over the class of all
linear orders. The proofs in [17, 16] use temporal mosaics and are very non-trivial and difficult to grasp.

One of our objectives was to provide a simple proof of Reynolds’ remarkable result [17] obtained in 1999.
We also wanted a proof which can be applied to prove in a uniform way a pspace upper bound for other time
domains. In [7], we showed that the satisfiability problem for TL(Until,Since) over the class of all ordinals is
pspace-complete. This proof was based on automata theoretical techniques, and it is considerably simpler
than Reynolds’ proof of pspace-completeness for the satisfiability problem for TL(Until,Since) over the reals.
However, the ordinals are simpler than the reals.

Cristau [6] provided a very unexpected translation from the temporal logic having the four modalities
Until, Since, UntilStavi and SinceStavi into automata which work over arbitrary linear orders and as a conse-
quence established a double exponential space algorithm for the satisfiability problem of this temporal logic
over the class of all linear orders.

Let TL be a temporal logic with a finite set of modalities definable in the existential fragment of monadic
second-order logic. We prove in this paper in a uniform manner that the satisfiability problem for TL is in
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pspace over the following classes of time domains: (1) all linear orders, (2) ordinals, (3) scattered linear
orders, (4) Dedekind-complete linear orders, (5) continuous orders, (6) rationals, (7) reals.

The proofs are based both on the composition method and on automata theoretical techniques and are
easily adapted to various classes of structures and temporal and modal logics.

Recently, Reynolds [18] proved pspace upper bound for most of these classes, by reducing the satisfiability
problem for these classes to the satisfiability problem over the reals.

Our proof uses several reductions. The first reduction uses the following notion. Let ϕ(X1, . . . ,Xk) be
a formula with free set variables among X1, . . . ,Xk. An instance of ϕ is a formula obtained by replac-
ing X1, . . . ,Xk by monadic predicate names. Let Φ be a set of formulas. A Φ-conjunctive formula is a
conjunction of instances of formulas from Φ.

Our first reduction shows that for every temporal logic L with a finite set of modalities definable in the
existential fragment of monadic second-order logic there is a finite set Φ of first-order formulas and a linear
time algorithm that reduces the satisfiability problem for L to the satisfiability problem for Φ-conjunctive
formulas. This algorithm is based on a simple unnesting procedure and works as it is for a much broader
class of modal logics.

Next, we introduce recursively definable classes of structures. Our second reduction shows that for every
finite set Φ of first-order formulas and every recursively definable class of structures C the satisfiability
problem for the Φ-conjunctive formulas over C is in exptime. Like the first reduction, this reduction is
quite general; it relies on the composition method and is sound not only for linear orders. The first two
reductions give an almost free exptime algorithm for many temporal and modal logics with finite sets of
modalities.

To obtain a pspace upper bound we need more subtle arguments. We assign a rank to every structure
in a recursively definable class. An algorithm similar to the algorithm in the second reduction shows that
for every polynomial p the problem whether a Φ-conjunctive formula ϕ is satisfiable over the structures of
rank p(|ϕ|) is in pspace. The main effort to show that the satisfiability problem for a recursively definable
class is in pspace is to establish that if a formula is satisfiable, then it is satisfiable over the structures
of a polynomial rank in the size of the formula. We prove such a bound for many interesting classes of
linear orders. Our proof uses an automata-theoretical characterization of the temporal logic with Stavi’s
modalities over the linear orders found by Cristau [6].

The paper is organized as follows. The next section recalls basic definitions about monadic second-order
logic, its fragments and temporal logics. Sect. 3 states a linear reduction from temporal logics to conjunctive
formulas. Sect. 4 reviews basic notions about the compositional method. Sect. 5 introduces recursively
defined classes of structures and Sect. 6 presents an exponential algorithm for the satisfiability of conjunctive
formulas over these classes. Sect. 7 presents a pspace algorithm for the satisfiability of conjunctive formulas
over the class of all linear orders and states a small rank property lemma needed for its complexity analysis.
Sect. 8 introduces finite base automata over arbitrary linear orders. Sect. 9 states the main technical lemma
(Lemma 9.1) about runs of automata and proves the small rank property lemma which was used in the proof
of pspace bound of our algorithm. Sect 10 is the most technical part of the paper. It develops compositional
methods for the automata types and proves the main technical lemma. Sect 11 considers temporal logics
with any finite set of automata definable modalities and shows that the satisfiability problem for such logics
over the class of countable linear orders is in pspace. Sect. 12 proves in a “plug-and-play” manner a pspace
upper bound over several interesting classes of linear orders and discusses related works. Sect. 13 discusses
the related results of Mark Reynolds [16, 17, 18]. Sect. 14 contains conclusion and further results.

Our results were obtained in 2007 using only the composition method and the proofs were considerably
simplified in July 2009, relying on the automata theoretical results of Cristau [6]. An extended abstract of
this paper was published in [15].

2. Monadic Logics and Temporal Logics

2.1. Monadic second-order logic

Monadic second-order logic (MSO) is the fragment of the full second-order logic allowing quantification
only over elements and monadic predicates. One way to define the monadic second-order language for
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a signature ∆ (notation MSO(∆)) is to augment the first-order language for ∆ by quantifiable monadic
predicate variables (set variables) and by new atomic formulas X(t), where t is a first-order variable and X
is a monadic predicate variable. The monadic predicate variables range over all subsets of a structure for ∆.

The quantifier depth of a formula ϕ is defined as usual and is denoted by qd(ϕ).
We will use lower case letters t, t′ for the first-order variables and upper case letters X,Y,Z for the

monadic variables.
An MSO formula is existential if it is of the form ∃X1 . . . ∃Xnϕ, where ϕ does not contain second-order

quantifiers. The existential fragment of MSO consists of existential MSO formula and is denoted by ∃-MSO.
The first-order fragment of MSO contains formulas without the second-order quantifiers. These formulas

might contain free second-order variables which play the same role as monadic predicate names. Hence, a
formula in this fragment is interpreted over expansions of ∆-structures by predicates which provide meaning
for the monadic variables. Sometimes, these free variables will serve as metavariables. If ϕ(X1,X2) is a
formula and P,Q are monadic predicate names, we will say that the formula obtained from ϕ by replacing
X1 by P and X2 by Q is an instance of ϕ.

2.2. Temporal Logics and Truth Tables

Temporal logics use logical constructs called “modalities” to create a language free from quantifiers.
Below is the general logical framework to define temporal logics:

The syntax of the Temporal Logic TL(O
(k1)
1 , . . . , O

(kn)
n ) has in its vocabulary monadic predicate

variables X1,X2, . . . and a sequence of modality names with a prescribed arity, O
(k1)
1 , . . . , O

(kn)
n (the arity

notation is usually omitted). The formulas of this temporal logic are given by the grammar:

ϕ ::= X | ¬ϕ | ϕ ∧ ϕ | O(k)(ϕ1, · · · , ϕk)

When particular modality names are unimportant or are clear from the context, we omit them and write

TL instead of TL(O
(k1)
1 , . . . , O

(kn)
n ).

Structures for TL are partial orders with monadic predicates M = 〈A,<, P1, P2, . . . , Pn, . . . 〉, where
the predicate Pi is assigned to a predicate variable Xi. Every modality O(k) is interpreted in every structure

M as an operator O
(k)
M : [P(A)]k → P(A) which assigns “the set of points where O(k)[S1 . . . Sk] holds” to

the k-tuple 〈S1 . . . Sk〉 ∈ P(A)k. (Here, P is the power set notation, and P(A) denotes the set of all subsets
of the domain A ofM.) Once every modality corresponds to an operator, the relation “ϕ holds inM at an
element a” (denoted 〈M, a〉 |= ϕ) is defined as follows:

• for atomic formulas 〈M, a〉 |= X iff a ∈ P , where the monadic predicate P is assigned to X.

• for Boolean combinations the definition is the usual one.

• for modalities: 〈M, a〉 |= O(k)(ϕ1, · · · , ϕk) iff a ∈ O
(k)
M (Pϕ1

, · · · , Pϕk
), where Pϕ = { b | 〈M, b〉 |=

ϕ }.

Usually, we are interested in a more restricted case; for the modality to be of interest the operator O(k)

should reflect some intended connection between the sets Aϕi
of points satisfying ϕi and the set of points

O[Aϕ1
, . . . , Aϕk

]. The intended meaning is usually given by a formula in an appropriate predicate logic.
Truth Tables: A formula O(t0,X1, . . . Xk) in the predicate logic L is a Truth Table for the modality O

if for every structureM and subsets P1, . . . , Pk of M

OM(P1, . . . , Pk) = {a : M |= O[a, P1, . . . , Pk]} .

Thus, the modality ♦X, “eventually X”, is defined by

ϕ(t0,X) ≡ ∃t > t0(t ∈ X).

The modality XUntil Y , “X strict until Y ”, is defined by

∃t1(t0 < t1 ∧ t1 ∈ Y ∧ ∀t(t0 < t < t1 → t ∈ X)).
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A truth table ϕ(t, Y1, · · · , Yk) defines in every structure a function from k-tuples of subsets. It associates
with the tuple Y1, · · · , Yk of subsets of a structureM, the set of elements t inM that satisfy ϕ(t, Y1, · · · , Yk)
inM. This is a special case of a more general way to define a function on all the structures in a given class
of structures. Here is the formal notion of a definable functional.

Definition 2.1. 1. Let L be a first-order or monadic second-order logic language, and letM be a struc-
ture.
Let ϕ(X,Y1, · · · , Yk) be a formula in L with no free first-order variables, and with no set variables
except for those specified. ϕ is an implicit definition of the functional X = fMϕ (Y1, · · · , Yk) if for any
k subsets Y1, · · · , Yk of M, X is the only subset of M for which M |= ϕ(X,Y1, · · · , Yk).

2. A modality O(Y1, · · · , Yk) of a temporal logic has a generalized truth table ϕ(X,Y1, · · · , Yk) in a
structure M if ϕ implicitly defines the operator of O; i.e., given subsets Y1, · · · , Yk of a structure M,

〈M, a〉 |= O(Y1, · · · , Yk) iff a ∈ fMϕ (Y1, · · · , Yk).

ϕ is a generalized truth table for O in a class C of structures if ϕ is a generalized truth table for O in
every M∈ C.

If the logic is a second-order logic, then this definition is a special case of the classical definition of a
function defined by a formula. Note that if θ(t0, Y1, · · · , Yk) is a truth table for a modality O, then
∀t[X(t) ↔ θ(t, Y1, · · · , Yk)] is a generalized truth table for O. Therefore, the notion of a generalized
truth table is more general than that of a truth table. It is strictly more general. For example, it is well
known that there is no first-order formula ϕ(t,X) which defines over the naturals the set of points preceded
by an even number of points in X; however, it is easy to write a first-order formula ψ(Y,X) which defines
this modality over (N, <).

If a modality O has a generalized truth table ϕ(X,Y1, · · · , Yk), where ϕ is an existential monadic second-
order formula, then ∃X

(
(X(t0)) ∧ ϕ

)
is an ∃-MSO truth table for O . Hence, a modality has an ∃-MSO

truth table iff it has an ∃-MSO generalized truth table and we will say that it is ∃-MSO definable.
There are ∃-MSO definable modalities which are not definable even by generalized truth tables of the

first-order logic. For example, there is an ∃-MSO formula ϕ(Y,X) that expresses “Y holds at t if ¬X(t)
and t is preceded by a block of X of length 3m some m > 0”, i.e., X(t − 1), X(t − 2), . . . X(t − 3m) and
¬X(t− 3m− 1). However, there is no first-order formula equivalent to ϕ over (N, <).

Modal logics Temporal logics are examples of modal logics. The syntax of modal logics is defined
exactly like the syntax of temporal logics. However, modal logics can be interpreted not only over linear
or partial orders, but over structures of a more general signature ∆. Every modality O(k) is interpreted

in every ∆-structure M as an operator O
(k)
M : [P(M)]k → P(M). Generalized truth tables are defined by

formulas over ∆. We state our results for temporal logics; however, they hold for more general modal logics
as well.

3. From Temporal Logic to Conjunctive Formulas

Let ϕ(X1, . . . ,Xk) be a formula with free set variables among X1, . . . ,Xk. An instance of ϕ is a formula
obtained by replacing X1, . . . ,Xk by monadic predicate names or monadic variables. Let Φ be a set of
formulas. A Φ-conjunctive formula is a conjunction of instances of formulas from Φ.

Our first reduction shows that for every temporal logic L with a finite set of ∃-MSO definable modalities
there is a finite set Φ of first-order formulas and a linear time algorithm that reduces the satisfiability
problem for L to the satisfiability problem for Φ-conjunctive formulas.

Proposition 3.1. Let TL be a temporal logic with a finite set of modalities. Assume that every modality
of TL is ∃-MSO definable. Then there is a finite set Φ of first-order formulas, and a linear time algorithm
which for every formula ϕ(P1, . . . , Pm) ∈ TL computes a Φ-conjunctive formula ψ(P1, . . . , Pm, Q1, . . . , Qs)
such that for every structure M in the signature {<,P1, . . . , Pm}, ϕ is satisfiable in M iff ψ is satisfiable
in an expansion of M by monadic predicates (which are the interpretations of Q1, . . . , Qs).
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The proof of this proposition is based on a simple unnesting procedure. A similar proposition holds for
modal logics.

Proof. Let TL := TL(O1, . . . , On) be a temporal logic. Assume that Oi has generalized truth table ∃Ziαi,
where αi is a first-order formula.

Let Φ be defined as {αi | i = 1, . . . , n} ∪ {Id ,Neg ,Conj}, where

Id(Y,X) := ∀tY (t)↔ X(t)
Neg(Y,X) := ∀tY (t)↔ ¬X(t)

Conj (Y,X1,X2) := ∀tY (t)↔ (X1(t) ∧X2(t))

To every formula ϕ ∈ TL we assign a Φ-conjunctive formula Tr(ϕ) with a free variable Y and additional
free variables in a list Z such that the following condition holds.

(*) {a | 〈M, a〉 |= ϕ} is the unique predicate that satisfies ∃ZTr(ϕ) in M.

Below we use ψ{X/Y } for the formula obtained from ψ when Y is replaced by X.

atomic formulas: Tr(Pj) := Id(Y, Pj).

negation: Tr(¬ϕ) := Neg(Y,Z) ∧ Tr(ϕ){Z/Y }, where Z is a fresh variable.

conjunction: Tr(ϕ1 ∧ ϕ2) := Conj (Y,Z1, Z2) ∧ Tr(ϕ1){Z1/Y } ∧ Tr(ϕ2){Z2/Y }, where Z1, Z2 are fresh
variables.

modality: Assume thatO is anm-place modality with an ∃-MSO generalized truth table ∃Wα(Y,X1, . . . .Xm,W ).
Define Tr(O(ϕ1, . . . , ϕm)) as α(Y,Z1, . . . , Zm,W )∧

∧m
i=1 Tr(ϕi){Zi/Y }, where Zi are fresh variables.

By the inductive hypothesis for every i ≤ m there is a list of variables U i such that {a | 〈M, a〉 |= ϕi}

is the unique predicate that satisfies ∃U iTr(ϕi) inM. Without restriction of generality we can assume

that U i are disjoint lists of variables and that they are disjoint from Y,Z1, . . . , Zm. It is easy to see
that {a | 〈M, a〉 |= ϕ} is the unique predicate that satisfies ∃Z1 . . . ∃Zm∃U1 . . . ∃UmTr(ϕ) inM.

It is clear that Tr is computable in linear time. 2

4. Elements of the Composition Method

Our proofs make use of a technique known as the composition method [8, 21, 11, 23]. To fix notations
and to aid a reader unfamiliar with this technique, we briefly review the required definitions and results.

4.1. Hintikka formulas and n-types

Let M and M′ be structures over a relational signature Σ. For n ∈ N, the structures M and M′ are
said to be ≡n-equivalent if no first-order sentence of quantifier depth ≤ n distinguishes betweenM andM′;
i.e., for every ϕ of quantifier depth ≤ n:

M |= ϕ iff M′ |= ϕ.

Lemma 4.1 (Hintikka Lemma). For n ∈ N and a finite relational signature Σ we can compute a finite
set Hinn := Hinn(Σ) of sentences of quantifier depth ≤ n such that:

1. For every ≡n-equivalence class E there is a unique τ ∈ Hinn such that for every Σ-structure M:
M∈ E if and only if M |= τ .

2. Every sentence with qd(ϕ) ≤ n is equivalent to a (finite) disjunction of sentences from Hinn. There is

an algorithm which for every sentence ϕ computes a finite set Gϕ ⊆ Hinqd(ϕ) such that ϕ is equivalent

to the disjunction of all the sentences from Gϕ. Moreover, if τ ∈ Hinqd(ϕ) and τ is satisfiable, then
τ ∈ Gϕ iff τ → ϕ is valid.
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(Note that the algorithm in Lemma 4.1(2) is not efficient in the sense of complexity theory, because its
complexity is non-elementary.)

We call any member of Hinn an n-Hintikka sentence. We use τ , τi, τ
′ to range over the Hintikka

sentences.

Definition 4.2 (n-Type). For n ∈ N and a Σ-structure M, we denote by typen(M) the unique member
of Hinn satisfied in M.

4.2. The ordered sum of chains and of n-types

A (labeled) chainM is a linear order expanded by monadic predicates; if P is a set of monadic predicate
names, and the signature of M is {<,P}, we say M is a P -chain. The concatenation or ordered sum of
chains is defined as follows:

Definition 4.3 (Sum of Chains). Let I := (I,<I) be a linear order, l ∈ N, and S := (Mα | α ∈ I) be a
sequence of chains, where Mα := (Aα, <

α, P1
α, . . . , Pl

α). Assume that Aα ∩Aβ = ∅ whenever α 6= β are in
I. The ordered sum of S is the chain

∑

α∈I

Mα := (
⋃

α∈I

Aα, <
I,S,

⋃
α∈I

P1
α, . . . ,

⋃

α∈I

Pl
α),

where:
If α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <I,S a iff β <I α or β = α and b <α a.
If the domains of the Mα’s are not disjoint, replace them with isomorphic chains that have disjoint

domains, and proceed as before.
If I = ({0, 1}, <) and S = (M0,M1), we denote

∑
α∈IMα by M0 +M1.

If Mα is isomorphic to M for every α ∈ I, we denote
∑
α∈IMα by M×I.

The next proposition states that taking ordered sums preserves ≡n-equivalence.

Lemma 4.4. Let n ∈ N. Assume:

1. (I,<I) is a linear order,

2.
(
M0

α | α ∈ I
)

and
(
M1

α | α ∈ I
)

are sequences of chains (in the same signature), and

3. for every α ∈ I, M0
α ≡

nM1
α.

Then,
∑
α∈IM

0
α ≡

n
∑
α∈IM

1
α.

This allows us to define the sum of formulas in Hinn(<,P1, . . . Pl) with respect to any linear order.
In particular, this theorem justifies the notation τ0 + τ1 for the n-type of a chain which is the ordered

sum of two chains of n-types τ0 and τ1, respectively. Similarly, we write τ × ω for the n-type of a sum
Σi∈ωMi where allMi are of n-type τ ; the n-type τ × ω−1 is defined similarly, where ω−1 is the order type
of negative integers.

Another important operation on chains and on n-types is shuffle.
Let S := (Mα | α ∈ Q) be a sequence of chains indexed by the rationals. Let Q1, . . . , Qk ⊆ Q be a

partition of Q into k everywhere dense sets. Let N1, . . . ,Nk be chains. If for i = 1, . . . , k and q ∈ Qi, Mq

is isomorphic to Ni, we denote
∑
α∈QMα by shuffle(N1, . . . ,Nk). Note that different partitions of Q into

k everywhere dense sets are isomorphic; hence, the shuffle is well defined. The corresponding operation on
n-types will be also denoted by shuffle.
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4.3. Additive coloring and uniform labeling

The definition and results of this section will be used in Section 10.

Definition 4.5. 1. A coloring of a chain L is a function col : [L]2 → T where [L]2 is the set of unordered
pairs of distinct elements of L and T is a finite set (the set of colors).

2. The coloring f is additive if for every x1 < y1 < z1 and x2 < y2 < z2 in L the following condition
holds:

col(x1, y1) = col(x2, y2) and col(y1, z1) = col(y2, z2) implies col(x1, z1) = col(x2, z2).

In this case a partial operation + is well defined on T : t1 + t2 = t iff there are x < y < z such that
col(x, y) = t1, col(y, z) = t2 and col(x, z) = t.

3. A sub-chain D ⊆ L is homogeneous (for col) if there exists t0 ∈ T such that for every x, y ∈ D,
col(x, y) = t0.

Let L be a chain. For k ∈ N define colk(x, y) as the k-type of the restriction of L on the interval [x, y). This
is an additive coloring of L.

The following theorem is an instance of Theorem 1.1 in [21].

Theorem 4.6 (Ramsey theorem for additive colorings). Let col : [L]2 → T be an additive coloring
where L is order-isomorphic to a limit ordinal, and T is finite. Then there is H ⊆ L, cofinal and homogeneous
for col.

Definition 4.7. A labeling of a chain L is a function lab from L into a finite set. An interval I of L is
uniform for a labeling lab : L → ∆ if for every δ ∈ ∆, the set {x ∈ I | lab(x) = δ} is either empty or dense in
I. For ∆′ ⊆ ∆, we say that I is ∆′-uniform if I is uniform for lab and ∆′ = {δ ∈ ∆ | ∃x ∈ I(lab(x) = δ)}.

Lemma 4.8. If lab is a labeling of a dense chain L, then there is an open non-empty interval J which is
uniform for lab.

5. Recursively Defined Classes of Structures

In this section we introduce recursively defined classes of structures. We prove some simple properties
of such classes. In the next section we show that the satisfiability problem of conjunctive formulas over
recursively defined classes of structures is in exptime.

Let ∆ be a signature and k ∈ N. A k-ary ∆-operator is a function F which assigns to every k-tuple
of ∆-structures a ∆-structure. A finite-set ∆-operator is a function F which assigns to every finite set of
∆-structures a ∆-structure. A ∆-operator is a k-ary (k ∈ N) or a finite-set ∆-operator.

Let C be a set of ∆-structures. C is closed under a ∆-operator F if the result of application of F to
structures from C is in C.

Let C be a set of ∆-structures and F be a family of ∆-operators. The closure of C under F is the minimal
class C′ of ∆-structure which contains C and is closed under F. We denote this class by Cl(C,F). It is said
to be recursively defined from C by F.

Let Cl0(C,F) := C and for i ∈ N define Cl i+1(C,F) := Cl i(C,F)∪{M | M = F (M1, . . . ,Mk) for k-ary F ∈
F andMj ∈ Cl i(C,F)} ∪ {M | M = F (A) for finite-set operator F ∈ F and A ⊆ Cl i(C,F)}. Define
Cl∗(C,F) := ∪i∈NCl i(C,F). Note that Cl∗(C,F) = Cl(C,F).

Let ∼ be an equivalence on ∆-structures. The index of ∼ is the cardinality of the set of ∼-equivalence
classes; ∼ has a finite index if there are only finitely many ∼-equivalence classes.

A k-ary ∆-operator F respects ∼ if for ∆-structuresM1, . . . ,Mk,N1, . . . ,Nk

F (M1, . . . ,Mk) ∼ F (N1, . . . ,Nk)

whenever Mi ∼ Ni (i = 1, . . . , k).
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If F respects ∼, then it induces a k-ary operation on the ∼-equivalence classes. We denote this oper-
ation by F as it will always be clear from the context whether we use an operator on ∆-structures or the
corresponding operation on the ∼-equivalence classes.

If A and B are sets of ∆-structures, we say that A is ∼-equivalent to B if ∀M ∈ A ∃N ∈ B(M ∼ N )
and ∀M ∈ B ∃N ∈ A(M∼ N ).

A finite-set ∆-operator respects ∼ if F (A) ∼ F (B) whenever A ∼ B.
If a finite-set operator F respects ∼, then it induces an operation which assigns a ∼-equivalence class to

every finite subset of ∼-equivalence classes.
A family F of ∆-operators respects ∼ if every operator in F respects ∼.

Lemma 5.1. Assume that ∼ is an equivalence of finite index l, and F respects ∼. Then for every M ∈
Cl(C,F) there is N ∈ Cl l(C,F) such that M∼ N .

Proof. Let En be the set of ∼-equivalence classes of structures from Cln(C,F). Then, ∀nEn ⊆ En+1.
Hence, there is i ≤ l such that Ei = Ei+1. This implies that ∀jEi = Ei+j . In particular, ∀jEl ⊇ Ej ,
therefore, the lemma holds. 2

For every n the set of operators {+,×ω,×ω−1, shuffle} respects ≡n.
Strictly speaking, these are polymorphic operators. For every set P of monadic predicate names, there

is a corresponding binary operator + on P -labeled chains.
Recall that for a ∆-structureM and ∆′ ⊆ ∆ the ∆′ reduct ofM on ∆′ is a ∆′-structure which has the

same domain asM and the same interpretation of symbols from ∆′. We denote byM|∆′ the reduct ofM
on ∆′.

The reduct distributes over the sum in the following sense:

The reduct distributes over +

Let P ′ ⊆ P be sets of monadic predicate names, letM and N be P -chains. Then (M+N )|{<
,P ′} and (M|{<,P ′}) + (N|{<,P ′}) are isomorphic.

The reduct also distributes over {×ω,×ω−1, shuffle}.
Let P be a set of monadic predicate names, let P 1, . . . , P k ⊆ P be a sequence of subsets of P , and let

M be a P -chain. Define ptypen(M;
(
P 1, . . . , P k

)
), the product n-type of M with respect to P 1, . . . , P k, as

ptypen(M;
(
P 1, . . . , P k

)
) := (τ1, . . . , τk) ,

where τi = typen(M|{<,P i}) are the n-types of the reducts.
For a class C of P -chains,

ptypen(C;
(
P 1, . . . , P k

)
) := {ptypen(M;

(
P 1, . . . , P k

)
) | M ∈ C}.

Lemma 5.2. 1. If ptypen(Mi;
(
P 1, . . . , P k

)
) =

(
τ i1, . . . , τ

i
k

)
for i ∈ {0, 1}, then

ptypen(M0 +M1;
(
P 1, . . . , P k

)
) =

(
τ0
1 + τ1

1 , . . . , τ
0
k + τ1

k

)

2. If ptypen(M;
(
P 1, . . . , P k

)
) = (τ1, . . . , τk), then

ptypen(M× ω;
(
P 1, . . . , P k

)
) = (τ1 × ω, . . . , τk × ω)

ptypen(M× ω−1;
(
P 1, . . . , P k

)
) =

(
τ1 × ω

−1, . . . , τk × ω
−1

)

3. If A is a finite set of structures and for j = 1, . . . k, and Uj = {τj | ptypen(M;
(
P 1, . . . , P k

)
) =

(τ1, . . . , τj , . . . , τk) ∧M ∈ A}, then ptypen(shuffle(A);
(
P 1, . . . , P k

)
) = (shuffle(U1), . . . , shuffle(Uk)).
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6. EXPTIME Algorithm

In this section we present an exptime algorithm for the satisfiability of conjunctive formulas over re-
cursively defined classes of structures. Then we apply a theorem of Läuchli and Leonard [13] (see Theorem
6.5) to derive that the satisfiability of conjunctive formulas over the class of all linear orders is in exptime.

Let Φ be a finite set of formulas of quantifier depth ≤ n in the first-order monadic logic over {<} with
free variables among X1, . . . ,Xm.

Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be a Φ-conjunctive formula. Let F := {+,×ω,×ω−1, shuffle}. Let C be
a set of structures over signature {<,∪ki=1Pi}. Recall that F respects ≡n, therefore, by Lemma 5.1, ψ is
satisfiable over Cl(C,F) if it is satisfiable over Cl l(C,F), where l := |Hinn(<,∪ki=1Pi)| is the cardinality of
the set Hinn(<,∪ki=1Pi) of Hintikka formulas. This l grows like the n-time iterated exponential function
exp(n, k) (exp(1, x) := 2x and exp(i+1, x) := 2exp(i,x)). We replace this bound by a bound exponential in k
and derive an exponential time algorithm for the satisfiability of Φ-conjunctive formulas over Cl(C,F). Our
arguments are valid not only for this recursively defined class, but for any recursive class which is definable
by a finite set of operators that respect ≡n-equivalence and satisfy an analog of Lemma 5.2.

Lemma 6.1. Let Φ be a finite set of formulas of quantifier depth ≤ n in the first-order monadic logic over
{<} with free variables among X1, . . . ,Xm. A Φ-conjunctive formula ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is satisfiable in
M if and only if ptypen(M;

(
P 1, . . . , P k

)
) = (τ1, . . . , τk) and τi(Pi)→ ϕi(Pi) is valid for i = 1, . . . , k.

Define the equivalence ∼n
(P 1,...,Pk)

on chains over the signature {<,∪ki=1Pi} as M ∼n
(P 1,...,Pk)

N iff

ptypen(M;
(
P 1, . . . , P k

)
) = ptypen(N ;

(
P 1, . . . , P k

)
). The number of ∼n

(P 1,...,Pk)
-equivalence classes is ≤

|Hinn(<,P1, . . . , Pm)|k; hence, it is at most exponential in k. F respects ∼n
(P 1,...,Pk)

. Therefore, by Lemma

5.1, we obtain:

Lemma 6.2. For every finite set Φ of first-order formulas there is cΦ such that a Φ-conjunctive formula

ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is satisfiable in Cl(C,F) iff it is satisfiable in ClcΦ
k

(C,F).

Consider the following problem.

Membership Problem for fixed n,m ∈ N; all tuples P i are of length ≤ m.

Input: τ = (τ1 . . . τk) ∈ Hinn(<,P 1) × · · · × Hinn(<,P k) and an oracle I for membership in
ptypen(C;

(
P 1, . . . , P k

)
).

Question: Is τ in ptypen(Cl(C,F);
(
P 1, . . . , P k

)
)?

Lemma 6.3. The membership problem is in EXPTIMEI .

Proof. Our algorithm is presented below.

Algorithm 1 Membership Problem is in EXPTIMEI

R← I { i.e., for every τ if τ ∈ I then add τ to R.}
Updated← True.
while Updated do

1. Updated← False;
2. Compute R′ = Cl1(R,+); If R′ 6= R then Updated← True;
3. R← R′; Compute R′ = Cl1(R,×ω); If R′ 6= R then Updated← True;
4. R← R′; Compute R′ = Cl1(R,×ω−1); If R′ 6= R then Updated← True;
5. R← R′; Compute R′ = Cl1(R, shuffle); If R′ 6= R then Updated← True;

end while
if τ ∈ R return True.
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Let N0 = |Hinn(<,X1, . . . ,Xm)|. The number of iterations of the loop is bounded by Nk
0 .

R′ = Cl1(R,+) can be computed in time O(N2k
0 ) as follows. Let R′ ← R. For each pair τ =

(τ1, . . . , τk), τ ′ = (τ ′1, . . . , τ
′
k) ∈ R add (τ1 + τ ′1, . . . , τk + τ ′k) to R′. Hence, Step 2 can be implemented

in time O(N2k
0 ).

Steps 3 and 4 can be implemented in O(Nk
0 ).

The computation of R′ = Cl1(R, shuffle) is more subtle. Indeed, a naive approach can try to compute

shuffle for every subset of R. However, the number of such subsets is 2N0
k

and it is double-exponential.
Algorithm 2 computes R′ = Cl1(R, shuffle) in exptime.

Algorithm 2 Computation of Cl1(R, shuffle)

Let Hi := P(Hinn(<,Pi)) be the set of subsets of Hinn(<,Pi).
for every U = (U1, . . . , Uk) ∈ H1 × · · · ×Hk do
{ Check if there is a sequence (τ1

1 , . . . , τ
1
k ), . . . , (τm1 , . . . , τ

m
k ) ∈ R such that Ui = {τ ji | j ≤ m} and

update R′ as follows: }

1. (B1, . . . , Bk)← (U1, . . . , Uk);

2. for every τ = (τ1, . . . τk) ∈ R if ∧iτi ∈ Ui then Bi ← Bi \ {τi};

3. If ∧i≤k(Bi = ∅) then {such a sequence exists, and we have to update R′}
R′ ← R′ ∪ {(shuffle(U1), . . . , shuffle(Uk))};

end for

The number of iterations of the external loop of Algorithm 2 is 2N0k and the number of iterations of the
internal loop is bounded by Nk

0 . Hence, Step 5 can be implemented in time O(2N0k ×Nk
0 ).

Since every step can be implemented in exptime and the number of iterations is exponential, we obtain
that the membership problem is in exptime with the oracle I. 2

Let One be the class of one-element chains. It is clear that we can decide in exptime, whether τ ∈
ptypen(One;

(
P 1, . . . , P k

)
). Hence, as a consequence of Lemma 6.3, we obtain:

Proposition 6.4. The satisfiability problem for Φ-conjunctive formulas over the class Cl(One,F) is in
EXPTIME.

Proof (of Proposition 6.4). For every ϕ ∈ Φ we can pre-compute the set Hϕ := {τ ∈ Hinn(<
,X1, . . . ,Xm) | τ → ϕ} (this depends only on Φ and is independent from the input).

Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be a Φ-conjunctive formula. First compute the set S of all τ in
ptypen(Cl(One,F);

(
P 1, . . . , P k

)
). The cardinality of S is at most exponential. By the previous lemma, S

can be computed in exptime. Then, by Lemma 6.1, it is enough to check whether there is (τ1, . . . , τk) ∈ S
such that τi(Pi)→ ϕi(Pi) for i = 1, . . . , k. This can be done in exptime using the pre-computed sets Hϕ.
2

Läuchli and Leonard [13] proved the following theorem:

Theorem 6.5. A first-order formula is satisfiable over a linear order if it is satisfiable over Cl(One,F).

Actually, in [13] the logic with the order relation only was considered. However, its proof can be adapted
easily to the first-order monadic logic over chains [20, 5].

As a consequence of Theorem 6.5 and Propositions 6.4 and 3.1 we obtain:

Theorem 6.6. Let TL be a temporal logic with a finite set of ∃-MSO definable modalities. The satisfiability
problem for TL over the class of chains is in exptime.

In the next section we will show that this exptime upper bound can be replaced by a pspace upper bound.
Let us conclude this section by a remark on optimality of our algorithm. The only properties of operators

{+,×ω,×ω−1, shuffle} which were used in our exptime algorithm are (1) they respect ≡n and (2) the reduct
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distributes over these operators. If F is any set of operators with these properties, then the membership
problem for Cl(One,F) is in exptime.

Below we will show that for such F in general, the exptime bound cannot be improved.
Let ∆2 = {<,Left ,Right} be a signature, where < is a binary predicate and Left ,Right are unary

predicates. We will interpret ∆2 over the binary trees, where < is the ancestor relation and Left (respectively,
Right) are interpreted as the set of left (respectively, right) children. Let M1 and M2 be binary trees
expanded by unary predicates P1, . . . , Pk, and let R be a one-element chain in the signature {<,P1, . . . , Pk}.
We assume that the domains of M1,M2 and R are disjoint and define a ternary operation ⊞(M1, R,M2)
as follows. ⊞(M1, R,M2) is a binary tree; its domain is the union of the domains of M1, R and M2; the
unique node r of R is the root of this tree. The left and right subtrees of r are M1 and M2 respectively.
Predicate name Pi is interpreted as the union of its interpretations inM1, R andM2.

The operation ⊞ has properties (1) and (2). The closure of One under ⊞ is the set of all finite binary
trees. As a consequence, we can derive that the satisfiability problem for any temporal logics with a finite
set of ∃-MSO definable modalities over the class of finite binary trees is in exptime. Note that CTL can
be described as a temporal logic with a finite set of modalities definable in ∃-MSO and the satisfiability
problem for CTL over the class of finite binary trees is exptime hard. Hence, in general our exptime upper
bound for the satisfiability problem over recursively definable classes is optimal.

7. PSPACE Algorithm

In this section we assign a rank to every structure in a recursively definable class. We modify the
exptime algorithm from Sect. 6 and show that for every polynomial p the problem whether a Φ-conjunctive
formula ϕ is satisfiable over the structures of rank p(|ϕ|) is in pspace. The main effort to show that the
satisfiability problem for a recursively definable class is in pspace is to establish the small rank property : if
a conjunctive formula is satisfiable, then it is satisfiable over a structure of a polynomial rank in the size of
the formula. Lemma 7.2 states the small rank property; however its proof will be given in Sect. 9.

Let F = {+,×ω,×ω−1, shuffle}. To every chain in Cl(One,F) we assign a natural number - the rank of
the chain. Define sets C≤i ⊆ Cl(One,F) as follows:

1. C≤0 is the set of finite chains.

2. C≤i+1 is the closure under + of the union of C≤i, {M × ω | M ∈ C≤i}, {M × ω−1 | M ∈ C≤i} and
{shuffle(A) | A is a finite subset of C≤i}.

A chain M has rank i+ 1 ifM∈ C≤i+1 ∧M 6∈ C≤i.
Every chain of a finite rank can be described by its finite construction tree. Let P be a set of monadic

predicate names. A construction tree T for P -chains is a labeled tree which has the following properties:
the leaves of T are labeled by one-element P -chains; the internal nodes are labeled by +,×ω,×ω−1 and
shuffle; a node labeled by ×ω or by ×ω−1 has one child; a node labeled by + has at least two children and
these children are linearly ordered; a node labeled by shuffle has at least one child.

Let T be a construction tree. A chain [|T |], assigned to T , is defined as follows:

1. if T is a one-element tree then [|T |] is the one-element chain which is the label of its only node.

2. If the root of T is labeled by ×ω (or by ×ω−1), then [|T |] is [|T1|]×ω (respectively, [|T1|]×ω
−1) where

T1 is the subtree of T rooted at the child of its root.

3. If the root of T is labeled by + and its children (ordered from younger to older) are trees T1, . . . , Tm
then [|T |] := [|T1|] + · · ·+ [|Tm|].

4. If the root of T is labeled by shuffle and its children are trees T1, . . . , Tm then [|T |] :=
shuffle([|T1|], . . . , [|Tm|]).

Lemma 7.1. If a chainM has rank ≤ i, then there is a chain construction tree T such thatM = [|T |] and
the height of T is bounded by 2i+1.
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Proof. A chainM has rank ≤ i if there is a tree T such thatM = [|T |] and the number of nodes labeled
by ×ω, ×ω−1 and shuffle on any path from the root to a leaf is bounded by i (we do not count nodes labeled
by +). For every tree T there is a tree T ′ such that [|T ′|] = [|T |] and no + node has a child labeled by +.
Indeed, if a + node v of T has as a child a + node u we can remove u and make its children to be children
of v (between the left and the right brothers of u). Hence, if a chainM has rank ≤ i then there is a tree T
such thatM = [|T |] and the height of T is bounded by 2i+1. 2

We are going to present a pspace algorithm for the satisfiability problem for Φ-conjunctive formulas. Its
correctness and complexity analyses are based on the following Lemma which refines Lemma 6.2 and will
be proved in Sect. 9.

Lemma 7.2 (small rank property). For every finite set Φ of first-order formulas there is rΦ such that
every Φ-conjunctive formula ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is satisfiable in Cl(One,F) iff it is satisfiable in a
chain of rank ≤ k × rΦ.

By Theorem 6.5, Lemmas 7.1, and 7.2, ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is satisfiable iff

(A) there is a chain construction tree T of height ≤ 2k × rΦ + 1 such that ptypen([|T |];
(
P 1, . . . , P k

)
) =

(τ1, . . . , τk) and

(B) τi → ϕi for i = 1, . . . , k.

Now, we are ready to improve our exptime bound of Theorem 6.6 to pspace.

Theorem 7.3. Let TL be a temporal logic with a finite set of ∃-MSO definable modalities. The satisfiability
problem for TL over the class of chains is in pspace.

By proposition 3.1 it is sufficient to provide a pspace algorithm for the satisfiability of Φ-conjunctive
formulas. Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be such a formula. Our algorithm guesses (τ1, . . . , τk) and checks
in linear time condition (B). Then the non-deterministic algorithm SAT, defined below, checks (A). SAT
works in polynomial space in k, assuming that the last argument is polynomial in k which is the case with
N = 2k × rΦ + 1. Fig. 1 contains the definition of the algorithm SAT (some details are omitted).

Input 1. (τ1, . . . , τk), where τi ∈ Hinn(<,P i) and P i ⊆ P are sets of l predicate names (note that n and
l are fixed and are not part of the input).

2. N ∈ N.

Output True, if there is a construction tree T of height ≤ N such that ptypen([|T |];
(
P 1, . . . , P k

)
) =

(τ1, . . . , τk).

• If N = 0 and there is a one-element chain M such that ptypen(M;
(
P 1, . . . , P k

)
) = (τ1, . . . , τk) then

return True;

• Go non-deterministically to 1-5.

(1.) Return SAT((τ1, . . . , τk) , N − 1).

(2.) Guess (τ ′1, . . . , τ
′
k) such that SAT((τ ′1, . . . , τ

′
k) , N − 1) returns True and τi = τ ′i ×ω for 0 < i ≤ k.

(3.) Guess (τ ′1, . . . , τ
′
k) such that SAT((τ ′1, . . . , τ

′
k) , N−1) returns True and τi = τ ′i×ω

−1 for 0 < i ≤ k.

(4.) Guess on-the-fly a sequence

(
τ1
1 , . . . , τ

1
k

)
,
(
τ2
1 , . . . , τ

2
k

)
, . . . , (τm1 , . . . , τ

m
k )

such that

(4.1) for 0 < i ≤ m, SAT(
(
τ i1, . . . , τ

i
k

)
, N − 1) returns True,

(4.2) for 0 < j ≤ k, τj = τ1
j + . . .+ τmj .
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(5.) Guess (U1, . . . , Uk), where Ui ⊆ Hinn(<,Pi) such that

(5.1) for 0 < j ≤ k, τj = shuffle(Uj)

and guess on-the-fly a sequence

(
τ1
1 , . . . , τ

1
k

)
,
(
τ2
1 , . . . , τ

2
k

)
, . . . , (τm1 , . . . , τ

m
k )

such that

(5.2) for 0 < i ≤ m, SAT(
(
τ i1, . . . , τ

i
k

)
, N − 1) returns True,

(5.3) for 0 < j ≤ k, Uj = {τ ij | i ≤ m}.

Figure 1: Algorithm SAT

Since + is associative, to verify condition (4.2) we need to keep in the memory at every stage p only two
tuples: the tuple of the partial sums

(∑s<p
s=1 τ

s
1 , . . . ,

∑s<p
s=1 τ

s
k

)
and the current guess (τp1 , . . . , τ

p
k ). The tuple

of the partial sums can be easily updated. We can assume that all partial sums are different; hence, m is
bounded by the number of possible ptypen(M;

(
P 1, . . . , P k

)
) which is bounded by |Hinn(< .X1, . . . ,Xl)|

k

and the counter for m can be saved in space linear in k.
To verify condition (5.3) we need to keep in memory at every stage p only two tuples: the tuple Upi =

{τsi | s < p} (for i = 1, . . . , k) and the current guess (τp1 , . . . , τ
p
k ). We have to verify that (τp1 , . . . , τ

p
k ) is in

(U1, . . . , Uk), i.e., τpi ∈ Ui and update the tuple (Up1 , . . . , U
p
k ). In (5.) we can assume that no tuple occurs

twice; hence, m is bounded by the number of possible ptypen(M;
(
P 1, . . . , P k

)
) and the counter for m can

be saved in space linear in k.
The depth of recursion is bounded by N . Hence, SAT works in non-deterministic space O(kN).
In order to check (A) we call SAT with N = 2rΦ × k + 1. Therefore, our procedure works in non-

deterministic polynomial space and by Savitch’s theorem it can be implemented by a deterministic pspace
algorithm.

The next two sections are geared towards the proof of Lemma 7.2.

8. Automata on Linear Orders

Büchi [3] used finite automata over ω-words to prove that monadic second-order logic is decidable over ω.
In order to prove the decidability of monadic second-order logic over countable ordinals, Büchi introduced
finite automata on words of ordinal length [4]. Büchi’s model extends traditional finite automata using limit
transitions to handle positions with no predecessor. He proved that over countable ordinals these automata
are equivalent to monadic second-order logic.

These automata were extended to finite automata on linear orderings by Bruyère and Carton [2]. This
model further extends traditional finite automata using limit transitions to handle positions with no suc-
cessor or no predecessor. In [19] it was shown that these automata can be complemented over countable
scattered linear orderings and are equivalent to monadic second-order logic over the countable scattered
linear orderings. However, this equivalence fails over dense orders and over uncountable orders [1].

We first recall some basic definitions about linear orders. Then, we introduce finite base automata which
have the same expressive power as finite state automata of [2]. The finite base automata play a crucial role
in our proof of the small rank property. The equivalence between finite state and finite base automata is
proved in the Appendix.

In order to define the runs of an automaton, we use the notion of cut. A cut of a linear order J is a
partition (L,U) of J such that a < b for any a ∈ L and b ∈ U . A cut (L,U) is a gap if neither L has
a maximal element, nor U has a minimal element and L 6= ∅ 6= U . An order is Dedekind-complete if it
does not have gaps. We denote by Ĵ the set of cuts of J . This set is equipped with the order defined by
(L1, U1) < (L2, U2) if L1 ( L2. This ordering on Ĵ can be extended to J ∪ Ĵ in a natural way: (L,U) < a

if a ∈ U . The order Ĵ is Dedekind-complete. Its minimal (maximal) element is Ĵmin = (∅, J) (respectively,

Ĵmax = (J, ∅)). For any element a of J , there are two successive cuts: a− := ({b ∈ J | b < a}, {b ∈ J | b ≥ a})
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and a+ := ({b ∈ J | b ≤ a}, {b ∈ J | b > a}). Note that if a < b are consecutive elements of J then a+ and
b− denote the same cut.

Given an alphabet Σ and any linear order J , a Σ-word of length J is a sequence (σa | a ∈ J) of elements
of Σ indexed by J .

In [7] we introduced simple ordinal automata which work over words of ordinal length. We extend this
definition to finite base automata working on words over arbitrary linear orders.

Definition 8.1 (finite base automata). A finite base automaton A is a tuple of the form
(B,Q,Σ, δnext , δlim, Qinit , Qfin) such that

• B is a finite set (the basis of A),

• Q ⊆ P(B) (the set of states),

• Qinit , Qfin ⊆ Q (the sets of initial states and final states),

• Σ is a finite alphabet,

• δnext ⊆ Q× Σ×Q is the next-step transition relation,

• δlim ⊆ (P(B)×Q)
⋃

(Q× P(B)) is the limit transition relation.

For (q, σ, q′) ∈ δnext, we sometimes write q
σ
−→ q′; for (D, q) ∈ δlim (respectively, (q,D) ∈ δlim), we write

D → q (respectively, q ← D) and say that this is a left (respectively, right) limit transition.
Let f be a function from a set I into P(B). Define

always(f) := {b ∈ B | ∀c ∈ I b ∈ f(c)}.

If I is a linear order, we define the left and right base-limit sets of f at c ∈ I as the sets of base elements that
appear in every state arbitrarily close to c (respectively, to its left and to its right). Formally, Base lim

−→
(c, f)

is defined as
Base lim

−→
(c, f) := {b ∈ B | ∀a < c∃d(a < d < c) ∧ b ∈ always(f⌊(d, c))},

where f⌊(d, c) is the restriction of f to the interval (d, c).
Base lim

←−
(c, f) is defined similarly.

Given a finite base automaton A, a run of A on Σ-word s over a linear order I is a function ρ : Î → Q
such that

• For each c ∈ I, ρ(c−)
s(c)
−−→ ρ(c+),

• if c ∈ Î \ Îmin has no predecessor, (Base lim
−→

(c, ρ), ρ(c)) ∈ δlim, and

• if c ∈ Î \ Îmax has no successor, (ρ(c),Base lim
←−

(c, ρ)) ∈ δlim.

An A-run ρ is accepting if ρ(Îmin) ∈ Qinit and ρ(Îmax) ∈ Qfin . A accepts a word s if there is an accepting
run on s.

Let A1, . . . ,Am be finite base automata. One can easily construct an automaton A that accepts the
intersection of the languages accepted by these automata. The number of states in A is the product of the
numbers of states of Ai and this grows exponentially in m; however, the base size of A is the sum of the
base sizes of Ai.

Lemma 8.2 (intersection of finite base automata). Let A1 and A2 be finite base automata. Assume
that the base size of A1 and A2 are n1 and n2. There is a finite base automaton A such that the base size of
A is n1 + n2 and a word s is accepted by A iff it is accepted by A1 and by A2.
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A word s := (σa | a ∈ J) indexed by J over an alphabet {0, 1}k can be identified with a chain (J,<
, P1, . . . , Pk) over J where Pi = {a ∈ J | the i-th bit of σa = 1}. This is a bijection between the {0, 1}k-
words over J and the chains with k monadic predicates over J .

An automaton is said to be equivalent to a formula ϕ(P1, . . . , Pk) over a class C of linear orders if for
every linear order J ∈ C and every word s indexed by J , A accepts s if and only if the corresponding chain
satisfies ϕ.

Cristau [6] proved a very unexpected result: every formula of the first-order fragment of the monadic
logic is equivalent (over the class of all linear orders) to a finite state automaton. In the appendix we describe
finite state automata and prove that they are equivalent to finite base automata. Hence,

Theorem 8.3. For every first-order formula ϕ there is a finite base automaton Aϕ equivalent to ϕ over the
class of all linear orders.

9. Small Rank Property

In this section we introduce automata types, state a small rank property for the automata type and
prove Lemma 7.2 (the small rank property for the conjunctive formulas) which played a crucial role in the
complexity analysis of our pspace algorithm.

Let A be a finite base automaton, L a chain and ρ : L̂ → Q be a run of A on L. Define the A-type of ρ
as typeA(ρ) := (q,D, q′), where ρ(L̂min) = q, ρ(L̂max) = q′ and D := always(ρ).

If typeA(ρ) := (q,D, q′) we sometimes write ρ : q
D
−→ q′; we write ρ :

D
−→ if typeA(ρ) := (q,D, q′) for

some q and q′.
Define an equivalence relation ∼A on A-runs:

ρ1 ∼A ρ2 if and only if typeA(ρ1) = typeA(ρ2)

Weight. Let D be a subset of the base B of A. The weight of D is defined as the cardinality of B \ D.
The weight of a transition of A is defined as follows. The weight of a successor transition is 0; the weight
of limit transitions (D, q) ∈ δlim and (q,D) ∈ δlim is the weight of D. The weight of a run ρ is defined as
the maximum of the weights of transitions that appear in ρ. We denote the weight of ρ by weight(ρ); the
weight is always between 0 and the cardinality of the base of A. The following lemma is proved in the next
section.

Lemma 9.1 (Main). Assume that ρ is a run on a countable chain of a finite base automaton A.

1. If ρ :
D
−→ and weight(ρ) = weight(D) = w, then there is a run on a chain of rank ≤ 2w + 1, which is

equivalent to ρ.

2. Any run ρ of weight ≤ w is equivalent to a run on a chain of rank ≤ 2w + 2.

As a consequence, we obtain the following small rank property:

Proposition 9.2 (small rank property). Let A be a finite base automaton with base of size nA. Every
run of A is equivalent to a run on a chain of rank ≤ 2nA + 2. In particular, if A has an accepting run, then
it accepts a chain of rank ≤ 2nA + 2.

The complexity analysis of our pspace algorithm was based on Lemma 7.2. Now we are ready to prove it.

Proof (of Lemma 7.2). Let Φ be a finite set of first-order formulas. By Theorem 8.3, every formula in
ϕ ∈ Φ is equivalent to a finite base automaton Aϕ. Let nΦ be an upper bound on the base size of Aϕ for
ϕ ∈ Φ.

By Lemma 8.2, ψ is equivalent to a finite base automata with the base of size ≤ k×nΦ. By Proposition
9.2, if ψ is satisfiable in a countable chain, then it is satisfiable in a chain of rank ≤ k(2nΦ + 2). Hence, we
can define rΦ as (2nΦ + 2). 2
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It is instructive to compare the small rank property of finite base automata with the short run property
of simple ordinal automata from [7]. A simple ordinal automaton is a finite base automaton with δlim ⊆
P(B) × Q. Hence, the domain of every run ρ of a simple ordinal automaton is order-isomorphic to an
ordinal, and if ρ is a run onM thenM is a chain over an ordinal. An ordinal α has rank i ≥ 1 iff α < ωi+1.
Lemma 6 in [7] states that every run of a simple ordinal automaton A is equivalent to an A-run on an ordinal
< ωnA+1, where nA is the size of the base of A.

10. Proof of Lemma 9.1

In the next subsection we develop elements of the composition method for automata. We define the sums
of runs and of automata types. In subsection 10.2 we adopt the technique used by Läuchli and Leonard
for automata types and illustrate it by proving a proposition which implies that if an automaton accepts
a countable chain, then it accepts a chain of finite rank. This technique will be used with more subtle
inductive assertions in subsections 10.3-10.4 to prove Lemma 9.1. Finally, a stronger version of Lemma 9.1
is stated in subsection 10.5.

10.1. Sum of runs

This section develops elements of the composition method for automata. We define the sums of runs
and of automata types. Unlike the sum of chains, the sum of runs might be the empty set, a singleton run
or it might contain many runs. Unlike the sum of first-order types, the sum of automata types might be the
empty set, a singleton automaton type, or it might contain many automaton types. All lemmas stated here
follow easily from the definitions.

Assume that ρ is a run on L. For an interval I of L̂, we denote by ρ⌊I the restriction of ρ on I; we also

denote by ρ⌊≤ c, the restriction of ρ on {a ∈ L̂ | a ≤ c}. Note that if I is a closed interval with at least two
points, then ρ⌊I is a run on {a ∈ L | a−, a+ ∈ I}.

Let J := (J,<J ) be a linear order and S := (Lα | α ∈ J) a sequence of chains.

To a cut (Lα, Uα) of Lα corresponds the cut
(
Lα ∪

⋃
β<α Lβ ,

⋃
β>α Lβ ∪ Uα

)
of

∑
β∈J Lβ .

If α < α′ are consecutive elements of J then to the cuts (Lα, ∅) and (∅,Lα′) of Lα and of Lα′ corresponds
the same cut of

∑
β∈J Lβ .

Usually we will not distinguish between a cut c in Lα and the corresponding cut in
∑
β∈J Lβ which will

be also denoted by c. We also denote by L̂α the set of cuts of Lα and the corresponding sets of cuts of∑
β∈J Lβ .
Note that if (J1, J2) is a gap in J , then the cut (∪α∈J1

Lα,∪α∈J2
Lα) of

∑
β∈J Lβ does not correspond

to any cut in the summands.
If the index structure is order-isomorphic to the rationals (Q, <), then

∑
β∈Q Lβ has the minimal and

maximal cuts and the following set of cuts:

irrational cuts For every real x ∈ R \Q corresponds cut (∪α∈Q<x
Lα,∪α∈Q>x

Lα), where Q<x := {α ∈ Q |
α < x} and Q>x := {α ∈ Q | α > x}.

cuts of the summands For every α ∈ Q and a cut (Lα, Uα) of Lα corresponds cut
(∪β<αLβ ∪ Lα,∪β>αLβ ∪ Uα)

Definition 10.1 (sum of runs). Let J := (J,<J ) be a linear order and S := (Lα | α ∈ J) a sequence of
chains. Assume that the domains of Lα and Lβ are disjoint whenever α 6= β are in J . Assume that ρ is a

run on
∑
β∈J Lβ and ρα are runs on Lα for α ∈ J . If ρ⌊L̂α = ρα for α ∈ J , then ρ is said to be in the sum∑

β∈J ρβ.

Recall that the sum of chains is unique up to isomorphism. Unlike the sum of chains, the sum of runs might
be empty, singleton set or it might contain many elements.

If J = ({0, 1}, <), we denote
∑
α∈J ρα by ρ0 + ρ1, and this is a singleton set iff the last state of ρ0 is

the same as the first state of ρ1; otherwise ρ0 + ρ1 is empty.
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If ρα is isomorphic to ρ for every α ∈ J , we denote
∑
α∈J ρα by ρ× J .

Note that ρ× ω is non-empty iff typeA(ρ) = (q,D, q) and there is a limit transition D → q′ in A.

Lemma 10.2 (∼A is a congruence wrt sums). Let A be an automaton. Assume:

1. J := (J,<J ) is a linear order,

2.
(
ρ0
α | α ∈ J

)
and

(
ρ1
α | α ∈ J

)
are sequences of A-runs, and

3. for every α ∈ J , ρ0
α ∼A ρ1

α, and

4. ρ0 ∈
∑
α∈J ρ

0
α.

Then, there is ρ1 ∈
∑
α∈J ρ

1
α such that ρ0 ∼A ρ1.

A formal A-type is a tuple (q,D, q′), where q, q′ are states of A and D is a subset of q ∩ q′ (recall that the
states of A are subsets of the base of A).

Lemma 10.2 implies that the sum of A-types over any linear order is well defined. Below we provide
explicit definitions for three important instances of the sum of automata types: binary sum, multiplication
by an ordinal and shuffle.

Definition 10.3 (formal binary sum of types). Let τ1 = (q1,D1, p1) and τ2 = (q2,D2, p2) be formal A-
types. If p1 6= q2, then τ1 + τ2 is defined to be the empty set; otherwise it is defined to be {(q1,D1 ∩D2, p2)}.

Lemma 10.4. Let ρ1 and ρ2 be A-runs. Then {typeA(ρ′) | ρ′ ∈ ρ1 + ρ2} is equal to τ1 + τ2.

Definition 10.5 (formal multiplication by a limit ordinal). Let τ = (q,D, q) be a formal A-type.

1. τ × ω is defined as the set {(q,D ∩ q′, q′) | there is a limit transition D → q′ in A}.

2. Let α be a limit ordinal greater than ω. If there is a limit transition D → q in A, then τ ×α is defined
as τ × ω; otherwise it is defined to be the empty set.

Note that τ × α depends on an automaton A, and in order to be precise we need to use τ ×A α; however A

will be always clear from the context.

Lemma 10.6. Let α be a limit ordinal and let ρ be an A-run. Then {typeA(ρ′) | ρ′ ∈ ρ × α} is equal to
τ × α.

Given a linear ordering J , we denote by J−1 the backwards linear ordering obtained by reversing the ordering
relation. Formal multiplication by a reverse limit ordinal is defined in a similar way to Definition 10.5, and
an analogue of Lemma 10.6 holds for this multiplication.

Let S := (Lα | α ∈ Q) be a sequence of chains indexed by the rationals. Let Q1, . . . , Qk ⊆ Q be a
partition of Q into k everywhere dense sets. Let R1, . . . , Rl be a partition of R \Q into l everywhere dense
sets. Let ρ1, . . . , ρk be A-runs. and p1, . . . , pl be states of A. A run ρ on

∑
α∈Q Lα is in the shuffle of

ρ1, . . . , ρk and p1, . . . , pl if ρ⌊L̂α is isomorphic to ρi for α ∈ Qi and ρ(x) = pj for the irrational cuts x ∈ Rj .
We denote by shuffleA(ρ1, . . . , ρk, p1, . . . , pl) the set {ρ | ρ is in the shuffle of ρ1, . . . , ρk and p1, . . . , pl}.

Recall that the shuffle of chains L1, . . . ,Lk is unique up to isomorphism, yet shuffleA(ρ1, . . . , ρk, p1, . . . , pl)
contains many non-isomorphic runs, because there are uncountable many non-isomorphic partitions of irra-
tionals into l everywhere dense sets. However, the set of A-types of all runs in shuffleA(ρ1, . . . , ρk, p1, . . . , pl)
is computable from typeA(ρ1), . . . , typeA(ρk).

Definition 10.7 (formal shuffle of types). Assume that τj =
(
qj ,Dj , q

′
j

)
for j = 1, . . . , k are formal

A-types and p1, . . . , pl are states of A for k, l ≥ 1. Let D be the set of base elements which belongs to every
pi and every Dj. Let S := {pi | i ≤ l} ∪ {q′j | j ≤ k} and E := {pi | i ≤ l} ∪ {qj | j ≤ k}. If pi ← D,
q′j ← D, D → pi and D → qj are A-limit transitions, then shuffleA(τ1, . . . , τk, p1, . . . , pl) is defined as
{(s,D, s′) | there are limit transitions s ← D and D → s′ in A}; otherwise shuffleA(τ1, . . . , τk, p1, . . . , pl)
is defined to be the empty set.
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Lemma 10.8 (Shuffle). Assume that ρj are A-runs and typeA(ρj) = τj for j = 1, . . . , k and p1, . . . , pl are
states of A. Then {typeA(ρ) | ρ ∈ shuffleA(ρ1, . . . , ρk, p1, . . . , pl)} is equal to shuffleA(τ1, . . . , τk, p1, . . . , pl).

Often we will use shuffleA(ρ1, . . . , ρk) for the union of shuffleA(ρ1, . . . , ρk, p1, . . . , pl) over all sequences
p1, . . . , pl. Whenever A is clear from a context we will drop the subscript A and use “shuffle(ρ1, . . . , ρk)”
for “shuffleA(ρ1, . . . , ρk)”. Similar notations and conventions will be used for the shuffles of formal types.

10.2. Reduction to regular runs

Let Creg be the closure of one-element chains under {+,×ω,×ω−1, shuffle}. Let A be an automa-

ton, OneA be the set of A-runs over the one-element chains, and let RA
reg be the closure of OneA under

{+,×ω,×ω−1, shuffleA}. The runs in RA
reg are called A-regular runs. Note that every run in RA

reg is a run
of A on a chain in Creg.

In this subsection we are going to prove the following proposition.

Proposition 10.9. Let A be an automaton and ρ a run of A on a countable chain. There is a run in RA
reg

which is ∼A-equivalent to ρ.

The technique used in this proof was introduced by Läuchli and Leonard [13] to prove that the first-order
theory of linear order is decidable. It was extended by Shelah [21] to the monadic second-order logic over
labeled linear orders. We are going to use it for the automata types several times. In this subsection it will
be used with a simple inductive assertion while in sections 10.3-10.5 inductive assertions will be more subtle.

Proof. Let ρ be a run. Define ∼ρ on the domain of ρ:
x ∼ρ y iff x = y or for all z < v ∈ [min(x, y),max(y, x)] the run ρ⌊[z, v] is equivalent to a run in RA

reg.
This is a convex equivalence relation, i.e., its equivalence classes are intervals. An equivalence class is

called degenerate if it is a singleton.
Let I be a non-degenerate equivalence class and let csup

I , cinf
I be the supremum and infimum of its elements.

We claim that I = [cinf
I , csup

I ], i.e.,

(a) Each ∼ρ-equivalence class I is a closed interval.

Proof (of (a)). Toward a contradiction assume that I has no maximal element. Then there is an in-
creasing ω-sequence y0 < y1 . . . in I converging to the supremum csup

I of I. Let col(yi, yj) be the A-type
of ρ⌊[yi, yj ]. This is an additive coloring. By the Ramsey theorem (Theorem 4.6) there is a homogeneous
cofinal subsequence zi.

First, let us show that ρ⌊[zi, c
sup
I ] is equivalent to a run in RA

reg. Since zi ∼ρ zi+1 there is a run ρ′ in

RA
reg, which is ∼A-equivalent to ρ⌊[zi, zi+1]. By homogeneity, we know that typeA(ρ′) = (q,D, q) for some q

and D, and Base lim
−→

(csup
I , ρ) = D = D ∩ q. Let q′ := ρ(csup

I ). The left limit transition in ρ at csup
I is D → q′.

Hence, there is a limit transition D → q′ in A and the typeA of ρ⌊[zi, c
sup
I ] is (q,D ∩ q′, q′). By Lemma 10.6,

there is a run ρ1 ∈ ρ′ × ω ⊆ RA
reg such that its type is also (q,D ∩ q′, q′).

Let y ∈ I and let zi > y (such zi exists by cofinality of the sequence zi). Since y ∼ρ zi there is a run ρ0

in RA
reg which is ∼A-equivalent to ρ⌊[y, zi]. Therefore, ρ⌊[y, csup

I ] is ∼A-equivalent to ρ0 + ρ1 ∈ R
A
reg.

We proved that for every y ∈ I there is a run in RA
reg which is ∼A-equivalent to ρ⌊[y, csup

I ]. This together
with the definition of I and of ∼ρ implies that every y ∈ I is ∼ρ-equivalent to csup

I . Therefore, csup
I ∈ I and

this contradicts that I does not have a maximal element.
A proof that cinf

I ∈ I is similar. 2

Let L∼ρ
be the chain of ∼ρ-equivalence classes. An equivalence class I1 is less than an equivalence class I2

if ∀x ∈ I1∀y ∈ I2(x < y). We are going to show:

(b) L∼ρ
does not contain consecutive elements.

(c) L∼ρ
is not dense.
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From (b) and (c) it follows that L∼ρ
has only one element. Therefore, there is only one ∼ρ-equivalence class

and ρ is ∼A-equivalent to a run in RA
reg.

It remains to prove (b) and (c).

Proof (of (b)). Toward a contradiction assume that I1 < I2 are consecutive equivalence classes. I1 has
a maximal element x and I2 has a minimal element y. Therefore, x and y are consecutive elements and in
ρ there is a δnext transition between x and y. In this case x ∼ρ y and this contradicts that x and y are in
different equivalence classes. 2

Proof (of (c)). Toward a contradiction assume that L∼ρ
is dense. Label I ∈ L∼ρ

as follows: If I is a
degenerate equivalence class and its only element is x, then lab(I) = ρ(x); otherwise lab(I) = typeA(ρ⌊I).

By Lemma 4.8, there is an open non-empty interval J ⊆ L∼ρ
which is uniform for lab.

Let ∆1 := {p | p = ρ(x) and {x} ∈ J is a degenerate ∼ρ -equivalence class } and ∆2 := {typeA(ρ⌊I) |
I ∈ J and I is not degenerate}. Note that the set of non-degenerate ∼ρ-equivalence classes in J is countable
and order-isomorphic to Q. The set of degenerate ∼ρ-equivalence classes in J is uncountable and hence
∆1 6= ∅. Let p1, . . . , pl be an enumeration of elements from ∆1, and let (q1,D, q

′
1) , . . . , (qk,D, q

′
k) be an

enumeration of elements from ∆2. For every
(
qj ,D, q

′
j

)
∈ ∆2 choose I ∈ J such that typeA(ρ⌊I) =

(
qj ,D, q

′
j

)

and let ρj := ρ⌊I. Since I is a ∼ρ-equivalence class it follows that ρj is an A-equivalent to a run ρ′j ∈ R
A
reg.

Let D be the set of base elements which belong to every pi and every Dj . Then for every i ≤ l and j ≤ k
the limit transitions pi ← D, q′j ← D, D → pi and D → qj occur in ρ and hence they are A-limit transition.

This together with Lemma 10.8 implies that if I1 < I2 are in J and x is the last element of I1 and y is
the first element of I2 then ρ⌊[x, y] is ∼A-equivalent to a run ρI1,I2 ∈ shuffle(ρ1, . . . , ρk) ⊆ R

A
reg.

Now let x′ < y′ be in the union of the ∼ρ-equivalence classes in J . We are going to show that

(d) there is a run in RA
reg which is ∼A-equivalent to ρ⌊[x′, y′].

Hence, all elements in the union of the ∼ρ-equivalence classes in J are ∼ρ equivalent and this contradicts
that J contains more than one ∼ρ-equivalence class.

In order to prove (d) observe that if x′, y′ are in the same equivalence class, then such a run exists by
the definition of ∼ρ.

Let x′ ∈ I1 and y′ ∈ I2 and let x be the last element of I1 and y be the first element of I2. Then there
are runs ρ1, ρ3 ∈ R

A
reg which are ∼A-equivalent to ρ⌊[x′, x] and ρ⌊[y, y′].

Hence, ρ⌊[x′, y′] is ∼A-equivalent to ρ1 + ρI1,I2 + ρ3 and this is a run in RA
reg. 2

Remark 10.10. This remark sketches how Proposition 10.9 can be extended to the class of all linear orders.
For this extension we need an additional shuffle operation on runs and on automata types. In subsection 10.1
the shuffle of Q indexed family of runs was defined. Q is not Dedekind-complete. We need to define the shuffle
indexed by Dedekind-complete dense linear orders. The shuffle operation indexed by the reals is denoted by
R−shuffle(r1, . . . , rn) and is defined in a natural way. The corresponding definition of R−shuffle(τ1, . . . , τn)
for automata types is similar to Definition 10.7, however no states pi appear as parameters in the shuffle,
i.e., l = 0. Let RA be the closure of OneA under {+,×ω,×ω−1, shuffle,R− shuffle}. A proof similar to the
proof of Proposition 10.9 shows that every A-run is ∼A-equivalent to a run in RA. The only difference in
these proofs is that for (a) the cardinality of any sequence converging to the supremum csup

I of I might be
uncountable. We need to use instead of Theorem 4.6, the Shelah theorem (corollary 1.2 [21]) for an additive
coloring of ordinals of uncountable cofinality.

10.3. Proof of Lemma 9.1(1)

Terminology. Throughout this and the next subsection we often will use the following terminology. Let ρ
be a run of a finite base automaton. If c is a left limit point (in the domain of ρ), and there is a D transition
to c from the left, we say that c is D− cut. If c is a right limit point, and there is a D transition to c from
the right, we say that c is D+ cut.

We are going to prove Lemma 9.1 by induction on w.
The inductive base is trivial.
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For the inductive step we first assume that Lemma 9.1(1) and Lemma 9.1(2) hold for w and prove Lemma
9.1(1) for w + 1. Then, we assume that Lemma 9.1(2) holds for w and Lemma 9.1(1) holds for w + 1 and
prove Lemma 9.1(2) for w + 1.

For the inductive step w 7→ w + 1 of Lemma 9.1(1) we consider several cases.
Case 1. The leftmost and the rightmost transitions are limit transitions over D.
Subcase 1. There is a D− cut c and y < c such that no D+ or D− cut appears in ρ on (y, c).
Let y1 < y2 < · · · < yn < . . . be an ω-sequence converging to c. For i < j let col(yi, yj) :=

typeA(ρ⌊[yi, yj ]).
By the Ramsey theorem (Theorem 4.6) there is a cofinal homogeneous subsequence zi of yi, i.e., col(zi, zj)

is the same for all pairs i < j. Let q
D′

−−→ q′ be this color. Then from homogeneity it follows that q = q′ and
D′ = D′ ∩ q. Because this sequence converges to c and at c there is a D transition, we obtain that D′ = D.

Let ρ′ be ρ⌊[z1, z2]. ρ′ contains no D− or D+ transition. Hence its weight is ≤ w. Therefore by the
inductive assumption ρ′ is equivalent to a run ρ1 on L of rank ≤ 2w+ 2. Let ρ2 be a run on L× (ω−1 + ω)
which is isomorphic to ρ1 on each summand. The leftmost and the rightmost transitions of ρ2 are limit
transitions on D. Hence, replacing the last and the first states of ρ2 by the last and first state of ρ we obtain
a run ρ3 on L × (ω−1 + ω), which is equivalent to ρ. Since rank(L × (ω−1 + ω)) ≤ 2(w + 1) + 1, we have
proved subcase 1.

Subcase 2. There is a D+ cut c and y > c such that no D+ or D− cut appears in ρ on (c, y).
This subcase is similar to subcase 1.
Subcase 3. neither subcase 1 nor subcase 2 holds.
Define an equivalence ∼ on the domain of ρ as: c1 ∼ c2 if no D transition occurs in ρ on

[min(c1, c2),max(c1, c2)]. This is a convex equivalence relation, i.e., its equivalence classes are intervals.
No D transition occurs inside any ∼-equivalence class.

Every equivalence class has a minimal element. Indeed, if E has no minimal element, let llim(E) := {b ∈
B | ∃y ∈ E∀y′ ∈ E(y′ < y) → b ∈ ρ(y′)}. Then llim(E) ⊇ D. If llim(E) = D then subcase 2 holds. If
llim(E) = D1 ) D, let c be the infimum of elements in E. Then c is equivalent to every element in E and
this contradicts that c 6∈ E.

Similarly, every equivalence class has a maximal element.
Hence, the restriction of ρ to every equivalence class is a run of weight < weight(D) = w + 1, and, by

the inductive assumption, it is equivalent to a run on a chain of rank ≤ 2w + 2.
There is no consecutive equivalence classes because a D transition must occur between them, but they

have minimal and maximal elements. Therefore, the chain of equivalence classes is either singleton or dense.
If there is only one equivalence class we are done.

Assume that the chain of the equivalence classes is dense.
Let b be a maximal element of an equivalence class. We claim that there is a limit transition q ← D at

b in ρ. Indeed, there should be a limit transition q ← D1 at b in ρ (otherwise there is a consecutive element
which could be added to the equivalence class of b). D1 ⊇ D because D holds everywhere in ρ. If D1 ) D
then there is c > b such that D1 holds in ρ on [b, c], Therefore, c ∼ b and this contradicts the assumption
that b is a maximal element in its class. Hence, q ← D is the transition at b in ρ.

Similarly, if c is a minimal element in an equivalence class, then there is a transition D → q′ at c in ρ.
Call an equivalence class L-class if it contains the cuts a− and a+ for an element a ∈ L. The chain L∼

of L-equivalence classes is dense and countable, hence, it is isomorphic to Q. Label q ∈ Q by the type of ρ
on the corresponding L∼-class. Since there are only finitely many labels, by Lemma 4.8, there is an open
non-empty interval I ⊆ Q and types τ1, . . . τp such that the points labeled by τi are dense everywhere in I
and the predicates Pτl

:= {q ∈ I | the corresponding interval Lq is of type τ} partition I.
Let I1 < I2 be two equivalence classes in I and let a1 be the last element of I1 and a2 be the first element

of I2.
First note that ρ⌊[a1, a2] is equivalent to a run on the shuffle of chains where each chain is of rank

≤ 2w + 2.
Let ρ′ be obtained by changing the first and the last states of ρ⌊[a1, a2] to the first and the last states of ρ.

ρ′ is a run because the first and the last transitions of ρ were limit transitions over D. typeA(ρ′) = typeA(ρ)
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and ρ′ is equivalent to a run on the shuffle of chains of rank ≤ 2w+ 2. Hence, it is equivalent to a run on a
chain of rank ≤ 2w + 3 = 2(w + 1) + 1. This completes the proof of Case 1.

Case 2. There is no D− transition in ρ.
If ρ contains no D+ cut then the weight(ρ) ≤ w and by the inductive hypothesis it is equivalent to a

run on chain of rank 2w + 2.
If ρ contains a D+ cut, then there is a maximal D+ cut. Otherwise let the left transition at the supremum

c′ of such cut be on D′. Then D′ ⊆ D, because it is the supremum of D transitions. On the other hand
D′ ⊇ D because D holds everywhere. Therefore, D′ = D and this contradicts that there is no D− transition.

Let e be the maximal D+ cut and let b be the infimum of D+ cuts.
Let ρ1 := ρ⌊≤ b and ρ3 := ρ⌊≥ e. Since ρ1 does not contain any cut of weight ≥ w, it is equivalent to a

run ρ′1 on a chain L1 of rank ≤ 2w + 2. By arguments similar to the subcase 1 of Case 1 we can show that
ρ3 is equivalent to a run ρ′3 on a chain L3 of rank ≤ 2w + 3.

Indeed let y1 > y2 > · · · > yn > . . . be an ω-sequence converging to e. For i < j let col(yi, yj) :=
typeA(ρ⌊[yj , yi]). By the Ramsey theorem there is a cofinal homogeneous subsequence zi of yi, i.e., col(zi, zj)

is the same for all i < j. Let q
D′

−−→ q′ be this color. Then from homogeneity it follows that q = q′ and
D′ = D′ ∩ q. Because this sequence converges to e and at e there is a D transition, we obtain that D′ = D.
Let ρ′ be ρ⌊[z2, z1]. ρ

′ contains no D− or D+ transition. Hence its weight is ≤ w. Therefore by the inductive
assumption ρ′ is equivalent to a run ρ4 on L of rank ≤ 2w+2. Let ρ5 be a run on L×ω−1 which is isomorphic
to ρ4 on each summand. The leftmost transition of ρ5 is a limit transition on D. Hence, replacing the first
state of ρ5 by the first state of ρ3 we obtain a run ρ′5 on L5 := L × ω−1, which is equivalent to ρ3⌊≤ z1.
Since ρ3⌊≥ z1 does not contain any transition of weight ≥ w, it is equivalent to a run ρ2 on L2 of rank
≤ 2w + 2. Therefore, ρ3 is equivalent to the run ρ′3 := ρ5 + ρ2 on L3 := L5 + L2.

The transition on the right of b in ρ is a limit transition on D+. The transition on the right of e in ρ′3 is
a limit transition on D+. Therefore by changing the first state of ρ′3 to ρ(b) we obtain a run on L3. Hence
ρ1 + ρ3 is well defined and is a run on L1 + L3 which has the rank ≤ 2(w + 1) + 1.

This run is equivalent to ρ because they have the same state at the beginning and the end and the set
of base elements true everywhere in these runs is D.

Case 3. There is no D+ transition in ρ. This case is similar to Case 2.
Case 4. (1)-(3) fails. Hence, ρ contains D+ and D− cuts.
Let cinf

+ be infimum of D+ cuts and csup
− be the supremum of D− cuts.

There is a D+ transition at cinf
+ and D− transition at csup

− .
ρ⌊≤ cinf

+ does not contain D+ cuts, hence by case 3 it is equivalent to a run on L1 of rank ≤ 2w + 3.
ρ⌊≥ csup

− does not contain D− cuts, hence by case 2 it is equivalent to a run on L2 of rank ≤ 2w + 3.
If csup
− = cinf

+ , then ρ is equivalent to a run on L1 + L2 of rank ≤ 2w + 3.
If csup
− < cinf

+ , then ρ⌊[csup
− < cinf

+ ] does not contain any D cut and therefore its weight is ≤ w and it
is equivalent to a run on L3 of rank ≤ 2w + 2. Hence, ρ is equivalent to a run on L1 + L3 + L2 of rank
≤ 2w + 3.

If csup
− > cinf

+ , then by case (1), ρ⌊[cinf
+ , csup

− ] is equivalent to a run on L3 of rank ≤ 2w + 3. Hence, ρ is
equivalent to a run on L1 + L3 + L2 of rank ≤ 2w + 3.

10.4. Proof of Lemma 9.1(2)

We are going to prove Lemma 9.1(2) by induction on w. By Proposition 10.9, it is sufficient to consider
the runs on the countable chains.

The inductive base is trivial.
Inductive step. w ֌ w+1 (we assume that Lemma 9.1(2) holds for w and Lemma 9.1(1) holds for w+1

and prove Lemma 9.1(2) for w + 1).
Let ρ be a run. Define ∼ρ on the domain of ρ:
x ∼ρ y iff x = y or for all z < v ∈ [min(x, y),max(y, x)] the run ρ⌊[z, v] is equivalent to a run on L of

rank ≤ 2w + 3.
This is a convex equivalence relation. An equivalence class is degenerate if it singleton.
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Let I be a non-degenerate equivalence class and let csup
I , cinf

I be the supremum and infimum of its elements.
We claim that ρI := ρ⌊[cinf

I , csup
I ] is equivalent to a run on L of rank ≤ 2w + 4.

Indeed, take any x ∈ I. If I has a maximal element then ρI⌊≥ x is of rank ≤ 2w + 3.
If I has no maximal element, let y0 < y1 . . . be an ω-sequence in I converging to the supremum csup

I

of I. Let col(yi, yj) be the A-type of ρ⌊[yi, yj ]. By the Ramsey theorem there is a homogeneous infinite
subsequence zi.

Since z0 ∼ρ z1 there is a run ρ1 on L1 equivalent to ρ⌊[z0, z1], where rank(L1) ≤ 2w + 3. Therefore,
ρ⌊[z0, c

sup
I ] is equivalent to a run on L1 × ω. Since x ∼ρ z0, we have that ρ⌊[x, z0] is equivalent to a run on

L0 of rank ≤ 2w + 3. Therefore, ρI⌊≥ x is equivalent to a run on L0 + L1 × ω of rank ≤ 2w + 4.
Similar arguments show that ρI⌊≤ x is equivalent to a run on a chain of rank ≤ 2w + 4. Hence ρI is

equivalent to a run on a chain of rank ≤ 2w + 4.
Let L∼ρ

be the chain of ∼ρ-equivalence classes. We are going to show:

(a) L∼ρ
does not contain consecutive elements.

(b) L∼ρ
has no limit element.

From (a) and (b) it follows that L∼ρ
has only one element. Therefore, there is only one equivalence class

and ρ is equivalent to a run on a chain of rank ≤ 2w + 4 = 2(w + 1) + 2.
It remains to prove (a) and (b).

Proof (of (a)). Assume that I1 < I2 are consecutive equivalence classes.
Case 1. I1 has a maximal element x and I2 has a minimal element y. In this case x ∼ρ y and this

contradicts that x and y are in different equivalence classes.
Case 2. I1 has no maximal element and I2 has a minimal element x. Let D = {b ∈ B | ∃z ∈ I1∀c(c ∈

I1⌊≥ z → b ∈ ρ(c))}. The weight of D is at most w+1. There is cD ∈ I1 such that ∀c ∈ I1⌊≥ cD(ρ(c) ⊇ D).
Then for all c ∈ [cD, x]: ρ⌊[c, x] satisfies the assumptions of Lemma 9.1(1) and therefore it is equivalent to
a run on L of rank 2(w + 1) + 1. Then for all c < c2 ∈ [cD, x]: ρ⌊[c, c2] is equivalent to a run on a chain of
rank 2(w + 1) + 1 = 2w + 3. Hence cD ∼ρ x. Contradiction.

Case 3. The case when I1 has a maximal element and I2 has no minimal element leads similarly to a
contradiction.

Case 4. I1 has no maximal element and I2 has no minimal element. This is impossible, because the
domain of ρ is a Dedekind-complete chain. 2

Proof (of (b)). Let I be a limit ∼ρ-equivalence class. W.l.o.g. assume that it is a right limit of elements
in L∼ρ

. Since the domain of ρ is Dedekind-complete, it follows that I has a maximal element x. Assume
that the right limit transition at x in ρ is over a set D ⊆ B. Let y > x be such that D ⊆ ρ(z) for all
z ∈ (x, y) and b 6∈ D → ∃z ∈ (x, y) ∧ b 6∈ ρ(z). For z < v ∈ (x, y), ρ⌊[z, v] either is a run of weight ≤ w or it
satisfies the assumption of Lemma 9.1(1). Hence, it is equivalent to a run on L of rank ≤ 2w + 3. Hence,
z ∼ρ v and this contradicts that between x and y there are infinitely many ∼ρ-equivalence classes. 2

10.5. A stronger version of Lemma 9.1

We state here a lemma which is slightly stronger than Lemma 9.1.
Let A be an automaton. Similar to the definition of the rank of chain we assign a rank to the runs in

Rreg := RA
reg.

Define sets R≤i ⊆ Rreg as follows:

1. R≤0 is the set of finite runs.

2. R≤i+1 is the closure under + of the union of the following sets

(a) R≤i,
(b) ρ× ω and ρ× ω−1 for every ρ ∈ R≤i and
(c) shuffle(A) for every finite subset A of R≤i.
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A run ρ has rank i+ 1 if ρ ∈ R≤i+1 ∧ ρ 6∈ R≤i.
It is clear that every run in Rreg has a finite rank. It is also clear that if ρ is a run of rank w then it is a

run on a chain of rank ≤ w. Observe also that there are runs on chains of rank two which are not in Rreg.
If we replace everywhere in the proof of Lemma 9.1. “a run on a chain of rank w” by “a run of rank w”

we obtain a proof of the following lemma.

Lemma 10.11. Assume that ρ is a run on a countable chain of a finite base automaton A.

1. If ρ :
D
−→ and weight(ρ) = weight(D) = w, then there is a run in RA

reg of rank ≤ 2w + 1 which is
equivalent to ρ.

2. Any run ρ of weight ≤ w is equivalent to a run in RA
reg of rank ≤ 2w + 2.

Similar to the construction trees for the chains of finite rank we define construction trees for runs of finite
rank. An important difference is that every construction tree for chains describes a unique chain. However,
a construction tree for runs describes a set of runs.

Let A be an automaton. A construction tree T for A-runs is a labeled tree which has the following
properties: the leaves of T are labeled by pairs (s, s′) where A has a next state transition from s to s′; the
internal nodes are labeled by +,×ω,×ω−1 and shuffle; a node labeled by ×ω or by ×ω−1 has one child; a
node labeled by + has at least two children and these children are linearly ordered; a node labeled by shuffle
has at least one child.

Let T be a construction tree. The set [|T |] of A-runs described by T is defined as follows:

1. if T is a one-element tree then ρ ∈ [|T |] if ρ is the label of the unique node of T .

2. Assume that the root of T is labeled by ×ω (or by ×ω−1) and T1 is the subtree of T rooted at the
child of its root, then ρ ∈ [|T |] if ρ ∈ ρ1 × ω (respectively, ρ ∈ ρ1 × ω−1) for some ρ1 ∈ [|T1|].

3. Assume that the root of T is labeled by + and its children (ordered from younger to older) are trees
T1, . . . , Tm. Then ρ ∈ [|T |] if there are ρi ∈ [|Ti|] such that ρ ∈ ρ1 + · · ·+ ρm.

4. Assume that the root of T is labeled by shuffle and its children are trees T1, . . . , Tm. Then ρ ∈ [|T |] if
ρ ∈ shuffle(ρ1, . . . , ρm) for ρi ∈ [|Ti|].

Now similar to Lemma 7.1, we obtain

Lemma 10.12. If an A-run ρ has rank ≤ i, then there is a run construction tree T such that ρ ∈ [|T |] and
the height of T is bounded by 2i+1.

11. Temporal logics with automata definable modalities

In this section we provide an extension of our results to temporal logics with modalities having generalized
truth tables definable by automata.

Let us first compare the expressive power of automata and of ∃-MSO. Theorem 8.3 implies that for every
∃-MSO formula ϕ there is an automaton Aϕ such that M |= ϕ iff Aϕ accepts M. Hence, if a language
is definable by an ∃-MSO formula, then it is definable by an automaton. However, there are languages
definable by automata which are not definable by ∃-MSO. In particular,

Proposition 11.1. 1. There is an automaton which accepts a linear order iff it is Dedekind-complete.

2. There is no ∃-MSO sentence which is satisfiable in a linear order iff it is Dedekind-complete.

Proof. (1) Consider an automaton A over a unary alphabet defined as follows. It has three states ql, qr
and qn. We define the transition relation of A in such a way that in every A-run ρ if a cut c = (L,U) and
L 6= ∅ has no maximal element, then it will be labeled by ql; if U 6= ∅ and has no minimal element it will be
labeled by qr; other non-gap cuts will be labeled by qn.

Define the basis as B := {0, 1}. It is big enough to assign a different subsets of B to ql, qr and qn.
δnext has three transitions (ql, qn), (ql, qr) and (qn, qn).
The limit transition relation δlim contains (qr,D) and (D, ql) for every D ⊆ B.
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Qinit := {qn, qr} and Qfin := {qn, ql}.
It is easy to check that no A-run can assign a state to a cut which corresponds to a gap, and a linear

order is accepted by A iff it is Dedekind-complete.
(2) The standard, but lengthy, Ehrenfeucht-Fräıssé game arguments show that if ϕ is an ∃-MSO sentence

and Z |= ϕ, then Z + Z |= ϕ. However, Z is Dedekind-complete while Z + Z is not. This proves (2). 2

It is an open problem whether a language definable by an automaton is always definable by an MSO
formula. A natural formalization of a run of automaton talks about sets of cuts of a linear order. The cuts
are represented by the downward closed subset of linear order. Hence, such a formalization refers to a set
of sets which is a third-order object.

Let A be an automaton over an alphabet {0, 1}n and let L := 〈A,<〉 be linear order. A relation
RA ⊆ P(A)n is said to be definable by A in L if RA = {(P1, . . . , Pn) ∈ P(A)n | A accepts (A,<, P1, . . . , Pn)}.

An operator F : P(A)n−1 → P(A) is definable by A in L if RA = {(P1, . . . , Pn) ∈ P(A)n | P1 =
F (P2, . . . , Pn)}. A modality O is said to be definable by A in L if the operator assigned to O in L is
definable by A.

A modality O is said to be definable by A if O is definable by A in L for every L.
Proposition 11.1 implies that the set of ∃-MSO definable modalities is a proper subset of the set of

automata definable modalities.
The next theorem is the main result of this section.

Theorem 11.2. Let TL be a temporal logic with a finite set of modalities and every modality of TL is
definable by an automaton. Then the satisfiability problem for TL over the class of countable chains is in
pspace.

Remark 11.3 (On countability). There are automata which accept a non-empty language, while do not
accept any countable chain. For example, one can define an automaton which accepts only Dedekind-complete
dense chains. This automaton is the product of the automaton for Dedekind-complete chains described in
the proof of Proposition 11.1 and an automaton which accepts only dense chains (such an automaton can be
easily described, also its existence follows from the first-order definability of the class of dense linear orders
and Theorem 8.3). This automaton accepts the chain of reals, but does not accept any countable chain.
Remark 10.10 implies that if an automaton accepts a chain, then it accepts a chain of cardinality at most
continuum.

The proof of Theorem 11.2 is similar to the proof of Theorem 7.3 and we outline it in this section.
Let Φ be a finite set of automata. A Φ-conjunctive formula is an expression ϕ of the form A1(P 1) ∧

A2(P 2) ∧ · · · ∧ Ak(P k), where Ai ∈ Φ and P i is an ni-tuple of predicate names, whenever the alphabet of
Ai is {0, 1}ni . The size of ϕ is defined to be k and is denoted by |ϕ|.

A chain L =
(
A,<,P

)
satisfies (or is accepted by) ϕ if Ai accepts the reduct of L on {<,P i} for every i.

The next proposition is similar to Proposition 3.1 and reduces (in linear time) the satisfiability problem
for TL to the satisfiability problem for Φ-conjunctive formulas.

Proposition 11.4. Let TL be a temporal logic with a finite set of modalities. Assume that every modality of
TL is definable by an automaton. Then there is a finite set Φ of automata and a linear time algorithm which
for every formula ψ ∈ TL computes a Φ-conjunctive formula ϕ such that ϕ is satisfiable iff ψ is satisfiable.

The proof of this proposition is based on a simple unnesting procedure similar to the proof of Proposition
3.1.

Let ϕ := A1(P 1)∧A2(P 2)∧ · · · ∧Ak(P k) be a Φ-conjunctive formula. It is clear that for every conjunct
Ai(P i) there is an automaton which accepts L iff L satisfies Ai(P i). The only difference between this
automaton and Ai is in the next transition relation which takes into an account the order of names in
the tuple P i. We denote this automaton by Ai(P i) := (Bi, Qi,Σi, δ

next
i , δlimi , Qinit

i , Qfin
i ). W.l.o.g we can

assume that Bi are disjoint for i = 1, . . . , k (otherwise we can take isomorphic copies). Let us define
Aϕ := (B,Q,Σ, δnext , δlim, Qinit , Qfin) equivalent to ϕ as the product of Ai(P i):
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1. B = ∪Bi.
2. s ∈ P(B) is a state of Aϕ if si := s ∩Bi ∈ Qi; such s will be denoted by (s1, . . . , sk).

3. (s1, . . . , sk) in Qinit (respectively, in Qfin) iff si ∈ Q
init
i (respectively, si ∈ Q

fin
i ) for i ≤ k.

4. D → (s1, . . . , sk) is a left limit transition of Aϕ, if D ∩Bi → si is a left limit transition of Ai(P i).

5. The right limit transition relation is defined similarly. The next state transition relation is defined in
the standard way.

The following lemmas are immediate.

Lemma 11.5 (Equivalence of ϕ and Aϕ). L satisfies ϕ iff Aϕ accepts L.

Lemma 11.6. For every finite set Φ of automata there is nΦ such that for every Φ-conjunctive formula ϕ
the size of the base of Aϕ is at most |ϕ| × nΦ.

By Lemmas 10.11, 10.12 and 11.6, we obtain the following lemma:

Lemma 11.7. For every finite set Φ of automata there is rΦ such that for every Φ-conjunctive formula
ϕ = A1(P1) ∧ · · · ∧ Ak(Pk) and every Aϕ-type τ , there is an Aϕ-run ρ on a countable chain such that
τ = typeAϕ

(ρ) iff there is a run construction tree T of height ≤ |ϕ| × rΦ and a run ρ′ ∈ [|T |] such that
τ = typeAϕ

(ρ′).

Let ϕ := A1(P1)∧· · ·∧Ak(Pk). For i = 1, . . . , k, let τi = (si,Di, s
′
i) be a formal Ai(P i) type. We denote by

(τ1, . . . , τk) a formal Aϕ-type ((s1, . . . , sk) ,∪Di, (s
′
1, . . . , s

′
k)). Observe that for every Aϕ-type τ := (s,D, s′)

there is a unique tuple (τ1, . . . , τk) such that τ = (τ1, . . . , τk); moreover τj = (s ∩Bj ,D ∩Bj , s
′ ∩Bj) for

j = 1, . . . , k are computable from τ in linear time.
Hence, Aϕ accepts a countable chain iff

(A) there is an Aϕ-type τ = ((s1,D1, s
′
1) , . . . , (sk,Dk, s

′
k)), a run construction tree T of height ≤ |ϕ| × rΦ

and a run ρ ∈ [|T |] such that typeAϕ
(ρ) = ((s1,D1, s

′
1) , . . . , (sk,Dk, s

′
k)) and

(B) (s1, . . . , sk) ∈ Qinit and (s′1, . . . , s
′
k) ∈ Qfin .

Condition (B) can be checked in linear time. Hence, by Lemmas 11.4 and 11.5 we obtain

Lemma 11.8. The satisfiability problem for TL over the class of countable chains is in pspace if (A) can
be checked in pspace.

Recall that in Section 10.1 we defined operations +,×ω,×ω−1 and shuffle on runs and on automata types.
Unlike similar operations on the chains and on first-order types, these operations return sets of runs and
sets of automata types. The next lemma is a version of Lemma 5.2 for automata runs and types.

Lemma 11.9. Let ϕ := A1(P 1) ∧ A2(P 2) ∧ · · · ∧ Ak(P k) be a Φ-conjunctive formula.

1. Assume that ρ1 and ρ2 are Aϕ-runs, typeAϕ
(ρ1) =

(
τ1
1 , . . . , τ

1
k

)
and typeAϕ

(ρ2) =
(
τ2
1 , . . . , τ

2
k

)

Then
{typeAϕ

(ρ) | ρ ∈ ρ1 + ρ2} = {(τ1, . . . , τk) | τj ∈ τ
1
j + τ2

j }

2. Assume that ρ′ is an Aϕ-run and typeAϕ
(ρ′) = (τ ′1, . . . , τ

′
k). Then

{typeAϕ
(ρ) | ρ ∈ ρ′ × ω} = {(τ1, . . . , τk) | τj ∈ τ

′
j × ω}

.

3. Similar to (2) but for multiplication by ω−1.

4. Assume that ρ1, . . . , ρm are Aϕ-runs, typeAϕ
(ρi) =

(
τ i1, . . . , τ

i
k

)
for i = 1, . . . , k and s1 =(

s11, . . . , s
1
k

)
. . . , sl =

(
sl1, . . . , s

l
k

)
are states of Aϕ. Let Uj = {τ ij | i ≤ m} for 0 < j ≤ k and,

Sj = {sij | i ≤ l} for 0 < j ≤ l. Then

{typeAϕ
(ρ) | ρ ∈ shuffleAϕ

(ρ1, . . . , ρm, s1 . . . , sl)} = {(τ1, . . . , τk) | τj ∈ shuffle
Aj(P j)

(Uj , Sj)}.

25



Fig. 2 contains an algorithm SAT for the following problem:

Problem for a finite set Φ of automata

Input A Φ-conjunctive formula ϕ, an Aϕ-type τ and N ∈ N.

Output True, if there a run construction tree T of height ≤ N and an Aϕ-run ρ ∈ [|T |] such that
typeAϕ

(ρ) = τ .

The only difference between this algorithm and the algorithm in Fig. 1 is that it uses automata types instead
of first-order types.

The correctness of SAT easily follows from Lemma 11.9 and the definition of run construction trees
and their semantics. Arguments similar to the argument for the algorithm presented in Fig. 1 (Sect. 7)
show that SAT is in NSPACE(|ϕ| ×N). Hence, SAT works in polynomial space in |ϕ|, assuming that N is
polynomial in |ϕ| which is the case with N = |ϕ|×rΦ. Hence, (A) can be verified in pspace, and by Lemma
11.8, we obtain that the satisfiability problem for TL is in pspace.

This completes our proof of Theorem 11.2.

Remark 11.10. Theorem 11.2 provides a pspace algorithm for the satisfiability problem for any temporal
logic with a finite set of automata definable modalities over the class of countable linear orders. This theorem
can be extended to the class of all linear orders. A version of Lemma 10.11 holds for arbitrary runs of
automata (see Remark 10.10). The algorithm in Fig. 2 can be modified to include a clause for R− shuffle.
Thus we obtain the desirable pspace algorithm.

12. Extension to subclasses of linear orders

Let TL be any temporal logic with a finite set of ∃-MSO definable modalities. We proved that the
satisfiability problem for TL over the class of all linear orders can be solved in pspace. This improves
the Cristau result [6] that the satisfiability problem over this class for the temporal logic having the four
modalities Until, Since, UntilStavi and SinceStavi is in double exponential space.

In the rest of this section we explain how the pspace bound can be extended uniformly to many inter-
esting classes of linear orders.

Definition 12.1. Let ψ be an ∃-MSO sentence. A set C of chains is said to be definable by ψ, if C = {M |
M |= ψ}. A set C of chains is said to be definable by ψ relatively to a class C′, if C = {M ∈ C′ | M |= ψ}.

Theorem 7.3 immediately implies

Corollary 12.2. Let TL be a temporal logic with a finite set of ∃-MSO definable modalities, and let ψ be
an ∃-MSO sentence. If the satisfiability problem for TL over C′ is in pspace, then the satisfiability problem
for TL over the class of chains definable by ψ relatively to C′ is in pspace. In particular, the satisfiability
problem for TL over the class of chains definable by ψ is in pspace.

A linear order is called unbounded if it has neither a minimum nor a maximum. Note that an ∃-MSO formula
ϕ is satisfiable in Q iff it is satisfiable in an unbounded dense order. There are first-order sentences Unbound
and Dense that express that an order is unbounded, respectively, dense. Therefore, ϕ is satisfiable in Q iff
Unbound ∧Dense ∧ ϕ is satisfiable over a linear order. Hence, there is a pspace algorithm for satisfiability
in Q.

Recall that a cut (L,U) of a linear order L is a gap if neither L has a maximal element, nor U has a
minimal element and L 6= ∅ 6= U . A chain is Dedekind-complete if its underlining order does not have gaps.
The class of non-Dedekind-complete chains can be easily definable by an ∃-MSO sentence. Hence, there is
a pspace algorithm for the satisfiability over the class of non-Dedekind-complete chains. By Proposition
11.1, the class of Dedekind-complete chains is not definable by an ∃-MSO sentence. However, we will show
(Theorem 12.8) that there is a pspace algorithm for the satisfiability over the class of Dedekind-complete
chains.
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Input 1. (τ1, . . . , τk), where τi = (si,Di, s
′
i) is an Ai(P i) type.

2. N ∈ N.

Output True, if there is a run construction tree T of height N and a run ρ ∈ [|T |] such that typeAϕ
(ρ) =

(τ1, . . . , τk).

• If N = 0 and there is a next state transition in Aϕ from (s1, . . . , sk) to (s′1, . . . , s
′
k) then return True;

• Go non-deterministically to 1-5.

(1.) Return SAT((τ1, . . . , τk) , N − 1).

(2.) Guess (τ ′1, . . . , τ
′
k) such that SAT((τ ′1, . . . , τ

′
k) , N − 1) returns True and τi ∈ τ ′i × ω for 0 < i ≤ k.

(3.) Guess (τ ′1, . . . , τ
′
k) such that SAT((τ ′1, . . . , τ

′
k) , N−1) returns True and τi ∈ τ

′
i×ω

−1 for 0 < i ≤ k.

(4.) Guess on-the-fly a sequence

(
τ1
1 , . . . , τ

1
k

)
,
(
τ2
1 , . . . , τ

2
k

)
, . . . , (τm1 , . . . , τ

m
k )

such that

(4.1) for 0 < i ≤ m, SAT(
(
τ i1, . . . , τ

i
k

)
, N − 1) returns True,

(4.2) for 0 < j ≤ k, τj ∈ τ1
j + . . .+ τmj .

(5.) Guess (U1, . . . , Uk), and (S1, . . . , Sk) where Ui is a set of Ai(P i) types and Si is a set of Ai(P i)
states such that

(5.1) for 0 < j ≤ k, τj ∈ shuffle
Aj(P j)

(Uj , Sj),

(5.2) for 0 < j ≤ k, and every sj ∈ Sj check that Dj → sj and sj ← Dj are limit transitions of
Aj(P j), where Dj := (

⋂
s∈Sj

s) ∩ (
⋂

(q,D,q′)∈Uj
D).

Guess on-the-fly a sequence of Aϕ types and a non-empty sequence of Aϕ states:

(
τ1
1 , . . . , τ

1
k

)
,
(
τ2
1 , . . . , τ

2
k

)
, . . . , (τm1 , . . . , τ

m
k ) and

(
s11, . . . , s

1
k

)
. . . ,

(
sl1, . . . , s

l
k

)

such that

(5.3) for 0 < i ≤ m, SAT(
(
τ i1, . . . , τ

i
k

)
, N − 1) returns True,

(5.4) for 0 < j ≤ k and Uj = {τ ij | i ≤ m},

(5.5) for 0 < j ≤ l and Sj = {sij | i ≤ l}.

Figure 2: Algorithm SAT
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Let OP be a subset of {ω, ω−1, shuffle}. We can prove a version of Lemma 9.1, where “a run on L of
rank m” is replaced by “a run on L ∈ Cl(One,OP ∪ {+}) of rank m”. The proof of this lemma is exactly
like the proof of Lemma 9.1. The only additional property of the class Cl(One,OP ∪ {+}) needed for this
proof is: if L ∈ Cl(One,OP ∪ {+}) has rank m, then for every interval I the sub-chain of L over I is in
Cl(One,OP ∪ {+}) and its rank is at most m. As a consequence we obtain the following variant of the
small rank property (Lemma 7.2).

Lemma 12.3. For every finite set Φ of first-order formulas and every OP ⊆ {ω, ω−1, shuffle} there is
NΦ,OP ∈ N such that every Φ-conjunctive formula ψ is satisfiable in Cl(One, OP ∪ {+}) iff it is satisfiable
in a chain M∈ Cl(One, OP ∪ {+}) of rank ≤ |ψ| ×NΦ,OP .

Hence, the satisfiability problem for any temporal logic with a finite set of ∃-MSO definable modalities over
Cl(One, OP ∪ {+}) is in pspace.

Recall that a linear order is scattered if it does not contain a dense sub-order (i.e., a substructure order-
isomorphic to Q). An ∃-MSO formula is satisfiable in a chain over an ordinal (respectively, over a scattered
order) iff it is satisfiable in Cl(One, {ω,+}) (respectively, in Cl(One, {ω, ω−1,+})) [13, 20]. Hence, we
obtain:

Theorem 12.4. Let TL be a temporal logic with a finite set of modalities definable in the existential fragment
of MSO.

1. The satisfiability problem for TL in the class of chains over ordinals is in pspace [7].

2. The satisfiability problem for TL in the class of scattered chains is in pspace.

A linear order is continuous if it is dense and Dedekind-complete; it is separable if it has a countable dense
subset. Any unbounded separable continuous order is order-isomorphic to the reals.

Burgess and Gurevich [5] proved that TL(Until,Since) is decidable over the reals. They introduced the
following class of chains.

Definition 12.5. Let C be the minimal class of chains that contains all one-element chains and has the
following properties:

1. If M and N are in C and M has a maximum or N has a minimum, then M+N ∈ C.

2. If M∈ C and M has either a minimum or a maximum, then M× ω−1 and M× ω are in C.

3. If A ⊆ C is finite and each M ∈ A has both a minimum and a maximum, and some N ∈ A are
one-element chains, then shuffle(A) ∈ C.

The next theorem was a key step in their decidability proof.

Theorem 12.6. Let ϕ be an ∃-MSO formula. The following are equivalent:

1. ϕ is satisfiable over the class of Dedekind-complete separable chains.

2. ϕ is satisfiable over the class of Dedekind-complete chains.

3. ϕ is satisfiable in C.

As a consequence, they obtained a (non-elementary) algorithm for the decidability of TL(Until,Since) over
the reals.

The definition of C is slightly more general than the definition of a recursively defined class of structures.
However, our definition is easily extended to the (mutual) recursive definition of a finite number of classes.

One can easily rephrase Definition 12.5 as a mutual recursive definition of three classes: C, Cmax and Cmin,
where Cmax (respectively, Cmin) is the set of chains in C with a maximal, (respectively, minimal) element.
(Note that Cmax and Cmin are ∃-MSO definable relatively to C.)

Our results and proofs are easily extended to these classes. We need modified versions of Lemma 9.1.
In the version of Lemma 9.1 for C (respectively, for Cmax and Cmin) “a run on L of rank m” is replaced by
“a run on L ∈ C (respectively in Cmax and Cmin) of rank m”. The proof of these lemmas is exactly like the
proof of Lemma 9.1. The only additional property needed in these proofs is: if L ∈ C (respectively, in Cmax
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and Cmin) has rank m, then for every interval (respectively, right closed interval, left closed interval) I the
sub-chain of L over I is in C (respectively, in Cmax and Cmin) and its rank is at most m.

As a consequence we obtain that for every Φ there is rΦ such that a Φ-conjunctive formula ψ is satisfiable
in C iff it is satisfiable inM∈ C of rank ≤ rΦ × |ψ|. Hence,

Lemma 12.7. Let TL be a temporal logic with a finite set of modalities definable in ∃-MSO. The satisfiability
problem for TL in C is in pspace.

As a consequence, we obtain:

Theorem 12.8. Let TL be a temporal logic with a finite set of modalities definable in the existential fragment
of MSO.

1. The satisfiability problem for TL over the class of Dedekind-complete separable chains is in pspace.

2. The satisfiability problem for TL over the class of Dedekind-complete chains is in pspace.

3. The satisfiability problem for TL in the class of chains over the reals is in pspace.

4. The satisfiability problem for TL over the class of continuous chains is in pspace.

Proof. (1) and (2) follow from Theorem 12.6 and Lemma 12.7.
Let Unbound and Dense be first-order formulas that express that an order is unbounded and dense. By

Theorem 12.6, ϕ ∈ TL is satisfiable over the reals iff ϕ∧Dense ∧Unbound is satisfiable in C. Therefore, (3)
follows by Lemma 12.7.

ϕ ∈ TL is satisfiable over the class of continuous chains iff ϕ ∧ Dense is satisfiable in C. Therefore, (4)
follows by Lemma 12.7. 2

The class of non-scattered chains can be easily definable by an ∃-MSO formula. Hence, by Theorem 12.8,
there is a pspace algorithm for satisfiability over the class of non-scattered Dedekind-complete chains. The
class of scattered chains is not definable by automata [1].

In order to prove pspace bound for the class of scattered Dedekind-complete chains, we need a charac-
terization similar to Definition 12.5 and Theorem 12.6.

Definition 12.9. Let C′ be the minimal class of chains that contains all one-element chains and has the
following properties:

1. If M and N are in C′ and M has a maximum or N has a minimum, then M+N ∈ C′.

2. If M∈ C′ and M has either a minimum or a maximum, then M× ω−1 and M× ω are in C′.

Similar to Theorem 12.6 we have the following characterization:

Proposition 12.10. Let ϕ be in the existential fragment of MSO. The following are equivalent:

1. ϕ is satisfiable over the class of Dedekind-complete scattered chains.

2. ϕ is satisfiable in C′.

One can easily rephrase Definition 12.9 as a mutual recursive definition of three classes: C′, C′max and C′min,
where C′max (respectively, C′min) is the set of chains in C′ with a maximal, (respectively, minimal) element.
(Note that C′max and C′min are ∃-MSO definable relatively to C′.)

Theorem 12.11. Let TL be a temporal logic with a finite set of modalities definable in the existential
fragment of MSO. The satisfiability problem for TL over the class of Dedekind-complete scattered chains is
in pspace.

Proof. Arguments are similar to the proof of Theorem 12.8(1), but use the class C′ instead of C. 2

Let us state one more theorem.

Theorem 12.12. Let TL be a temporal logic with a finite set of automata definable modalities. The satis-
fiability problem for TL over the class of Dedekind-complete countable chains is in pspace.
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Proof. Follows immediately from Theorem 11.2 and Proposition 11.1 which states that the class of
Dedekind-complete linear orders is definable by an automaton. 2

Let us summarize the principles and methods used in our proofs to establish the pspace upper bound for
the satisfiability problem for temporal logics.

Our first unnesting reduction shows that for every temporal logic L with a finite set of ∃-MSO definable
modalities there is a finite set Φ of first-order formulas and a linear time algorithm that reduces the satisfi-
ability problem for L to the satisfiability problem for Φ-conjunctive formulas. This reduction is valid over
every class of structures. Technically, it is a very simple reduction; however, it frees us from temporal logics
and allows to apply a rich variety of methods developed for first-order logic.

We introduced recursively definable classes of structures. Let C = Cl(One,F) be a recursively definable
class, where (1) the operators from F respect ≡n and (2) the reduct distributes over these operators.

The satisfiability problem over the structures of rank ≤ k in C is in pspace(|ϕ| × r). This is a general
result and its proof is based on composition method.

To establish the pspace upper bound for the satisfiability problem of Φ-conjunctive formula over C,
it is sufficient to prove the small rank property for C: if a conjunctive formula ϕ is satisfiable over a
chain in C, then it is satisfiable over a chain in C of rank polynomial in ϕ. The proof of the small rank
property for the class Cl(One, {+,×ω,×ω−1, shuffle}) was based on the technique introduced by Läuchli
and Leonard [13] to prove the decidability of the first-order logic over the linear orders. We (1) adopted this
technique to automata types and (2) strengthened its inductive assertions and using finite base automata
established a polynomial bound which ensures the small rank property. We sketched proofs of the small
rank property for several other recursively definable classes. These proofs are almost the same as the proof
for Cl(One, {+,×ω,×ω−1, shuffle}). However, the small rank property is not valid for a general recursively
definable class of chains. In the cases where we succeeded to prove the small rank property for a recursively
defined class C, we first proved that if L ∈ C has rank m, then for every interval I if the sub-chain of L over
I is in C, then its rank is at most m.

The following standard general principles allow to transfer an upper bound for the satisfiability problem
over one class to another class.

Definability arguments If C is definable relatively to C′, then the satisfiability problem for C has at most
the same complexity as for C′.

Density arguments If C′ is dense in C (i.e., a formula ϕ is satisfiable in C iff it is satisfiable in C), then
the satisfiability problem for C is the same (and hence has the same complexity) as for C′.

Proofs that one class is dense in another class often rely on the composition method.

13. Discussion of Reynolds’ results

Recall that a temporal logic TL is expressively complete for first-order monadic logic of order (FOMLO)
over a class C of structures if for every ϕ ∈ TL there is a formula ψ(t) ∈ FOMLO which is equivalent to
ϕ over C, and for every formula ψ(t) ∈ FOMLO with at most one free variable there is a formula ϕ ∈ TL
which is equivalent to ψ over C.

A major result concerning linear-time temporal logics is Kamp’s theorem [12, 10, 9] which states that
TL(Until,Since), the temporal logic having Until and Since as the only modalities, is expressively complete
for first-order monadic logic of order over the class of Dedekind-complete chains.

Stavi introduced two modalities UntilStavi and SinceStavi and proved that the temporal logic having the
four modalities Until, Since, UntilStavi and SinceStavi is expressively complete for first-order monadic logic of
order over the class of all chains [9].

Reynolds [17] considered the complexity of the satisfiability problem for TL(Until,Since) over the reals
and proved the following theorem.

Theorem 13.1. The satisfiability problem for TL(Until,Since) over the reals is in pspace.
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This is an instance of Theorem 12.8(3). Due to Kamp’s theorem, Reynolds’ theorem implies that the
satisfiability problem over the reals for any temporal logic with a finite set of first-order definable modalities
is in pspace. Reynolds’ proof relies on particular properties of Until and Since and uses temporal mosaics.
The proof in [17] is very non-trivial and difficult to grasp, probably because it has been developed from
scratch.

We do not fully understand the details of Reynolds’ proof; however, there are some elements which are
similar to our proof of Theorem 12.8(3). He considers operations on mosaics which correspond to sum,
multiplication by ω and by ω−1 and shuffle of chains. He decides whether a finite set of small pieces is
sufficient to be used to build a real-number model of a given formula. This is also equivalent to the existence
of a winning strategy for player one in a two-player game played with mosaics. The search for a winning
strategy is arranged into a search through a tree of mosaics. By establishing limits on the depth of the tree
(polynomial in terms of the length of the formula) he constructs a pspace algorithm. There is an analogy
between such mosaic trees and construction trees for chains of finite rank.

Recently, Reynolds [18] proved the following instance of Theorem 7.3.

Theorem 13.2. The satisfiability problem for the temporal logic having the four modalities Until, Since,
UntilStavi and SinceStavi over the class of chains is in pspace.

He also established a pspace upper bound for the satisfiability problem over several interesting classes
including dense chains, discrete chains, finite chains, Q, N and Z [18]. All these proofs provide a reduction
to Theorem 13.1.

An advantage of this approach is that many results are reduced to the satisfiability problem over the
reals. A disadvantage is that a direct proof of a pspace upper bound for these classes is simpler than his
proof of a pspace bound for the reals.

In [18], the correctness proof of the reductions proceeds by a quite lengthy case analysis.
In the rest of this section we simplify these reductions. First, we provide a simple reduction of Theorem

7.3 (and hence of Theorem 13.2) to Theorem 13.1. This proof is based on general arguments and the only
result of our paper used here is Proposition 3.1. We need the following generalization of Definition 12.1.

Definition 13.3. Let ψ(X) be a formula and let M be a structure. The set of structures definable by ψ in
M is the set of substructures of M over the non-empty subsets that satisfy ψ. This set is denoted by Mψ.
For a set C of structures we denote by Cψ the set ∪M∈CM

ψ.

Note that if C′ is definable by an ∃-MSO sentence ϕ relatively to a class C, then C′ = Cψ for an ∃-MSO
formula ψ(X) := ϕ ∧ ∀tX(t).

Lemma 13.4. Let ψ(X) be an ∃-MSO formula and C a set of structures. For every finite set Φ of first-
order formulas there is a finite set Φ′ of first-order formulas and a linear time algorithm which reduces
the satisfiability problem for Φ-conjunctive formulas over Cψ to the satisfiability problem for Φ′-conjunctive
formulas over C.

Proof. Let ϕ be a formula and X be a monadic variable that does not appear in ϕ. We denote by ϕX the
formula obtained from ϕ by relativizing all first-order quantifiers over X. Note that the free variables of ϕX

are the free variables of ϕ and X. For every structureM and a non-empty subset P of its domain: ϕ holds
in the substructure of M over P iff ϕX holds in M when X is interpreted as P . If ϕ1 is an instance of ϕ,
then ϕX1 is an instance of ϕX .

Therefore, a Φ-conjunctive formula ϕ1∧ · · · ∧ϕk is satisfiable in Cψ iff ψ(X)∧ϕX1 ∧ · · · ∧ϕ
X
k is satisfiable

in C. Hence, if ψ is ∃Y χ, where χ is a first-order formula, then Φ′ defined as {χ} ∪ {ϕX | ϕ ∈ Φ} satisfies
the conclusion of the Lemma. 2

Lemma 13.5. Let TL be a temporal logic which is expressively complete for FOMLO over a class C. For
every finite set Φ of first-order formulas there is a linear time algorithm which reduces the satisfiability
problem for Φ-conjunctive formulas over C to the satisfiability problem for TL over C.
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Proof. By the expressive completeness of TL we know that for every formula ϕ(X) ∈ Φ there is a TL
formula ϕ̂(X) which is equivalent to ϕ over C. Hence, a Φ-conjunctive formula ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is
satisfiable in C iff a TL formula ϕ̂1(P1)∧ · · · ∧ ϕ̂k(Pk) is satisfiable in C. Note that for every finite Φ we can
pre-compute the set {ϕ̂ | ϕ ∈ Φ}. Hence, this is a linear time reduction. 2

As an immediate consequence of Proposition 3.1, Lemmas 13.4 and 13.5 we obtain the following corollary.

Corollary 13.6. Let ψ(X) be an ∃-MSO formula and TL be a temporal logic which is expressively complete
for FOMLO over a class C, and let TL′ be a temporal logic with a finite set of ∃-MSO definable modalities.
There is a linear time algorithm which reduces the satisfiability problem for TL′ over Cψ to the satisfiability
problem for TL over C.

Now, we can derive Theorem 7.3 from the pspace upper bound of the satisfiability of TL(Until,Since) over R

as follows. An ∃-MSO formula is satisfiable iff it is satisfiable over a countable linear order iff it is satisfiable
over a sub-order of Q and hence iff it is satisfiable over a sub-order of R iff it is satisfiable in Rψ, where
ψ(X) is a formula equivalent to true.

By Kamp’s theorem TL(Until,Since) is expressively complete over R. Therefore, by Corollary 13.6 and
Theorem 13.1 we obtain that the satisfiability problem for any temporal logic with a finite set of ∃-MSO
definable modalities. over the class of chains is in pspace.

Next, let us derive that the satisfiability problems over the dense orders, discrete orders, finite orders,
Q, N and Z are in pspace. This bound was also proved in [18]. These results can be easily derived from
Theorems 13.1 and 13.2 by Corollaries 12.2 and 13.6. Dense orders are first-order definable, discrete orders
are the orders such that every element has the next and the previous element and this class is first-order
definable. Q is first-order definable relatively to the class of countable linear orders. There is a first-order
formula Nat(X) (respectively, Integer(X) and Fin(X)) such that a subset of R satisfies it iff it is order-
isomorphic to ω (respectively, to Z and finite order).

The pspace upper bound for the satisfiability problem over the ordinals was proved in [7] using automata
theoretical techniques. However, one can also apply the above arguments to derive this from Reynolds’
pspace upper bound for the reals. Indeed, for every countable ordinal there is a sub-chain of R which is
order-isomorphic to it, and it is easy to write a first-order formula Ord(X) such that a subset P of R satisfies
it iff P is order-isomorphic to a countable ordinal. Ord(X) says that “X has a minimal element” and “for
every r ∈ R if there is an element of X greater than r, then there is a minimal such element.”

We do not know whether there is an ∃-MSO formula ψ(X) such that Rψ is the set of countable scattered
orders.

14. Conclusion and Further Results

We provided an exptime algorithm for the satisfiability problem for any temporal or modal logic with
a finite set of ∃-MSO definable modalities over a recursively defined class of structures, and proved that
exptime bound is optimal in the worst case. This algorithm works also in other frameworks. For example,
the same algorithm works for the temporal logics with a finite set of MSO-definable modalities. However,
if a recursive class is defined as the closure of C under F, then now we need to require that operators in F

respect ≡nMSO, where structures are ≡nMSO-equivalent if they are not distinguishable by the MSO sentences
of quantifier depth ≤ n. It is interesting to find a characterization of recursively definable classes when
there is a polynomial p(n) such that a conjunctive formula ϕ is satisfiable in Cl(C,F) iff it is satisfiable in

Clp(|ϕ|)(C,F). For such classes the satisfiability problem can be solved in pspace.
We provided a pspace algorithm for the satisfiability problem for any temporal logic with a finite set of

∃-MSO definable modalities over the class of linear orders. We applied the same techniques in a “plug-and-
play” manner to show that the problem is in pspace over many interesting classes of linear orders.

Theorem 11.2 provides a pspace algorithm for the satisfiability problem for any temporal logic with a
finite set of automata definable modalities over the class of countable linear orders. As explained in Remark
11.10, this theorem can be extended to the class of all linear orders.
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The constants hidden in the complexity analysis of our pspace algorithm are huge. Indeed to check
the satisfiability of a formula ϕ in a temporal logic TL with a set of modalities B, we first translated the
(generalized) truth tables for every modality m in B to an equivalent finite base automaton Am. Then we
proved that ϕ is satisfiable iff it is satisfiable on a chain of rank O(nB |ϕ|), where nB is an upper bound on
the base size of the automata in {Am : m ∈ B}. For every temporal logic TL(B) this constant nB is fixed;
however nB cannot be bounded by an elementary function in the size of the ∃-MSO truth tables for the
modalities of TL(B). It is interesting to find more practical pspace algorithms.
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Appendix A. Finite state automata over linear orders

Cristau [6] proved that every formula of the first-order fragment of the monadic logic is equivalent (over
the class of all linear orders) to a finite state automaton. Throughout our paper we used finite base automata
instead of finite state automata. In this appendix we recall the definition of finite state automata over linear
orders [2] and prove their equivalence to finite base automata.

The following remark explains why we used finite base automata.
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Remark (On advantages of finite base over finite state automata) If Ai (i = 1, . . . , n) are finite
state automata, then the number of states in the finite state automaton which accepts the intersection of the
languages definable by Ai is the product of the numbers of states in Ai and is exponential in n. An advantage
of finite base automata over finite state automata is that taking the intersection of the former is easy. The
number of states in the finite base automaton which accepts the intersection of the languages accepted by Ai
is also exponential in n; however, the base of the automaton for the intersection grows linearly in n.

A finite state automaton A is a tuple of the form (Q,Σ, δnext, δlim, Qinit , Qfin) where

• Q is a finite set of states, Qinit , Qfin ⊆ Q are sets of initial and final states,

• Σ is finite alphabet,

• δ ⊆ Q× Σ×Q is the next-step transition relation,

• δlim ⊆ P(Q)×Q ∪Q× P(Q) is the limit transition relation.

The only difference between the finite base automata and the finite state automata are (1) the set of states
of a finite base automata are subset of the base and (2) the type of the limit transition relation.

We write

• q
a
−→ q′ if (q, a, q′) ∈ δ (successor transition),

• P → q if (P, q) ∈ δlim (left limit transition)

• q ← P if (q, P ) ∈ δlim (right limit transition)

Let I = (I,<) be a linear order, V a set (of labels), and f : I → V be a function. We define the left and
right limit sets of f at c ∈ I as the sets of labels that appear arbitrarily close to c (respectively to its left
and to its right). Formally:

−→
lim(f, c) := {v ∈ V | ∀a < c∃b(a < b < c) ∧ v = f(b)}

←−
lim(f, c) := {v ∈ V | ∀a > c∃b(c < b < a) ∧ v = f(b)}

Given an automaton A, a run of A on Σ-word s over a linear order I is a function ρ from the set of cuts Î
of I into Q such that

• For each c ∈ I, c−
s(c)
−−→ c+

• if c ∈ Î \ Îmin has no predecessor, and P =
−→
lim(ρ, c), then P → ρ(c);

• if c ∈ Î \ Îmax has no successor, and P =
←−
lim(ρ, c), then ρ(c)← P .

An A run ρ is accepting if ρ(Îmin) ∈ Qinit and ρ(Îmax) ∈ Qfin . A accepts a word s if there is an accepting
run on s.

We are going to show that for every finite state automaton there is an equivalent finite base automaton.
Let A := (Q,Σ, δnext, δlim, Qinit , Qfin) be a finite state automaton.
Let B := P(Q) be the set of subsets of Q. For every q ∈ Q let q̂ ∈ P(B) be defined as {b ∈ B | q ∈ b}.

Let Q̂ := {q̂ | q ∈ Q}. Define a finite base automaton B as follows:

• The basis of B is the set of subsets of Q,

• the set of states is Q̂, the set of initial (respectively final) states is {q̂ | q ∈ Qinit} (respectively,
{q̂ | q ∈ Qfin}),
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• the next transition relation is defined as: q̂1
a
−→ q̂2 if there is a transition q1

a
−→ q2 in A.

• D → q̂ if there is P ⊆ Q such that P → q in A and D = {b ∈ B | b ⊇ P}.

• q̂ ← D is defined dually.

It is easy to verify that A and B accept the same chains.
Now let us show that for every finite base automaton A := (B,Q,Σ, qi,∆next , δlim, Qinit , Qfin) there is

an equivalent finite state automaton B.
Define

• The set of states of B is the same as the set of states of A. The initial (respectively, final) states of B

are the initial (respectively, final) states of A.

• The next transition relation of B is the same as the next transition relation of A.

• P → q is a left limit transition of B if (
⋂
p∈P p)→ q is a left limit transition of A.

• the right limit transitions are defined dually.

It is easy to verify that A and B accept the same chains.
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