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Abstract

Many protocols are designed to operate correctly even in the case where the underlying communication
medium is faulty. To capture the behaviour of such protocols, lossy channel systems (LCS) have been pro-
posed. In an LCS the communication channels are modelled as FIFO buffers which are unbounded, but also
unreliable in the sense that they can nondeterministically lose messages. Recently, several attempts have been
made to study probabilistic lossy channel systems (PLCS) in which the probability of losingmessages is taken
into account and the following qualitative model checking problem is investigated: to verify whether a given
property holds with probability one. Here we consider a more challenging problem, namely to calculate the
probability by which a certain property is satisfied. Our main result is an algorithm for the following
Quantitative model checking problem:
Instance: A PLCS, its state s, a finite state ω-automaton A, and a rational �>0.
Task:Find a rational r such that the probability of the set of computations that start at s and are accepted by
A is between r and r+�.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Finite state machines which communicate through unbounded buffers (CFSM) have been pop-
ular in the modelling of communication protocols.A CFSM defines in a natural way an infinite
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state transition system. The fact that Turing machines can be simulated by CFSMs [8] implies that
all the nontrivial verification problems are undecidable for CFSMs. Many protocols are designed
to operate correctly even in the case where the underlying communication medium is faulty. To
capture the behaviour of such protocols, lossy channel systems (LCS) [4] have been proposed as
an alternative model. In an LCS the communication channels are modelled as FIFO buffers which
are unbounded, but also unreliable in the sense that they can nondeterministically lose messages.
Though an LCS defines in a natural way an infinite state transition system, it has been shown
that the reachability problem for LCS is decidable [4], while progress properties are undecidable
[3].

1.1. Probabilistic lossy channel systems

Since we are dealing with unreliable communication media, it is natural to deal with models in
which the probability of losingmessages is taken into account. Recently, several attempts [14,6,1,5,7]
havebeenmade to studyprobabilistic lossy channel systems (PLCS)which introduce randomization
into the behaviour of LCS. The works in [14,6,1,5,7] define different semantics for PLCS, depending
on the manner in which the messages may be lost inside the channels. All these models associate in
a natural way a countable Markov Chain (M.C.) to a PLCS.
Baier and Engelen [6] consider a model which assumes that at most a single message may be lost

during each step of the execution of the system. They showed decidability of the following problems
under the assumption that the probability of losing messages is at least 0.5.

Qualitative Probabilistic Reachability
Instance: A PLCS M and its states s1, s2.
Question: Is s2 reached from s1 with probability one?

Qualitative Probabilistic Model-checking
Instance: A PLCS M , its state s and a finite state ω-automaton A.
Question: Is the probability of the set of computations that start at s and

are accepted by A equal to one?

The model in [1] assumes that messages can only be lost during send operations. Once a message
is successfully sent to a channel, it continues to reside inside the channel until it is removed by a
receive operation. Even the qualitative reachability problem was shown to be undecidable for this
model of PLCS and losing probability � < 0.5.
In [5,7] another semantics for PLCS was considered which is more realistic than that in [6,1].

More precisely, it was assumed that, during each step in the execution of the system, each message
may be lost with a certain predefined probability. This means that the probability of losing a certain
message will not decrease with the length of the channels (as it is the case with [6,1]).
For this model, the decidability of both the qualitative reachability and the qualitative model-

checking problems was independently established in [5,7].
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1.2. Our contribution

All the above mentioned papers consider qualitative properties of PLCS. Here we consider a
more challenging problem, namely to calculate the probability by which a certain property is sat-
isfied.
Unfortunately, we were unable to prove that the probability of reaching a state s2 from a state

s1 in PLCS is an algebraic number, or it is explicitly expressible by standard mathematical func-
tions.
Therefore, we will approximate the probability by which a certain property is satisfied. Our main

result is that the following two problems are computable.

Quantitative Probabilistic Reachability
Instance: A PLCS L, its states s1, s2 and a rational � > 0.
Task: Find a rational r such that s2 is reached from s1 with the probability

between r and r + �.

Quantitative Probabilistic Model-checking
Instance: A PLCS L, its state s, a finite state ω-automaton A, and a rational

� > 0.
Task: Find a rational r such that the probability of the set of computations that

start at s and are accepted by A is between r and r + �.

To approximate the probability p of the set of computations from a state s with a property ϕ in
a PLCS L one can try to compute this probability pn for the finite sub-chain Mn = (Sn, Pn) of the
countable Markov chain M generated by L, where Sn is the set of states with at most n messag-
es. There are two problems in this approach: (a) a state which was recurrent in M might become
transient in Mn; (b) how to find n which will ensure that the result pn approximates up to � the
probability p in M .
To overcome problem (a) we analyze the structure of the recurrent classes of the Markov chain

generated by a PLCSL. For problem (b) the value for n is computed from an appropriate reduction
of the Markov chains generated by PLCSs to one dimensional random walks.

1.3. Outline

In the next two sections we give basics of transition systems and countable Markov chains re-
spectively. In addition to standard definitions about countableMarkov chain, we recall the concept
of attractor sets [5]: an attractor for aMarkov chain is a set of states such that regardless of the state
in which we start, we are guaranteed to reach the attractor with probability one. Markov chains
with finite attractors and finite state Markov chains have many common properties. For example,
the set of recurrent states is reached with the probability one; a state is recurrent iff it belongs
to a bottom strongly connected component of the underlying transition system; many qualitative
properties of Markov chains with finite attractors can be established on the basis of the topology
of the underlying transition systems.
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In Section 4, the quantitative probabilistic reachability problem over countable Markov
chains is considered. We provide a naive Path Enumeration (PE) scheme for the quantita-
tive reachability problem and prove general theorems about (countable state) Markov chains
which serve as sufficient conditions for termination of this scheme. In particular the path
enumeration scheme terminates over Markov chains with finite attractors. The Markov chain
assigned to probabilistic lossy channel systems have finite attractors, and from the path enu-
meration scheme an algorithm for the quantitative reachability problem can be extracted.
The path enumeration scheme is conceptually very simple, however, no information about
the number of iterations before it terminates can be extracted from the theorems of Section
4. For finite state Markov chains standard algebraic methods allow to find the exact value
for the probability of reaching one state from another in polynomial time; however, in this
case the PE scheme finds an approximation in time exponential in the quality of the approxi-
mation. In Section 5, we consider a generalization of one dimensional random walk and from
the theorems proved there we will obtain in Section 8 an algorithm for the quantitative prob-
abilistic reachability problem over PLCS with the parametric complexity which is polynomial
in the quality of the approximation.
In Sections 6 and 7, the semantics of lossy channel systems andprobabilistic lossy channel systems

are described. In Section 8, the algorithm for the quantitative probabilistic reachability problem
over PLCS is presented and its complexity is analyzed. In Section 9, we generalize our results to
the verification of the properties definable by ω-behavior of finite state automata (or equivalently
formulas in the Monadic Logic of Order). Finally, we give conclusions and directions for future
work in Section 10.

2. Transition systems

In this section, we recall some basic concepts of transition systems.
A transition system T is a pair

(
S ,−→)

where S is a (potentially infinite) set of states, and −→
is a binary relation on S . We write s1 −→ s2 to denote that (s1, s2) ∈−→ and use

∗−→ to denote
the reflexive transitive closure of −→. We say that s2 is reachable from s1 if s1

∗−→ s2. For sets
Q1,Q2 ⊆ S , we say thatQ2 is reachable fromQ1, denotedQ1

∗−→ Q2, if there are s1 ∈ Q1 and s2 ∈ Q2
with s1

∗−→ s2. A path or computation � (from s0) is a (finite or infinite) sequence s0, s1, . . . , sn, . . . of
states with si −→ si+1 for i � 0. We use �(i) to denote si, and write s ∈ � to denote that there is an
i � 0 with �(i) = s. For states s and s′, we say that � leads from s to s′, written, s �−→ s′, if s = s0
and s′ ∈ �. We use |�| to denote the length of � (i.e., the number of transitions in �), and last(�)
denotes the last state of the finite path �. For a finite path �1 and a path �2 that starts at last(�1),
we use �1�2 to denote the concatenation of �1 and �2; this is the path � such that �(i) = �1(i) for
i � |�1| and �(i) = �2(i + 1− |�1|) for i > |�1|.
For Q ⊆ S , we define the graph of Q, denoted Graph(Q), to be the transition system

(
Q,−→′)

where s1 −→′ s2 iff s1
∗−→ s2. A strongly connected component (SCC) in T is a maximal set C ⊆ S

such that s1
∗−→ s2 for each s1, s2 ∈ C . We say that C is a bottom SCC (BSCC) if there is no other

SCC C1 in T with C
∗−→ C1. In other words, the BSCCs are the leaves in the acyclic graph of SCCs

(ordered by reachability).
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3. Markov chains

In this section, we recall basic properties ofMarkov chains. We also introduce attractors which
play an important role in our analysis of recurrent classes of Markov chains.
A Markov chain M is a pair (S , P ) where S is a (potentially countable) set of states and P is a

mapping from S × S to the set [0, 1], such that∑s′∈S P(s, s′) = 1, for each s ∈ S .
A Markov chain induces a transition system where the transition relation consists of pairs of

states related by positive probabilities.
Formally, the underlying transition system of M is

(
S ,−→)

where s1 −→ s2 iff P(s1, s2) > 0.
In this manner, the concepts defined for transition systems can be lifted to Markov chains.
For instance, an SCC in M is a SCC in the underlying transition system.
A Markov chain (S , P ) induces a natural measure on the set of computations from every state s.
Let us recall some basic notions from probability theory. A measurable space is a pair (�,�)

consisting of a non empty set� and a �-algebra� of its subsets that are calledmeasurable sets and
represent random events. A �-algebra over� contains� and is closed under complementation and
countable union. Adding to a measurable space a probability measure Prob : �→ [0, 1] such that
Prob(�) = 1 and that is countably additive, we get a probability space (�,�,Prob).
Consider a state s of a Markov chain (S , P ). On the sets of computations that start at s, the

probabilistic space (�,�,Prob) is defined as follows (see [16]):� = sSω is the set of all ω-sequences
of states starting from s, � is the �-algebra generated by the basic cylindric sets Du = uSω, for ev-
ery u ∈ sS∗, and the probability measure Prob is defined by Prob(Du) =∏

i=0,...,n−1 P(si, si+1) where
u = s0s1...sn; it is well known that this measure is extended in a unique way to the elements of the
�-algebra generated by the basic cylindric sets.
For a set G ⊆ sS∗ of finite paths we use Prob(G) to stand for Prob({⋃u∈G Du}).
Consider a set Q ⊆ S of states and a path �. We say that � reaches Q if there is an i � 0 with

�(i) ∈ Q.We say that� repeatedly reachesQ if there are infinitelymany iwith�(i) ∈ Q. Let sbea state
in S .We say that a state s is recurrent ifProb {� : � is a path from s and � repeatedly reaches s} = 1.
We say that a state s is transient if Prob {� : � is a path from s and � repeatedly reaches s} = 0.
The next theorem summarizes standard properties of countable Markov chains [17].

Theorem 1.

(1) Every state is either transient or recurrent.
(2) If s is recurrent then all the states reachable from s are recurrent.
(3) Let C be a strongly connected component of a Markov chain. Then, either all the states in C are

transient or all the states in C are recurrent.
(4) LetC be a recurrent strongly connected component of aMarkov chain and s1 ∈ C.Then Prob{� :

� starts at s1 and repeatedly reaches every state ofC} = 1. For every state s and non-empty subset
B ⊆ C the probability to repeatedly reach every state of B from s is the same as the probability
to reach B from s and is the same as the probability to reach s1 from s.

(5) A recurrent strongly connected component is always a bottom strongly connected component.

A recurrent (transient) SCC is often called a recurrent (transient) class or component.
The next lemma is also a standard one.
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Lemma 2. Let M be a Markov chain and let s1, s, s2 be three of its states. Assume that s2 is reachable
from s. Then

Prob(
{
� : � starts at s1 and repeatedly reaches s and never visits s2

}
) = 0.

We introduce an important concept which we use in our solution for the probabilistic reachability
problem, namely that of attractors.

Definition 3 (attractor). A set A ⊆ S is said to be an attractor if for each s ∈ S , the set A is reachable
from s with probability one.

In other words, regardless of the state in which we start, we are guaranteed to reach the attractor
with probability one. It is clear that an attractor has a state in every recurrent class.
The following lemma is an immediate consequence of Definition 3 and holds for Markov chains

with countable attractors.

Lemma 4. If A ⊆ S is an attractor then for each s ∈ S , the set A is repeatedly reachable from s with
probability one.

Markov chains with finite attractors and finite state Markov chains have many common prop-
erties. The Lemma below follows from Theorem 1 and describes properties of Markov chains with
finite attractor.

Lemma 5. Assume that a Markov chain M has a finite attractor A. Then

(1) Each BSCC C of Graph(A) is a subset of a recurrent component inM.
(2) A state is recurrent if and only if it is reachable from a BSCC C of Graph(A).
(3) For every s in M the set of recurrent states is reached from s with probability one.
(4) The recurrent components of M are the BSCCs of M.

4. Approximating probability for countable Markov chains

Let M be a M.C. and let s1, s2 be its states. We use ProbM(s1
∗−→ s2) for the probability with

which s2 is reached from s1 inM . Let Compn(s1) be the set of all the computations of length n inM
from s1. Partition Compn(s1) into three sets:

Reachn(s1, s2) =
{
� : � ∈ Compn(s1) ∧ ∃i � n.�(i) = s2

}
Escapen(s1, s2) =

{
� : � ∈ Compn(s1) \Reachn(s1, s2) ∧ s2 is unreachable from �(n)

}
Undecidedn(s1, s2) = Compn(s1) \Reachn(s1, s2) \ Escapen(s1, s2).

All the computations in Reachn(s1, s2) reach s2, and no computation in Escapen(s1, s2) extends to a
computation that reaches s2. Note that Prob(Compn(s1)) = 1. Let p+n = Prob(Reachn(s1, s2)), p−n =
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Prob(Escapen(s1, s2)) and p
?
n = Prob(Undecidedn(s1, s2)). Observe that p+n and p−n are increasing

sequences, while p ?n is decreasing and

p+n � lim p+n = ProbM(s1
∗−→ s2) � p+n + p ?n. (1)

The Path Enumeration (PE) scheme for approximating ProbM(s1
∗−→ s2) is based on (1).

Path Enumeration Scheme for Approximating Probabilistic
Reachability

Instance: AM.C. M , its states s1, s2 and a � > 0.
Task: Find r such that s2 is reached from s1 with a probability

between r and r + �.
begin

1. n := 0; � := 1;
2. while (� > �) do

3. n := n+ 1; Compute r := p+n ; Compute � := p ?n
end while
4. return(r)

end

From (1) it follows that the PE scheme is partially correct with respect to its specification, i.e.,
upon termination of the PE scheme it outputs r such that s2 is reached from s1 with the probability
between r and r + �.
In the above problem, we do not assume thatM is finite. Hence, these are not instances of an al-

gorithmic problem. In Section 8 we consider the quantitative reachability problem when countable
Markov chains are described by probabilistic lossy channel systems. For such finite descriptions we
investigate the corresponding algorithmic problem.
If M has finite branching and is presented effectively, then p+n is computable. Moreover, if

in addition the reachability problem for the transition system underlying M is decidable, then
Escapen(s1, s2), Undecidedn(s1, s2) and p

?
n can be computed. Hence, in this case the scheme can be

implemented. Observe that the PE scheme terminates if and only if lim p ?n < �. Therefore,

Lemma 6. If lim p ?n = 0 then the PE scheme terminates.

It is well-known that for a finite state Markov chains lim p ?n = 0. This property holds for Markov
chains with finite attractors [20] as well.

Lemma 7. If M has a finite attractor then lim p ?n = 0.
Proof. Let A be a finite attractor. Let A+ (respectively, A−) be the set of states in A from which s2 is
reachable (respectively, unreachable).
Let B = {� : ∀n.�(1) · · ·�(n) ∈ Undecidedn(s1, s2)}. Note that

Prob(B) = limProb(Undecidedn(s1, s2)) = lim p ?n. (2)
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The state s2 is reachable from each state s on � ∈ B. Hence no computation in B passes through a
state in A−. Therefore, by Lemma 4

Prob(B) = Prob({� : � ∈ B and � repeatedly reaches A}), (3)

= Prob({� : � ∈ B and � repeatedly reaches A+}).

Since A is finite and A+ ⊆ A there is k such that A+ = {v1, . . . vk}. Hence from (3) it follows that

Prob(B) �
k∑
i=1

Prob({� : � ∈ B and � repeatedly reaches vi}). (4)

Note that s2 is reachable from vi, because vi ∈ A+. No computation� ∈ B passes through s2, because
∀n.�(1) · · ·�(n) ∈ Undecidedn(s1, s2). Therefore, by Lemma 2

Prob({� : � ∈ B and � repeatedly reaches vi}) = 0. (5)

From (4) and (5) we derive that Prob(B) = 0. Therefore, by (2) we obtain that lim p ?n = 0 and this
completes the proof of the lemma. �
Another class of Markov chains for which the PE scheme terminates is the class of chains which

satisfy the following property.

Definition 8. AMarkov chain M = (S , P ) has #-reachability property for # > 0 if

∀s1, s2 ∈ S( s2 is reachable from s1 )⇒ ProbM(s1
∗−→ s2) > #.

Lemma 9. If M has #-reachability property then lim p ?n = 0.
Proof. First, we are going to show that ∀n∃m.p ?m � (1− #

4 )p
?
n .

The number of states in M is at most countable, hence Undecidedn(s1, s2) contains at most
countable number of paths and therefore there is a finite set of path Fn ⊆ Undecidedn(s1, s2) such
that

Prob(Fn) �
Prob(Undecidedn(s1, s2))

2
= p ?n
2
.

If s = last(�) for� ∈ Fn then s2 is reachable from s. Thereforeby #-reachabilitypropertyProbM(s
∗−→

s2) > #. Therefore there is a finite set of paths Es from s to s2 such that Prob(Es) > #/2. Let N be
the set

N = {�1�2 : �1 ∈ Fn ∧ �2 ∈ Elast(�1)},

where �1�2 denotes the concatenation of finite paths �1 and �2. Observe that

Prob(N) �
p ?n#

4
.
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The set N is finite. Let m be the length of the longest path in N . None of the paths in N extends a
path in Reachn(s1, s2); each path in N reaches s2 and each path of lengthm that extends a path from
N is in Reachm(s1, s2). Therefore,

Prob(Reachm(s1, s2))− Prob(Reachn(s1, s2)) � Prob(N) �
p ?n#

4
. (6)

Now we derive that p ?m � p ?n(1− #
4 ) as follows:

p ?m = 1− Prob(Reachm(s1, s2))− Prob(Escapem(s1, s2))
� 1− Prob(Reachm(s1, s2))− Prob(Escapen(s1, s2))
= (1− Prob(Reachn(s1, s2))− Prob(Escapen(s1, s2)))
−(Prob(Reachm(s1, s2))− Prob(Reachn(s1, s2)))
= p ?n − (Prob(Reachm(s1, s2))− Prob(Reachn(s1, s2)))
� p ?n(1− #

4 ).

The first inequalities in the above sequence holds, because �n.Prob(Escapen(s1, s2)) is increasing;
the last inequality follows from Eq. (6).
We proved that

∀n∃m.p ?m � (1− #

4
)p ?n (7)

Recall that {p ?n}∞n=0 is a decreasing sequence and ∀n.p ?n � 0. These together with (7) imply that
lim p ?n = 0. �
Lemma 6, Lemma 7 and Lemma 9 imply.

Theorem 10. The PE scheme terminates over the class of Markov chains with finite attractor and over
the class of Markov chains with #-reachability property.

A variant of the PE scheme was suggested in [14] for the following decision problem.

A decision problem for Probabilistic Reachability
Instance: AM.C. M , its states s1, s2, and rationals � > 0 and p .
Question: Is p − � < ProbM(s1

∗−→ s2) < p + �?

It was claimed in [14] that Eq. (1) implies that (a) when the scheme terminates it produces a cor-
rect answer (b) it terminates for the Markov chains defined by PLCS under the semantics of [14].
However, assertion (a) was incorrect. Also, the Markov chains assigned to PLCSs in [14] do not
have finite attractor property and the termination assertion (b) is unsound. It is an open question
whether the above problem is decidable for the PLCSs defined in Section 7 (or considered in [6,5,7])
which have finite attractor property.
The PE scheme is conceptually very simple, however, no information about the number of it-

erations before it terminates can be extracted from Theorem 10. For finite state Markov Chains
standard algebraic methods allow to find the exact value of ProbM(s1

∗−→ s2) in polynomial time;
however, in this case the PE scheme finds an approximation in time |M |�(ln( 1� )).
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An alternative approach for approximation ofProbM(s1
∗−→ s2) is to “approximate” a countable

M.C.M by a finite stateMarkov chainM ′ and then to evaluate ProbM ′(s1
∗−→ s2) by standard alge-

braic methods. Below is a simple transformation which allows to reduce the size of Markov chains.
LetM = (S , P ) and let U ⊆ S and let u be a new state. The chainM ′ = (

S ′, P ′
)
which is obtained

from M by collapsing U into an absorbing state u is denoted by MU ,u and is defined as follows:
S ′ = S \ U ∪ {u} and

P ′(s, s′) =


∑

d∈U P(s, d) if s /= u ∧ s′ = u,
P(s, s′) if s /= u ∧ s′ /= u,
1 if s = u = s′,
0 otherwise.

The following two lemmas are immediate, but useful for reductions of the size of M.C.

Lemma 11. Let M be a M.C., let s1, s2 be states of M , let u �∈ S , let C be a recurrent class such that
s1 �∈ C and let M ′ = MC ,u.

1. If s2 ∈ C then ProbM(s1
∗−→ s2) = ProbM ′(s1

∗−→ u).

2. If s2 �∈ C then ProbM(s1
∗−→ s2) = ProbM ′(s1

∗−→ s2).

Lemma 12. Let M be a M.C., let s1, s2 be states of M. Assume that D ⊆ S \ {s1, s2} is such that either

(1) Prob{� : � starts at s1 and reaches D} � � or
(2) ∀s ∈ D.Prob{�:� starts at s and reaches s2} � �.

Let M ′ = MD,d . Then

ProbM ′(s1
∗−→ s2) � ProbM(s1

∗−→ s2) � ProbM ′(s1
∗−→ s2)+ �.

5. A generalization of one dimensional random walk

No information about the number of iterations of the Path Enumeration scheme can be extracted
from Theorem 10. We consider here a generalization of one dimensional random walk. The main
result of this section is Lemma 14. It is the key lemma for the correctness and the complexity anal-
ysis of the algorithm for the quantitative probabilistic reachability problem over PLCS, which is
presented in Section. 8
The following lemma is easily derived from standard properties of one dimensional random

walks.

Lemma 13. Let M = (S , P ) be a Markov chain where S = {0, 1, 2, 3, . . .} , and

1. P(0, 0) = 1.
2. P(i, i + 1) = -i, P(i, i − 1) = .i, and P(i, i) = 1− .i − -i, for i � 1.
3. There is q > 0.5 such that .i > q for all i � 2.
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Let N(.1, q, �) = � ln(1−.1)−ln(.1·�)ln q−ln(1−q) � + 1, where �x� stands for the smallest integer which is greater than
or equal to x. Then, for each � > 0 and n � N(.1, q, �), the probability of reaching a state n from 1 is
less than �.

Proof. It is well known (see, e.g. [15] exercise 7 p. 88) that the probability of reaching state n, starting

from state k > 0 is given by the expression
∑k−1

i=0 1i∑n−1
i=−1 1i

, where

10 = 1 1i = .1.2 · · ·.i
-1-2 · · · -i .

This means that the probability of reaching state n from state 1 is given by

10∑n−1
i=0 1i

= 1∑n−1
i=0 1i

� 1
1n−1

� -1

.1

(
q
1−q

)n−1 � 1−.1
.1

(
q
1−q

)n−1 .
Thus, if we choose

n �
(
log q

1−q

(
1− .1

.1 · �
))

+ 1

then the probability of reaching n from 1 is less than �. �
The main technical lemma for the correctness and the complexity analysis of the algorithm

presented in Section 8 is a generalization of Lemma 13.

Lemma 14 (Main lemma). Consider a Markov chain M = (S , P ) such that

(1) S is the union of disjoint sets Si (i ∈ Nat).
(2) If s ∈ Si, s′ ∈ Sj , and P(s, s′) > 0, then j � i + 1.
(3) S0 is the union of two set of states C and R such that:

• For every state s ∈ R, only states in R are reachable from s.

• For every state s ∈ S1 there is a finite path to R with the probability > # which is inside C ∪ R
(i.e., the last node of this path is in R and all the nodes except s are in S0 = C ∪ R).

(4) There is 4 < 1
2 such that -i + 5i < 4 for each i � 2, where

-i = sup
s∈Si

 ∑
s′∈Si+1

P(s, s′)

 and 5i = sup
s∈Si

∑
s′∈Si

P(s, s′)

 .

Let N0 = N(#, 1− 4, �), where N is defined as in Lemma 13.
Then, for every s ∈ S0 ∪ S1 the probability of reaching

⋃
n�N0 Sn from s is less than �.

Proof. See Appendix A. �
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Lemma 12 and Lemma 14 imply.

Lemma 15. Let M , Si and N0 be as in Lemma 14 and assume that s1, s2 ∈ S0. Let U =⋃
n�N0 Sn. Let

M ′ = MU ,u. Then ProbM ′(s1
∗−→ s2) � ProbM(s1

∗−→ s2) � ProbM ′(s1
∗−→ s2)+ �.

Remark. An important instance of Lemma 15 is the case when all Si are finite sets. In this case
the problem of approximating the probability of reachability for a countable Markov chain M is
reduced to the problem of computing (or approximating) the probability of reachability for finite
state Markov chain M ′. However, the assumption of finiteness of Si is not needed for the validity
of Lemmas 14 and 15.

6. Lossy channel systems

In this section, we consider lossy channel systems: processes with a finite set of local states oper-
ating on a number of unbounded and unreliable channels.
A lossy channel system (LCS) consists of a finite state process operating on a finite set of chan-

nels each of which behaves as a FIFO buffer which is unbounded and unreliable in the sense that
it can nondeterministically lose messages. Formally, a lossy channel system (LCS) L is a tuple
(S,C,M,T) where S is a finite set of local states, C is a finite set of channels, M is a finite message
alphabet, and T is a set of transitions each of the form (s1,op,s2), where s1,s2 ∈ S, and op is an
operation of one of the forms c!m (sending message m to channel c), or c?m (receiving message m
from channel c). A global state s is of the form (s,w) where s ∈ S and w is a mapping from C to
M∗.
For words x, y ∈ M∗, we use x • y to denote the concatenation of x and y . We write x � y to

denote that x is a (not necessarily contiguous) substring of y . We use |x| to denote the length of x,
and use x(i) to denote the ith element of x where 1 � i � |x|. For w1,w2 ∈ (C �→ M∗), we use w1 � w2
to denote that w1(c) � w2(c) for each c ∈ C, and define |w| =∑

c∈C |w(c)|. We also extend � to a
relation on S× (C �→ M∗), where (s1,w1) � (s2,w2) iff s1 = s2 and w1 � w2.
The LCS L induces a transition system

(
S ,−→)

, where S is the set of global states, i.e., S =
(S× (C �→ M∗)), and (s1,w1) −→ (s2,w2) iff one of the following conditions are satisfied:

• There is a t ∈ T, where t is of the form (s1,c!m,s2) and w2 is the result of appending m to the
end of w1(c).

• There is a t ∈ T, where t is of the form (s1,c?m,s2) and w1(c) = m • x for some x ∈ M∗ and
w2(c) = x and w2(c′) = w1(c′) for c′ /= c.

• Furthermore, if (s1,w1) −→ (s2,w2) according to one of the previous two rules, then (s1,w1) −→(
s2,w′2

)
for each w′2 � w2.

In the first two cases we define t(s1,w1) = (s2,w2). In the third case we say that
(
s2,w′2

)
is obtained

from (s1,w1) by a transition which follows by losses of messages.
A transition (s1,op,s2) is said to be enabled at (s,w) if s = s1 and either op is of the form

c!m; or op is of the form c?m and w(c) = m • x, for some x ∈ M∗. We define enabled (s,w) =
{t : t is enabled at (s,w)}.
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Remark on notation.Weuse s andS to range over local states and sets of local states, respectively.
On the other hand, s and S range over states and sets of states of the induced transition system
(states of the transition system are global states of the LCS).
A set Q ⊆ S is said to be upward closed if s1 ∈ Q and s1 � s2 imply s2 ∈ Q. The upward closure

Q ↑ of a set Q is the set {s : ∃s′ ∈ Q. s′ � s
}
.

By Higman’s Lemma [13] it follows that� is a well quasi-ordering, i.e., for each infinite sequence
x0, x1, x2, . . . there are i and j with i < j and xi � xj . Moreover

Lemma 16 (Higman [13]). For every set I which is upward closed wrt� there is a finite set V such that
I is the upward closure of V.

Theorems in [4,12] imply the following decidability results for LCS:

Lemma 17 (Decidability [4,12]). (1) It is decidable whether a state s2 is reachable from a state s1. (2)
It is decidable whether the upward closure of a finite set Q is reachable from a state s. (3) There is
an algorithm Find-a-path(s1, s2,L) which returns a path from s1 to s2 in the lossy channel system L or
returns “No” if s2 is not reachable from s1. (4) Graph(A) is computable for every finite set of global
states A of an LCS.

7. Probabilistic lossy channel systems

We introduce a probabilistic behaviour into LCS obtaining probabilistic lossy channel systems.
Probabilistic lossy channel systems were first defined in [14]. The semantics considered here was
presented in [5,7] and differs from that in [14,6,1].
A probabilistic lossy channel system (PLCS) L is of the form (S,C,M,T, �,w), where (S,C,M,T)

is an LCS, � ∈ (0, 1), and w is a mapping from T to the natural numbers. Intuitively, we derive a
Markov chain from the PLCS L by assigning probabilities to the transitions of the (underlying)
transition system of (S,C,M,T). The probability of performing a transition t from a global state
(s,w) is determined by the weight w(t) of t compared to the weights of the other transitions which
are enabled at (s,w). Furthermore, after performing each transition, each message which resides
inside one of the channels may be lost, independently of the other messages, with the probability �.
This means that the probability of the transition from (s1,w1) to (s2,w2) is equal to (the sum over all
(s3,w3) of) the probability of reaching some (s3,w3) from (s1,w1) through performing a transition t
of the underlying LCS, multiplied by the probability of reaching (s2,w2) from (s3,w3) through the
loss of messages (see [5] for detailed calculations of the probabilities of the transitions).
To simplify the presentation, we assume from now on that PLCSs have no deadlock states, i.e.,

from every state a transition is enabled (The treatment of the PLCS with deadlock states can be
reduced to the deadlock free PLCS in the same way as in [2]) . The only probabilistic properties of
PLCSs which we use are summarized in the next two lemmas from [5].

Lemma 18. Let s be a state with m messages. The probability of the transitions from s to the set of
states with > m+ 1 messages is 0. The probability of the transitions from s to the set of states with
m+ 1 messages is � (1− �)m+1. The probability of the transitions from s to the set of states with m
messages is � �m(1− �)m.
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Lemma 19.For each�,w, andPLCS (S,C,M,T, �,w) the set of the stateswith the empty set ofmessages
is a finite attractor.

The next lemma plays a key role in the algorithm presented in Section 8.

Lemma 20. For each PLCS L = (S,C,M,T, �,w) there are V1, . . . , Vk such that Vi are finite sets of
global states and k is the number of the recurrent classes of L and for each state s : s is in the ith
recurrent class of L iff s is not in the upward closure of Vi.Moreover, V1, . . . , Vk are computable from
the underlying LCS (S,C,M,T) .

Proof. Let C1, . . . ,Ck be the recurrent components of L. By Lemma 5(4) Ci are the BSCCs of L.
First, we show that the complement of Ci (i = 1, . . . , k) is an upward closed set. Let s1 �∈ Ci and

s1 � s2. Assume for the purpose of the contradiction that s2 ∈ Ci . Since s2 is recurrent, it is repeatedly
reachable from itself and therefore there exists a state s ∈ Ci and a transition from s to s2. Observe
that s1 can be reached from s by performing a transition to s2 which follows by lost of messages.
Since Ci is a BSCC and s ∈ Ci and s1 is reachable from s it follows that s1 ∈ Ci . This contradicts the
assumption that s1 �∈ Ci .
The complements of the sets Ci (i = 1, . . . , k) are upward closed, therefore, by Higman’s Lemma

16, there are finite sets Vi such that s ∈ Ci iff s is not in the upward closure of Vi .
Finally note that the construction of the sets Vi was based only on the underlying LCS (S,C,M,T)

and was independent from � and w. �

8. Algorithm for approximating the probability of reachability

Lemmas 19, 17(1) and Theorem 10 imply that there is an algorithm based on the PE scheme for
the quantitative probabilistic reachability problem.
TheMarkov chainM defined by a PLCS has finite branching and is presented effectively. There-

fore the sets of paths Compn(s1) and Reachn(s1, s2) and the probability p
+
n of the set Reachn(s1, s2)

can be computed. The reachability problem for the transition system underlyingM is decidable by
Lemma 17. Therefore, the sets Escapen(s1, s2) of the paths of length nwhich escape s2 is computable.
Hence, Undecidedn(s1, s2) and p ?n can be computed. Therefore, for theMarkov chainM defined by a
PLCS, path enumeration scheme can be implemented. By Lemma 19 this chain has a finite attractor
and therefore by Theorem 10 the algorithm for the quantitative probabilistic reachability problem
based on the PE scheme terminates and outputs a correct approximation.
However, no information about the complexity of this algorithm can be extracted fromTheorem

10. In this section, we provide an algorithm with a parametric complexity f(L, s1, s2)× 1
�3
for the

quantitative probabilistic reachability problem.
The idea of the algorithm is to take the set B�n of states with at most n messages of the Markov

chain M generated by PLCS L. Construct a finite Markov chain M̂ by restricting the transition
of M to B�n, and then for each recurrence class Di of M collapse the set of Di states in B�n into
one state of M̂ . Finally, calculate the probability of reaching s2 from s1 in the finite M.C. M̂ . The
crucial fact in the correctness of our algorithm is that relying on Lemma 14 we can compute n big
enough which will ensure that the probability of reaching s2 from s1 in the finite Markov chain M̂
approximates up to � the probability of reaching s2 from s1 in the infinite Markov chain M .
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In the rest of this section we describe the algorithm with a justification of its correctness and
provide an analysis of its complexity.

Algorithm – for Quantitative Probabilistic Reachability Problem
Input: PLCS L = (S,C,M,T, �,w) with an underlying Markov chain M = (S , P ), states s1, s2 ∈ S ,
and a rational �.
Output: a rational r such that r � ProbM(s1

∗−→ s2) � r + �.

Let A be the (finite) set of all states with 0 messages. A is an attractor by Lemma 19. By Lemma
17(4) we can construct Graph(A). Then we can find the bottom strongly connected components
C1, . . . ,Ck in Graph(A) and for 1 � i � k by Lemma 5 and by Lemma 20 we can compute finite sets
of states Vi such that

∀s ∈ S(s is in the recurrent class of Ci) iff (s is not in the upward closure of Vi) (8)

Hence, we can check whether s1 (or any other state s) is in the ith recurrent class.
In the case when s1 is recurrent we proceed as follows: If s2 is recurrent and in the same recurrent

class as s1 then output 1 else output 0. (The correctness of this answer follows by Lemma 1(4–5).)
Below we consider the case when s1 is not recurrent. By Lemma 17(3) we can compute l such that

for every u, v ∈ A ∪ {s1, s2} if u is reachable from v then there is a path from v to u which passes only
through nodes with at most l messages. Let m be such that ∀n.m � n→ (1− �)n(1− �+ n�) < 1

3
i.e., the probability to move from every state with n � m messages to the set of states with at least
n messages is less than 1

3 (by Lemma 18). Let h = max(l,m)+1.
Notations.Belowwe denote byBi (respectively, byB�i or byB<i) the set of states with i (respectively,
with at most i or with less than i) messages.
For every state s ∈ B�h there is a finite path �s which first chooses a lossy transition which leads

to a state s′ with 0 messages and then follows by a path from s′ which is inside B�l ⊆ B�h to a BSCC
of Graph (A). Let #s = Prob(�s) > 0 and let 0 < # = min(#s : s ∈ B�h). Note that up to this point all
our computations were independent of � and their complexity depended only on L, s1 and s2.
Observe that if we denote by R the set of recurrent states of M , by C the set of transient states

with < h messages; by S0 the set R ∪ C and by Si (i > 0) the set of transient states with h+ i − 1
messages, then the assumptionsofLemma14are satisfied.LetN0 = N(#, 23 , �), whereN is the function
from Lemma 13 and let n = h+ N0. Note that n depends linearly on ln( 1� ). By Lemma 14 the
probability to reach from s1 the set U =⋃

n�N0 Sn of transient states with � n messages is at most

�. Therefore, by Lemma 15 we derive that ProbM ′(s1
∗−→ s2) � ProbM(s1

∗−→ s2) � ProbM ′(s1
∗−→

s2)+ � for M ′ = MU ,dead obtained by collapsing U into a fresh state dead . The chain M ′ might be
infinite. Below we are going to construct a finite state M.C. M̂ of size bounded by |B�n| such that
ProbM ′(s1

∗−→ s2) = ProbM̂ (s1
∗−→ s2). Hence,ProbM̂ (s1

∗−→ s2)will approximate up to � the value
of ProbM(s1

∗−→ s2) which we are trying to compute.
The complexity of the construction of M̂ will be O(|B�n|2) and by standard algebraic methods

we can compute ProbM̂ (s1
∗−→ s2) in time O(|B�n|3). Since n depends linearly on ln( 1� ), it follows

that |B�n| depends linearly on 1
� and the complexity of the entire algorithm is f(L, s1, s2)× 1

�3
.
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We define M̂ by replacing every recurrent class of M ′ by an absorbing state. From Lemma 11
we will derive that this transformation preserves the probability of reaching s2 from s1. Formally a
(finite) M. C. M̂ = (̂S , P̂ ) is defined as follows.
Let Di (i = 1, . . . , k) be the states with � n messages, which are in the ith recurrent class. (These

sets can be computed by Eq. (8) in time O(|B�n)|. Let D be B<n \ ∪Di .

(1) Ŝ = D ∪ {d1, . . . , dk} ∪ {dead}. The states di correspond to the recurrent classes and the state
dead corresponds to the set of transient states ofM with � n messages.

(2) The states d1, . . . , dk , dead are absorbing, i.e., for d ∈ {d1, . . . , dk} ∪ {dead}:

P̂ (d , d ′) =
{
1 if d ′ = d ,
0 otherwise.

(3) P̂ (d , d ′) = P(d , d ′) for d , d ′ ∈ D.
(4) P̂ (d , dead) =∑

s∈Bn\∪Di P(d , s) for d ∈ D.
(5) P̂ (d , di) =∑

d ′∈Di P(d , d
′), for d ∈ D and i : 1 � i � k .

Recall that we treated already the case when s1 is recurrent, hence s1 is in D. Compute the output
r which approximates ProbM(s1

∗−→ s2) up to � by the following cases:

1. if s2 ∈ D then compute by standard algebraic methods the probability r of reaching s2 from s1 in
(the finite Markov chain) M̂ .

2. if s2 ∈ Di then compute the probability r of reaching di from s1 in M̂ .

We completed the presentation of the algorithm, established its correctness and proved that its
complexity is f(L, s1, s2)× 1

�3
. It was shown in [19] that the complexity of the reachability problem

for LCSs is not bounded by any primitive recursive function in the size of LCS. Therefore, f is not
primitive recursive in the size of PLCS.

9. Probability of automata definable properties

In this section, we consider more general properties than reachability. Let ϕ be a property of
computations. We will be interested in approximating

Prob {� : � is a computation from s in PLCS L and � satisfies ϕ } .
We show that if the properties of computations are specified by (the ω-behavior of) finite state

automata or equivalently by formulas of the monadic second-order logic of order, then the above
problem is computable.

9.1. State-labeled systems and ω-automata

To specify properties of computations (ω-sequences of states) one needs to assume that the states
are labeled by elements of some finite alphabet. Hence, we extend LCS’s with a labeling function: a
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state-labeled LCS is an LCS together with a finite alphabet = and a labeling function lab from the
local states to=. Throughout this section we assume that LCS’s are state-labeled and will often use
“LCS” for “state-labeled LCS.” We lift the labeling from an LCS L to the state-labeled transition
system T = (

S ,−→,=, lab )
it induces: the label of every state (s,w) in T is the label lab (s) of

its local state component. When we deal with probabilistic lossy channel systems we also assume
that the underlying LCS is labeled, and this labeling is lifted to the labeling of the corresponding
Markov chain. In thismanner we obtain state-labeled PLCS’s inducing state-labeledMarkov chains.

A path s0s1, · · · in a state-labeled transition system give rise the ω-string lab (s0)lab (s1) · · · over
the alphabet =. We consider properties of paths that are defined using automata: the ω-string of
the path must be accepted by the automaton.
Recall that a finite (Muller) automaton A is a tuple (Q,=,→, q0,F), consisting of a finite set Q

of states, a finite alphabet =, a transition relation→ which is a subset ofQ×=×Q, an initial state
q0 ∈ Q, and a collectionF ⊆ 2Q of fairness conditions. We write q a→ q′ if 〈q, a, q′〉 ∈→. We say that
A is deterministic if for every state q and every letter a ∈ = there is one and only one q′ such that
q

a→ q′.
A run ofA is anω-sequence q0a0q1a1 . . . such that qi ai→ qi+1 for all i. With such a run we associate

the set Inf of all q ∈ Q that appear infinitely many times. A run meets the fairness conditions F if
its Inf set belongs to F (Muller acceptance). An ω-string a0a1 . . . over = is accepted by A if there
is a run q0a0q1a1 . . . that meets the fairness conditions of A. The ω-language accepted by A is the
set of all ω-strings accepted by A.
We recall the following classical theorem (see [22]) stating that automata have the same expressive

power as the monadic logic of order:

Theorem 21. For an ω-language L, the following conditions are equivalent:

1. L is accepted by a finite state Muller automaton.
2. L is accepted by a deterministic finite state Muller automaton.
3. L is definable by a MSO formula.

9.2. Products with automata

To approximate the probability of the set of computations in the PLCS L that are accepted by
A we shall built the product L′ ofA and L and then solve an appropriate quantitative reachability
problem for L′. In this section, we summarize properties of the product and in the next section it
is shown how the quantitative probabilistic model checking problem is reduced to the quantitative
reachability problem.
Consider an automaton A = (Q,=,→, q0,F), and a state-labeled transition system T =(

S ,−→,=, lab )
. The product A× T of A and T is a state-labeled transition system T ′ =(

S ′,→′,=, lab ′
)
defined as follows:

States: S ′ = Q× S is the Cartesian product of the states of A and of T .
Labeling: A state (q, s) is labeled by lab (s), i.e., it has the same label as s in T .
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Transition relation:There is a transition (q, s)→′ (q′, s′) iff there is a transition s→ s′ in T and there

is a transition q
lab (s)−→ q′ in A.

We also define the productR = A×M of a deterministic automaton and a state-labeledMarkov
chainM = (

S , P ,=, lab
)
. Here the states and labels are as inA× T . The probability P ′ inR is given

by

P ′((q, s) ,
(
q′, s′

)
) =

{
P(s, s′) if q

lab (s)→ q′inA,
0 otherwise.

Observe that the requirement that A is deterministic ensures that the sum of probabilities of
the transitions from the state (q, s) is the same as the sum of probabilities of the transitions from
the state s in M , i.e. the sum is one. Hence the product is indeed a labeled Markov chain. Observe
further that if T is the transition system underlying M , then A× T is exactly the transition system
underlying A×M .
As in [10,23] with a path � = s0s1 . . . in M we associate �A, the only path in R of the form

(q0, s0) (q1, s1) . . . with qi
lab(si)→ qi+1 for all i; �A exists and is unique because A is deterministic.

Moreover, for every path �′ inR there exists a path � inM such that �′ = �A. Hence the function -
that maps � to �A is bijective. Moreover, it preserves the probabilistic measure of the sets of paths
as explained in the following lemma.

Lemma 22. Let s be a state and let L be a set of paths in M that start at s. The measure of L in M is
equal to the measure of LA = {�A : � ∈ L} in A×M.

Definition 23.LetM = (S , P ,=, lab) be aMarkov chain andA = (Q,=,→, q0,F) be a deterministic
automaton. Let F ∈ F and let C be a subset of a recurrent class of the productR = A×M . We say
that C satisfies the condition F if

(1) q ∈ F for each state (q, u) reachable from C inR, and
(2) for each q ∈ F there is u ∈ M such that (q, u) is reachable from C inR.

We say that C satisfies F if C satisfies at least one F ∈ F .
Note that the property “C satisfies F ” is a class property, i.e., this depends only on the recurrent
class D that contains C . A recurrent class D satisfies F iff q ∈ F for each state (q, u) ∈ D and for
each q ∈ F there is u ∈ M such that (q, u) ∈ D.
We say that a computation s1, s2, . . . is accepted by an automaton iff the corresponding ω-string

lab (s1)lab (s2) . . . is accepted.

Lemma 24. Let A = 〈Q,=,→, q0,F〉 be a deterministic automaton, letM be a labeled Markov chain,
let R be the product of A and M , and let B be a finite attractor of R. Let C1,C2, . . . ,Cp be all the
BSCC in Graph(B) which satisfy F . Then the following are equivalent:

(1) The probability that a computation of M that starts at s is accepted by A is r.
(2) The probability that a computation of R that starts at (q0, s) reaches

⋃p
i=1 Ci is r.
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Proof. Let � be a path inM and let �A = -(�) be the corresponding path inR. Note that the same
ω-string corresponds to � and to �A, therefore � is accepted byA if and only if -(�) is accepted by
A. Since - is bijective and measure preserving, it is sufficient to prove that the probability of the set
of computations of R that start at (q0, s) and is accepted by A is r if and only if the probability of
the set of computations ofR that start at (q0, s) and reach

⋃p
i=1 Ci is r.

Let D1, . . . ,Dn be the recurrent components of R. We can assume that D1, . . . ,Dp are the com-
ponents that satisfy F and that Ci ⊆ Di for i = 1, . . . , p
Let Xi (respectively, Yi) be the sets of paths that start at (q0, s) and reach Di (respectively, repeat-

edly reach every state of Di).
By Lemma 1(4),

Prob(Xi) = Prob(Yi) (9)

and by Lemma 5(3)∑
Prob(Xi) = 1. (10)

Therefore,∑
Prob(Yi) = 1. (11)

Note that Yi are disjoint sets and for � ∈ Yi: � is accepted by A iff Di satisfies F . Hence, the prob-
ability of the set of computations of R that start at (q0, s) and is accepted by A is

∑p
i=1 Prob(Yi).

By Lemma 1(4), Prob(Yi) is equal to the probability to reach Ci, hence the last sum is equal to the
probability of the set of computations of R that start at (q0, s) and reach

⋃p
i=1 Ci . This completes

the proof of the lemma. �
Finally, the product L′ = A× L of an automaton with an LCS is defined along the same lines:

the local states are pairs (q,s) of a state of A and a local state of L. The transitions T′ of L′ are all

((q,s) ,op,
(
q′,s′

)
) such that (s,op,s′) is a transition of L and q lab (s)→ q′ is a transition in A. We

define the product of a deterministic A and a PLCS L along the same lines.
A crucial property of these constructions is the following:

Lemma 25.

1. If T is the transition system induced by an LCS L then A× T is (isomorphic to) the transition
system induced by the LCS A× L.

2. If M is the Markov chain induced by a PLCS L then A×M is (isomorphic to) the Markov chain
induced by the PLCS A× L.

Here, the isomorphism associates (q, (s,w)), a state of A× T (resp. A×M ), with ((q,s) ,w), a
state of the transition system (respectively Markov chain) induced by A× L.
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9.3. Quantitative probabilistic model-checking

We are now ready to show that the following problem is computable.

Quantitative Probabilistic Model-checking Problem
Instance: A PLCS L, its state s, a finite state ω-automaton A, and a rational

� > 0.
Task: Find a rational r such that the probability of the set of computations that start at s and

are accepted by A is between r and r + �.
The Quantitative Probabilistic Model-checking Problem is reducible to the Quantitative Proba-

bilistic Reachability Problem for PLCSs.

Theorem 26. The Quantitative Probabilistic Model-checking Problem can be solved in time
g(L,A, s))× 1

�3
.

Proof. Let L′ be the product of A = (Q,=,→, q0,F) and L and let s′ be the global state (q0, s) of
L′. Let R be the Markov chain that corresponds to L′. We can assume that A is deterministic (or
replace it by an equivalent deterministic automaton Theorem 21). Note that R is isomorphic to
the product of A and the Markov chain M that corresponds to L, by Lemma 25. Let A be a finite
attractor of R (one can take for A the set of global states with the empty channels). Let C1, . . . ,Cp
be the BSCC of Graph(A) that satisfy F . Note that it is decidable whether a BSCC C satisfies F ,
because by Lemma 17(2) for every q ∈ Q one can check whether the upward closure of the finite set
{(q,s, B) : s ∈ L} is reachable from s′.
By Lemma 24, the probability of the set of computations of M that start at s and are accepted

by A is equal to the probability of the set of computations of R that start at (q0, s) and reach (a
finite set)

⋃p
i=1 Ci . The latter probability can be approximated by the algorithm of Section 8 in time

g(L′,A, s))× 1
�3
. �

10. Conclusions and further results

This paper deals with the verification of quantitative properties of probabilistic infinite state
systems. For finite state Markov chains the probability of reaching one state from another can be
computed explicitly. However, even for very simple infinite state Markov chains usually there is no
explicit expression which computes the probability of reaching one state from another.
Our contribution can be described as follows:

• To the best of our knowledge we were the first to formulate the quantitative reachability and
model-checking problems: approximate the probability that a certain property is satisfied.

•We provided the PE scheme which reduces the quantitative reachability problem forM.C. to the
reachability problem of the underlying transition system. We proved the correctness of the PE
scheme for two important classes of Markov chains.

•We provided a method to reduce the quantitative reachability problem for countable Markov
chains to the quantitative reachability problem for finite state Markov chains.
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•We derived the decidability of the quantitative reachability and model checking problems for
PLCSs.

Below we summarize our results and point out to further extensions.

10.1. Path Enumeration Scheme

Weprovided the PathEnumerating Scheme for the quantitative reachability problem.Weproved
that the PE scheme is correct for two classes of Markov chains:

(1) Markov chains with a finite attractor.
(2) Markov chains with #-reachability property.

To approximate the probability of reaching a state s2 from a state s1 in a M.C. M , the PE scheme
partitions Compn(s1) - the set of all the computations of length n in M from s1 into three sets:
Reachn(s1, s2) - all the computations in Compn(s1) that reach s2; Escapen(s1, s2) - all the compu-
tations in Compn(s1) that cannot be extended to computations that reach s2; Undecidedn(s1, s2) -
those computations in Compn(s1) that have not reached s2, but can be extended to computations
that reach s2. Assume thatM has finite branching, all transition probabilities are rational and there
exist the following algorithms:

Alg1 For every state s ∈ M an algorithm computes the setNexts = {s′ : there is a transition s −→ s′
with non-zero probability P(s, s′)}.

Alg2 For every states s, s′ ∈ M an algorithm computes the probability P(s, s′).
Alg3 For every state s ∈ M an algorithm decides whether s2 is reachable from s.

Under the above assumptions the sets of paths Reachn(s1, s2), Escapen(s1, s2) and
Undecidedn(s1, s2) are finite and there is an algorithm that computes the probabilities p+n =
Prob(Reachn(s1, s2)), p−n = Prob(Escapen(s1, s2)) and p ?n = Prob(Undecidedn(s1, s2)). Finally, p+n
approximates up to � the probability of reaching s1 from s2, whenever p ?n < �.
A variant of the PE scheme can be algorithmically implemented even for Markov chains with

infinite branching. In this case we need

Alg1∗ an algorithm that for every state s ∈ M and a rational r < 1 computes a finite setNs,r ⊆ Nexts
such that the sum

∑
s′∈Ns,r P(s, s

′) is greater than r.

Using such an algorithm, we can compute for every s1 ∈ M , a natural n and a rational �
a finite set Cn(s1) ⊆ Compn(s1) such that Prob(Cn(s1)) > 1− �

2 . Using Alg2 and Alg3, we can
partition this finite set into three sets Reachn(s1, s2), Escapen(s1, s2) and Undecidedn(s1, s2) like
above and compute the probabilities p+n = Prob(Reachn(s1, s2)), p−n = Prob(Escapen(s1, s2)) and
p ?n = Prob(Undecidedn(s1, s2)). Finally, p+n approximates up to � the probability of reaching s1 from
s2, whenever p ?n <

�
2 . IfM has either finite attractor or #-reachability property, then lim p ?n = 0, hence

the algorithm terminates.
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10.2. Reduction to finite state Markov chains

The PE scheme is conceptually very simple, however, no information about the number of it-
erations before it terminates can be extracted from Theorem 10. For finite state Markov chains
standard algebraic methods allow to find the exact value of ProbM(s1

∗−→ s2) in polynomial time;
however, in this case the PE scheme finds an approximation in time |M |�(ln( 1� )).
An alternative approach for approximation of ProbM(s1

∗−→ s2) is to “approximate” a count-
able M.C. M by a finite state Markov chain M ′ and then to evaluate ProbM ′(s1

∗−→ s2) by stan-
dard algebraic methods. Lemmas 11 and 12 provide simple transformations which allow to reduce
the size of Markov chains. Our main technical result, Lemma 14, identify a wide class of Mar-
kov chains for which the quantitative reachability problem can be reduced to the quantitative
reachability problem for finite state Markov chains. This class of Markov chains generalize one
dimensional random walks. Based on these lemmas we provided an algorithm with a parametric
complexity f(L, s1, s2)× 1

�3
for the quantitative reachability and model checking problems over the

PLCS.

10.3. Probabilistic lossy channel systems

We provided an algorithm for quantitative model checking for a realistic class of probabilis-
tic lossy channel systems, where during each step of the runs of the systems, any message inside
the channels may be lost with a certain predefined probability; losses occur independently of each
other.
Our results extend to PLCS with the semantics defined as in [14,6] for the case when losing prob-

ability is at least 0.5; in this case the PLCSs have finite attractor. The results also extend to other
variants of PLCS. For example, according to the semantics considered here, when c!m is performed
at a state (s,w) the message m is appended to the contents of the channel c in w and then some
messages can be lost from c and other channels. An alternative semantics would allow that on-
ly messages from c can be lost. Our algorithm can be easily modified to handle this alternative
semantics.
The results can be easily generalized to PLCS with different sources of unreliability [9], such as

duplication, corruption, and insertion combined with lossiness. For example, an LCS L with dupli-
cation errors is of the same form (S,C,M,T) as an LCS. We define the behaviour of L as follows.
For a ∈ M, we use an to denote the concatenation of n copies of a. For x = a1a2 . . . an with x ∈ M∗,
we define duplicate (x) to be the set

{
b1b2 . . . bn : either bi = ai or bi = a2i for each i : 1 � i � n

}
.

In other words, we get each member of duplicate (x) by duplicating some of the elements of x.
We extend the definition of duplicate to S× (C �→ M∗) in a similar manner to Section 6. The
transition relation of an LCS L with duplication errors is the enlargement of that of the cor-
responding standard LCS in the sense that: If (s1,w1) −→ (s2,w2) according to the definition
of Section 6 then (s1,w1) −→

(
s′2,w

′
2

)
for each

(
s′2,w

′
2

) ∈ duplicate (s2,w2). In [9], it is shown
that the reachability problem is decidable for LCS with duplication errors. A PLCS with dupli-
cation errors is of the form (S,C,M,T, �,w, �D), where (S,C,M,T, �,w) is a PLCS, and �D ∈ [0, 1].
The value of �D represents the probability by which any given message is duplicated inside the
channels.
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The Markov chain induced by a PLCS with duplication errors, is defined in a natural way. In
[5], it is shown that qualitative probabilistic model checking is decidable for PLCS with duplica-
tion errors when �D < �. In this case the corresponding Markov chains have finite attractors. The
technique of the current paper can show that there exists an efficient algorithm for the quantitative
model checking for PLCS with duplication errors when �D < �.

10.4. Open problems and related results

One of the directions for further research is approximate other important parameters of the
Markov chains such as: mean return time, mean hitting time, etc.
Another important direction is to extend the verification of qualitative properties of Markov

decision processes [7,21] to the verification of quantitative properties.
Finally, let us mention the following decision problem:

Problem A: Deciding an upper bound for the probability of
‘ reachability
Instance: AM.C. M , its states s1, s2 and a rational h.
Question: Decide whether h is greater than the probability that s2 is
reached from s1.

It is straightforward to construct an algorithm for the quantitative reachability problem from
the algorithm for the above decision problem. As the first approximation, we set l0 = 0, and u0 = 1.
Further approximations are obtained by binary search: If the probability of reaching s2 from s1
is greater than 1

2 (li + ui), define li+1 = li and ui+1 = 1
2 (li + ui); otherwise define li+1 = 1

2 (li + ui)

and ui+1 = ui . It is clear that for each i ≥ 0, the probability of reaching s2 from s1 is in the interval
[li, ui]. Hence for n = �− log2��, the rational number ln approximates up to � the probability of
reaching s2 from s1. Therefore, the quantitative reachability problem is computable for every class
C of Markov chains for which the above problem is decidable.
Recently, the reachability and model checking problems for the class of Probabilistic Pushdown

Automata (PPDA) was considered in [11]. It was shown there that for a PPDA M , its states s1, s2
the probability that s2 is reached from s1 is a root of a polynom effectively computable from M ,
s1 and s2. As a consequence the authors obtained that for PPDA the above decision problem and
the quantitative reachability problems are decidable. These results were extended to the quanti-
tative model checking problem and to the model checking properties definable by Probabilistic
CTL.
The decidability of Problem A for the class of PLCSs remains open.
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Appendix A. Proof of Lemma 14

First, we recall a general result for hitting probabilities (see Theorem 1.3.2 [17]).

Theorem 27. Let M = (S , P ) be a Markov chain, Let V ⊆ S and let hVs be the probability to reach V
from s. Then the vector of probabilities hV = (

hVs : s ∈ S) is the minimal non-negative solution of the
system of linear equations{

hVs = 1 s ∈ V,
hVs =∑

s′∈S P(s, s′)hVs′ otherwise.

Lemma 28. Consider Markov chains M = (S , P ) and M ′ = (
S ′, P ′

)
such that

(1)(a) S ′ is the set Nat = {0, 1, 2, 3, . . .} of natural numbers, and
(b) P ′(i, i + 1) = -i, and P ′(i, i) = 5i for i � 0, and P ′(i, i − 1) = .i = 1− -i − 5i for i � 1.

(2)(a) S is the union of disjoint sets Si (i ∈ Nat ).
(b) If s ∈ Si, s′ ∈ Sj , and P(s, s′) > 0, then j � i + 1.

(3) For every i
(a) -i � sups∈Si

(∑
s′∈Si+1 P(s, s

′)
)
and

(b) either 5i � sups∈Si
(∑

s′∈Si P(s, s
′)
)
or .i � inf s∈si

(∑
s′∈⋃i−1

k=0 Sk
P(s, s′)

)
Then for every i < j and s ∈ Si the probability to reach Sj from s in M is less than or equal to the
probability to reach j from i in M ′.

Proof. Fix j. Let h = (hs : s ∈ S) be the probability of reaching⋃k�j Sk inM . Let ĥ =
(
ĥi : i ∈ Nat

)
be the probability of reaching {k : k � j} in M ′. Observe that if k � i � j then ĥk � ĥi .
DefineHs = ĥi for s ∈ Si . LetH be the vector (Hs : s ∈ S). Observe thatH is a non-negative vector

and Hs = 1 for s ∈⋃k�j Sk . We show that H � P · H .
For s ∈ Si

(P · H)s =∑
s′∈S P(s, s′)Hs′=∑
s′∈Si+1 P(s, s

′)Hs′ +∑s′∈Si P(s, s
′)Hs′ +∑s′∈⋃k<i Sk

P(s, s′)Hs′
=
(∑

s′∈Si+1 P(s, s
′)
)
ĥi+1 +

(∑
s′∈Si P(s, s

′)
)
ĥi +∑k<i

(∑
s′∈Sk P(s, s

′)
)
ĥk

�
(∑

s′∈Si+1 P(s, s
′)
)
ĥi+1 +

(∑
s′∈Si P(s, s

′)
)
ĥi +

(∑
k<i

∑
s′∈Sk P(s, s

′)
)
ĥi−1

=
(∑

s′∈Si+1 P(s, s
′)
)
ĥi+1 +

(∑
s′∈Si P(s, s

′)
)
ĥi +

(∑
s′∈⋃k<i Sk

P(s, s′)
)
ĥi−1

= -sĥi+1 + 5sĥi + .sĥi−1,

(A.1)

where -s =
(∑

s′∈Si+1 P(s, s
′)
)
, 5s =

(∑
s′∈Si P(s, s

′)
)
and .s =

(∑
s′∈⋃k<i Sk

P(s, s′)
)
. In (A.1) the�

step holds, because ĥk is increasing and P is non-negative.

Hs = ĥi = -iĥi+1 + 5iĥi + .iĥi−1, (A.2)

-i + 5i + .i = 1 and -s + 5s + .s = 1. (A.3)
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Therefore, from Eqs. (A.1)–(A.3) we obtain

Hs − (P · H)s � (-i − -s)(ĥi+1 − ĥi−1)+ (5i − 5s)(ĥi − ĥi−1) (A.4)

and

Hs − (P · H)s � (-i − -s)(ĥi+1 − ĥi)+ (.s − .i)(ĥi − ĥi−1). (A.5)

The sequence ĥk is increasing; therefore, from the assumptions 3(a) and 3(b) of Lemma 28 and Eqs.
(A.4)–(A.5) we obtain Hs − (P · H)s � 0. Hence and

H � P · H. (A.6)

Observe thatHs = 1 = hs for s ∈ V =⋃
k�j Sk and are non-negative. Define an operator 4 thatmaps

S-tuple of reals to S-tuple of reals as follows:

4(u)s =
{
1 s ∈⋃k�j Sk ,∑

s′∈S P(s, s′)us′ otherwise.

The matrix P is non-negative. Therefore, 4maps the non-negative vectors to the non-negative vec-
tors and is monotonic (increasing) on the set of non-negative vectors. By Eq. (A.6) we obtain that
H � 4(H). Therefore, by monotonicity of 4, we obtain that the sequence 4n(H) is decreasing and
non-negative. Hence, it converges to a non-negative fixed point of 4 which is � H . From Theorem
27 and the definition of h it follows that h is the minimal non-negative fixed point of 4. Hence,
h � H . From the definition ofH we conclude that hs � ĥi for s ∈ Si . Hence, the probability to reach
Sj from s ∈ Si in M is less than or equal to the probability to reach j from i in M ′. �
The next theorem is a standard result on observing a Markov process at some subset of its

state-space (see Example 1.4.4 in [17]).

Theorem 29.Assume thatM = (S , P ) is the transitionmatrix of aMarkov process (Xn)n�0.LetU ⊂ S.

Then the process obtained from (Xn)n�0 by observation only at states U is a Markov process and it
has the transition matrix P ′(s, s′) = hs

′
s for s,s′ ∈ U and where for s′ ∈ U , the vector

(
hs

′
s : s ∈ S

)
is

the minimal non-negative solution to

hs
′
s = P(s, s′)+

∑
s′′ �∈U

P(s, s′′)hs′s′′ .

As a consequence we derive

Lemma 30. Assume that M = (S , P ) is the transition matrix of a Markov process (Xn)n�0.

(1) S is the union of disjoint sets U0,U1 and U2.
(2) If s ∈ Ui, s′ ∈ Uj , and P(s, s′) > 0, then j � i + 1.
(3) U0 = C ∪ R and
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• For every state s ∈ R, only states in R are reachable from s.

• For every state s ∈ U1 there is a finite path to R with probability > # which is inside C ∪ R.

Let U = R ∪ U1 ∪ U2. Then the process obtained from (Xn)n�0 by observation only at states U is a
Markov process and it has the transition matrix P̂ which satisfies:

P̂ (s, s′) =
{
P(s, s′) ifs′ ∈ U2,
P(s, s′) s, s′ ∈ R

P̂ (s, s′) � # if s ∈ U1 and s′ ∈ R
Proof. Immediately from Theorem 29. �
Now we are ready to prove Lemma 14. LetM be a Markov chain which satisfies the assumption

of Lemma 14. Let U0 = S0 = C ∪ R, U1 = S1 and U2 =⋃
k�2 Sk . Let M̂ = (

U , P̂
)
be the chain which

is obtained by observing M at U = R ∪ U1 ∪ U2 = R ∪⋃k�1 Sk .

For every s ∈ U and Z ⊆ U

the probability to reach Z from s in M is the same as
the probability to reach Z from s in M̂ .

(A.7)

By Lemma 30, for i � 1 and s ∈ Si: ∑
s′∈Si+1

P(s, s′)

 =
 ∑
s′∈Si+1

P̂ (s, s′)

 (A.8)

for i � 2 and s ∈ Si:∑
s′∈Si

P(s, s′)

 =
∑
s′∈Si

P̂ (s, s′)

 (A.9)

and for s ∈ S1

# �

(∑
s′∈R

P̂ (s, s′)
)

(A.10)

From Eqs. (A.8) and (A.9) and by the assumption (4) of Lemma 14 we obtain

-i = sup
s∈Si

 ∑
s′∈Si+1

P̂ (s, s′)

 and 5i = sup
s∈Si

∑
s′∈Si

P̂ (s, s′)

 . (A.11)

Let M ′ = (
Nat , P ′

)
be such that

• P ′(i, i + 1) = -i, and P ′(i, i) = 5i and P ′(i, i − 1) = .i = 1− -i − 5i for i � 2.
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• P ′(0, 0) = 1
• P ′(1, 0) = #

• P ′(1, 2) = -1 and
• P ′(1, 1) = 1− P ′(1, 0)− P ′(1, 2).

From Lemma 28, the definition ofM ′ and Eqs. (A.10) and (A.11) we derive that

For every s ∈ S1 the probability to reach Sn in M̂
is less than or equal to

the probability to reach n from 1 in M ′.
(A.12)

By assumption (4) of Lemma 14 we have -i + 5i < 4 < 0.5 for each i � 2. Hence, .i > 1− 4 > 0.5
for i � 2, and therefore, by Lemma 13, for n � N0 = N(#, 1− 4, �)

the probability to reach n from 1 in M ′ is < �. (A.13)

Hence, by (A.7), (A.12) and (A.13) we obtain

for every s ∈ S1 the probability of reaching SN0 from s in M
is less than �. (A.14)

Finally observe that for every s ∈ S0 a computation from s which reaches SN0 should pass through
a state in S1. This observation together with (A.14) implies

for every s ∈ S0 the probability of reaching SN0 from s in M
is less than �. (A.15)

The conclusion of Lemma 14 follows from (A.14) and (A.15).
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