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Abstract. We consider the temporal logic with since and until modalities. This tempo-
ral logic is expressively equivalent over the class of ordinals to first-order logic by Kamp’s
theorem. We show that it has a pspace-complete satisfiability problem over the class of
ordinals. Among the consequences of our proof, we show that given the code of some count-
able ordinal α and a formula, we can decide in pspace whether the formula has a model
over α. In order to show these results, we introduce a class of simple ordinal automata, as
expressive as Büchi ordinal automata. The pspace upper bound for the satisfiability prob-
lem of the temporal logic is obtained through a reduction to the nonemptiness problem
for the simple ordinal automata.

Introduction

The main models for time are 〈N, <〉, the natural numbers as a model of discrete time and
the structure 〈R, <〉, the real line as the model for continuous time. These two models are
called the canonical models of time. A major result concerning linear-time temporal logics
is Kamp theorem [Kam68, GHR94] which says that LTL(U,S), the temporal logic having
“Until” and “Since” as only modalities, is expressively complete for first-order monadic
logic of order over the class of Dedekind-complete linear orders. The canonical models of
time are indeed Dedekind-complete. Another important class of Dedekind-complete orders
is the class of ordinals.
In this paper, the satisfiability problem for the temporal logic with until and since modalities
over the class of ordinals is investigated. This is the opportunity to generalize what is known
about the logic over ω-sequences. Our main results are the following.

(1) The satisfiability problem for LTL(U,S) over the class of ordinals is pspace-complete.
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(2) A formula φ in LTL(U,S) has some α-model for some ordinal α iff it has an β-model for
some β < ω|φ|+2 where |φ| denotes the size of φ for some reasonably succinct encoding
(see forthcoming Corollary 3.3).

In order to prove these results we use an automata-based approach [Büc62, VW94]. In Sec-
tion 2, we introduce a new class of ordinal automata which we call simple ordinal automata.
These automata are expressive equivalent to Büchi automata over countable ordinals [BS73].
However, the locations and the transition relations of these automata have additional struc-
tures as in [Roh97]. In particular, a location is a subset of a base set B. Herein, we provide
a translation from formulae in LTL(U,S) into simple ordinal automata that allows to char-
acterize the complexity of the satisfiability problem for LTL(U,S). However, the translation
of the formula φ into the automaton Aφ provides an automaton of exponential size in |φ|
but the cardinal of the basis of Aφ is linear in |φ|.
Section 3 contains our main technical lemmas. We show there that every run in a simple
ordinal automaton is equivalent to a short run. Consequently, we establish that a formula
φ ∈ LTL(U,S) has an α-model for some countable ordinal α iff it has a model of length

trunc|φ|+2(α) where trunc|φ|+2(α) is a truncated part of α strictly less than ω|φ|+2 × 2 (see
the definition of truncation in Section 3). In Section 4 we present two algorithms to solve
the nonemptiness problem for simple ordinal automata. The first one runs in (simple)
exponential time and does not take advantage of the short run property. The second
algorithm runs in polynomial space and the short run property plays the main role in its
design and its correctness proof.

In Section 5 we investigate several variants of the satisfiability problem and show that all
of them are pspace-complete. Section 6 compares our results with related works. The satis-
fiability problem for LTL(U,S) over ω-models is pspace-complete [SC85]. Reynolds [Rey03,
Rey10b] proved that the satisfiability problem for LTL(U,S) over the reals is pspace-
complete. The proofs in [Rey03, Rey10b] are non trivial and difficult to grasp and it is
therefore difficult to compare our proof technique with those of [Rey03, Rey10b] even though
we believe cross-fertilization would be fruitful. We provide uniform proofs and we improve
upper bounds for decision problems considered in [Cac06, DN07, Roh97], see also [BLW07].
We also compare our results and techniques with Rohde’s thesis [Roh97]. Finally we show
how our results entail most of the results from [DN07] and we solve some open problems
stated there.

1. Linear-Time Temporal Logic with Until and Since

1.1. Basic definitions on ordinals. Let us start smoothly by recalling basic definitions
and properties about ordinals, see e.g. [Ros82] for additional material. An ordinal is a
totally ordered set which is well ordered, i.e. all its non-empty subsets have a least element.
Order-isomorphic ordinals are considered equal. They can be more conveniently defined
inductively by: the empty set (written 0) is an ordinal, if α is an ordinal, then α ∪ {α}
(written α + 1) is an ordinal and, if X is a set of ordinals, then

⋃

α∈X α is an ordinal.
The ordering is obtained by β < α iff β ∈ α. An ordinal α is a successor ordinal iff
there exists an ordinal β such that α = β + 1. An ordinal which is not 0 or a successor
ordinal, is a limit ordinal. The first limit ordinal is written ω. Addition, multiplication and
exponentiation can be defined on ordinals inductively: α+0 = α, α+(β+1) = (α+β)+ 1
and α+β = sup{α+γ : γ < β} where β is a limit ordinal. Multiplication and exponentiation
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are defined similarly. Whenever α ≤ β, there is a unique ordinal γ such that α+ γ = β and
we write β − α to denote γ.

1.2. Temporal logic. The formulae of LTL(U,S) are defined as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | φ1Sφ2

where p ∈ PROP for some countably infinite set PROP of atomic propositions. Given a
formula φ in LTL(U,S), we write sub(φ) to denote the set of subformulae of φ or their
negation assuming that ¬¬ψ is identified with ψ. The size of φ is defined as the cardinality
of sub(φ) and therefore implicitly we encode formulae as DAGs, which is exponentially
more succinct that the representation by trees. This feature will be helpful for defining
translations that increase only polynomially the number of subformulae but for which the
tree representation might suffer an exponential blow-up. We use the following standard
abbreviations Gφ = φ ∧ ¬(⊤U¬φ), G+φ = ¬(⊤U¬φ), Fφ = ¬G¬φ, F+φ = ¬G+¬φ, Xφ =⊥
Uφ and X−1φ =⊥ Sφ that do cause only a polynomial increase in size.

An α-model σ is a function σ : α→ P(PROP) for some ordinal α 6= 0. The satisfaction
relation “φ holds in the α-model σ at position β” (β < α) is defined as follows:

• σ, β |= p iff p ∈ σ(β),
• σ, β |= ¬φ iff not σ, β |= φ,
• σ, β |= φ1 ∧ φ2 iff σ, β |= φ1 and σ, β |= φ2,
• σ, β |= φ1Uφ2 iff there is γ ∈ (β, α) such that σ, γ |= φ2 and for every γ′ ∈ (β, γ), we have
σ, γ′ |= φ1,

• σ, β |= φ1Sφ2 iff there is γ ∈ [0, β) such that σ, γ |= φ2 and for every γ′ ∈ (γ, β), we have
σ, γ′ |= φ1.

Observe that S and U are strict “since” and “until” modalities.
The (initial) satisfiability problem for LTL(U,S) consists in determining, given a formula

φ, whether there is a model σ such that σ, 0 |= φ. Note that φ is satisfiable in a model σ
iff Fφ is initially satisfiable in σ. Therefore, there is a polynomial-time reduction from the
satisfiability problem to the initial satisfiability problem. From now on, we will deal only
with the initial satisfiability problem and for the sake of brevity we will call it “satisfiability
problem”.

We recall that well orders are particular cases of Dedekind complete linear orders.
Indeed, a chain is Dedekind complete iff every non-empty bounded subset has a least upper
bound. Kamp’s theorem applies herein.

Theorem 1.1. [Kam68] LTL(U,S) over the class of ordinals is as expressive as the first-
order logic.

Moreover, satisfiability for LTL(U,S) is known to be decidable and as stated below we
can restrict ourselves to countable models.

Theorem 1.2.

(I): [BS73] The satisfiability problem for LTL(U,S) over the class of countable ordinals
is decidable.

(II): (see e.g. [GS85, Lemma 6]) A formula in LTL(U,S) is satisfiable iff it is satisfiable
in a model of length some countable ordinal.
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Observe that in [BS73] it was proved that monadic second-order logic over the class of
countable ordinals is decidable and in [GS85] it was shown that if a formula of the first-order
monadic logic is satisfiable in a model over an ordinal then it is satisfiable in a model over
a countable ordinal. (I) and (II) are immediate consequences of these results and the fact
that LTL(U,S) can be easily translated into first-order logic.

Consequently, LTL(U,S) over the class of ordinals is certainly a fundamental logic to
be studied. We recall below a central complexity result that we will extend to all ordinals.

Theorem 1.3. [SC85] Satisfiability for LTL(U,S), restricted to ω-models, is pspace- com-
plete.

2. Translation from formulae to simple ordinal automata

In Section 2.1, we introduce a new class of ordinal automata which we call simple ordinal au-
tomata. These automata are expressive equivalent to Büchi automata over ordinals [BS73].
However, the locations and the transition relations of these automata have additional struc-
tures. In Section 2.3, we provide a translation from LTL(U,S) into simple ordinal automata
which assigns to every formula in LTL(U,S) an automaton that recognizes exactly its mod-
els. We borrow the automata-based approach for temporal logics from [VW94, KVW00].

2.1. Simple ordinal automata.

Definition 2.1. A simple ordinal automaton A is a structure 〈B,Q, δnext, δlim〉 such that

• B is a finite set (the basis of A),
• Q ⊆ P(B) (the set of locations),
• δnext ⊆ Q×Q is the next-step transition relation,
• δlim ⊆ P(B)×Q is the limit transition relation.

A can be viewed as a finite directed graph whose set of nodes is structured. Limit
transitions, whose interpretation is given below, allow reaching a node after an infinite
amount of steps. Given a simple ordinal automaton A, an α-path (or simply a path) is a
map r : α→ Q for some α > 0 such that

• for every β + 1 < α, 〈r(β), r(β + 1)〉 ∈ δnext,
• for every limit ordinal β < α, 〈Blim(r, β), r(β)〉 ∈ δlim where

Blim(r, β)
def

= {a ∈ B : ∃ γ < β such that for every γ′ ∈ (γ, β), a ∈ r(γ′)}.

The set Blim(r, β) contains exactly the elements of the basis that belong to every location
from some γ < β until β. We sometimes write Blim(r) instead of Blim(r, α) when α is a
limit ordinal.

Given an α-path r, for β, β′ < α we write

• r≥β to denote the restriction of r to positions greater or equal to β,
• r≤β to denote the restriction of r to positions less or equal to β,
• r[β,β′) to denote the restriction of r to positions in [β, β′) (half-open interval).

A simple ordinal automaton with acceptance conditions is a structure of the form

〈B,Q, I, F,F , δnext, δlim〉

where
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• I ⊆ Q is the set of initial locations,
• F ⊆ Q is the set of final locations for accepting runs whose length is some successor
ordinal,

• F ⊆ P(B) encodes the accepting condition for runs whose length is some limit ordinal.

Given a simple ordinal automaton with acceptance conditions, an accepting run is a path
r : α→ Q such that

• r(0) ∈ I,
• if α is a successor ordinal, then r(α− 1) ∈ F , otherwise Blim(r) ∈ F .

The nonemptiness problem for simple ordinal automata consists in checking whether A has
an accepting run. Our current definition for simple ordinal automata does not make them
language acceptors since they have no alphabet. It is possible to add in the definition a
finite alphabet Σ and to define the next-step transition relation as a subset of Q× Σ×Q,
see an example on the right-hand side of Figure 1. Additionally, the current definition can
be viewed as the case either when the alphabet is a singleton or when the read letter is
encoded in the locations through the dedicated elements of the basis. This second reading
will be in fact used implicitly in the sequel. We also write A to denote either a simple
ordinal automaton or its extension with acceptance conditions.

2.2. Relationships with Büchi automata. Simple ordinal automata with acceptance
conditions and alphabet define the same class of languages as standard ordinal automata in
the sense of [Büc64, Büc65]. Main arguments are provided below for the sake of complete-
ness. However, we do not need this correspondence in our forthcoming developments. The
main interest for our model of simple ordinal automata rests on the fact that it allows us
to obtain the promised pspace upper bound. A standard ordinal automaton is a structure
A = 〈Σ, Q, I, F,F , δnext, δlim〉 such that

• Σ is a finite alphabet,
• Q is a finite set of locations,
• δnext ⊆ Q×Σ×Q and δlim ⊆ P(Q) ×Q,
• I, F ⊆ Q and F ⊆ P(Q).

A word u : α→ Σ is accepted by A iff there is r : α→ Q such that

• for every β + 1 < α, 〈r(β), u(β), r(β + 1)〉 ∈ δnext,
• for every limit ordinal β < α, 〈inf(r, β), r(β)〉 ∈ δlim where

inf(r, β)
def

= {q ∈ Q : for all γ < β there is γ′ ∈ (α, β) such that r(γ′) = q}.

As usual, inf(r, β) denotes the set of locations that appear cofinally before β.
• r(0) ∈ I and if α is a successor ordinal, then r(α− 1) ∈ F , otherwise inf(r, α) ∈ F .

We write L(A) to denote the set of words accepted by A. Similar definitions can be given
for simple ordinal automata with acceptance conditions and alphabet.

Lemma 2.2.

(I): Given a simple ordinal automaton A, there is a standard ordinal automaton A′ such
that L(A) = L(A′).

(II): Given a standard ordinal automaton A, there is a simple ordinal automaton A′ such
that L(A) = L(A′).
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Figure 1: Ordinal automata accepting L0

Proof. (I) Let A be a simple ordinal automaton A = 〈Σ, B,Q, I, F,F , δnext, δlim〉. We
consider the standard ordinal automaton A′ of the form 〈Σ, Q, I, F,F , δnext, δ

′
lim〉 such that

〈Y, q〉 ∈ δ′lim iff there is a limit transition 〈Z, q〉 ∈ δlim satisfying the conditions below.

• for every q′ ∈ Y , we have Z ⊆ q′,
• for every element a ∈ (B \ Z), there is q′ ∈ Y such that a 6∈ q′.

One can easily check that L(A) = L(A′). Observe that A′ can be exponentially larger than
A.
(II) Let A = 〈Σ, Q, I, F,F , δnext, δlim〉 be a standard ordinal automaton. We build a simple
ordinal automaton A′ = 〈Σ, B′, Q′, I ′, F ′,F ′, δ′next, δ

′
lim〉 as follows.

• B′ = P(Q).
• Q′ = {X ∈ P(B′) : ∃ q ∈ Q, X = {Y ∈ P(Q) : q ∈ Y }}. Below, when q ∈ Q, by
abusing notation, we also write q to denote the corresponding location in Q′ equal to
{Y ∈ P(Q) : q ∈ Y }.

• I ′ = I, F ′ = F and F ′ = F .
• For a ∈ Σ and q, q′ ∈ Q, 〈q, a, q′〉 ∈ δ′next only if 〈q, a, q′〉 ∈ δnext.
• For Y ′ ⊆ B′ and q ∈ Q, 〈Y ′, q〉 ∈ δ′lim only if there is a limit transition 〈Y, q〉 ∈ δlim such
that Y ′ = {a ∈ B′ : Y ⊆ a}.

Again, one can easily check that L(A) = L(A′).

Let L0 be the set of words u : α→ {0, 1} such that for β < α, β = ω2γ for some ordinal
γ iff u(β) = 1. The left-hand side of Figure 1 presents a standard ordinal automaton
(with three locations) accepting L0. Next-step transitions are represented by plain arrows
whereas limit transitions are represented by dashed arrows. Moreover, F = {q1, qω, q≥ω2}
and F = P({q1, qω, q≥ω2}). The right-hand side of Figure 1 presents a corresponding simple
ordinal automaton along the lines of the proof of Lemma 2.2. Its basis B is equal to
P({q1, qω, q≥ω2}) and we write q1 to denote {{q1}, {q1, qω}, {q1, q≥ω2}, {q1, qω, q≥ω2}}. qω

and q≥ω2 are defined similarly.

2.3. Translation from LTL(U,S) formulae to simple ordinal automata. As usual, a
set Y is a maximally Boolean consistent subset of sub(φ) when the following conditions are
satisfied:

• for every ψ ∈ sub(φ), ¬ψ ∈ Y iff ψ 6∈ Y ,
• for every ψ1 ∧ ψ2 ∈ sub(φ), ψ1 ∧ ψ2 ∈ Y iff ψ1, ψ2 ∈ Y .

Given a formula φ, the simple ordinal automaton Aφ = 〈B,Q, I, F,F , δnext, δlim〉 is defined
as follows:

• B = sub(φ).
• Q is the set of maximally Boolean consistent subsets of sub(φ).
• I is the set of locations that contain φ and no elements of the form ψ1Sψ2.
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• F is the set of locations with no elements of the form ψ1Uψ2.
• A subset Y of B is in F if there are no ψ1 and ψ2 such that {ψ1,¬ψ2, ψ1Uψ2} ⊆ Y .

• For all q, q′ ∈ Q, 〈q, q′〉 ∈ δnext
def
⇔ the conditions below are satisfied:

(nextU): for every ψ1Uψ2 ∈ sub(φ), ψ1Uψ2 ∈ q iff either ψ2 ∈ q′ or ψ1, ψ1Uψ2 ∈ q′,
(nextS): for every ψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q′ iff either ψ2 ∈ q or ψ1, ψ1Sψ2 ∈ q.

• For all Y ⊆ B and q ∈ Q, 〈Y, q〉 ∈ δlim
def
⇔ the conditions below are satisfied:

(limU1): if ψ1,¬ψ2, ψ1Uψ2 ∈ Y , then either ψ2 ∈ q or ψ1, ψ1Uψ2 ∈ q,
(limU2): if ψ1, ψ1Uψ2 ∈ q and ψ1 ∈ Y , then ψ1Uψ2 ∈ Y ,
(limU3): if ψ1 ∈ Y , ψ2 ∈ q and ψ1Uψ2 is in the basis B, then ψ1Uψ2 ∈ Y ,
(limS): for every ψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q iff (ψ1 ∈ Y and ψ1Sψ2 ∈ Y ).

Even though the conditions above are compatible with the intuition that a location
contains the formulae that are promised to be satisfied, at the current stage it might sound
mysterious how the conditions have been made up (mainly for the conditions related to
limit transitions). For some of them, their justification comes with the proof of Lemma 2.3.

Let σ be an α-model and φ be a formula in LTL(U,S). The Hintikka sequence for σ
and φ is an α-sequence Hσ,φ defined as follows: for every β < α,

Hσ,φ(β)
def
= {ψ ∈ sub(φ) : σ, β |= ψ}.

Given a run r : α→ Q, we write mod(r) : α→ P(PROP) to denote the α-model σ defined

as follows: σ(β)
def
= {p ∈ PROP : p ∈ r(β)}. It is clear that if r is an Hintikka sequence for

σ and φ, then mod(r) = σ.
Now we can state the correctness lemma.

Lemma 2.3.

(I): If σ, 0 |= φ, then the Hintikka sequence for σ and φ is an accepting run of Aφ.
(II): If r is an accepting run of Aφ, then mod(r), 0 |= φ and r is the Hintikka sequence

for mod(r) and φ.
(III): φ is satisfiable iff Aφ has an accepting run.

Proof. First, (III) is an immediate consequence of (I) and (II).

(I): Suppose that there is a model σ : α → P(PROP) (with α > 0) such that σ, 0 |= φ.
By using LTL(U,S) semantics, it is straightforward to check that Hσ,φ is accepted
by Aφ.

(II): Let r : α → Q be an accepting run of Aφ. Let us show by structural induction that
for all ψ ∈ sub(φ) and β < α, we have mod(r), β |= ψ iff ψ ∈ r(β). The base case and
the cases with Boolean operators in the induction step are by an easy verification.
The only interesting cases in the induction step are related to the temporal operators
U and S. Below, let σ be mod(r).

Case U: ψ = ψ1Uψ2.
Let us reason ad absurdum. Suppose that {β : ψ ∈ r(β)} 6= {β : σ, β |= ψ}. Let
β be the smallest ordinal which belongs to only one of these sets. We consider two
cases: (σ, β |= ψ and ψ 6∈ r(β)) – Case I below – or (ψ ∈ r(β) and σ, β 6|= ψ) – Case
II below.
Case I: Let γ be the smallest ordinal verifying β < γ < α, σ, γ |= ψ2 and for every
γ′ ∈ (β, γ), we have σ, γ′ |= ψ1 ∧¬ψ2. By induction hypothesis, ψ2 ∈ r(γ) and for
every γ′ ∈ (β, γ), {ψ1,¬ψ2} ⊆ r(γ′).
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First, we are going to show that ¬ψ ∈ r(γ′) for every γ′ ∈ [β, γ). This is true for
β. Assume that this is true for β′ then it is true for β′ + 1 by condition (nextU).
Assume that γ′ is a limit ordinal and ψ 6∈ r(β′) for every β′ ∈ [β, γ′). Then, by
condition (limU2) we obtain that ¬ψ ∈ r(γ′). Next, consider two cases:
Case a): γ is a successor, say γ = β′ + 1. We have ¬ψ ∈ r(β′) and ψ2 ∈ r(γ).
This contradicts condition (nextU).
Case b): γ is a limit ordinal. In this case {¬ψ,ψ1} ⊆ Blim(r, γ) and ψ2 ∈ r(γ).
This contradicts condition (limU3).

Case II: Now suppose that ψ1Uψ2 ∈ r(β) and σ, β 6|= ψ1Uψ2.

Case a): For every γ such that γ ∈ (β, α), we have σ, γ 6|= ψ2 (ψ2 does not hold
on σ strictly after β).
By induction hypothesis, for every γ ∈ (β, α), ¬ψ2 ∈ r(γ). Let us show that for
every γ ∈ (β, α), {ψ1, ψ1Uψ2} ⊆ r(γ).

Base case: γ = β + 1.
By condition (nextU), ψ1Uψ2 ∈ r(β) and ¬ψ2 ∈ r(β + 1) imply {ψ1, ψ1Uψ2} ⊆
r(β + 1).

Induction step:
• if γ = γ′ + 1, then by condition (nextU), ψ1Uψ2 ∈ r(γ′) and ¬ψ2 ∈ r(γ′ + 1)
imply {ψ1, ψ1Uψ2} ⊆ r(γ′ + 1).

• if γ is a limit ordinal, by induction hypothesis, {ψ1,¬ψ2, ψ1Uψ2} ⊆ Blim(r, γ).
By condition (limU1), {ψ1, ψ1Uψ2} ⊆ r(γ) since ψ2 6∈ r(γ).

Consequently, if α is a limit ordinal, then {ψ1,¬ψ2, ψ1Uψ2} ⊆ Blim(r, α) which
is in contradiction with the definition of F in Aφ. Similarly, if α = α′ + 1, then
ψ1Uψ2 ∈ r(α′) which is in contradiction with the definition of F .

Case b): There is a minimal ordinal γ ∈ (β, α) such that σ, γ |= ¬ψ1 ∧ ¬ψ2

and for every γ′ ∈ (β, γ), we have σ, γ′ |= ψ1 ∧ ¬ψ2. By induction hypothesis,
{¬ψ1,¬ψ2} ⊆ r(γ) and for every γ′ ∈ (β, γ), {ψ1,¬ψ2} ⊆ r(γ′). Let us show that
for every γ′ ∈ (β, γ), {ψ1, ψ1Uψ2} ⊆ r(γ′).

Base case: γ′ = β + 1.
By condition (nextU), ψ1Uψ2 ∈ r(β) and ¬ψ2 ∈ r(β + 1) imply {ψ1, ψ1Uψ2} ⊆
r(γ′).

Induction step:
• If γ′ = γ′′ + 1, then by condition (nextU), ψ1Uψ2 ∈ r(γ′′) and ¬ψ2 ∈ r(γ′′ + 1)
imply {ψ1, ψ1Uψ2} ⊆ r(γ′′ + 1).

• If γ′ is a limit ordinal, then by induction hypothesis, {ψ1,¬ψ2, ψ1Uψ2} ⊆
Blim(r, γ′). By condition (limU1), {ψ1, ψ1Uψ2} ⊆ r(γ′) since ψ2 6∈ r(γ

′).
Consequently, if γ is a limit ordinal, then {ψ1,¬ψ2, ψ1Uψ2} ⊆ Blim(r, γ) which
leads to a contradiction by condition (limU1). Indeed, by induction hypothesis,
{¬ψ1,¬ψ2} ⊆ r(γ). Similarly, if γ = γ′ + 1, then ψ1Uψ2 6∈ r(γ′) which leads to a
contradiction by condition (nextU).

Case S: ψ = ψ1Sψ2.
Let us reason ad absurdum. Suppose that {β : ψ ∈ r(β)} 6= {β : σ, β |= ψ}. Let β
be the smallest ordinal that belongs to only one of these sets. Again, we distinguish
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two cases, namely either (σ, β |= ψ and ψ 6∈ r(β)) – Case I below – or (ψ ∈ r(β) and
σ, β 6|= ψ) – Case II below.
Case I: So β > 0 and there is γ ∈ [0, β) such that σ, γ |= ψ2 and for every γ′ ∈ (γ, β),

we have σ, γ′ |= ψ1. By induction hypothesis, ψ2 ∈ r(γ) and for every γ′ ∈ (γ, β),
ψ1 ∈ r(γ′). Observe that for every γ′ ∈ (γ, β), we have σ, γ′ |= ψ and ψ ∈ r(γ′)
(β is minimal).
• If β = β′ + 1 then by condition (nextS) ψ2 6∈ r(β′) and {ψ1, ψ1Sψ2} 6⊆ r(β′).
If γ = β′, then this leads to a contradiction since ψ2 ∈ r(γ). Similarly, if
γ < β′, then ψ 6∈ r(β′) since ψ1 ∈ r(β′). Since σ, β′ |= ψ1Sψ2, this leads to a
contradiction by the minimality of β.

• If β is a limit ordinal, then by condition (limS) either ψ1 6∈ Blim(r, β) or ψ1Sψ2 6∈
Blim(r, β). By induction hypothesis, ψ1 ∈ Blim(r, β). Hence, there is β′ ∈ (γ, β)
such that ψ1Sψ2 6∈ r(β′), which is in contradiction with the minimality of β.

Case II:
Case a): For every γ ∈ [0, β), σ, β 6|= ψ2.
By induction hypothesis, for every γ ∈ [0, β), ψ2 6∈ r(γ). Moreover, for every
γ ∈ [0, β), we have σ, β 6|= ψ1Sψ2.
• If β = β′ + 1 then by condition (nextS), {ψ1, ψ1Sψ2} ⊆ r(β′) which leads to a
contradiction by minimality of β.

• If β is a limit ordinal, then {ψ1, ψ1Sψ2} ⊆ Blim(r, β) by condition (limS). Hence,
for some β′ < β, ψ1Sψ2 ∈ r(β′), which leads again to a contradiction by the
minimality of β.

• If β = 0, then we also have a contradiction since r(0) does not contain any since
formulae. Observe that in the previous case analyses with ordinals, the case “0”
has been irrelevant.

Case b): σ, β 6|= ψ and not a).
Remember that ψ ∈ r(β). There is β′ < β such that σ, β′ 6|= ψ1. Otherwise, by
induction hypothesis and by not a), we have σ, β |= ψ, a contradiction.
Case b.1: There is a maximal position γ < β such that σ, γ 6|= ψ1.
For every γ′ ∈ (γ, β), we have σ, γ 6|= ψ2, otherwise σ, β |= ψ which would lead to
a contradiction. Let us show by transfinite induction that for every γ′ ∈ (γ, β],
ψ 6∈ r(γ′).

Base case: γ′ = γ + 1.
¬ψ1,¬ψ2 ∈ r(γ) imply by condition (nextS) that ψ 6∈ r(γ′).

Induction step:
• If γ′ = γ′′ + 1, then ¬ψ2,¬ψ ∈ r(γ′′) by induction hypothesis. By condition
(nextS) ψ 6∈ r(γ′).

• If γ′ is a limit ordinal, then ¬ψ ∈ Blim(r, γ′) and by condition (limS), ψ 6∈ r(γ′).
Hence, ψ 6∈ r(β), which leads to a contradiction.

Case b.2 There is no maximal position γ < β such that σ, γ 6|= ψ1 (the most
delicate case).
Consequently, there is a unique position γ ≤ β such that for every γ′ < γ, there
is γ′ < γ′′ < γ verifying ¬ψ1 ∈ r(γ′′). This means that
• for every γ′ ∈ [γ, β], ψ1 ∈ r(γ′),
• ψ1 6∈ Blim(r, γ) and,
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• by condition (limS) ψ 6∈ r(γ).
Moreover, for every γ′ ∈ (γ, β), ¬ψ2 ∈ r(γ′) otherwise by induction hypothesis,
σ, β |= ψ, which would lead to a contradiction. Let us show by transfinite induction
that for every γ′ ∈ (γ, β], ψ 6∈ r(γ′).

Base case: γ′ = γ + 1.
¬ψ,¬ψ2 ∈ r(γ) imply by condition (nextS) ψ 6∈ r(γ′).

Induction step:
• If γ′ = γ′′ + 1, then ¬ψ2,¬ψ ∈ r(γ′′) by induction hypothesis. By condition
(nextS) ψ 6∈ r(γ′).

• If γ′ is a limit ordinal, then ¬ψ ∈ Blim(r, γ′) and by condition (limS), ψ 6∈ r(γ′).
Hence, ψ 6∈ r(β), which leads to a contradiction.

3. Short Run Properties

In this section, we establish pumping arguments that are useful to show that

• in order to check the satisfiability status of the formula φ, there is no need to consider
models of length greater than ω|φ|+2,

• simple ordinal automata cannot distinguish ordinals with identical tails (defined below
precisely with the notion of truncation).

Let A be a simple ordinal automaton and Y be a subset of its basis. Y is said to be
present in A iff either there is a limit transition of the form 〈Y, q〉 in A or Y ∈ F . Given a set
Y present in A, its weight, noted weight(Y ), is the maximal l such that Y1 ⊂ Y2 ⊂ · · · ⊂ Yl
is a sequence of present subsets in A and Y1 = Y (⊂ denotes proper subset inclusion).
Obviously, weight(Y ) ≤ card(B) + 1.

Given a path r : α→ Q in A with a limit ordinal α ≥ ω, its weight, noted weight(r), is
the maximal value in the set

{weight(Blim(r, β)) : β < α, β is a limit ordinal} ∪ {weight(Blim(r))}

When α is a successor ordinal, the maximal value is computed only from the first set of
the above union. By convention, if a path has no limit transition, then its weight is zero
(equivalently, its length is strictly less than ω + 1). Furthermore, we write all(r) to denote
the set

all(r)
def
=

⋂

β<α

r(β)

that corresponds to the set of elements from the basis that are present in all locations of
the run r. Let r, r′ be two paths of respective length α and α′. We say that r and r′ are
congruent, written r ∼ r′, iff the conditions below are meet:

(1) r(0) = r′(0).
(2) Either both α and α′ are successor ordinals and r(α− 1) = r′(α′ − 1) or both α and α′

are limit ordinals and Blim(r) = Blim(r′).
(3) all(r) = all(r′).

Let r1 be a path of length α and r2 be a path of length β such that if α is a limit
ordinal then 〈Blim(r1), r2(0)〉 ∈ δlim otherwise r1(α− 1) = r2(0). The concatenation r1 · r2
is the path r of length α + β such that for γ ∈ [0, α), r(γ) = r1(γ) and for γ ∈ [0, β),
r(α+ γ) = r2(γ). For every ordinal α, the concatenation of α-sequences of paths is defined
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similarly. The relation ∼ is a congruence for the concatenation operation on paths as stated
in details below.

Lemma 3.1.

(I): Let r · r0 · r
′ and r1 be two paths such that r0 ∼ r1. Then, r · r1 · r

′ is a path that is
congruent to r · r0 · r

′.
(II): Let r00, r

1
0, r

2
0, . . . and r

0
1, r

1
1 , r

2
1, . . . be two ω-sequences of pairwise consecutive paths

such that for i ≥ 0, ri0 ∼ ri1 and their length is a successor ordinal. If r · (r00 · r
1
0 · r

2
0 ·

. . .) · r′ is a path, then it is congruent to r · (r01 · r
1
1 · r

2
1 · . . .) · r

′.

The proof of the above lemma is by an easy verification but observe that for the proof
of (II) the third set of equalities from the definition of the congruence ∼ ensures that
r · (r00 · r

1
0 · r

2
0 · . . .) · r

′ is a path.

Lemma 3.2. Let r : α → Q be a path in A for some countable ordinal α such that if α
is a limit ordinal, then Blim(r) is present in A. Then, there is a path r′ : α′ → Q for

α′ < ωmax(1,weight(r))+1 such that r ∼ r′ and weight(r′) ≤ weight(r).

Proof. The proof is by induction on the weight of the paths. When the weight of the path
is zero, r′ = r already satisfies the condition r ∼ r′. We only treat below the cases with
paths of length some limit ordinals. The case with paths of length some successor ordinals
is similar. All the runs r′ built below satisfy that weight(r′) ≤ weight(r) for the following
reasons. Indeed, no additional limit transitions are applied when building r′ from r and
when r is of length some limit ordinal, Blim(r) = Blim(r′). Hence, below we shall not
further emphasize weight(r′) ≤ weight(r).

Base case 1: weight(r) = 1 and α = ω2.
There is n ≥ 0 such that

(1) for every a ∈ B \ all(r), there is γ ≤ ω · n such that a 6∈ r(γ),
(2) all(r≥ω·n) = Blim(r).

The first condition states that if a does not belong to all(r), then this is already witnessed
by r≤ω·n. Furthermore, in general all(r≥ω·k) ⊆ Blim(r) but the second condition above
states that for n large enough, we can obtain Blim(r) ⊆ all(r≥ω·n).

Hence, all(r≤ω·n) = all(r) and Blim(r≥ω·(n+1)) = Blim(r). Besides, Blim(r) is present in
A. Let Yi = Blim(r≤ω·i) for i ≥ n+1. By construction of n, for all i ≥ n+1, Blim(r) ⊆ Yi.
Moreover, weight(Blim(r)) = 1. Hence, for all i ≥ n + 1, Yi = Blim(r). Consequently,
r′ : ω · (n+1) → Q with r′(β) = r(β) for β < ω · (n+1) verifies r ∼ r′. In order to show that
all(r) = all(r′) it is sufficient to observe that all(r) ⊆ all(r′) since r′ contains less locations
than r and all(r′≤ω·n) = all(r).

Base case 2: weight(r) = 1 and α = ω2 × β.
The proof is by transfinite induction. The base case with β = 1 is actually the above base
case 1. Now suppose that α = ω2 × (β + 1). By induction hypothesis and by the base case
1, there are paths r′ : γ → Q and r′′ : γ′ → Q such that r′ ∼ r<ω2×β, r

′′ ∼ r≥ω2×β and

γ + γ′ < ω2. Consequently, the concatenation of r′ and r′′ provides a path satisfying the
adequate conditions.

Now suppose that α = ω2 × β where β is a limit ordinal. Since α is countable, there is
an increasing sequence (βi)i∈N of ordinals strictly smaller than β such that β0 = 0 and β =
lim βi (see e.g. [Ros82, Theorem 3.36]). Observe that for every i, βi+1 −βi < β. Hence, for
every i, by induction hypothesis, there is a path r′i : γi → Q such that r′i ∼ r[ω2×βi,ω2×βi+1)
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and γi < ω2. Consequently, r′0 · r
′
1 · r

′
2 · · · is a path of length at most ω2 congruent to r by

Lemma 3.1 (the length may be exactly ω2). By using again arguments from the base case
1, we obtain a path that satisfies the adequate conditions.

Base case 3: weight(r) = 1 and α = ω2 × β + ω × n (n ∈ N).
The existence of a path satisfying the adequate conditions is an immediate consequence of
the base case 2.

Induction case.
Case 1 : α = ωweight(r)+1.
There is n ≥ 0 such that

(1) for every a ∈ B \ all(r), there is γ ≤ ωweight(r) · n such that a 6∈ r(γ),
(2) all(r≥ωweight(r)·n) = Blim(r).

Hence, all(r≤ωweight(r)·n) = all(r) and Blim(r≥ωweight(r)·(n+1)) = Blim(r). Besides, Blim(r) is

present in A and weight(Blim(r)) ≤ weight(r). If there is a limit ordinal β ∈ [ωweight(r) ·n, α)
such that Blim(r<β) = Blim(r), then r′ : β → Q with r′(γ) = r(γ) for γ < β verifies the

required conditions. Otherwise, suppose that for every limit ordinal β ∈ [ωweight(r) ·n, α), we

have Blim(r<β) 6= Blim(r). By construction of n, for every limit ordinal β in [ωweight(r) ·n, α),
Blim(r) ⊂ Blim(r<β). By induction hypothesis, for every i > n, there is a path r′i : γi → Q

such that r[ωweight(r)×i,ωweight(r)×(i+1)) ∼ r′i and γi < ωweight(r). Consequently, r′0 · r
′
1 · r

′
2 · · · is

a path of length less than ωweight(r) that is congruent to r by Lemma 3.1.

Case 2 : α = ωweight(r)+1 × β.
The proof is by transfinite induction as in the base case 2. Indeed, suppose that α =
ωweight(r)+1 × (β + 1). There are paths r′ : γ → Q and r′′ : γ′ → Q such that r′ ∼

r<ωweight(r)+1×β, r
′′ ∼ r≥ωweight(r)+1×β and γ + γ′ < ωweight(r)+1. Consequently, the concate-

nation of r′ and r′′ provides a path satisfying the adequate conditions.
Now suppose that α = ωweight(r)+1 × β where β is a limit ordinal. Hence, there is

an increasing sequence (βi)i∈N of ordinals strictly smaller than β such that β0 = 0 and
β = lim βi (see e.g. [Ros82, Theorem 3.36]). Observe that for every i, βi+1 − βi < β.
Hence, for every i, by induction hypothesis, there is a path r′i : γi → Q such that r′i ∼

r[ωweight(r)+1×βi,ωweight(r)+1×βi+1)
and γi + 1 < ωweight(r)+1. Consequently, r′0 · r

′
1 · r

′
2 · · · is a

path of length less than ωweight(r)+1 congruent to r by Lemma 3.1 (the lenght may be equal

to ωweight(r)+1). By using the case 1 in the induction step, we can get a path that satisfies
the adequate conditions.

Case 3 : α = ωweight(r)+1 × β + ωweight(r) × nweight(r) + · · · + ω1 × n1 with nweight(r), . . . ,
n1 ∈ N.
The existence of a path satisfying the required conditions is an immediate consequence of
the case 2.

Lemma 3.2 below states a crucial property for most of complexity results established
in the sequel. Indeed, for usual ordinal automata, it is not possible to get this polynomial
bound as an exponent of ω for the length of the short paths. Actually, the exponent is
linear in the cardinal of its basis and can be logarithmic in the number of locations for
large automata. By combination of Lemma 2.3 and Lemma 3.2, we obtain the following
interesting result.

Corollary 3.3. If φ is satisfiable, then φ has an α-model with α < ω|φ|+2.
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For n ∈ N, let truncn be the function that assigns to every ordinal α > 0 an ordinal
in (0, ωn2) as follows. α can be written in the form α = ωnγ + β with β ∈ [0, ωn). Then
truncn(α) = ωn ×min(γ, 1) + β. For instance trunc2(ω

3) = ω2, trunc2(ω
2 + ω) = ω2 + ω

and trunc2(ω
2 × 2) = ω2. The ordinals α, β are n-equivalent, written α ≈n β,

def
⇔

truncn(α) = truncn(β).

Lemma 3.4. Let A be a simple ordinal automaton.

(I): If r is a path of length ωweight(r)+1 × α for some countable ordinal α > 0, then there

is a path r′ of length ωweight(r)+1 such that r ∼ r′ and weight(r′) ≤ weight(r).

(II): If a path r has length ωweight(r)+1 and weight(r) ≥ 1, then for every ordinal α > 0,
there is a path r′ of length ωweight(r)+1×α such that r ∼ r′ and weight(r′) ≤ weight(r).

(III): If r is a path of length some countable ordinal α and β ≈card(B)+2 α, then there is a

path r′ of length β such that r ∼ r′.

Only in (I), the ordinal α is supposed to be countable.

Proof. (III) is a direct consequence of (I) and (II). Indeed, suppose α = ωcard(B)+2γ0 + γ1
and β = ωcard(B)+2γ′0 + γ′1 with γ1 = γ′1 ∈ [0, ωcard(B)+2), and γ0 ≥ 1 iff γ′0 ≥ 1. If
γ0 = γ′0 = 0, then α = β and we are done. Otherwise (weight(r) ≥ 1), let K > 0 such that
K + weight(r) = card(B) + 2. Since weight(r) ≤ card(B) + 1 such a value K exists and
therefore (I) can be applied. There is a run r′ such that r′ ∼ r≤ωcard(B)+2γ0

and r′ is of length

ωweight(r)+1 by (I). If weight(r′) 6= weight(r), then we apply again (I) on r′ in order to obtain

a run r′′ such that r′′ ∼ r′, r′′ is of length ωweight(r′)+1. If again weight(r′′) 6= weight(r′),
we cannot repeat this process more than card(B)+ 1 times. Eventually, we obtain a run r0
such that r0 ∼ r≤ωcard(B)+2γ0

and r0 is of length ωweight(r0)+1. By (II), there is a run r1 such

that r1 ∼ r0 and r1 is of length ωcard(B)+2γ′0 by (II). Consequently, r1 · r≥ωcard(B)+2γ0
∼ r

and r1 · r≥ωcard(B)+2γ0
is of length β.

(I): The proof is by transfinite induction on α. Again, all the runs r′ built below sat-
isfy that weight(r′) ≤ weight(r) for the following reasons. Indeed, no additional
limit transitions are applied when building r′ from r and when r is of length some
limit ordinal, Blim(r) = Blim(r′). Hence, below we shall not further emphasize
weight(r′) ≤ weight(r). We behave similarly for the proof of (II).
Observe that the run r cannot be of length ω. In the sequel, we assume that
weight(r) ≥ 1. The base case with α = 1 is immediate. Suppose that the induction
assertion holds true for α and let us show that it holds true for α+1. By Lemma 3.2,
there is a run r′ of length strictly less than ωweight(r)+1 such that r′ ∼ r<ωweight(r)+1×α.

Hence r′ ·r≥ωweight(r)+1×α ∼ r and its length is exactly ωweight(r)+1. Now suppose that
α is a limit ordinal and for every smaller ordinal, the property holds true. Let r
be a run of length ωweight(r)+1 × α. There exists an increasing sequence (αi)i∈N
with α0 = 0 and α = lim αi (see e.g. [Ros82, Theorem 3.36]). For i ≥ 0, let
α′
i be ωweight(r)+1αi + ωweight(r). Observe that α′

i − ωweight(r)+1αi = ωweight(r) and

ωweight(r)+1αi < α′
i < ωweight(r)+1αi+1. For i ≥ 0, let βi be ω

weight(r)+1×αi. For every
i ≥ 0, let ri be the path r[α′

i,βi+1). By Lemma 3.2, for every j ≥ 0, there is a path r′j
congruent to rj of length strictly less than ωweight(r)+1 and weight(r′j) ≤ weight(rj).
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Let r′ be the run r[β0,α
′
0)
r′0r[β1,α

′
1)
r′1r[β2,α2)r

′
2 . . .. The path r′ is exactly of length

ωweight(r)+1 and it is congruent to r.
The proof is by double induction on the weight and on α.

Base case: weight(r) = 1.
Let f : [N]2 → Q × P(Q) × Q be the function whose domain is made of unordered
pairs {i, j} of natural numbers (say, i < j) such that

f({i, j})
def
= 〈r(ω × i), Blim(r[ω×i,ω×j)), r(ω × j)〉

By Ramsey’s Theorem (see e.g. [Ram30, Ros82]), there is an infinite set Y ⊆ N

such that f restricted to [Y ]2 is constant. Hence, there is a value 〈q⋆, A, q⋆〉 and
an infinite sequence 0 ≤ i0 < i1 < i2 < · · · such that for every k ≥ 0, we have
f({ik, ik+1}) = 〈q⋆, A, q⋆〉. Observe that A = Blim(r) and for every k, we also
have Blim(r) ⊆ Blim(r[ω×ik ,ω×ik+1)). Since weight(r) = 1, we get that Blim(r) =

Blim(r[ω×ik,ω×ik+1)).
Let us come back to the proof by induction. The base case with α = 1 is immediate.

Suppose that the property holds true for α and let us show that it holds true for
α + 1. By induction hypothesis, there is a path r′ congruent to r of length ω2 × α.
Since r≥ω×i0 is also a path of length ω2, r′ · r≥ω×i0 is a path (Blim(r<ω×i0) = A), it
is congruent to r and its length is precisely (ω2 × α) + ω2.

Now suppose that α is a limit ordinal and for every smaller ordinal, the property
holds true. There exists a strictly increasing sequence (αi)i∈N with α0 = 0 and
α = lim αi. By the induction hypothesis there is a run rj of length ω

2× (αj+1−αj)
congruent to r≥ω×ij (r≥ω×ij is also of length ω2). Then, r0 · r1 · r2 · · · is congruent

to r and it is of length ω2 × α. Observe that Blim(r0 · r1 · r2 · · · ) is precisely A that
is equal to Blim(r), as stated above.

Induction step:: weight(r) > 1 and the property holds for all the paths of weight
strictly less than weight(r).
The base case with α = 1 is immediate.
• Suppose that the property holds true for α and let us show that it holds true for
α+ 1. As in the base case, we define a coloring function f such that we color the
interval with endpoints at positions of the form ωweight(r) × n. Similarly to the
base case, there is a triple 〈q⋆, A, q⋆〉 and a sequence 0 ≤ i0 < i1 < i2 < · · · such

that for every k ≥ 0, f({ik, ik+1}) = 〈q⋆, A, q⋆〉. If there is β < ωweight(r)+1 such
that Blim(r<β) = Blim(r) then by induction hypothesis, there is r′ ∼ r such that

r′ is of length ωweight(r)+1 × α and Blim(r′) = Blim(r<β). Hence r
′ · r≥β is a path,

r′·r≥β ∼ r and its length is ωweight(r)+1×(α+1). If there is no such an ordinal β, for

every limit ordinal β ∈ [ωweight(r)×(i1−1), ωweight(r)×i1), Blim(r) ⊂ Blim(rβ) since
A ⊂ Blim(r<β). Hence W = weight(r[ωweight(r)×(i1−1),ωweight(r)×i1)

) < weight(r). By

the induction hypothesis there is a run r′ ∼ r[ωweight(r)×(i1−1),ωweight(r)×i1)
of length

ωW+1 × (ω(weight(r)−W ) × α), that is of length ωweight(r)+1 × α by associativity of
multiplication. Hence r<weight(r)×(i1−1) · r

′ · r≥ωweight(r)×i1
∼ r and it is of length

ωweight(r)+1 × (α+ 1).
• Now suppose that α is a limit ordinal and for every smaller ordinal, the property
holds true. There exists a strictly increasing sequence (αi)i∈N with α0 = 0 and
α = lim αi. As above, a triple of the form 〈q⋆, A, q⋆〉 and an ω-sequence i0 <
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i1 < i2 < . . . can be defined. Observe that for every k ≥ 1, for every limit ordinal
β ∈ [ωweight(r)×(ik−1), ωweight(r)×ik), Blim(r) ⊆ Blim(r, β) since A = Blim(r) and
A ⊆ Blim(r, β). Hence the weight of r[ωweight(r)×(ik−1),ωweight(r)×ik)

, notedWk, is less

or equal to weight(r). By induction hypothesis, for every k ≥ 1, there is a path rk ∼

r[ωweight(r)×(ik−1),ωweight(r)×ik)
of length ωWk+1× (ω(weight(r)−Wk)× (αk+1−αk), that

is of length ωweight(r)+1(αk+1 − αk). Hence r′ = r1r2r3 . . . is path, it is congruent

to r and of length ωweight(r)+1 × α. It is worth observing that Blim(r′) = A.

Because of the translation from formulae to automata, we can also establish a pumping
lemma at the level of formulae.

Lemma 3.5.

(I): Let A be a simple ordinal automaton with acceptance conditions and α, β be countable
ordinals such that α ≈card(B)+2 β. Then, A has an accepting run of length α iff A
has an accepting run of length β.

(II): Let φ be a formula in LTL(U,S) and α, β be countable ordinals such that α ≈|φ|+2 β.
Then φ has an α-model iff φ has a β-model.

Proof.

(I): Direct consequence of Lemma 3.2 and Lemma 3.4 since accepting runs can be viewed
as paths.

(II): By Lemma 2.3, φ has an α-model iff Aφ has an accepting run r of length α. Since
the cardinal of the basis of Aφ is precisely |φ|, by (I) we get that Aφ has an accepting
run r of length α iff Aφ has an accepting run r of length β. Equivalently, φ has a
β-model.

4. Checking nonemptiness of simple ordinal automata

In this section, we provide algorithms to check whether a simple ordinal automaton admits
accepting runs. The first one runs in exponential time. Our optimal algorithm runs in
polynomial space in the size of the basis (see Section 4.2).

4.1. An exponential-time algorithm for checking nonemptiness. Let A be a simple
ordinal automaton 〈B,Q, I, F,F , δnext, δlim〉. We provide below an algorithm to check given
q, q′ ∈ Q and n ∈ N whether there is path r : α + 1 → Q such that r(0) = q, r(α) = q′

and α < ωn. Given an (α+ 1)-path we write abs(r) to denote the triple 〈r(0), all(r), r(α)〉.
We define a family of relations containing the triples of the form abs(r). Each relation Ri

below is therefore a subset of Q× P(B)×Q.

• R0 = {〈q, q ∩ q′, q′〉 : 〈q, q′〉 ∈ δnext},
• For i ∈ N,

R′
i = {〈q0,

m
⋂

j=0

Aj , qm+1〉 : ∃ q0, . . . , qm+1, A0, . . . , Am s.t.

m
∧

j=0

〈qj, Aj , qj+1〉 ∈ Ri}

• For i ∈ N, Ri+1 is defined from R′
i as follows: 〈q,A, q′〉 ∈ Ri+1 iff one of the conditions

holds true:
(1.): 〈q,A, q′〉 ∈ R′

i,
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(2.): there exist 〈q,A′, q′′〉 ∈ R′
i (2.1), 〈q

′′, Y, q′′〉 ∈ R′
i and a limit transition 〈Y, q′〉 ∈ δlim

(2.2) such that A = A′ ∩ Y ∩ q′.

The above numbering will be reused in Figure 2.
Let us first observe a few facts, whose proofs are by an easy verification.

(1) Whenever 〈q,A, q′〉 ∈ Ri, A ⊆ q ∩ q′.

(2) Because Ri ⊆ Ri+1 for all i, for some N ≤ 23×card(B) + 1, RN+1 = RN . The bound

23×card(B) + 1 takes simply into account that Q ⊆ P(B).

In the sequel, for n ≥ 0 and for 〈q,A, q′〉 ∈ Q×P(B)×Q, we establish the equivalence
of the propositions below:

• there is α+ 1 < ωn+1 and an (α+ 1)-path r such that abs(r) = 〈q,A, q′〉,
• 〈q,A, q′〉 ∈ R′

n.

Lemma 4.1. If 〈q,A, q′〉 ∈ Rn, then there exist α < ωn and an (α + 1)-path such that
abs(r) = 〈q,A, q′〉.

Proof. The proof is by induction on n. For the base n = 0, the proof is by an easy
verification. In the induction step, suppose that 〈q,A, q′〉 ∈ Rn+1. First suppose that
〈q,A, q′〉 ∈ R′

n, that is there are q0, . . . , qm+1, A0, . . . , Am such that
∧m

j=0〈qj , Aj , qj+1〉 ∈ Rn,

A =
⋂m

j=0Aj , q0 = q and qm+1 = q′. By induction hypothesis, for i ∈ [0,m], there is a path

ri : αi + 1 → Q such that abs(ri) = 〈qi, Ai, qi+1〉 and αi < ωn. Hence, r0 · · · · · rm is a path
of the desired form of length strictly less than ωn.

If 〈q,A, q′〉 6∈ R′
n, then necessarily, by definition of Rn+1, there exist 〈Y, q′〉 ∈ δlim,

〈q,A′, q′′〉 ∈ R′
n and 〈q′′, Y, q′′〉 ∈ R′

n such that A = A′ ∩ Y ∩ q′.
Hence, by definition of R′

n and by induction hypothesis there is a path r : α + 1 → Q

of length strictly less than ωn between q and q′′. Similarly, there is a path r′ : β + 1 → Q

of length strictly less than ωn between q′′ and q′′. Observe that r′′ = r · (r′)ωq′ is a path of
length strictly less than ωn+1, Blim(r′′) = Y and abs(r′′) = 〈q,A, q′〉.

Consequently, if 〈q,A, q′〉 ∈ R′
n, then there is α+ 1 < ωn+1 and an (α+ 1)-path r such

that abs(r) = 〈q,A, q′〉. A converse result can also be established.

Lemma 4.2. Let r : α+ 1 → Q be a path such that α < ωn. Then abs(r) ∈ R′
n.

Proof. The proof is by induction on n. The base case n = 0 is immediate. In the in-
duction step, let r be a path of length α < ωn+1. If α < ωn, by induction hypothesis
〈r(0), all(r), r(α)〉 ∈ R′

n and therefore 〈r(0), all(r), r(α)〉 ∈ Rn+1 since R
′
n ⊆ Rn+1. Now sup-

pose that α = ωn×m+β with β < ωn andm > 0. In order to show that 〈r(0), all(r), r(α)〉 ∈
R′

n+1 it is sufficient to consider the case α = ωn. Indeed, R′
n+1 is closed under composi-

tion, i.e. if 〈q0, A0, q
′
0〉 ∈ R′

n+1 and 〈q′0, A1, q
′
1〉 ∈ R′

n+1, then 〈q0, A0 ∩ A1, q
′
1〉 ∈ R′

n+1.
So, suppose that r is of length ωn + 1. By induction hypothesis, for every 0 ≤ i < i′,
〈r(ωn−1 × i), Ai,i′ , r(ω

n−1 × i′)〉 ∈ R′
n for some Ai,i′ . By Ramsey’s Theorem, there are

0 < i0 < i1 < . . . such that 〈r(ωn−1 × ik), Aik ,ik+1
, r(ωn−1 × ik+1)〉 is the same for all k ≥ 0.

Let j = i0 and j
′ = i1. By induction hypothesis, 〈r(ωn−1×j), Aj,j′ , r(ω

n−1×j′)〉 ∈ R′
n since

the length of r[ωn−1×j,ωn−1×j′] is strictly less than ωn. Moreover, we have Aj,j′ = Blim(r, ωn).

So, there exist 〈r(0), A′, q′′〉 ∈ R′
n (A′ = A0,j, q

′′ = r(ωn−1×j)), 〈q′′, Y, q′′〉 ∈ R′
n (Y = Aj,j′)

and a limit transition 〈Y, r(ωn)〉 ∈ δlim such that A = A′ ∩ Y ∩ r(ωn). Consequently,
〈r(0), all(r), r(α)〉 ∈ R′

n+1.
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We provide below a first complexity result.

Lemma 4.3. The nonemptiness problem for simple ordinal automata with acceptance con-
ditions can be checked in exponential time in card(B).

Proof. Let A be of the form 〈B,Q, I, F,F , δnext, δlim〉. A has an accepting run iff either
(A) there are q0 ∈ I, qf ∈ F and A ⊆ B such that 〈q0, A, qf 〉 ∈ R′

n for some n or (B) there
are q0 ∈ I, and a run r from q0 such that Blim(r) ∈ F . (A) deals with accepting runs of
length some successor ordinal, whereas (B) deals with accepting runs of length some limit
ordinal.

In order to check (A), it is sufficient to test for 〈q0, A, qf 〉 ∈ I × P(B) × F whether

〈q0, A, qf 〉 ∈ R′
card(B)+3 ⊆ Rcard(B)+4. Since card(Q) is in O(2card(B)), computing Rcard(B)+4

takes card(B)+4 steps that requires polynomial time in |A| and exponential time in card(B),
we obtain the desired result. Observe that we can take advantage of the fact that computing
the transitive closure of a relation and the maximal strongly connected components can be
done in polynomial time in the size of the relations.

By Ramsey’s theorem, (B) is equivalent to the following condition: there are q ∈ Q,
A ⊆ B, A′ ∈ F and runs r1 and r2 such that abs(r1) = 〈q0, A, q〉 and abs(r2) = 〈q,A′, q〉.

Hence. in order to check these, it is enough to check whether there are q0 ∈ I, q ∈ Q

and A ⊆ B such that 〈q0, A, q〉 ∈ R′
card(B)+3, 〈q,A

′, q〉 ∈ R′
card(B)+3 and A′ ∈ F . This can

be done in exponential time as for (A).

As a corollary of Lemma 4.3, satisfiability for LTL(U,S) is in exptime. Moreover, this
can be improved as shown in the proof of Theorem 5.1 presented in Section 5.

4.2. A polynomial-space algorithm. We improve below the bound in Lemma 4.3 by
taking advantage that the recursive depth is linear and only paths of at most exponential
length need to be computed.

Theorem 4.4. The nonemptiness problem for simple ordinal automata can be checked in
polynomial space in card(B).

Proof. By Lemma 4.1 and Lemma 4.2 and by the fact that for all n ≥ 0, we have Rn ⊆
Rcard(B)+4, we obtain that A has an accepting run iff (A) there are q0 ∈ I, qf ∈ F and
A ⊆ B such that 〈q0, A, qf 〉 ∈ Rcard(B)+3 or (B) there are q0 ∈ I, q ∈ Q and A′ ⊆ B such
that 〈q0, A

′, q〉 ∈ Rcard(B)+4, 〈q,A
′, q〉 ∈ Rcard(B)+4 and A′ ∈ F . B denotes the basis of A.

The function PATH defined in Figure 2 checks recursively whether a triple belongs
to RN . Typically, the specification is that there exists an accepting computation for
PATH(A, 〈q,A, q′〉, N) iff 〈q,A, q′〉 ∈ RN for the ordinal automaton A. It takes into ac-
count that the number of potential triples in RN is bounded. Observe that the algorithm
is nondeterministic and any guess that breaks some condition somewhere aborts the com-
putation.

In order to check (A), the non-deterministic algorithm guesses q0 ∈ I, qf ∈ F and
A ⊆ B (encoded in polynomial space in O(card(B)) and test whether

PATH(A, 〈q0, A, qf 〉, card(B) + 4)

returns true. Condition (B) admits a similar treatment. The non-deterministic algorithm
PATH defined below works in polynomial space in card(B) assuming that the last argument
is polynomial in card(B) which is the case with card(B) + 4.
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PATH(A, 〈q,A, q′〉, N)

• If N = 0 then (if (either A 6= q ∩ q′ or 〈q, q′〉 6∈ δnext) then abort else return true);
• If N > 0 then go non-deterministically to 1. or 2.

(1.): Guess on-the-fly a sequence

〈q0, A0, q1〉, 〈q1, A1, q2〉, . . . , 〈qm, Am, qm+1〉

such that
– m < 23×card(B)+1 + 1,
– for 0 ≤ i ≤ m, PATH(A, 〈qi, Ai, qi+1〉, N − 1) returns true,
– A =

⋂

j Aj

– q = q0, q
′ = qm+1;

(2.): We guess here two long sequences:
(2.1): Guess on-the-fly a sequence

〈q0, A0, q1〉, 〈q1, A1, q2〉, . . . , 〈qm, Am, qm+1〉

such that
– m < 23×card(B)+1 + 1,
– for 0 ≤ i ≤ m, PATH(A, 〈qi, Ai, qi+1〉, N − 1) returns true,
– A′ =

⋂

j Aj ;
– q0 = q;

(2.2): Guess a limit transition 〈Y, q′〉 ∈ δlim and on-the-fly a sequence

〈q′0, A
′
0, q

′
1〉, 〈q

′
1, A

′
1, q

′
2〉, . . . , 〈q

′
m, A

′
m′ , q′m′+1〉

such that
– m′ < 23×card(B)+1,
– for 0 ≤ i ≤ m′, PATH(A, 〈q′i, A

′
i, q

′
i+1〉, N − 1) returns true,

– A = (A′ ∩ q′m′+1) ∩
⋂

j A
′
j , Y =

⋂

j A
′
j ,

– q′0 = qm+1;
• Return true.

Figure 2: Algorithm PATH

In (1.), guessing on-the-fly a long sequence means that only two consecutive triples are kept

in memory at any time. We introduce a counter that will guarantee that m < 23×card(B)+1

and it requires only space in O(card(B)). Moreover, in order to check A =
⋂

j Aj we
need two auxiliary variables that bookkeep the Aj computed so far. Similar techniques are
used in (2.) to guarantee that this non-deterministic algorithm requires only polynomial
space in O(card(B) +N) (we only need more variables and steps). It is straightforward to
show that PATH(A, 〈q,A, q′〉, N) has a computation that returns true (all the guesses were
correct) iff 〈q,A, q′〉 ∈ RN . Finally, by using Savitch Theorem [Sav70], we can conclude
that nonemptiness can be checked in deterministic polynomial space in card(B).

Observe that the algorithm in the proof of Theorem 4.4 runs in space O(card(B) ×
(card(B)+ log (card(Q))+ log (card(δlim))+ log (card(δnext))). Indeed, the recursive depth
is in O(card(B)). This is certainly sufficient to get forthcoming results about the complexity
of LTL(U,S). Nevertheless, the exact complexity characterization of the nonemptiness
problem is open. It seems unlikely that the problem can be solved in nlogspace.
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5. Complexity of Satisfiability Problems

We establish new complexity results for problems related to LTL(U,S) satisfiability which
follow from the intermediate results we have established so far.

5.1. Complexity of LTL(U,S). Here is the main result of the paper.

Theorem 5.1. The satisfiability problem for LTL(U,S) over the class of ordinals is pspace-
complete.

Proof. By Theorem 1.2(II), a formula is satisfiable iff it is satisfiable on some model of
countable length. By Lemma 2.3, given a formula φ in LTL(U,S), there is an automaton
Aφ whose accepting runs correspond exactly to models of φ. In order to check nonemptiness
of Aφ, we do not build it explicitly (as usual) but we run the algorithm from the proof of
Theorem 4.4 and we compute the locations, and transition relations of Aφ on demand.
Hence, we obtain a polynomial space non-deterministic algorithm since the cardinality of
the basis of Aφ is in O(|φ|) and checking whether a subset of B is a location of Aφ or
〈q, q′〉 ∈ δnext or 〈Y, q〉 ∈ δlim can be done in polynomial space in O(|φ|). Again by Savitch
Theorem [Sav70], we get that the satisfiability problem for LTL(U,S) is in pspace. The
pspace lower bound can be easily shown inherited from LTL.

Our procedure to show the pspace upper bound is not optimal and it is subject to
many refinements but it is sufficient for our needs. For instance, it is possible to have as a
base set for Aφ the subset of sub(φ) made of until or since subformulae and propositional
variables. Indeed, the implicit presence of other subformulae can be deduced thanks to
maximal consistency. This refinement possibly decreases the length of the small models.

Due to Kamp’s Theorem [Kam68], we get the following corollary.

Corollary 5.2. Let LTL(U,S,O1, . . . ,Ok) be an extension of LTL(U,S) with k first-order
definable temporal operators.

Then the satisfiability problem for the logic LTL(U,S,O1, . . . ,Ok) over the class of or-
dinals is in pspace.

Indeed, every formula Oi(p1, . . . , pni
) encoded as a DAG can be translated into an equiv-

alent formula in LTL(U,S) encoded as a DAG over the propositional variables p1, . . . , pni
.

Since O1, . . . ,Ok and their definition in LTL(U,S) are constants of LTL(U,S,O1, . . . ,Ok),
we obtain a translation in polynomial-time (with our definition for the size of formulae).

5.2. A family of satisfiability problems. The satisfiability problem for LTL(U,S) asks
for the existence of a model for a given formula. A natural variant of this problem consists
in fixing the length of the models in advance as for LTL. The satisfiability problem for
LTL(U,S) over α-models, noted SAT(α,LTL(U,S)), is defined as follows:

input:: a formula φ in LTL(U,S);
question:: Is φ satisfiable over an α-model?

In this subsection we prove that SAT(α,LTL(U,S)) is in pspace for every countable ordinal
α. First we consider the case of ordinals strictly less than ωω. Let us establish that for every
α < ωω there is a formula defα in LTL(U,S) with the truth constant ⊤ (no propositional
variable) such that for every β-model σ, we have σ, 0 |= defα iff β = α.
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Lemma 5.3. Given an ordinal 0 < α = ωk1ak1 + · · ·ωkmakm < ωω with k1 > . . . > km ≥ 0
and ak1 , . . . akm ∈ N\{0}, there is a formula defα in LTL(U,S) of linear size in

∑

i(ki×aki)
such that for any model σ, we have σ, 0 |= defα iff σ is of length α.

Proof. We define a family (ϕi)i≥0 such that for all α-models σ and β < α, we have σ, β |= ϕi

iff β is a multiple of ωi. We set ϕ0 = ⊤ and by induction ϕi+1 = ϕi ∧ ¬(¬ϕiSϕi). Observe
that |ϕi| is polynomial in i since it is defined as the cardinality of sub(ϕi). Now let us define
defα as t(α) defined recursively below:

• t(1) = ¬F+⊤, t(n) = Xt(n− 1) for n > 1,
• t(ωk1ak1 + · · ·+ωkmakm) = ¬ϕk1U(ϕk1 ∧ t(ω

k1(ak1 − 1) + · · ·+ωkmakm)) with k1 > 0 and
(ak1 ≥ 2 or m > 1),

• t(ω) = G+X−1⊤ ∧ F+⊤ ∧ G+X⊤,
• t(ωk1) = G+¬ϕk1 ∧ GF+ϕk1−1 with k1 > 1.

The size of defα is in O(
∑

i(ki × aki)).

We are now in position to state the following result.

Corollary 5.4. For every α < ωω, the problem SAT(α,LTL(U,S)) is in pspace.

Proof. φ has a α-model iff ψ = φ ∧ defα is satisfiable over the class of ordinals. Thanks to
Lemma 5.3 and Theorem 5.1, we obtain the pspace upper bound.

Now we consider the case of a countable ordinal α ≥ ωω. Let α′ be the unique ordinal
strictly less than ωω such that α = ωω × γ + α′ for some ordinal γ. Note that for every
k, trunck(α) = trunck(ω

k + α′) < ωω. By Lemma 3.5(II), φ has an α-model iff φ has a

α|φ|-model with α|φ| = trunc|φ|+2(α) = trunc|φ|+2(ω
|φ|+2 + α′). Hence, φ has an α-model

iff φ ∧ defα|φ|
is satisfiable (over the class of countable ordinals). Since the size of defα|φ|

is
polynomial in the size of φ, we derive from Theorem 5.1 the following result.

Corollary 5.5. For every countable α ≥ ωω, the problem SAT(α,LTL(U,S)) is in pspace.

Corollaries 5.4, 5.5 and the arguments similar to the arguments in the proof of Corollary
5.2 imply the result below.

Theorem 5.6. The satisfiability problem for LTL(O1, . . . ,Ok) restricted to α-models is in
pspace, for every finite set {O1, . . . ,Ok} of first-order definable temporal operators and for
every countable ordinal α.

Observe that α finite implies SAT(α,LTL(O1, . . . ,Ok)) is np-complete, otherwise pspace-
hardness for SAT(α,LTL(U,S)) follows from pspace-completeness of SAT(ω,LTL(U,S)).

5.3. Uniform satisfiability. Büchi (see, e.g., [BS73]) has shown that there is a finite
amount of data concerning any countable ordinal that determines its monadic theory.

Definition 5.7 (Code of an ordinal). Let α be a countable ordinal and let m be in [1, ω].

(1) Write α = ωmα′ + ζ with ζ < ωm (this can be done in a unique way), and let

pm(α) :=

{

−2 if α′ = 0
−1 if 0 < α′ < ω1

.

(2) If ζ 6= 0, write ζ =
∑

i≤n ω
n−i · an−i where ai ∈ ω for i ≤ n and an 6= 0 (this can be

done in a unique way), and let tm(α) := (an, . . . , a0). If ζ = 0, let tm(α) = −3.
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(3) The m-code of α is the pair (pm(α), tm(α)).

The following is implicit in [BS73].

Theorem 5.8 (Code Theorem). There is an algorithm that, given a monadic second-order
sentence φ and the ω-code of a countable ordinal α, determines whether 〈α,<〉 |= φ.

Lemma 3.5 can be rephrased as “the (|φ|+2)-code of an ordinal α determines whether
φ has a model of length α”.

Let C = (b, an, . . . a0) be an m-code. Its size is defined as n + a0 + a1 + · · · + an. It
is clear that for m1 < m2 the m2-code of an ordinal determines its m1-code and there
is a linear-time algorithm, that given m2-code of an ordinal and m1 < m2 computes the
m1-code of the ordinal.

The arguments used in the proof of Corollary 5.5 show the following theorem.

Theorem 5.9 (Uniform Satisfiability).

(I): There is a polynomial-space algorithm that, given an LTL(U,S) formula φ and the
ω-code of a countable ordinal α, determines whether φ has an α-model.

(II): There is a polynomial-space algorithm that, given an LTL(U,S) formula φ and the
(|φ|+ 2)-code of a countable ordinal α, determines whether φ has an α-model.

6. Related Work

In this section, we compare our results with those from the literature related to satisfiability.
It is worth noting that an axiomatization of LTL(U,S) over ordinals can be found in [Ven93].
Nevertheless, the concern in this above-mentioned paper is quite different from ours.

6.1. Comparison with Rohde’s thesis. In [Roh97], it is shown that an uniform satisfia-
bility problem for temporal logic with until (and without since) can be solved in exponential
time (flows of time are countable ordinals). The inputs of this problem are a formula in
LTL(U) and the representation of a countable ordinal. The satisfiability problem is also
shown in exptime. In order to obtain this upper bound, formulae are shown equivalent
to alternating automata and a reduction from alternating automata into a specific subclass
of non-deterministic automata is given. Finally, a procedure for testing nonemptiness is
provided. Here are the similarities between [Roh97] and our results.

(1) We also follow an automata-based approach and the class of non-deterministic automata
in [Roh97] and ours have a structured set of locations and limit transitions use elements
that are true from some position.

(2) Existence of α-paths in the automata depends on some truncation of α.
(3) The logical decision problems can be solved in exponential time.

However, our work improves some results from [Roh97].

(1) Our temporal logic includes the until and since operators (instead of until only) and it
is therefore as expressive as first-order logic.

(2) We establish a tight pspace upper bound (instead of exptime) thanks to the intro-
duction of simple ordinal automata.

(3) Our proofs are shorter and more transparent (instead of the lengthy developments found
in [Roh97]).
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Consequently, the developments from [Roh97] and ours follow the same approach with
different definitions for automata, different intermediate lemmas and distinct final com-
plexity bounds. On the other hand, the structure of the whole proof to obtain the main
complexity bounds is similar.

6.2. LTL over other classes of linear orderings. Even though the results for linear-
time temporal logics from [Rey03, Rey10b] involve distinct models, our automata-based
approach has similarities with these works that uses a different proof method, namely
mosaics. Indeed, equivalence classes of the relation ∼ between runs of length a successor
ordinal roughly correspond to mosaics from [Rey03]. We recall the main results below.

Theorem 6.1.

(I): [Rey10b] The satisfiability problem for the temporal logic with until and since over
the reals is pspace-complete.

(II): [Rey03] The satisfiability problem for LTL(U) over the class of all linear orders is
pspace-complete.

The proofs in [Rey03, Rey10b] are much more involved than our proofs since the orders are
more complex than the class of ordinals. Moreover, a recent work [Cri09] has established
that LTL(U,S) over the class of linear orderings has an elementary complexity by using
transducers as done in [Mic84] for standard LTL. More precisely, satisfiability for LTL(U,S)
augmented with future and past Stavi operators is in 2expspace [Cri09]. Nevertheless,
complexity of LTL(U,S) over the class of linear orderings has been recently solved: for any
temporal logic with a finite set of modalities definable in the existential fragment of second-
order logic has a pspace satisfiability problem over the class of linear orderings [Rab10a,
Rab10b] (see also [Rey10a]). Moreover, observe that LTL(U,S) over the reals has been
recently shown in pspace in [Rey10a], which allows us to obtain in a different way that
LTL(U,S) over the countable ordinals is in pspace (see the full arguments in [Rab10a,
Section 13]).

6.3. Quantitative temporal operators. In this section, we show that the main re-
sults from [DN07] are subsumed by the current paper. We also solve an open problem
from [Cac06, DN07]. For every fixed countable ordinal α ≤ ω, let us introduce the logic
LTL(Oα) where the set of temporal operators Oα is defined as follows: {Xβ : β < ωα}∪{Uβ :
β ≤ ωα}. The models of LTL(Oα) as those of LTL(U,S) and the formulae of LTL(Oα) are
precisely defined by:

φ ::= p | ¬φ | φ1 ∧ φ2 | X
βφ | φ1U

βφ2.

The satisfaction relation is inductively defined below where σ is a model for LTL(Oα) (we
omit the obvious clauses):

• σ, β |= Xβ′
φ iff β + β′ is a position of σ and σ, β + β′ |= φ,

• σ, β |= φ1U
β′
φ2 iff there is γ ∈ (0, β′) such that β + γ is a position of σ, we have

σ, β + γ |= φ2 and for every γ′ ∈ (0, γ), we have σ, β + γ′ |= φ1.

The satisfiability problem for LTL(Oα) consists in determining, given a formula φ, whether
there is a model σ such that σ, 0 |= φ. The main results of [Cac06, DN07] are the following:



COMPLEXITY OF LTL OVER ORDINALS 23

(1) For every k ∈ N \ {0}, the satisfiability problem for LTL(Ok) restricted to models
of length ωk is pspace-complete when the natural numbers occurring in formulae are
encoded in unary. With binary representation, it becomes expspace-hard (mainly
because a temporal operator X2n is helpful to specify concisely the cell contents of
exponential-space Turing machines).

(2) LTL(Oω) restricted to models of length ωω is decidable.

Observe that LTL(Ok) cannot express the temporal operator U over the class of countable
ordinals but it can do it on models of length ωk. Hence, each logic LTL(Ok) is less expressive
than LTL(U,S).

Moreover, it is easy to show that for every α ≤ ω, the logic LTL(Oα) is expressively
equivalent (over the class of countable ordinals) to its sublogic over the following set O′

α of
temporal operators:

O′
α = {Xωi

: ωi < ωα, i ∈ N} ∪ {Uωβ

: ωβ ≤ ωα, β ≤ ω}.

This set is finite when α is finite. Moreover, there is a linear-time (and logarithmic space)
meaning preserving translation from LTL(Oα) into LTL(O′

α).
Let us translate φ in LTL(O′

ω) into a formula t(φ) in LTL(U,S) homomorphically for
the Boolean operators and such that the propositional variables remain unchanged. Here
are the remaining clauses of translation:

• t(ψ1U
ωi

ψ2) = (¬ϕi ∧ t(ψ1))U(¬ϕi ∧ t(ψ2)), t(ψ1U
ωω

ψ2) = t(ψ1)Ut(ψ2),

• t(Xωi
ψ1) = ¬ϕiU(ϕi ∧ t(ψ1)).

The formula ϕi is defined in the proof of Lemma 5.3. The following result is easy to show.

Lemma 6.2.

(I): Let φ be in LTL(O′
ω \ {Uωω

}). t(φ) is equivalent to φ over the class of countable
ordinals, i.e. for all α-models σ and β < α, we have σ, β |= φ iff σ, β |= t(φ).

(II): Let φ be in LTL(O′
ω). For all ωω-models σ and β < ωω, we have σ, β |= φ iff

σ, β |= t(φ). Moreover, |t(φ)| is linear in |φ|.

(I) is essentially based on the properties of formulae ϕi and on the exclusion of Uωω

. (II)
simply takes advantage of the fact that for the ωω-models, U and Uωω

are obviously equiv-
alent.

We obtain alternative proofs for known results and we get new results.

Theorem 6.3. For every k ∈ N \ {0},

(I): the satisfiability problem for LTL(Ok) over ωk-models is in pspace with unary en-
coding of natural numbers,

(II): the satisfiability problem for LTL(O′
k) restricted to ωk-models is pspace-complete,

(III): for every countable infinite ordinal α, the satisfiability problem for LTL(O′
k) restricted

to α-models is pspace-complete.

(III) is an instance of Theorem 5.6. (II) is an instance of (III) (with unary encoding of
natural numbers). (I) can be shown by observing that there is a logarithmic space meaning
preserving translation from LTL(Ok) to LTL(O′

k). (I) is the main result of [DN07] with the
unary encoding of natural numbers occurring in ordinal expressions. Finally, the corollary
below improves the non-elementary bounds obtained in [Cac06, DN07] for LTL(Oω) by
reducing this temporal logic to the monadic second order logics, and then to Buchi ordinal
automata.
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Corollary 6.4. Satisfiability for LTL(Oω) over the class of ωω-models is pspace-complete
with unary encoding of natural numbers in formulae.

7. Conclusion

In the paper, we have shown that the linear-time temporal logic with until and since over the
class of ordinals, namely LTL(U,S) has a pspace-complete satisfiability problem. Due to
Kamp’s Theorem [Kam68], we know that LTL(U,S) is a fundamental temporal logic since it
is as expressive as first-order logic over the class of ordinals. In order to establish this tight
complexity characterization, we have introduced the class of simple ordinal automata. This
class of automata is more structured than usual ordinal automata and the sets of locations
have some structural properties, typically it is a subset of the powerset of some set (herein
called the basis). As a consequence, we are also able to improve some results from [Roh97,
DN07]. For instance the uniform satisfiability problem is pspace-complete and we obtain
alternative proofs for results in [DN07]. Recent results about the polynomial space upper
bound for LTL over various classes of linear orderings can be found in [Rab10a, Rab10b] by
using the so-called composition technique and the automata-based technique used in this
paper.

Acknowledgments: We would like to thank the anonymous referees for helpful sug-
gestions and remarks.
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[Büc62] R. Büchi. On a decision method in restricted second-order arithmetic. In International Congress
on Logic, Method and Philosophical Science’60, pages 1–11, 1962.
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