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Abstract. Let M = (A, <, P ) where (A, <) is a linear ordering and P
denotes a finite sequence of monadic predicates on A. We show that if A
contains an interval of order type ω or −ω, and the monadic second-order
theory of M is decidable, then there exists a non-trivial expansion M ′ of
M by a monadic predicate such that the monadic second-order theory
of M ′ is still decidable.
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1 Introduction

In this paper we address definability and decidability issues for monadic second
order (shortly: MSO) theories of labelled linear orderings. Elgot and Rabin ask
in [9] whether there exist maximal decidable structures, i.e., structures M with
a decidable first-order (shortly: FO) theory and such that the FO theory of any
expansion of M by a non-definable predicate is undecidable. This question is
still open. Let us mention some partial results:

– Soprunov proved in [28] that every structure in which a regular ordering is
interpretable is not maximal. A partial ordering (B,<) is said to be regular
if for every a ∈ B there exist distinct elements b1, b2 ∈ B such that b1 < a,
b2 < a, and no element c ∈ B satisfies both c < b1 and c < b2. As a corollary
he also proved that there is no maximal decidable countable structure if we
replace FO by weak MSO logic.

– In [2], Bès and Cégielski consider a weakening of the Elgot-Rabin question,
namely the question of whether all structures M whose FO theory is de-
cidable can be expanded by some constant in such a way that the resulting
structure still has a decidable theory. They answer this question negatively
by proving that there exists a structure M with a decidable MSO theory and
such that any expansion of M by a constant has an undecidable FO theory.



– The paper [1] gives a sufficient condition in terms of the Gaifman graph of
M which ensures that M is not maximal. The condition is the following: for
every natural number r and every finite set X of elements of the base set
|M | of M there exists an element x ∈ |M | such that the Gaifman distance
between x and every element of X is greater than r.

We investigate the Elgot-Rabin problem for the class of labelled linear orderings,
i.e., infinite structures M = (A;<,P1, . . . , Pn) where < is a linear ordering over
A and the Pi’s denote unary predicates. This class is interesting with respect
to the above results, since on one hand no regular ordering seems to be FO
interpretable in such structures, and on the other hand their associated Gaifman
distance is trivial, thus they do not satisfy the criterion given in [1].

In this paper we focus on MSO logic rather than FO. The main result of the
paper is that for every labelled linear ordering M such that (A,<) contains an
interval of order type ω or −ω and the MSO theory of M is decidable, then there
exists an expansion M ′ of M by a monadic predicate which is not MSO-definable
in M , and such that the MSO theory of M ′ is still decidable. Hence, M is not
maximal. The result holds in particular when (A. <) is order-isomorphic to the
order of the naturals ω = (N, <), or to the order ζ = (Z, <) of the integers, or
to any infinite ordinal, or more generally any infinite scattered ordering (recall
that an ordering is scattered if it does not contain any dense sub-ordering).

The structure of the proof is the following: we first show that the result
holds for ω and ζ. For the general case, starting from M , we use some definable
equivalence relation on A to cut A into intervals whose order type is either finite,
or of the form −ω, ω, or ζ. We then define the new predicate on each interval
(using the constructions given for ω and ζ), from which we get the definition
of M ′. The reduction from MSO(M ′) to MSO(M) uses Shelah’s composition
theorem, which allows to reduce the MSO theory of an ordered sum of structures
to the MSO theories of the summands.

The main reason to consider MSO logic rather than FO is that it actually
simplifies the task. Nevertheless we discuss some partial results and perspectives
for FO logic in the conclusion of the paper.

Let us recall some important decidability results for MSO theories of linear
orderings (the case of labelled linear orderings will be discussed later for ω and
ζ). In his seminal paper [4], Büchi proved that languages of ω−words recogniz-
able by automata coincide with languages definable in the MSO theory of ω,
from which he deduced decidability of the theory. The result (and the automata
method) was then extended to the MSO theory of any countable ordinal [5], to
ω1, and to any ordinal less than ω2 [6]. Gurevich, Magidor and Shelah prove [13]
that decidability of MSO theory of ω2 is independent of ZFC. Let us mention
results for linear orderings beyond ordinals. Using automata, Rabin [19] proved
decidability of the MSO theory of the binary tree, from which he deduces decid-
ability of the MSO theory of Q, which in turn implies decidability of the MSO
theory of the class of countable linear orderings. Shelah [26] improved model-
theoretical techniques that allow him to reprove almost all known decidability
results about MSO theories, as well as new decidability results for the case of



linear orderings, and in particular dense orderings. He proved in particular that
the MSO theory of R is undecidable. The frontier between decidable and unde-
cidable cases was specified in later papers by Gurevich and Shelah [11, 14, 15];
we refer the reader to the survey [12].

Our result is also clearly related to the problem of building larger and larger
classes of structures with a decidable MSO theory. For an overview of recent
results in this area see [3, 32].

2 Definitions, Notations and Useful Results

2.1 Labelled Linear Orderings

We first recall useful definitions and results about linear orderings. A good ref-
erence on the subject is Rosenstein’s book [23].

A linear ordering J is a total ordering. We denote by ω (respectively ζ) the
order type of N (respectively Z). Given a linear ordering J , we denote by −J
the backwards linear ordering obtained by reversing the ordering relation.

Given two elements j, k of a linear ordering J , we denote by [j; k] the interval
[min (j, k),max (j, k)]. An ordering is dense if it contains no pair of consecutive
elements. An ordering is scattered if it contains no dense sub-ordering.

In this paper we consider labelled linear orderings, i.e., linear orderings (A,<)
equipped with a function f : A→ Σ where Σ is a finite nonempty set.

2.2 Logic

Let us briefly recall useful elements of monadic second-order logic, and settle
some notations. For more details about MSO logic see e.g. [12, 31]. Monadic
second-order logic is an extension of first-order logic that allows to quantify over
elements as well as subsets of the domain of the structure. Given a signature
L, one can define the set of (MSO) formulas over L as well-formed formulas
that can use first-order variable symbols x, y, . . . interpreted as elements of the
domain of the structure, monadic second-order variable symbols X,Y, . . . inter-
preted as subsets of the domain, symbols from L, and a new binary predicate
x ∈ X interpreted as “x belongs to X”. A sentence is a formula without free
variable. As usual, we often confuse logical symbols with their interpretation.
Given a signature L and an L−structure M with domain D, we say that a re-
lation R ⊆ Dm × (2D)n is (MSO) definable in M if a nd only if there exists a
formula over L, say ϕ(x1, . . . , xm, X1, . . . , Xn), which is true in M if and only if
(x1, . . . , xm, X1, . . . , Xn) is interpreted by an (m+n)−tuple of R. Given a struc-
ture M we denote by MSO(M) (respectively FO(M)) the monadic second-order
(respectively first-order) theory of M . We say that M is maximal if MSO(M)
is decidable and MSO(M ′) is undecidable for every expansion M ′ of M by a
predicate which is not definable in M .

We can identify labelled linear orderings with structures of the form M =
(A,<, P1, . . . , Pn) where < is a binary relation interpreted as a linear ordering



over A, and the Pi’s denote unary predicates. We use the notation P as a shortcut
for the n-tuple (P1, . . . Pn). The structure M can be seen as a word indexed by
A and over the alphabet Σn = {0, 1}n; this word will be denoted by w(M). For
every interval I of A we denote by MI the sub-structure of M with domain I.

2.3 Composition Theorems

In this paper we rely heavily on composition methods, which allow to com-
pute the theory of a sum of structures from the ones of its summands. For an
overview of the subject see [3, 12, 16, 30]. In this section we recall useful defi-
nitions and results. For the whole section we consider signatures of the form
L = {<,P1, . . . , Pn} where the Pi’s denote unary predicate names, and deal
only with L−structures where < is interpreted as a linear ordering – that is,
with labelled linear orderings. Given a formula ϕ over L, the quantifier depth of
ϕ is denoted by qd(ϕ). The k−type of an L−structure M , which is denoted by
T k(M), is the set of sentences ϕ such that M |= ϕ and qd(ϕ) ≤ k. Given two
structures M and M ′, the relation T k(M) = T k(M ′) is an equivalence relation
with finitely many classes. Let us list some fundamental and well-known prop-
erties of k-types. The proofs of these facts can be found in several sources, see
e.g. [26, 31].

Proposition 1. 1. For every k there are only finitely k-types over a finite sig-
nature L

2. For each k-type t there is a sentence ϕt (called ”characteristic sentence”)
which defines t, i.e., such that M |= ϕt iff T k(M) = t. For every k, a finite
list of characteristic sentences for all the possible k-types can be computed.
(We take the characteristic sentences as the canonical representations of k-
types. Thus, for example, transforming a type into another type means to
transform sentences.)

3. Each sentence ϕ is equivalent to a (finite) disjunction of characteristic sen-
tences; moreover, this disjunction can be computed from ϕ.

As a simple consequence, note that the MSO theory of a structure M is decidable
if and only if the function k 7→ T k(M) is recursive.

The sum of structures corresponds to concatenation; let us recall a general
definition.

Definition 2. Consider an index structure Ind = (I,<I) where <I is a linear
ordering. Consider a signature L = {<,P1, . . . , Pn}, where Pi are unary predi-
cate names, and a family (Mi)i∈I of L-structures Mi = (Ai;<i, P1

i, . . . , P i
n) with

disjoint domains and such that the interpretation <i of < in each Mi is a linear
ordering. We define the ordered sum of the family (Mi)i∈I as the L-structure
M = (A;<M , P1

M , . . . , PM
n ) where

– A equals the union of the Ai’s
– x <M y holds if and only if (x ∈ Ai and y ∈ Aj for some i <I j), or

(x, y ∈ Ai and x <i y)



– for every x ∈ A and every k ∈ {1, . . . , n}, PM
k (x) holds if and only if Mj |=

P j
k (x) where j is such that x ∈ Aj.

If the domains of the Mi are not disjoint, replace them with isomorphic chains
that have disjoint domains, and proceed as before.

We shall use the notation M =
∑

i∈I Mi for the ordered sum of the family
(Mi)i∈I . If I = {1, 2} has two element, we denote

∑
i∈I Mi by M1 +M2.

We need the following composition theorem on ordered sums:

Theorem 3.
(a) The k-types of labelled linear orderings M0,M1 determine the k-type of the
ordered sum M0 +M1, which moreover can be computed from the k-types of M0

and M1.
(b) If the labelled linear orderings M0,M1, . . . all have the same k-type, then this
k-type determines the k-type of Σi∈NMi, which moreover can be computed from
the k-type of M0.

Part (a) of the theorem justifies the notation s + t for the k-type of a linear
ordering which is the sum of two linear orderings of k-types s and t, respectively.
Similarly, we write t × ω for the k-type of a sum Σi∈NMi where all Mi are of
k-type t.

3 The Case of N

In this section we prove that there is no maximal structure of the form (N, <, P )
with respect to MSO logic. The proof is based upon results from [20] . Let us first
briefly review results related to the decidability of the MSO theory of expansions
of (N, <). Büchi [4] proved decidability of MSO(N, <) using automata. On the
other hand it is known that MSO(N,+), and even MSO(N, <, x 7→ 2x), are
undecidable [22]. Elgot and Rabin study in [9] the MSO theory of structures
of the form (N, <, P ), where P is some unary predicate. They give a sufficient
condition on P which ensures decidability of the MSO theory of (N, <, P ). In
particular the condition holds when P denotes the set of factorials, or the set of
powers of any fixed integer. The frontier between decidability and undecidability
of related theories was explored in numerous later papers [7, 10, 25, 24, 21, 20, 27,
29]. Let us also mention that [25] proves the existence of unary predicates P
and Q such that both MSO(N, <, P ) and MSO(N, <,Q) are decidable while
MSO(N, <, P,Q) is undecidable.

Most decidability proofs for MSO(N, <, P ) are related somehow to the pos-
sibility of cutting N into segments whose k−type is ultimately constant, from
which one can compute the k−type of the whole structure (using Theorem 3).
This connection was specified in [20] (see also [21]) using the notion of homoge-
neous sets.

Definition 4 (k-homogeneous set). Let k ≥ 0. A set H = {h0 < h1 < . . .} ⊆
N is called k-homogeneous for M = (N, <, P ), if all sub-structures M[hi,hj) for
i < j (and hence all sub-structures M[hi,hi+1) for i ≥ 0) have the same k-type.



This notion can be refined as follows.

Definition 5 (uniformly homogeneous set). A set H = {h0 < h1 < . . .} ⊆
N is called uniformly homogeneous for M = (N, <, P ) if for each k the set
Hk = {hk < hk+1 < . . .} is k-homogeneous.

The following result [20] settles a tight connection between MSO(N, <, P ) and
uniformly homogeneous sets.

Theorem 6. For every M = (N, <, P ), the MSO theory of M is decidable
if and only if (the sets P are recursive and there exists a recursive uniformly
homogeneous set for M).

One can use this theorem to show that no structure M = (N, <, P ) is maximal.
Let us give the main ideas. Starting from M such that MSO(M) is decidable,
Theorem 6 implies the existence of a recursive uniformly homogeneous set H =
{h0 < h1 < . . .} for M .

Let M ′ be an expansion of M by a monadic predicate Pn+1 defined as Pn+1 =
{hn! | n ∈ N}.

By definition of H, the structures M[hk!,h(k+j)![ have the same k−type for all
j, k ≥ 0. If we combine this with the fact that successive elements of Pn+1 are
far away from each other, we can prove that Pn+1 is not definable in M . For all
i, k ≥ 0 let us define the interval I(i, k) = [h(k+i)!, h(k+i+1)![. In order to prove
that MSO(M ′) is decidable, we exploit the fact that all structures MI(i,k) have
the same k−type for all i, k ≥ 0, and that only the first element of each interval
I(i, k) belongs to Pn+1. This allows to compute easily the k−type of structures
M ′I(i,k) from the one of MI(i,k), and then the k−type of the whole structure M ′.
This provides a reduction from MSO(M ′) to MSO(M).

The above construction, which we described for a fixed structure M , can
actually be defined uniformly in M . This leads to the following result.

Proposition 7. There exists a function E and two recursive function g1, g2
such that E maps every structure M = (N, <, P ) to an expansion M ′ of M by a
predicate Pn+1 such that

1. Pn+1 is not definable in M ;
2. g1 computes T k(M ′) from k and T g2(k)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decid-
able, then MSO(M ′) is decidable.

Let us discuss item (2). In the proof of the general result (see Sect. 5), we start
from a labelled linear ordering M = (A,<, P ) with a decidable MSO theory and
try to expand it while keeping decidability. In some case the (decidable) expan-
sion M ′ of M will be defined by applying the above construction to infinitely
many intervals of A of order type ω. In order to get a reduction from MSO(M ′)
to MSO(M), we need that the reduction algorithm for such intervals is uniform,
which is what item (2) expresses.



4 The Case of Z

Decidability of the MSO theory of structures M = (Z, <, P ) was studied in
particular by Compton [8], Semënov [25, 24], and Perrin and Schupp [18] (see
also [17, chapter 9]). These works put in evidence the link between decidability
of MSO(M) and computability of occurrences and repetitions of finite factors
in the word w(M). Let us state some notations and definitions. A set X of finite
words over a finite alphabet Σ is said to be regular if it is recognizable by some
finite automaton. Given a Z−word w and a finite word u, both over the alphabet
Σ, we say that u occurs in w if w = w1uw2 for some words w1 and w2. We say
that w is recurrent if for every regular language X of finite words over Σ, either
no element of X occurs in w, or in every prefix and every suffix of w there is
an occurrence of some element of X. In particular in a recurrent word w, every
finite word u either has no occurrence in w, or occurs infinitely often on both
sides of w. We say that w is rich if every finite word occurs infinitely often on
both sides of w. Given M = (Z, <, P ), we say that M is recurrent if w(M) is.

We have the following result.

Theorem 8. ([25, 18]) Given M = (Z, <, P1, . . . , Pn),

1. If M is not recurrent, then every c ∈ Z is definable in M .
2. If M is recurrent, then no element is definable in M , and MSO(M) is

computable relative to an oracle which, given any regular language X of
finite words over Σn = {0, 1}n, tells whether some element of X occurs in
w(M).

Let c ∈ Z, and let M1 be defined as M = M]−∞,c[ and M2 be defined as M[c,∞[.
Then M = M1 +M2.

Let M ′1 be the expansion of M1 by the empty predicate Pn+1 and let M ′2 be
obtained by apply the construction of Proposition 7 to M2. Let M ′ = M ′1 +M ′2.

Note that the above construction of M ′ from M depends on c. We denote by
Ec the function described above that maps every M = (Z, <, P1, . . . , Pn) to its
expansion M ′ by Pn+1.

It is easy to show that Pn+1 is not definable in M , hence M ′ is a non-trivial
expansion of M .

We claim that if M is not recurrent, then MSO(M ′) is recursive in MSO(M).
Indeed, in this case, by Theorem 8, c is definable in M . Hence, M1 and M2 can
be interpreted in M , which yields that MSO(M1) and MSO(M2) are recursive
in MSO(M). Therefore, MSO(M ′1) and MSO(M ′2) are recursive in MSO(M). Fi-
nally, applying Theorem 3(a) we obtain that MSO(M ′) is recursive in MSO(M).

Hence, we have the following.

Proposition 9 (Expansion of non-recurrent structures). There are two
recursive function g1, g2 such that if M = (Z, <, P1, . . . , Pn) is not recurrent,
and c ∈ Z is definable in M by a formula of quantifier depth m, then Ec maps
M to an expansion M ′ by a predicate Pn+1 such that

1. Pn+1 is not definable in M ;



2. g1 computes T k(M ′) from k and T g2(k+m)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decid-
able, then MSO(M ′) is decidable.

Remark 10. Let us discuss uniformity issues related to Proposition 7 and Propo-
sition 9. Proposition 7 implies that there is an algorithm which reducesMSO(M ′)
to MSO(M). This reduction algorithm is independent of M ; it only uses an or-
acle for MSO(M). Proposition 9 implies a weaker property. Namely, it implies
that for every non-recurrent M there is an algorithm which reduces MSO(M ′)
to MSO(M). However, this reduction algorithm depends on M .

Consider a recurrent structure M and let M ′ = Ec(M) for some c ∈ Z. We claim
that it is possible that MSO(M ′) is not recursive in MSO(M). Indeed, we can
prove that there exists a recurrent structure M over Z such that MSO(M) is
decidable, and MSO(M[c′,∞[) is undecidable for every c′ ∈ Z. Now let c′ be
the minimal element of Pn+1. Observe that c′ is definable in M ′ and therefore,
M[c′,∞[ can be interpreted in M ′. Since, MSO(M[c′,∞[) is undecidable, we derive
that MSO(M ′) is undecidable. Hence, Ec does not preserves decidability of
recurrent structures, and we need a different construction for the recurrent case.

To describe our construction for the recurrent case let us introduce first some
notations.

For every word w over the alphabet Σn+1 = {0, 1}n+1 which is indexed by
some linear ordering (A,<) we denote by π(w) the word w′ indexed by A and
over the alphabet Σn = {0, 1}n, which is obtained from w by projection over the
n first components of each symbol in w. The definition and notation extend to
π(X) where X is any set of words over the alphabet Σn+1. Given M = (Z, <, P )
where P is an n−tuple of sets, and any expansion M ′ of M by a predicate Pn+1,
by definition w(M) and w(M ′) are words over Σn and Σn+1, respectively, and
we have π(w(M ′)) = w(M).

Lemma 11. If M = (Z, <, P ) is recurrent, then there is an expansion M ′ of M
by a predicate Pn+1 which has the following property:

(*) for every u ∈ Σ∗n, if u occurs infinitely often on both sides of w(M), then
the same holds in w(M ′) for every word u′ ∈ Σ∗n+1 such that π(u′) = u.

The proof of Lemma 11 is similar to the proof of Proposition 2.8 in [1], which
roughly shows how to deal with the case when w(M) is rich.

Now w(M ′) has a finite factor in some regular language X ′ ⊆ Σ∗n+1 iff w(M)
has a finite factor in π(X ′) ⊆ Σ∗n. The set π(X ′) is regular, and a sentence which
defines π(X ′) is computable from a sentence that defines X ′, thus we obtain, by
Theorem 8(2), that if MSO(M) is decidable then MSO(M ′) is decidable.

One can show that if M ′ is any expansion of M which has property (*), then
Pn+1 is not definable in M . This implies that no recurrent structure is maximal.

From a more detailed analysis of the proof of Theorem 8(2) we can derive
the following proposition.



Proposition 12 (Expansion of recurrent structures). There are two re-
cursive function g1, g2 such that if M = (Z, <, P ) is recurrent and M ′ is an
expansion of M which has property (*), then

1. Pn+1 is not definable in M ;
2. g1 computes T k(M ′) from k and T g2(k)(M).

Hence MSO(M ′) is recursive in MSO(M). In particular, if MSO(M) is decid-
able, then MSO(M ′) is decidable.

Remark 13. Proposition 12 implies that there is an algorithm which reduces
MSO(M ′) to MSO(M). This reduction algorithm (like the algorithm from
Proposition 7) is independent of M ; it only uses an oracle for MSO(M).

Proposition 9, Lemma 11 and Proposition 12 imply the following corollary.

Corollary 14. Let M = (Z, <, P ). There exists an expansion M ′ of M by some
unary predicate Pn+1 such that Pn+1 is not definable in M , and MSO(M ′) is
recursive in MSO(M). In particular, if MSO(M) is decidable, then MSO(M ′)
is decidable.

5 Main Result

The next theorem is our main result.

Theorem 15. Let M = (A,<, P1, . . . , Pn) where (A,<) contains an interval
of type ω or −ω. There exists an expansion M ′ of M by a relation Pn+1 such
that Pn+1 is not definable in M , and MSO(M ′) is recursive in MSO(M). In
particular, if MSO(M) is decidable, then MSO(M ′) is decidable.

As an immediate consequence we obtain the following corollary.

Corollary 16. Let M = (A,<, P1, . . . , Pn) where (A,<) is an infinite scattered
linear ordering. There exists an expansion M ′ of M by some unary predicate
Pn+1 not definable in M such that MSO(M ′) is recursive in MSO(M).

We present a sketch of proof for Theorem 15. Let M = (A,<, P ) where (A,<)
contains an interval of type ω or −ω.

Consider the binary relation defined on A by x ≈ y iff [x, y] is finite. The
relation ≈ is a condensation, i.e., an equivalence relation such that every equiv-
alence class is an interval of A. Moreover the relation ≈ is definable in M . If Ai

and A2 are ≈-equivalence classes, we say that A1 precedes A2 if all elements of
A1 are less than all elements of A2. Let I be the linear order of the ≈-equivalence
classes for (A,<). Then M =

∑
i∈I MAi where the Ai’s correspond to equiva-

lence classes of ≈. Using the definition of ≈ and our assumption on A, it is easy
to check that the Ai’s are either finite, or of order type ω, or −ω, or ζ, and that
not all Ai’s are finite.

We define the interpretation of the new predicate Pn+1 in every interval Ai.
The definition proceeds as follows:



1. if some Ai has order type ω or −ω, then we apply to each substructure MAi

of order type ω the construction given in Proposition 7, and add no element
of Pn+1 elsewhere. If there is no Ai of order type ω, we proceed in a similar
way with each substructure MAi

of order type −ω, but using the dual of
Proposition 7 for −ω.

2. if no Ai has order type ω or −ω, then at least one ≈ −equivalence class Ai

has order type ζ. We consider two subcases:
(a) if all ≈ −equivalence classes Ai with order type ζ are such that w(MAi)

is recurrent, then we apply to each substructure MAi
of order type ζ the

construction given in Proposition 12. For other ≈ −equivalence classes
Ai we set Pn+1 ∩Ai = ∅.

(b) otherwise there exist ≈ −equivalence classes Ai with order type ζ and
such that w(MAi

) is not recurrent. Let ϕ(x) be a formula with minimal
quantifier depth such that ϕ(x) defines an element in some MAi

where
Ai has order type ζ. For every MAi

such that Ai has order type ζ and
ϕ(x) defines an element ci in MAi

, we apply the construction Eci
from

Proposition 9 to MAi . For other ≈ −equivalence classes Ai we set Pn+1∩
Ai = ∅.

The fact that the set Pn+1 is not definable in M follows rather easily from the
construction, which ensures that there exists some Ai such that the restriction
of Pn+1 to Ai is not definable in the substructure MAi .

Let M ′ be the expansion of M by the predicate Pn+1. In order to prove that
MSO(M ′) is recursive in MSO(M), we use Shelah’s composition method [26,
Theorem 2.4] (see also [12, 30]) which allows to reduce the MSO theory of a sum
of structures to the MSO theories of the components and the MSO theory of the
index structure.

Theorem 17 (Composition Theorem [26]). There exists a recursive func-
tion f and an algorithm which, given k, l ∈ N, computes the k-type of any sum
M =

∑
i∈I Mi of labelled linear orderings over a signature {<,P1, . . . , Pl} from

the f(k, l)-type of the structure (I,<,Q1, . . . , Qp) where

Qj = {i ∈ I : T k(Mi) = τj} j = 1, . . . , p

and τ1, . . . , τp is the list of all formally possible k-types for the signature L.

Let us explain the reduction from MSO(M ′) to MSO(M). We can apply The-
orem 17 to M ′ =

∑
i∈I M

′
Ai

, which allows to show that for every k, the k−type
of M ′ can be computed from f(k, n + 1)−type of the structure N ′ = (I,<
,Q′1, . . . , Q

′
p) where the Q′i’s correspond to the k−types of structures M ′Ai

over
the signature {<,P1, . . . , Pn+1}. Using the definition of Pn+1 and Propositions
7, 9 and 12, one can prove that the k−type of M ′Ai

can be computed form the
g(k)−type of MAi

for some recursive function g (note that g depends on M ,
namely whether we used case 1, 2(a) or 2(b) to construct M ′). This allows to
prove that N ′ is interpretable in the structure N = (I,<,Q1, . . . , Qq) where
the Qi’s correspond to the g(k)−types of structures MAi

over the signature



{<,P1, . . . , Pn}. It follows that MSO(N ′) is recursive in MSO(N). Now using
the fact that the equivalence relation ≈ is definable in M , we can prove that N
is interpretable in M , thus MSO(N) is recursive in MSO(M).

Remark 18. Let us discuss uniformity issues related to Theorem 15.

– The choice to expand “uniformly” all ≈ −equivalence classes is crucial for
the reduction from MSO(M ′) to MSO(M). For example, if some Ai has
order type ω and we choose to expand only Ai then MSO(M ′) might become
undecidable. This is the case for the structure M considered in [2] (Definition
2.4), which has decidable MSO theory, and is such that the MSO theory of
any expansion of M by a constant is undecidable. For this structure all Ai’s
have order type ω. If we consider the structure M ′ obtained from M by an
expansion of only one Ai, then Pn+1 has a least element, which is definable
in M ′, thus MSO(M ′) is undecidable.

– The definition of Pn+1 in case (2) depends on whether all components Ai

with order type ζ are such that w(MAi) is recurrent, which is not a MSO
definable property. Thus that the reduction algorithm from MSO(M ′) to
MSO(M) depends on M .

6 Further Results and Open Questions

Let us mention some possible extensions and related open questions.
First of all, most of our results can be easily extended to the case when the

signature contains infinitely many unary predicates.
Our results can be extended to the Weak MSO logic. In the case M is count-

able this follows from Soprunov result [28]. However, our construction works for
labelled orderings of arbitrary cardinality.

An interesting issue is to prove uniform versions of our results in the sense of
items (2) in Propositions 7 and 12. A first step would be to generalize Proposition
12 to all structures (Z, <, P ).

One can also ask whether the results of the present paper hold for FO logic.
Let us emphasize some difficulties which arise when one tries to adapt the main
arguments. A FO version of Theorem 6 (about the recursive homogeneous set)
was already proven in [21]. Moreover, using ideas from [25] one can also give
a characterization of structures M = (Z, <, P ) with a decidable FO theory,
in terms of occurrences and repetitions of finite words in w(M). This allows
to give a FO version of our non-maximality results for labelled orders over ω
or ζ. However for the general case of (A,<, P ), two problems arise: (1) the
constructions for N and Z cannot be applied directly since they are not uniform,
and (2) the equivalence relation ≈ used in the proof of Theorem 15 to cut A into
small intervals is not FO definable. We currently investigate these issues.

Finally, we also study the case of labelled linear orderings (A,<, P ) which
do not contain intervals of order types ω or −ω. In this case the construction
presented in Sect. 5 does not work since the restriction of Pn+1 to each Ai will be
empty, i.e., our new relation is actually empty. In a forthcoming paper we show



that it is possible to overcome this issue for the countable orders, and prove that
no infinite countable structure (A,<, P ) is maximal.
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