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1. INTRODUCTION

1.1. Summary of Our Previous Results

Consider the net in Fig. 1. It consists of nodes and of directed channels. Channels
are partitioned into internal (those which connect nodes), input (those which enter
the net), and output (those which exit the net).

Actually, such a net is a piece of syntax. An interpretation assigns meanings to
the nodes. The semantics defines what object is assigned to an interpreted net. The
nodes of a net are labeled by names. For nodes labeled by the same name an inter-
pretation should assign the same object.
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FIG. 1. Net N,.

In dataflow, nodes are interpreted by labeled transition systems or in more classi-
cal terminology by automata (maybe with an infinite number of states). These
automata are working asynchronously and communicate between themselves and
the environment by passing data over unbounded FIFO channels. There is an
appealing operational semantics which specifies the automaton assigned to an inter-
preted net as a whole [2, 5, 6, 10, 11, 19].

Consider nets N, and N, in Fig. 1 and in Fig. 2. These nets are schematologically
equivalent, i.e., they have the same I(nput)-O(utput) behavior under all interpreta-
tions. Note that N, has a subnet consisting of the nodes 4 and B. This subnet has
neither input nor output channels which are connected to the environment or to
other nodes in the net. Following [ 15], such a subnet is called an isolated subnet.
N, also contains two nodes 7 which do not have an outgoing channel. Such nodes
are called terminating nodes.

N, is obtained from N, by the following behavior preserving transformations:

R,: Remove an isolated subnet.

R,: Replace a subnet without output channels by a terminating node.
The main results of our previous paper [ 18] are:

THEOREM (Completeness). Two nets have the same Input—Qutput behavior under
all dataflow interpretations iff they can be reduced to isomorphic nets by the reduction
rules R, and R,.

THeOREM (Decidability of Schematological Equivalence). Input—QOutput equiv-
alence of nets under all dataflow interpretations is decidable in polynomial time.

O O

FIG. 2. Net N,.
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1.2.  Contribution of This Paper

This paper extends the above theorems to partially interpreted dataflow nets.
Such nets in addition to uninterpreted nodes can contain primitive nodes which are
interpreted always in the same way. The following primitive nodes (see Fig. 3) play
an important role in dataflow:

Primitive Nodes.

o Terminating node. It has no output channels and a number of input chan-
nels. It consumes the data arriving on its channels. The terminating node with k&
input channels is denoted by T.

e Multiplicator. An n-plicator has one input channel and » output channels
and copies the data received over the input channel to all its output channels.
n-plicators will be pictured as triangles.

e Copy(s). This node is parameterized by a stream s and has one input and
one output channel. It first sends the stream s over its output and then copies the
data received over the input to the output.

e Gen(s). This node is parameterized by a stream s and has only one output
channel. It generates the stream s on its output channel and then stops.

We will add reductions involving the above mentioned primitive nodes and show
that two partially interpreted nets are [-O equivalent under all interpretations iff
they can be transformed to isomorphic nets by the primitive reductions and by
reductions R,, R,.

1.3. Comparison of This Paper and [ 18]

The main contribution of this paper is the extension of the results of [ 18] to the
partially interpreted dataflow networks. We emphasized the similarity between
these two papers by giving the same formulation to the main theorems. However,
these theorems refer here to the partially interpreted dataflow nets whereas in [ 18]
they refer to the uninterpreted dataflow nets. Even some technical lemmas have
almost the same formulation in both papers. This is achieved due to an appropriate
conservative extension of notions from [18] to the partially interpreted dataflow
nets (see for example the definition of a chain, section 5.1). The results of this paper
were announced without proof in [18] .

—
] COPY(S) |

l———
Gen(s) |—yp-

.

FIG. 3. Primitive nodes.
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Let us comment on the structure of the proofs for the main theorems stated
above.
As usual, the proof of the completeness theorem proceeds in two steps.

Step 1. Show the soundness of transformations.

Step 2. Find an appropriate characterization for normal form; show that every
net is equivalent to a net in normal form; find an interpretation which distinguishes
between distinct normal forms.

The following remarks of Girard [ 7] about current proof theoretical techniques
also hold for techniques for proofs of completeness theorems. “The main technical
limitation of such methods is... the lack of modularity: in general neighboring
problems can be attacked by neighboring methods; but it is only exceptional that
one of the problems will be corollary of the other.... Most of the time, a completely
new proof will be necessary (but without any new idea). This renders work in the
domain quite long and tedious.”

For the case of partially interpreted nets step 1 in the proof is based on some
ideas which were not required for the uninterpreted case.

Step 2 in both papers is based on the same ideas, however, this step is technically
much more complicated for the case of partially interpreted nets.

Our proof of polynomial decidability of schematological equivalence also
proceeds in two steps.

Step 1. Show that for every net an equivalent net in normal form can be found
in polynomial time (Section 3.2).

Step 2. Show that it can be checked in polynomial time whether two nets in
normal forms are equivalent.

The proof of Step 1 is very different for the case of partially interpreted nets and
the uninterpreted nets. However, Step 2 of the proof here is reduced to the corre-
sponding step for the uninterpreted nets and to Lemma 18 which shows that the
equivalence between restricted regular expressions (see Section 2.1 for their defini-
tion) is decidable in polynomial time.

1.4. The Organization of the Paper

The paper is organized as follows. Section 2 is based on the corresponding
Section of [ 18] and describes the syntax of partially interpreted dataflow nets. For
an informal presentation of the semantics of dataflow nets we refer the reader to
Section 3.2 of [18]. Reduction rules and normalization theorem are given in Sec-
tion 3. Section 4 gives the soundness theorem and Section 5 gives the completeness
theorem. In Section 6 the complexity of schematological equivalence is analyzed.
Our work has been very much influenced by Parrow’s paper [15]. We refer the
reader to [ 18] for a detailed comparison to Parrow’s work [15], a discussion of
other related work [4, 20], and a list of open problems.
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2. SYNTAX OF NETS

We recall below some notions related to the syntax of nets emphasizing the
requirement for primitive nodes.

Figure 4 presents the unabbreviated syntax of nets. The net has five nodes. Two
of them are labeled by M, one by L, one by K, and one is a terminating node
labeled by T, .

A node in the net has several ports. Ports of nodes may be connected by directed
links which are called channels. There is always only one channel connected to a
port.

A channel is internal if it connects two ports; other channels are called external.
The input (output) channels of a net are the external channels which enter (exit)
the ports of the net.

The external channels are labeled by numbers; ports are also labeled by numbers.

If a channel enters (exits) a node at port m, then the channel is an input (output)
channel for the node and m is an input (output) port of the node.

The requirements on labeling of channels, of non-primitive nodes, and of ports
are given in section 3.1 of [ 18]. Below we recall these requirements and state addi-
tional requirements on labeling of primitive nodes and their adjacent ports. But
first, let us define the restricted regular expressions which will be used as the nota-
tions for the parameters of copy and generator nodes.

2.1. Restricted Regular Expressions

Restricted regular expressions over an alphabet A4 are defined by the grammar
E:=aeA|e| EE|E®, where ¢ is the empty stream, EFE is concatenation, and E® is
infinite iteration.

A restricted regular expression denotes either a finite length word a,a,---a, or a
quasiperiodic w-word ay ---a,(by, ..., b,,)”. It is clear that an w-free expression
denotes a finite length word. Both words and w-words over 4 will be called streams
over A. Expressions are equal if they denote the same stream.

FIG. 4. Unabbreviated syntax.
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2.2. Labeling

Labeling of Primitive Nodes. (1) Terminating node with k& input channels is
labeled by T,. (2) Multi-plicator node with k output channels is labeled by k and
it is called k-plicator. (3) The remaining kinds of primitive nodes are copy(s) and
generator(s). These nodes are parameterized by a stream. Copy nodes will have
labels of the form Copy(E), where E is an w-free restricted regular expression and
generator nodes will have the labels Gen(E), where E is a restricted regular expres-
sion. Sometimes we will abbreviate our figures and drop the labels of multi-plicator
or terminating nodes.

Remark. Our decision to allow the parameters of generator nodes to be infinite
streams is not for the sake of generality. The reduction rule Sq given in Section 3.2
reduces a net consisting of copy nodes with finite parameters to a net consisting of
generator nodes with infinite quasiperiodic parameters.

Labeling of Ports, Channels, and Non-primitive Nodes.

External Channel Labeling. Distinct external channels of a net are labeled by
distinct numbers.

Port Labeling of

non-primitive nodes. Distinct ports of a non-primitive node are labeled by dis-
tinct numbers.

primitive nodes. All output ports of copy, generator and n-plicator nodes are
labeled by 1. The input ports of copy and n-plicator nodes are labeled by 2. All
ports of a terminating node are labeled by 1.

Consistency of Port and Node Labelings. 1If two nodes are labeled by the same
name, then the sets of numbers assigned to the input ports of these nodes should
coincide; also, the sets of numbers assigned to the output ports of the nodes should
coincide.

Remark. Roughly speaking, the injective labeling of the external channels of a
net allows us to distinguish between nets with I-O behaviors Ax.4y. f(x, y) and
Ax.4y. f(x, y). The role of labeling of the ports of non-primitive nodes is similar.
A multi-plicator node produces the same output on all its ports. If we had required
an injective labeling for output ports of multi-plicator nodes we would have
obtained from the net consisting of one 2-plicator two non isomorphic nets with the
same [-O behavior. Therefore, our completeness theorem would have failed. The
reason to use the non-injective labeling for the input ports of terminating nodes is
the same.

2.3. Net Isomorphism
Let us also recall the definition of a net isomorphism.

DerFmNiTION 1 [18]. Two nets are isomorphic if there exists a bijective map ¢
between their nodes such that
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1. ¢ preserves the labeling of the nodes, ie., (a) v has a non-primitive label
L iff ¢(v) has the label L; (b) v is a terminated node with k input ports iff ¢(v) is
a terminated node with k input ports; (¢) v is a copy (respectively generator) node
labeled by Copy(E,) (respectively by Gen(E,)) iff ¢(v) is labeled by Copy(E,)
(respectively by Gen(E,)) and E, and E, denote the same stream.

2. ¢ preserves the adjacency relation ie., there is a channel from a port
number m,; of a node v, to a port m, of a node v, if and only if there is a channel
from a port m, of the node ¢(v,) to a port m, of the node ¢(v,)

3. ¢ preserves the labeling of external channels, i.e., there is an input (output)
channel labeled by a which enters (exits) node v at a port number i if and only if
there is an input (output) channel labeled by a which enters (exits) the node ¢(v)
at a port number i.

24. Size of a Net

We define the size of a net N as the number of its nodes plus the number of its
channels plus the sum of the lengths of the expressions which appear as parameters
of the copy and generator nodes of N. In the sequel we consider a number of deci-
sion problems for nets. We will measure the complexity of algorithms on nets as the
function of the size of input nets.

3. REDUCTIONS

In this section we first recall the behavior preserving reduction rule given in [ 18]
and then prove a normal form theorem.

3.1. Subnets

A subnet of a net N is a subset of the nodes of N together with their ports and
the channels which are entering or exiting these nodes. A channel which connects
two nodes of a subnet is called an internal channel of the subnet. Let N’ be a subnet
of N. A channel ¢ of N’ is an input channel of N’ if it enters a node in N’ and it
is not an internal channel of N'. A channel ¢k of N’ is an output channel of N’ if
it exits a node in N’ and it is not an internal channel of N'. A subnet is isolated
if it has only internal channels. A subnet is terminating if it does not have output
channels.

3.2. Reduction Rules

Every rule R has a form N, = N,, where N,, N, are nets with the same sets of
input and output channels; N, is the redex of R. If N, is a subnet of N then N can
be reduced by the rule R. The result is the net obtained by replacing an occurrence
of Ny in N by N,.

The reduction rules are partitioned into two sets. The first set of rules deals with
nets constructed over arbitrary (primitive and non-primitive) nodes. In the second
set of rules, the redex always contains primitive nodes.
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Here is the first set of reduction rules.
DErFINITION 2 (Reductions for Arbitrary Nodes).

R,. Remove an isolated subnet.

R,. Replace a terminating subnet with k input channels by the terminating
node with k channels (k> 0).

Figures 5 and 6 list the reductions for primitive nodes.

The reductions S,—S5 and S-S, are self explanatory. Strictly speaking, these are
rule schemes. For example, in S, the redex is a net consisting of n-plicator, a ter-
minating node with m ports, and k channels from #n-plicator to the terminating
node. The result of the reduction is the net consisting of an (n — k)-plicator, a ter-
minating node with m—k ports (if m —k>0), and no channels between these
nodes. If m —k =0 then the result of the reduction is the net consisting of (n— k)-
plicator.

In the figure for the rule S, as well as in the figures for the rules S,—S,, we used
an abbreviated syntax and did not point explicitly to the number of channels for
the multi-plicator and the terminating nodes. In the rules Sg—S;, we use 1-plicators
and their labels appear in the figures. Note also that in Sg the redex can be Copy(E)
node, where E is any restricted regular expression that denotes ¢ stream; all such
expressions are constructed from & by concatenation and iteration.

Let us comment on rule Sg. In the reduction scheme S, the redex is a cyclic net
which contains only Copy nodes and n-plicator nodes. The result of the reduction
is a set of generators. Every generator corresponds to an exactly one output channel
of the redex net. The generator which corresponds to an output channel ¢4 of the
redex periodically produces the stream s which is constructed as follows: (1) traverse
the cycle starting from ¢/ and go in the direction opposite to the channel direction;
(2) concatenate all parameters of the Copy nodes on this path. For example, in
Fig. 5, x=(sut)®”, y=(tsu)®, z=(uts)”. Because of this rule, we use restricted
regular expressions as notations for the parameters of generator nodes.

Note that rules R,, R,, and S, are of a different nature from that of the other
rules, in the sense that they apply to arbitrary big subnets as redexes. The other
rules are local and their redexes contain only two nodes.

3.3. Normal Form Theorem

We say that a net is in a normal form if it does not contain redexes. A net N' in
the normal form is called a normal form of N if N is reducible to N’ by a sequence
of reductions.

THEOREM 1. Every net has a normal form. There exists a polynomial algorithm
which constructs a normal form of a net.

In the rest of this section a proof of Theorem 1 is presented.
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FIG. 5. Reductions for primitive nodes.
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FIG. 6. Reductions for primitive nodes.

Proof. Let us partition the reduction rules into five groups G, ..., G5 as follows:

G,:rules R, and R,.

G,: rules S¢ and S,.

G;: rule Ss.

G,:rule S,.

Gs:rules Sy, S,, S5, S5, Sy, and Sy,.

We say that N is in G, normal form if it contains no redex for the rules in G,.
We say that N is in G _; normal form if it contains no redex for the rules in
U {G,: j<i}. We say that N is in G _, normal form if it contains no redex for the
rules in J {G,: j<i}.

We say that N is G; normal form of N’ if N is in G, normal form and N is
obtained from N’ by a sequence of reductions from the group G;. The notions of
G _; and G _; normal forms of a net are defined in a similar way.

One can check that when a rule R from any one of these groups G; is applied to
a net in G _; normal form, then the result is still in G _,; normal form. Therefore,

LemMmA 2. If Nis in G _; normal form then a G; normal form of N is G _; normal
form of N.
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The next five propositions show that G, normal form can be constructed in poly-
nomial time.

ProrosiTiON 3. The G, normal form of a net can be constructed in polynomial
time.

Proof. The proof of this proposition is precisely the same as the proof of
Proposition 1 in [18]. (This proof is given in Apendix A of [18].) |

ProrosITION 4. The G, normal form of a net can be constructed in polynomial
time.

Proof. Let the G,-size of a net be defined as the number of its channels plus the
sum of the length of the parameters of its copy nodes. It is clear that the G,-size
of a net N is less than the size of N. We show that the G, normal form of a net
N can be found in time polynomial in the G,-size of N.

Group G, contains rules S¢ and S,. Observe that there exists a polynomial (in
G,-size) algorithm which checks whether a net contains a redex for these rules,
and if such a redex exists, the algorithm returns the result of the reduction. This
observation is immediate for S, reductions. S, redexes can be found in polynomial
time because they contain only nodes with one input port. All the paths containing
only the nodes with one input port can be found in polynomial time.

Also note that S¢ and S, reductions decrease the number of channels of a net and
its G,-size. Therefore, the normal form can be constructed in polynomial time. ||

ProrosiTiON 5. The G5 normal form of a net can be constructed in polynomial
time.

Proof. A G5 redex can be found in polynomial time and it can be reduced in
constant time. Every G5 reduction decreases the number of Copy(e) nodes and does
not increase the size of a net. Therefore, the G; normal form can be constructed in
polynomial time. ||

ProposSITION 6. Let N be a net in G _, normal form. The G, normal form of N
can be constructed in polynomial time.

Proof. S, is the only rule in G,.

Note that S, affects only the subnet consisting of Copy and multi-plicator nodes.
Such a subnet can be found in polynomial time. Moreover, if N’ is a net in G _,
normal form then, the subnet of N’ consisting of all its copy and generator nodes
is in G _, normal form.

Therefore, it is enough to show that a G, normal form can be constructed in
polynomial time for any net N which is in G _, normal form and contains only
copy and multiplicator nodes.

Such a net N should be acyclic, because the only possible cycles of Copy and
multi-plicator nodes are redexes of rules R, R, or S, (and these rules are in groups
G, and G,).
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Let N be an acyclic net consisting of Copy and multi-plicator nodes. From every
node n of the net there is a path to an output channel of N. We define the weight
of a path from a node to an output channel as the number of multi-plicator nodes
on the path. We define the weight of a node as the sum of the weights of all the
paths from the node to all output ports. We define the weight of a net as the sum
of the weights of its Copy nodes plus the number of its nodes.

Let us show that the weight of an n nodes acyclic net which contains only Copy
and multi-plicator nodes is bounded by 27°. Indeed, Copy and multi-plicator nodes
have only one input channel and therefore any acyclic net over such nodes has the
form of a forest (set of trees). The output channels are the leaves of this forest. In
any forest over n nodes the number of all paths to all leaves is bounded by n% Note
that the weight of any path is bounded by n. Hence, the weight of the net is
bounded by n x n* +n < 2n?.

Recall that the size of a net N is the number of its nodes plus the number of its
channels plus the length of the expressions which appear as parameters of the copy
and generator nodes of N. Note that the size of a net is bounded by its number of
nodes multiplied by its degree (degree of a net is the maximal number of ports for
the nodes in the net) multiplied by MAX-EXP (MAX-EXP is the length of the maxi-
mal expression which appears as a parameter of its copy and generator nodes), and
it is less than the weight of the net multiplied by its degree multiplied by MAX-EXP.

Finally,

(1) An application of S, reduces the weight. Therefore, only finite sequences
of S, reductions can be applied to N and the length of such a sequence is bounded
by the weight of N.

(2) Note that the size of all the nets in a reduction sequence is bounded by
the weight of N multiplied by its degree multiplied by MAX-EXP.

(3) TItisclear that an S, redex can be found in polynomial time and S, reduc-
tion can be performed in polynomial time.

From (1), (2), (3) and the fact that the weight of a net is bounded by 2x°, it
follows that G, normal form can be constructed in polynomial time. [

ProrosiTiON 7. The G5 normal form of a net can be constructed in polynomial
time.

Proof. A G5 redex can be found in polynomial (in number of nodes + number
of channels) time and it can be reduced in linear time. Every G5 reduction decreases
the number of nodes + number of channels of a net. Therefore, G5 normal form
can be constructed in polynomial time. ||

Now we are ready to prove Theorem 1. Let N, be a net. Let N, be its G, normal
form and let N, be the G; normal form of N, _,,i=2,3,4,5.

By Lemma 2, Ny is a normal form of N,. By Propositions 3, 4, 5, 6, and 7, N,
can be constructed from N,_, in polynomial time. Therefore, a normal form of a
net can be constructed in polynomial time. ||
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4. SOUNDNESS

THEOREM 8 (Soundness of the Reductions). If N is reducible to N' then for all
interpretations, N and N' have the same Input—Output behavior.

Proof. Consider any of our reduction rules Red: N, = N,. It is easy to check
that N, and N, have the same [-O behavior under all interpretations. Unfor-
tunately, this fact still does not imply the soundness of our reduction rules.

Indeed, recall that in [2], Brock and Ackerman proved that I-O equivalence is
not substitutive. They provided an example of two interpreted nets N, and N, and
a context C[ ] such that N, and N, are I-O equivalent but C[ N, ] and C[ N,] are
not [-O equivalent. This fact was such a surprise when it was first discovered that
it is known as the Brock—Ackerman anomaly.

Since [-O equivalence is not substitutive, we have to find a substitutive equiv-
alence = which refines I-O equivalence and to show that for any of our reduction
rules Red: N, = N, the nets N, and N, are not only I-O equivalent, but also are
= equivalent.

There exist several different formalizations of dataflow semantics [5, 6, 10, 19,
20]. As usually happens, a precise formalization of semantics is based on many
definitions and is quite lengthy. (For an informal presentation of the semantics of
dataflow nets we refer the reader to Section 3.2 of [18].) This is why we have not
presented these definitions here and we state only that the verification of soundness
of reduction rules R,, R,, Sy, and S;, is a routine task for the formalizations
referred to above. Actually, the soundness of R,, R, and S,, S, is a sanity test for
a dataflow semantics.

In order to justify the soundness of the rules S,—S; we recall the Kahn Principle
[11].

Kahn [11] considered dataflow networks over a class of specific determinate
automata. The Input-Output behaviors of Kahn’s automata are continuous func-
tions on the stream domain. Moreover, I-O behavior of a net over such automata
is also a function. The Kahn principle states that the function computed by a net
is obtained as the minimal solution for an appropriate system of equations which
is constructed from the functions computed by the net’s components and the net
topology. Figure 7 illustrates two nets and their corresponding systems of equa-
tions. (The primitive node 2-plicator is pictured here as a triangle). The Kahn
Principle (KP) and the equality of simultaneous and the corresponding nested least
fixed points imply the following

Property 1. Let N be a dataflow net consisting of determinate automata and let
N' be a subnet of N. Let N” be a net consisting of determinate automata which
have the same I-O behavior as net N'. Then the net obtained from N by replacing
N' by N” have the same I-O behavior as N.

We omit the Kahn’s description of the determinate nodes. For our proof it is
only important that all our primitive nodes are determinate. The Kahn principle
holds in all the formalizations of dataflow semantics cited above. We refer the
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T1 = I3 il i 24
3 21 = T2 = XT3 2 = 4
3 = F(x
zg = F(z3) :1:3 _ ngig

FIG. 7. System of equations for nets N; and N, .

reader to [1, 6, 9, 12, 14, 16, 19], where proofs of Kahn’s principle and its
generalization for different formalizations of dataflow semantics can be found.
Moreover, for all these semantics there holds the following generalization of the
property 1.

Property 2. Let N be an arbitrary dataflow net and let N’ be a subnet of N con-
sisting of determinate automata. Let N” be a net consisting of determinate
automata which has the same I-O behavior as net N'. Then the net obtained from
N by replacing N’ by N” has the same I-O behavior as N.

Hence the nets over determinate automata with the same I-O behavior are
replaceable by each other in every context.

All our primitive nodes, Copy, multi-plicators, generators, and terminating
nodes, are examples of determinate automata. The left and right sides of reduction
rules S,—Ss have the same I-O behavior. Therefore, if N is reducible to N’ by any
of these rules then N and N’ are also I-O equivalent.

5. COMPLETENESS OF THE REDUCTION RULES

In this section we prove the completeness theorem:

THEOREM 9 (Completeness). Two nets have the same I-O behavior under all
dataflow interpretations iff they are reducible to isomorphic nets by the reduction
rules Ry, R, and S,—S,.

The if direction follows from the soundness theorem.

We concentrate here on the proof of only if direction of the completeness
theorem.

In Subsection 5.1, we introduce notions which play an important role in our
proof. Subsection 5.2 provides the proof of completeness theorem. Proofs of
Propositions 12 and 13 are deferred to the appendixes. Some lemmas in the
appendix follow immediately from the definitions and we have omitted their proofs.
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5.1. Paths, Chains, and Strings

In this section we recall the notion of a path from [ 18] and provide a definition
of a chain which conservatively extends the definition of a chain for the uninter-
preted nets. We also introduce here the notion of string, which was not needed in

[18] .

DerFINITION 3. A path of a net N is a sequence of one of the following forms

(A) ap,v,q\p2v2q2 P0G -G 1 Puly
(B) ap\v1q1p20295- - piviq; - 4u_1PnVnqnb

where

e v, U,---v, are nodes.

e p;is a number assigned to an output port of v,

e ¢, 1s a number assigned to an input port of v,

e there is a channel from the port p, , of v, ; to the port ¢, of v,

e a is the label of the output channel of N which exits port p, of v,

o for a sequence of the form (B), b is the label of the input channel entering

port ¢, of v,, .

We say that a path of the form (A) leads to node v,. We say that paths meet in
N if they lead to the same node in N. We say that a path of the form (B) leads to
the input channel 5.

DEerFINITION 4. A path is simple if all its nodes are distinct.
DEFINITION 5. A path s=ap,v,q,p,0,4>--p,v, 1s loop-ended if

1. v,---v,_, are different nodes of the nets. and
2. for some k <n the node v, is the same as v,,.

s is loop-ended of index i if among v, ---v, _, there are exactly i — 1 non-primitive
nodes.

DEerFINITION 6. A proper path is a simple or a loop-ended path leading to a gen-
erator, to a non-primitive node, or to an input channel.

A path represents a way of traversing a net starting from an output channel.

DerFINITION 7. A chain is obtained from a path by replacing the nodes by their
labels and then deleting all multi-plicators and their ports.

Remark. This definition of a chain conservatively extends the definition of a
chain given in [ 18]. There, only the nets over the uninterpreted nodes were con-
sidered and chains were obtained from a path only by replacing the nodes by their
labels.

A chain s is a simple chain in net N if it was obtained from a simple path of N.
Note that the same chain s can be obtained from several different paths. However,



64 ALEXANDER RABINOVICH

a chain is simple if at least one of these paths is simple. A chain is a loop-ended
chain of index 7 in net N if it was obtained from a loop-ended path of index i.
A chain leads to a node v if it was obtained from a path which leads to the node v.
Chains meet if they were obtained from paths which meet. A chain leads to an input
port b if it was obtained from a path which leads to the input port b. A chain is
a proper chain in net N if it was obtained from a proper path of N.

ExampLE. Chain 41K23L12M11 is a simple chain of the net in Fig. 4. Chain
41K23L22M14K is a loop-ended chain of index 1 in the net in Fig. 4.

DEFINITION 8. A string is obtained from a chain by deleting copy labels and
their ports.

A string is simple (proper, loop-ended of index i) in N if it is obtained from a
simple (proper, loop-ended of index i) chain in N.

Lemma 10. For every net in normal form there exists at most one path which
corresponds to a chain.

Proof. The proof is by induction on the length of the chain. It follows from:
(1) Paths and chains start at output channels of a net. (2) The output channels
have different labels. (3) A port of a node is connected to exactly one channel.
(4) The ports of a non-primitive node have different numbers. (5) Multi-plicators
have only one input port. (6) In a net in normal form a multi-plicator is never con-
nected to a multi-plicator (reduction rule S5). ||

LeEMMA 11. For every net in normal form there exists at most one proper path
which corresponds to a string.

We say that proper strings meet in N if their corresponding proper paths meet
in N.

5.2. Proof of Completeness Theorem
The proof is based on the following propositions:

ProrosiTION 12. Let N, and N, be nets in normal form with the same external
channels. N, is isomorphic to N, iff
1. N, and N, have the same set of simple proper chains.
2. N, and N, have the same set of loop-ended chains of index i.
3. Simple proper strings meet in N, iff they meet in N,.

Proof. See appendix A. |

PropPoSITION 13. Let N, and N, be nets in normal form which are I-O equivalent
under all interpretations. Then
1. N, and N, have the same set of simple proper chains.
2. N, and N, have the same set of loop-ended chains of index i.
3. Simple proper strings meet in N, iff they meet in N,.
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Proof. See appendix B. |

The completeness proof proceeds as follows. Assume that nets N, and N, are [-O
equivalent under all interpretations. Let N} and N’ be normal forms of nets N, and
N, (they exist by Proposition 1). The soundness theorem implies that N and N’
are also I-O equivalent under all interpretations. Therefore, by Propositions 13 and
12, nets N} and N’ are isomorphic. Hence, N, and N, are reducible to isomorphic
nets.

Also note that the soundness theorem, Theorem 1, and Propositions 12 and 13

imply

THEOREM 14. (Uniqueness of Normal Form). Every net has a unique (up to
isomorphism) normal form.

6. COMPLEXITY OF STRUCTURAL EQUIVALENCE

The main result of this section is:

THEOREM 15. I-O equivalence of partially interpreted nets under all interpreta-
tions is decidable in polynomial time.

Proof. Theorem 15 follows from the completeness theorem, Theorem 14,
Theorem 1, and Proposition 16 below. |

PROPOSITION 16.  There exists a polynomial algorithm which checks whether two
nets in normal form are isomorphic.

Proposition 16 follows from Proposition 17 and Proposition 19 given below.

PrOPOSITION 17.  There exists a polynomial algorithm which checks whether a
map ¢ between the nodes of two nets is an isomorphism.

Proof. To verify whether ¢ is an isomorphism we have to check conditions
1, 2, and 3 of Definition 1 (Section 2.3). The only non-trivial part is to check that
¢ preserves the labeling of nodes, i.e., v and ¢(v) have the same label.

If v is an uninterpreted node, a terminating node, or a multi-plicator this condi-
tion is easily verified. Otherwise, v is labeled by Gen(e) or Copy(e), where e is a
restricted regular expression (see Section 2.1).

Therefore, Proposition 17 follows from

LemMa 18.  Equality between restricted regular expressions is decidable in polyno-
mial time.

Proof. Recall that expressions are equal if they denote the same stream.
For every restricted regular expression we can find in polynomial time an equal
expression in one of the following forms:

Form A. a,---a,

Form B. ay---a,(by---b,,)”, where a, #b,, and b, ---b
m=0or by---b,, #(by---b,,)" for every k> 1).

is not periodic (i.e.,

m
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Clearly, the equality between expressions in the form (A) can be checked in linear
time. An expression in the form (A) is never equal to an expression in the form (B).
Expressions @, ---a,(by---b,,)” and d ---d’,(by ---b',,)” in the form (B) are equal
if and only n=n" A m=m" and Vi<n.a,=a; A Vj<m.b;=b’,. Hence, the equality
between restricted regular expressions can be tested in polynomial time. ||

PrOPOSITION 19. There exists a polynomial algorithm which for any pair of nets
N, and N, constructs a relation R between their nodes and the algorithm satisfies the
following correctness criteria: If nets N, and N, are in normal form and are
isomorphic, then R is the graph of an isomorphism between these nets.

Proof. Such an algorithm is described in appendix C of [18]. Actually a
stronger result was shown there, namely: if nets N, and N, do not contain R, and
R, redexes and are isomorphic then the algorithm returns a graph of an isomor-
phism between N, and N,. |

APPENDIX A: PROOF OF PROPOSITION 12

The proof of Proposition 12 is organized as follows. Subsection A.1 lists some
simple properties of the nets in normal form. Subsection A.2 characterizes
isomorphic nets in terms of their simple and loop-ended chains. Subsection A.3
reduces Proposition 12 to the propositions of Subsection A.2.

A.1. Basic Properties of the Nets in Normal Form

In this subsection many lemmas (to which we will refer later) that explore
properties of chains for nets in normal form are listed. In most cases their proofs
are omitted because they directly follow from the definitions and the reduction
rules.

LEMMA 20. Let N be a net in normal form and let s be a chain of N.

1. s leads to a multi-plicator iff it has the form a pyA,q, P2 A>q>+ PouAiGm-
2. s leads to a channel b of the net iff it has the form a p;A,q,p>,A>q5 -
pmAmqmb‘

3. s leads to a node which is not labeled by a multi-plicator iff s has the form
ap AiqprAsqs--- pA,.; if s leads to a node v, then v is labeled by A,,.

LemMa 21. Let N be a net in normal form and let ap A,q, - p;0;q;Pi1Vip1 "
be a path of N.

1. If v, is labeled by a multi-plicator, then v, is labeled by a non-primitive
label.

2. If v; is labeled by a Copy, then v, is either a multi-plicator or a non-
primitive node.
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LEMMA 22. Let N be a net in normal form.

1. N has at most one terminating node.

2. There exists a simple chain leading to a node v of N iff v is not the terminat-
ing node.

3. There exists no simple chain leading to an input channel b of N iff b enters
a port of the terminating node.

Proof. The lemma follows from the proof of Proposition 3. ||

LEMMA 23. Let N be a net in normal form, let v be its node, and let r be an output
port of v. Then exactly one of the following alternative holds:

1. There exists a simple or a loop-ended chain which leads to v through r.

2. The channel exiting port r of v is connected to a port of the terminating node
of N.

Proof. The lemma follows from the proof of Proposition 3. ]

LEMMA 24. Let q be an input port of v and let h be a simple path leading to v.
Then, if there exists a channel from an output port p of v' to the port q of v then hqpv'
is a simple or a loop-ended path of N.

LeMMA 25. Let N be a net in normal form and let s be its loop-ended chain of
index i. Then the chain Simplify(S, i) defined in Fig. 8 is a simple chain which meets
with s.

LemmA 26. Let N be a net in normal form. Let s=ap,A,q, - -p,A.q, be a
simple or a loop-ended chain of N, and let s'=a'p\A'\q,---p.,A..4., be a simple or
a loop-ended chain of N. If s and s' lead to a node v of N through different ports, then
q,# 4., or simple chains ap,A,q,---p,A, and a'p' A\ q\--- p,,A,, do not meet in N.

Proof. Both chains s and s’ lead to the node v which is a multi-plicator node
by Lemma 20(1). By Lemma 21(1) the node u that precedes v on the path that
corresponds to the chain s (this path is unique by Lemma 10) is non-primitive.
Therefore ap,4,q9,--- p,A, leads to u. Moreover, ap,A,q,--- p,A, is a simple
chain because it is a proper prefix of a simple or a loop ended chain. Similarly,
apiA\q,---p,A, leads to u' which precedes v on the path that corresponds to the
chain s’. Assume that u=u'. Since u is a non-primitive node its output ports have
different labels and therefore if ¢, =¢’,, we obtain that s and s’ leads to v through
the channel which exit the port ¢, of u and this contradicts the assumption that s

Function Simplify(s,)

If s =ap1A1qq ... prA, then return the maximal prefix of s of the form
ap1Aiqy ... pnAm which contains ¢ non-primitive labels.

If s =ap1A1qm ... ppAng, then return the maximal prefix of s of the form
ap1A1qi ... pnAmgm which contains i — 1 non-primitive labels.

end

FIG. 8. Function Simplify(s, 7).
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and s lead to v through different ports. Therefore, ¢, #¢’, or ap, A,q4,--- p,A4, and
apiA,q---p',A', do not meet in N. |

LEMMmA 27. Let N be a net in normal form and let s be a simple or a loop-ended
chain leading to a node v. Moreover, assume that v is not a multi-plicator and that
it is labeled by A. Then s leads to v through port p iff s has the form tpA.

LeEMMA 28. Let N be a net in normal form.

1. There exists a channel from a multi-plicator node v to a port q of a node v'
iff there exists (a simple or a loop-ended) chain s=ap,A,q,--- p,A4,4q, leading to v
such that q,,=q and chain ap,A,q,--- p,A, leads to v'.

2. There exists a channel from a port p of node v to the input port of a
multi-plicator node v' iff there exists (a simple or a loop-ended) chain
s=ap,A1q,- Pp_1A4,_14n_1PaA, leading to v such that p,=p and chain
apyAyqy - P14, 19,1 leads to v'.

3. Port p of a node v is connected to a port of the terminating node iff p, # p
for any (a simple or a loop-ended) chain ap,A,q,--- p, A, leading to v.

4. If v and v' are neither a multi-plicator nor a terminating nodes of N then
there exists channel from port p of v to port q of V' iff there exists (a simple or a loop-
ended) chain s=ap,A,q,-+ p,_1A4,_14,_1P.A, leading to v such that p,=p,
4n_1=¢, chain ap,A,q,---p, A, leads to v' and ap,A,q, - p, A, _1q,_1 Is
not a chain of N.

Lemma 29 (External Channels). Let N be a net in normal form.

1.  An output channel a, of N exits an output port of a multi-plicator node v iff
the chain a, leads to v in N.

2. Let v be a node of N labeled by A and A is not a multi-plicator. An output
channel a, of N exits an output port p of v iff a, pA is a simple chain in N which leads
to v and a, is not a chain of N.

3. Let v be the terminating node of N. An input channel b of N enters an input
port of v iff no simple chain in N leads to b.

4. Let v be a multi-plicator node. An input channel b of N enters the input port
of v iff there exists a simple chain ap\A,q,--p,_14,_14,_1b in N such that
apyA1qy - P14, 14,1 leads to v.

5. Let v be neither a multi-plicator nor a terminating node of N. An input
port b of N enters an input port q of v iff there exists a simple chain ap,A,q, ---
Pn—1A4n-1qn_1PnA, leading to v such that ap\A,q, - p, 1A, _19u—1PuAnqb is a
simple chain of N and ap\A,q,-++ p,_1A,_14,_1PaA,q is not a chain of N.

A.2. First Isomorphism Theorem

In this section we prove the following proposition which characterizes isomorphic
nets.

ProrosiTioN 30 (First Isomorphism Theorem). Let N, and N, be nets in normal
form with the same external channels. N, is isomorphic to N, iff
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1. N, and N, have the same set of simple chains.
2. N, and N, have the same set of loop-ended chains of index i.
3. Simple chains meet in N, iff they meet in N,.

The only if direction of the proposition is trivial. Below we prove the if direction.

Define the relation R between the nodes of N, and N, as follows:

v, Rv, iff either both nodes are terminating nodes or there exists a simple chain
leading to v, in N, and to v, in N,.

We claim that R is an isomorphism between the nets.

Subsection A.2.2 provides a proof that R is a graph of an isomorphism; this proof
is based on lemmas given in Subsection A.2.1.

A.2.1. Some Facts about R
Lemma 31.  Assume that v, Rv,.

1. A simple chain s leads to v, in N, iff it leads to v, in N,.
2. A loop-ended chain s leads to v, in N, iff it leads to v, in N,.

Proof. (1) Since v, Rv, there exists a simple chain s' which leads to v, in N,
and to v, in N,. By the assumption s and s’ meet in N, iff they meet in N,. There-
fore, s leads to v, in N, iff it leads to v, in NV,.

(2) Let s be a loop-ended chain of index i in N,. By the assumption (2) of
Proposition 30, s is a loop-ended chain of index i in N,. Let s, be a simple chain
defined as Simplify(s, i) (see Fig. 8). By Lemma 25, chains s and s, meet both in N,
and in N,.

Since v, Rv, there exists a simple chain s’ such that it leads to v, in N, and to v,
in N,.

By assumption (3) of Proposition 30, simple chains s, and s’ meet in N, iff they
meet in N,. Therefore, s leads to v, in N, iff it leads to v, in N,. |

LemmA 32. If v,Rv, and the label of v, is neither multi-plicator nor terminating,
then v, and v, have the same label.

Proof. Follows immediately from Lemma 20(3) and the definition of R. ||

Lemma 33. If v, Rv, and there is a channel from an output port p of v, to a port
of the terminating node of N, then there is a channel from port p of v, to the ter-
minating node of N,.

Proof. N, is in normal form and v, is connected to the terminating node of N;.
Therefore, by the reduction rule S;, v, is not a multi-plicator node. By Lemma 32,
v, and v, have identical labels.

We arrive to a contradiction by assuming that port p of v, is not connected to
the terminating node.

By this assumption and Lemma 23, there is a chain s (simple or loop-ended)
leading to v, through port p.
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By Lemma 27, s has the form #pA.

By Lemma 31, s leads to v, in N;.

s has the form #pA; therefore it should pass through port p of v,. But since this
port is connected to the terminating node, s should pass through the terminating
node. However, no chain can pass through a terminating node (by Lemma 22(2)).
We have arrived at a contradiction. |

LemMA 34. If v, Rv, and v, is a multi-plicator, then v, is a multi-plicator.
Proof. Immediately from Lemma 20(1). ||

LemMA 35. Let v, Rv, and v, be a multi-plicator node. If two chains (simple or
loop-ended) lead to v, through different ports then they lead to v, through different
ports.

Proof. Let s=ap,A,q,---p,A,q, and s=a'p|A\q,---p.,A.q.,, be two chains
which lead to v, in N, through different ports.

By our assumption v, Rv,, hence by Lemma 31, chains s and s’ lead to v, in N,.

s and s’ lead through different ports to v,; therefore, by Lemma 26, either ¢, # ¢,,
orap,A,q,---p,A, and a'p A\ q,--- p,A,, do not meet in N,.

If ¢, # ¢, then these chains lead to different ports of v, in N, by Lemma 26.

Ifap,A,q9,---p,A, and a'p 1 A\ q,--- p,,A,q,, do not meet in N, then they do not
meet in N,, because they are simple chains and simple chains meet in N, iff they
meet in N,. Therefore, applying Lemma 26, we obtain that s and s" lead to v,
through different ports. |

LemMA 36. If v, is a multi-plicator with n output ports and v, Rv, then v, is a
multi-plicator with n output ports.

Proof. By Lemma 34, v, should be a multi-plicator. Let m be the number of
output ports of v,. We are going to show that n=m.

By the reduction rule S,, no port of a multi-plicator is connected to a port of a
terminating node of a net in normal form.

Therefore, by Lemma 23, there exist n simple or loop-ended chains leading to v,
through different ports. By Lemma 35, these n chains should lead through different
ports of v,. Therefore, v, has at least n output ports. Hence n<m. Symmetrical
arguments show that m < n. Therefore, v, and v, are multi-plicators with the same
number of output channels. |

A.2.2. R is an Isomorphism
LeEMMA 37. R is a bijection between the nodes of N, and N,; i.e.,

1. (a) For every node v, of N, there exists a node v, of N, such that v, Rv,;
(b) if vy Rv, and v, Rvy then v, = ;.

2. (a) For every node v, of N, there exists a node v, of N, such that v, Rv,;
(b) if vy Rv, and v5Rv, then v, = 5.

Proof. (1) Let v, be a node of N,. Then v, is either a terminating node or there
is a chain s leading to v, in N;.
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Case 1. v, is not a terminating node

(a) Let s be a simple chain leading to v, in N, (such a chain exists by
Lemma 22(2)). Then s is a simple chain of N,. Therefore, there exists a node v,
such that s leads to v, in N,. Hence v, Rv,, by the definition of R. (b) Let s be a
simple chain leading to v,. If v, Rv, and v, Rv; then, by Lemma 31, s leads to v, in
N, and s leads to vy in N,. Therefore v, = v;.

Case 2. v, is a terminating node of N,.
(a) Let r be a port of v,.

If an input channel m of N, enters r then, by Lemma 22(3), there is no chain
leading to m in N,. Hence, there is no chain leading to m in N,. Applying
Lemma 22(3), again we obtain that channel m enters a port of a terminating node
of N,. Hence v, is the terminating node of N,.

If no input channel of N, enters r, then there is a node v} in N, such that its out-
put port is connected to the port r of v,. Node v/ is not a terminating node; there-
fore, by case 1, there is a node v} in N, such that v Rv;. Applying Lemma 33 we
obtain that N, has a terminating node v,. Hence v, Rv,, by the definition of R.

(b) follows from Lemma 22(1).
(2) The proof of (2) is dual to the proof of (1). |

Lemma 38. R preserves the labeling of nodes.

Proof. Assume that v; Rv,. We have to show that v, and v, have the same label.

If v, is neither a terminating nor a multi-plicator node then, by Lemma 36, v,
and v, have the same label.

If v, is a multi-plicator with n output ports then, by Lemma 36, v, is a multi-
plicator with n output ports.

It remains to consider the case where v, is a terminating node. In this case, v, is
the terminating node of N, by the definition of R. So we have to prove that these
nodes have the same number of ports. We are going to show that the number of
v, ports is greater than or equal to the number of v, ports. Symmetrical arguments
demonstrate that the number of v, ports is greater than or equal to the number of
v, ports. Therefore v, and v, have the same number of ports and the same label.

Assume that v, is a terminating node with n ports. Every port of v, is connected
either to an output port of another node or to an input channel of the net.

Let b,---b, be the input channels of N, which enter the ports of v, and let
Fiy1 -+ T, be the ports of v, connected to nodes in N,.

We are going to show that at least k£ input channels of N, enter v, and at least
n—k ports of v, are connected to other nodes in N,. Therefore v, is a terminating
node with at least n ports.

Recall that b, --- b, are the input channels of N, which enter v,. By Lemma 22(3)
there is no simple chain in N, leading to b;, i=1, .., k. Since N, and N, have the
same set of simple chains, there is no simple chain in N, leading to b;, i=1, ..., k.
Because b, are input ports of N,, it follows by Lemma 22(3) that b, enter the ter-
minating node of N,, i.e., b, enter v,.
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Assume that from port p; of the node u; of N, there is a channel to port r; of v,
i=k+1,..,n
All r; are different ports of the terminating node; therefore

for i# j, either p,# p; or u; #u;.

By Lemma 37, there are nodes u} in N, such that u,;Ru’ for i=k + 1, ..., n. Moreover
u; = u; iff ;= uj.

By Lemma 33, there are channels from port p, of u; to a port of the terminating
node of N,.

All these channels are different, because for i # j either p, # p; or u; # u;.

Therefore, n — k different ports of v, are connected to ports of the other nodes in
N,. Hence v, has at least n ports. |

LEMMA 39. R preserves the adjacency relation.

Proof. Let v; Rv, and v Rv,. We have to show that there is a channel from port
p of v, to port g of v} iff there is a channel from port p of v, to port ¢ of v5. Since
N is a net in normal form, one of the following cases holds

Case 1. v is the terminating node of N;.
Case 2. v, is a multi-plicator.
Case 3. v} is a multi-plicator.

Case 4. v, and v are neither multi-plicator nor terminating nodes of N,.
We prove each of these cases separately.
Case 1. Since R preserves labeling of nodes v} is the terminating node of N,.

Assume that there is a channel from port p of v, to a port of v} (all ports of
terminating node are labeled by 1).

v, is not a multi-plicator node by the reduction rule S,. By Lemma 28(3), p,, # p
for any chain ap, 4,q,--- p, A, leading to v, in N,. Therefore, by Lemma 31, p,, # p
for any chain ap,4,¢,--- p,A4, leading to v, in N,.

Hence, by Lemma 28(3), port p of v, is connected to the terminating node v%
of N,.

Case 2. Since R preserves labeling of the nodes v, is a multi-plicator.

Assume that there is a channel from v, to a port ¢g of v}.

By Lemma 28(1), there exists (a simple or a loop-ended) chain s=ap, 4,4, - p,A4,4.,
leading to v, such that ¢, =¢ and chain ap,4,q,--- p, A, leads to v}.

Therefore, by Lemma 31, s leads to v, in N, and ap,4,q,--- p,A, leads to v}
in N,.

Hence, by Lemma 28(1), there is a channel from v, to the port ¢ of v5.

We omit the proofs for case 3 and case 4; they are based on Lemma 31 and
Lemma 28. |
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LEmmA 40. R preserves the labeling of external channels; i.e.,

1. If v, Rv, and an output channel b of N, enters a port p of v, then the output
channel b of N, enters a port p of v,.

2. If v, Rv, and an input channel a, of N, exits a port p of v, then the input
channel a, of N, exits port p of v,.

Proof. Follows immediately from Lemma 29 and Lemma 31. |]

Finally, Proposition 30 follows from Lemmas 37, 38, 39, and 40.

A.3. Proof of Proposition 12

First we state Lemmas 41, 42, 43, and 44, which show that the set of simple
chains of a net N and the set of pairs of simple chains which meet in N can be
found from the set of proper chains of N, the sets of loop-ended chains of index i
in N, and the set of pairs of proper chains which meet in N. We omit the proofs
of these Lemmas; these proofs are based on the reduction rules and the definition
of a chain.

LemmA 41 (Chains Meet at a Multi-plicator Node). Let N be a net in normal
form. Let w be a chain ap,A,q,---A,q, and let w' be a chain of N. Moreover,

assume that w and w' are simple chains of N. Then w and w' meet in N iff one of the
following holds:

1. There exists a non-primitive label A and its input port p such that wpA and
w'pA are proper chains which meet in N.

2. There exists an input channel b such that wb and w'b are proper chains
of N.

LeMMA 42 (Chains Meet at a Copy Node). Let N be a net in normal form. Let
w be a chain ap,A,q,--- A, q,1Copy(t) and let w' be a chain of N. Moreover, assume
that w and w' are simple chains of N. Then w and w' meet in N iff one of the following
holds:

1. There exists a non-primitive label A and its input port p such that w2pA and
W'2pA are proper chains which meet in N.

2. There exists an input channel b such that w2b and w'2b are proper chains
of N.

LEMMA 43 (Chains Leading to a Copy Node). Let N be a net in normal form.
Let w=ap,A,q,---A,q,1Copy(t) be a chain. Then w is a simple chain of N iff N
has a proper or a loop-ended chain s such that w is a prefix of s.

LEmMMa 44 (Chains Leading to a Multi-plicator Node). Let N be a net in
normal form and let A, be a non-primitive label. Let w be a chain ap,A,q,--- A,q,
or a chain ap,A,q,--- A,q,1Copy(1)2 containing i — 1 non-primitive labels. Then w
is a simple chain of N iff at least one of the following holds:
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1. n=0, w=a and ab is a proper chain of N.
2. N has a loop-ended chain s of index i such that w is a prefix of s.
3. There exists a port p, a non-primitive label A such that s =wpA is a proper

chain of N and one of the following sub-cases holds:

(a) There exists a proper chain s' =a'p A\ q,---A,,q.,.pA in N and proper
chains s and s' meet in N and either q,+# (., or proper chains ap,A,q,--- A, and
a'piAyqy--- A, do not meet in N.

(b) There exists a proper chain s'=a'p1Aq,---A.,q,,1Copy(t') 2pA in N
and proper chains s and s' meet in N and either q,, # ¢., or proper chains ap, A,q,--- A4,
and a'pi A\ q --- A, do not meet in N.

4. There exists an input port b of N such that wb is a proper chain of N and
one of the following sub-cases holds:
(c¢) There exists a proper chain s' =d'p\A'\q,--- A,,q,,b in N and and either
q,7# 4., or proper chains ap,A,q,---A, and a'p1 A" q--- A, do not meet in N.
(d) There exists a proper chain s' =a'p | A’ q}--- A.,q,,1Copy(t')2b in N and
either q, # ¢, or proper chains ap,A,q,--- A, and a'p1 A" q --- A, do not meet in N.
The next Lemma characterizes isomorphic nets in terms of their proper chains.
LEmMMaA 45. Let N, and N, be nets in normal form. If

(A) N, and N, have the same set of simple proper chains, and

(B) for every i, the nets N, and N, have the same set of loop-ended chains of
index i, and

(C) simple proper chains meet in N, iff they meet in N,,
then

1. N, and N, have the same set of simple chains;

2. simple chains meet in N, iff they meet in N,.

Proof. Let us first show that the assumptions (A), (B), and (C) imply the
following two Lemmas.

LeEmMMmA 46. s is a proper chain of N, iff it is a proper chain of N,.

Proof. Let s be a proper chain of N,. Then s is either a simple or a loop-ended
proper chain of N;.

If s is a simple proper chain of N, then, by the assumption (A), it is a simple
proper chain of N,.

If s is a loop-ended proper chain of N, then, by the assumption (B), it is a loop-
ended chain of N,. Since s leads to an input port, to a non-primitive node or to
a generator node it is also a simple proper chain of N,. ||

LemMa 47. Proper chains meet in N, iff they meet in N,.

Proof. Let s, and s, be proper chains which meet in N,. We consider four cases.
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Case 1. s, and s, are simple proper chains of N,. In this case, by the assump-
tion (C) they also meet in N,.

Case 2. s, is a simple proper chain and s, is a loop-ended proper chain of index
iin N,. Let s be the chain Simplify(s,, i) (see Fig. 8). s, is a simple proper chain
of N, and it meets with s,, by Lemma 25. Therefore, s, and s, are simple proper
chains which meet in N,. Hence, by case 1,

(a) s, and s, meet in N,.

By Lemma 46, s,, 5, and s, are proper chains of N,. By Lemma 25, s} is a simple
proper chain of N, and s, and s5 meet in N,. Therefore, s, and s, meet in N, iff
s; and s, meet in N,. By (a) above s; and s5 meet in N,. Hence s, and s, meet
in N,.

Case 3. s, is a a loop-ended proper chain of index / in N, and s, is a simple
proper chain in N,. This case is dual to case 2.

Case 4. s, is a loop-ended proper chain of index i in N, and s, is a loop-ended
proper chain of index j in N,. The proof is similar to the proof for case 2. |

Recall that Lemmas 41, 42, 43, and 44 state that the set of simple chains of a net
N and the set of pairs of simple chains which meet in N can be found from the set
of proper chains of N, the sets of loop-ended chains of index i in N and the set of
pairs of proper chains which meet in N. By Lemmas 46 and 47, these sets are the
same for N, and N,. Therefore, N, and N, have the same sets of proper chains and
proper chains meet in N, if they meet in N,. This completes our proof of
Lemma 45. |

Finally, we are ready to prove Proposition 12. Recall that the strings of a net
are obtained from the chains of the net by deleting copy labels and their ports. We
say that string st corresponds to a chain s if sz is obtained from s by deleting copy
labels.

Note also that if s=ap,4,q,---A;_14;,_1p:A:q;Pi14:+19:+1-- 15 a chain of
a net in normal form and A, is a copy label then neither 4,_,, nor 4;,, can be a
copy label. Therefore,

LEmMmA 48. Let N be a net in normal form. Let s, and s, be two proper chains
of N. Then s, is equal to s, iff their corresponding proper strings are equal.

LEMMmA 49. Let N be a net in normal form. Proper chains meet in N iff their
corresponding strings meet in N.

Proposition 12 follows from Lemma 49, Lemma 45, and Proposition 30.

APPENDIX B. PROOF OF PROPOSITION 13

The structure of this proof is similar to the structure of the proof of Proposi-
tion 6 from [ 18], but this proof is technically more complicated. Below we recall
the language for the description of automata which was used in [ 18] . Example 1
from [18] that represents the essence of construction is also given here. Then



76 ALEXANDER RABINOVICH

several generic examples are provided which motivate the way the proof for the
uninterpreted nets [ 18] should be extended to the proof for partially interpreted
nets. Finally, the formal definitions and the proofs are given.

Below automata are described in the language from [18] inspired by the
language of Kahn [11].

The command “read from port ¢” causes the described automaton to look at its
port g. If the channel entering ¢ is not empty then the first token from the channel
is consumed; otherwise the automaton waits for the channel to become non-empty,
and when it happens, the automaton consumes the first token.

The command “output v on port p” appends the value v to the contents of the
channel exiting p.

In addition to the constructs of Kahn’s language, our language contains non-
deterministic choice, denoted by +.

If Pr, describes an automaton A4, and Pr, describes an automaton A,, then
Pr, + Pr, describes the automaton which works either as 4, or as 4,. Non-deter-
ministic choice is associative and commutative. We use the notation Y.!=7 Pr; for
Pri+Pri -+ Pr,and > !=¢{Pr;: ¢(i)} for the sum over all Pr; such that k <i<n
and the condition ¢(i) holds.

We are going to define an interpretation /nt, which will distinguish the nets con-
taining chain s from all other nets. First, we illustrate our construction by generic
examples, and later, the formal definitions are provided.

ExamMpLE 1. Let s=a2C78B31A445B be a chain. It contains four occurrences of
non-primitive labels. Therefore, if it is a simple chain of a net N it should pass
through four different non-primitive nodes: v,, v,, v;, v, (see Fig. 9).

We define four automata At,, At,, At;, At, which correspond to these nodes (see
Fig. 9).

At, corresponds to v, and it just outputs value d; on port 5.

At; corresponds to v5; it reads from port 4 and if the received value is d;, it out-
puts value d, on port 1.

At, corresponds to v,; it reads from port 3 and if the received value is d,, it out-
puts value d, on port 8.

At, corresponds to v,; it reads from port 7 and if the received value is d,, it out-
puts value d, on port 2.

The interpretation Int which corresponds to our chain s is defined as follows:

Int(A) = At; because 4 is label of vy;
Int(B) = At, + At,, because B is the label of v, and v,;

Int(C) = At,, because C is the label of v,.

The following observation is straightforward:

Observation 1. Let d,, d,, d,, d5 be distinct data values. A net without primitive
nodes can produce d, on channel ¢ under the interpretation Int iff s is a simple
chain of N.
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0
FIG. 9. A simple path for chain s =a2C78B31445B.

This example represents the essence of our construction. The general construction
is more complicated, due to the presence of copy, generator and multi-plicator
nodes. Before describing the general construction we provide several generic
examples which illustrate it.

ExaMpPLE 2. Let s=alCopy(ab)22C78B31Copy(bcb)21A445B be a chain. It con-
tains four occurrences of non-primitive labels and two occurrences of Copy labels.
Therefore, if it is a simple chain of a net N, the corresponding path should pass
through two copy nodes and four different non-primitive nodes: v,, v,, v5, v, (see
Fig. 10). The path might also contain multi-plicator nodes.

We define four automata Ar,, At¢,, At;, At, which correspond to the non-
primitive nodes of the path (see Fig. 10).

At, corresponds to v, and it just outputs value d5 on port 5.

At corresponds to v5; it reads from port 4 and if the received value is d5, it out-
puts value d, on port 1.

At, corresponds to v,; first it reads from port 3 three incoming values. If these
values are not b, ¢, b then it stops; otherwise it reads the next value from port 3
and if the received value is d,, it outputs value d, on port 8.

At, corresponds to v,; it reads from port 7 and if the received value is d,, it out-
puts value d, on port 2.

The interpretation Int which corresponds to our chain s is defined as follows:

Int(A) = At, because A4 is label of v5;
Int(B) = At, + At,, because B is the label of v, and v,;

Int(C) = At,, because C is the label of v,.

The following observation is straightforward

Observation 2. Let N be a net in normal form and assume that d,, d,, d,, d,
are distinct values that do not appear in the parameters of copy and generator
nodes of N. Such a net N can produce abd, on channel a under the interpretation
Int iff 5 is a simple chain of N.

a
~—1] copy(ary Ba Copy(ben) | 2] ° e
v

V1

v3 v4

FIG. 10. A simple path for chain s=al Copy(ab)22C78B31Copy(bcb)21 A45B.
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ExXaMPLE 3. Let s=a8B32A445B11Gen(c(ab)®”) be a chain. It contains three
occurrences of non-primitive labels and one occurrences of Gen labels. Therefore, if
it is a simple chain of a net N, the corresponding path should pass through a gener-
ator node and three different non-primitive nodes: v,, v,, v5 (see Fig. 11). The path
might also contain multi-plicator nodes.

We define three automata which correspond to the non-primitive nodes of the
path (see Fig. 11).

For v; we define an infinite sequence {A7{"} 7, of automata; Ar{" first reads k
data values from port 1 and if these k values agree with the prefix of length & of
c(ab)® then the automaton outputs d, on port 5. Otherwise it does not produce any
output.

At, corresponds to v,; it reads from port 4 and if the received value is d,, it out-
puts value d, on port 2.

At, corresponds to v,; it reads from port 3 the incoming data value. If the
received value is d,, it outputs value d, on port 8.

We define a sequence of the interpretations {In"} °_, which corresponds to our
chain, as follows:

Int'"®(A) = At, because A is the label of v,;

Int'"®(B) = At, + At{", because B is the label of v, and v;.

The following observation is straightforward

Observation 3. Let N be a net in normal form and assume that d,, d,, d, are
distinct values that do not appear in the parameters of copy and generator nodes
of N. Such a net N produces d, on channel ¢ under all interpretations Int™ iff s is
a simple chain of N.

ExampLE 4. Let s=a2C78B31C45B be a loop-ended chain of index 2. A corres-
ponding path contains four occurrences v,, v,, v, v, of non-primitive nodes. The
second occurrence v, of a non-primitive node coincides with the fourth occurrence
v, of a non-primitive node. A corresponding path is given in Fig. 12. A path for this
loop-ended chain also might contain multi-plicator nodes.

We define four automata At,, At,, At;, At, which correspond to the occurrences
of non-primitive nodes.

At, corresponds to v, and it just outputs value d; on port 5.

At corresponds to v5; it reads from port 4 and if the received value is d, it out-
puts value d, on port 1.

Gen(c(ab)*)

V1

g v3

FIG. 11. A simple path for chain s =a8B32445B11Gen(c(ab)®).
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U3

V1 U2

FIG. 12. A simple path for chain s =a2C78B31C45B.

At, corresponds to v,; it reads from port 3 and if the received value is d,, it out-
puts value d,; on port 8.

At, corresponds to v,; it reads from port 7 and if the received value is d,, it out-
puts value d, on port 2.

The interpretation Int which corresponds to our loop-ended chain s is defined as
follows:

Int(B) = At,; At, because B is the label of v, and v, and these nodes coincide;

Int(C) = At + At5, because C is the label of v; and v;.

In this example the interpretation assigns to B the automaton At,; At, which first
operates like Az, and then like A¢,.
The following observation is straightforward

Observation 4. Let N be a net in normal form and assume that d,, d,, d,, d;
are distinct values that do not appear in the parameters of copy and generator
nodes of N. Such a net N can produce d, on channel a under the interpretation Int
iff s is a loop-ended chain of index 2 of M.

Notations. The following notations will be used in our proof:
We chose a sequence d,, d,, ... of distinct data values; the elements of the sequence
will not appear in the parameters of the nets we are testing.

e Decrement(p, q,n) describes an automaton which reads a token from
channel ¢. If the received token is equal to d,, the automaton will output d,_, on

port p.
e Test(q, t) describes an automaton that tests whether the stream received on

port ¢ starts from the finite stream ¢; if so, the automaton successfully stops,
otherwise it diverges.

In order to describe the general construction we also introduce the following
notations:

Let s=ap,A4,q,--- be a chain of a net in normal form.

Let B,--- B,, be the subsequence of non-primitive labels in s. We denote by p;
(respectively by g;) the input (respectively the output) port of B; on chain s.
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In the chain s, label B, is either immediately follows B;_, or there exists exactly
one label Copy(t) between B;_, and B; (i>1). We associate with s a sequence
{to,t,-+-1,} of streams.

¢ 1if B; ., precedes immediately by B; and 1 <i<m

¢ if B,, is not followed by a Copy label and i=m
t;=< ¢ 1if B, is not preceded by a Copy label and i=0

t if B;,, immediately precedes by Copy(¢) and i <m

t if B, is followed by Copy(t) and i=m

The definition of the interpretation is given according to the following cases:

s is a simple chain leading to a non-primitive node.

s is a simple chain leading to an input channel.

1
2
3. s is loop-ended chain of index r leading to a non-primitive node.
4. s is loop-ended chain of index r leading to a multi-plicator.

5

s is a simple chain leading to a generator.

In each of these cases we first define a sequence A¢, --- At,, of automata and then
we define Int (A)=3'=7{At;: B;=A}

Case 1. s=ap,A,q,--- p,A, is a simple chain leading to a non-primitive node.
Define

Ap— Test(q;, t;); Decrement(p;, q;, i) if i<m
"~ |output d,,_, on port p, i=m

It (A)=Y {At,: B,=A)}.
i=1

Case 2. s=ap,A,q,---p,A,q,b is a simple chain leading to an input channel 5.
Define At; as Test(q;, t;); Decrement(p;, q;, i), for i=1..m.

In*(A)=Y {At,: B,=A).

i=1

Case 3. s=ap,A,q,---p,A, is a loop-ended chain of index r leading to a non-
primitive node.
Define

_ (output d,,_, on port p,,; Test(q,, t;); Decrement(p,, q,, ) ie{r,m}
" | Test(q;, t,); Decrement(p;, G, i) otherwise

i=m

Int® (A)=Y {At,;: B;=A}.
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Case 4. s=ap,A,q,---p,A,q, 1s a loop-ended chain of index r leading to a
multi-plicator.
Define Az, as

output d,, on port p,; Test(q,, t;); Decrement(p,, q,, r);

Decrement(p,, q,, r) ie{r, m}
Test(q, 1, t;); Test(q,_,, d,,); Decrement(p, 1, ¢,_1, r—1) i=r—1
Test(q;, t;); Decrement(p;, G, i) otherwise

i

Int* (A4)=

s, r

(419 B,= 4},

1

Al

1

Case 5. s is a simple chain leading to Gen(t).

In this case we define a sequence of interpretations {Int"} 7.

Let 1 be the prefix of length k of a stream ¢ (t**) =¢, if k is greater than the
length of ¢).

Define

44 = Test(q;, t;); Decrement(p;, G, I) if i<m
T | Test(g,,, t'©); output d,_, on port p,,  if i=m

IntM(A)= = i {At"): B;=A}.
i=1

In the following Lemma we use the notation ¢: s for the concatenation of
streams s and ¢.

LemMmA 50. Let N be a net in normal form. Assume that distinct values d,, d, -- -
do not appear in the parameters of copy and generator nodes of N.

1. if s has the form s=ap,A,q,---p,A, and A, is a non-primitive label, then
N can produce t, :: d, on channel a under the interpretation Int! iff s is a simple chain
in N.

2. if s has the form s=ap,A,q, -+ p,A,q,b and s contains m > 0 non-primitive
labels, then N can produce t, :: d, on channel a under the interpretation Int> when d,,
is received on channel b iff s is a simple chain of N.

3. if s has the form s=ap,A,q,---p,A, and A, is a non-primitive label, then
N can produce t, :: d, on channel a under the interpretation Inli , iff s is a loop-ended
chain of index r in N.

4. if s has the forms=ap,A,q,--- p,A,q, and A, is a non-primitive label, then
N can produce t, :: d, on channel a under the interpretation Int; , iff s is a loop-ended
chain of index r>1 in N.
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5. if's has the form ap,A,q,--- p,A,q, and A, is a non-primitive label, then N
can produce 1, :: d,, :: dy on channel a under the interpretation Int; , iff s is a loop-
ended chain of index 1 in N.

6. if's has the form ap,A,q, -+ p,A,9,1Gen(t) and t #¢ and n>0 then N can
produce t, :: dy on channel a under the interpretation Int\® iff there exists t' such that
1'% is a prefix of t' and either ap,A,q, --- p,A,q,1Gen(t') is a simple chain in N or
ap,A,q,--p,A,q,1Copy(t') is a simple chain of N.

Proof. We will prove only Lemma 50(1). Lemma 50(2-6) can be proved in a
similar way.

(1) Let B,---B,, be the subsequence of non-primitive labels in s and let pos(i)
be the position of B, in chain s. The following invariant can be shown by the induc-
tion on k.

Invariant. 1f d,, _, is produced on a port p of a node v in a net N under the
interpretation Int!, then p=p,,—,,, and v is labeled by B,,_,., and N has
different nodes v=v,,qm x+r1)> Vposim k111U, labeled by B, ..,
Aposom—rk+1)+1 - A, respectively and for every j= pos(m—k)+1---n either there
is a channel from port p; of v; to port ¢; , of v, , or there is a node u; labeled by
a multi-plicator and its input port is connected to port p; of v; and its output port
is connected to port ¢; , of v; ;.

Lemma 50(1) follows from this invariant. ||
Now we are ready to prove

LEMMA 51. Let N, and N, be nets in normal form. If N, and N, are equivalent
under all interpretations then
1. N, and N, have the same set of loop-ended chains of index r.
2. N, and N, have the same set of simple proper chains.
3. N, and N, have the same set of simple proper strings.
Proof. (1) A loop-ended chain has one of the following two forms:
ap,A.q,---p,A,4q, or apiA,q,---p,A,, where 4, is a non-primitive label. Since

the nets have the same I-O behavior, Lemma 50(3-5) implies that they have the
same set of loop-ended chains of index r.

(2) A simple proper chain has one of the following forms:

Case 1. ab

Case al Copy(t)2b

Case ap,A,q,---p,A, and A4, is a non-primitive label

Case ap,A,q, -+ p,A,4,1Gen(t) and n>0 and t#¢

Case

2.
3.
Case 4. ap,A,q,---p,A,q,b and contains m > 0 non-primitive labels
5.
6. ap,A.q,---p,A,q,1Gen(e) and n>0

7.

Case alGen(t)
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Case 1 and Case 2. First note that by reduction Sg, the parameter 7 in not equal
¢ in case 2. Let Int be an interpretation which assigns to all non-primitive labels
automata which never produce any output.

It is clear that ab (respectively al Copy(t)2b) is a chain of N, iff under the inter-
pretation Int when d,, is supplied to the channel b, net N, can produce d, (respec-
tively ¢ :: d,,) on channel a.

By the assumption of the Lemma, N, and N, have the same I-O behavior under
all interpretations, hence: (1) ab is a chain of N, iff it is a chain of N,; (2)
al Copy(t)2b is a chain of N, if it is a chain of N,.

Case 3. This case follows from Lemma 50(1).

Case 4. This case follows from Lemma 50(2).

Case 5. s leads to a generator and has form s=ap,4,q,--- p,A4,q,1Gen(t).

We assume that s is a simple chain of N, and will show that s is a simple chain
of N,. Symmetrical arguments show that if s is a simple chain of N, then it is a
simple chain of N,.

By the reduction rules S, and S5, label A4, should be non-primitive. Therefore,
s'=ap,A,q, -+ p,A, is also a simple proper chain of N,.

By case 3, chain s’ should belong to both nets. Note that ¢, is an input port of
A,, therefore s’ can be extended to a simple proper or a loop-ended chain s” in N,
which has one of the following forms:

(a) s"=apAyq,---p,A,q,b or s"=ap,A,q,---p,A,q,1Copy(t')2b.

(b) s”:aplAIQI"'pnArzq;1pn+lB or s":aplAIQI"'pnAnqnlCOpy(t)
2p,. 1B and B is a non-primitive label.

(¢) s"=ap,A,q,---p,A,q, 1s a loop-ended chain of N,
(d) s"=ap,A1q,--- p.A.q,1Gen(1").

In sub-cases (a, b, c¢), s” cannot be a chain of N,. And these sub-cases will con-
tradict our assumption that the nets have the same I-O behavior under all inter-
pretations. Indeed, in sub-case (a) the nets will exhibit different I-O behaviors
under Int2; in sub-case (b) they will exhibit different I-O behaviors under Int!, or
one of the interpretations Int}, , for loop-ended chains; in sub-case (c) the nets will
exhibit different I-O behaviors under Int}, .

Therefore, only sub case (d) is possible, and we are going to show that r=1¢".

For every k, the nets have the same I-O behavior under the interpretations Inz'*.
Therefore, by Lemma 50(6), ¢ is a prefix of ¢'. For every k, the nets have the same
I-O behavior under the interpretations Int'*. Therefore, by Lemma 50(6), 7' is a
prefix of 7. Hence ¢t =1¢".

Therefore s =s" and s is a simple chain of N,.

Cases 6 and 7 are treated similarly to case 5 and their proofs are left to the
reader.

(3) follows immediately from Definition 6 and Lemma 51(2). ||

Now for two strings we construct an interpretation which will distinguish the
nets in which these strings meet from other nets. We start with a generic example
and then provide a general construction. But first let us agree on the following
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Notations.

e dy,d,,..1s a sequence of distinct data values.

e Decrement — two(q, p, n) describes an automaton which first keeps reading
from port ¢ and ignores all values until it finds d in the above sequence. Then if
d=d, it outputs d,,_, on port p.

ExAMPLE 5. Let s=a2A435D61C and s’ =b7B54A467C be two strings. Assume
that s and s’ are simple strings of a net N. Then the path which corresponds to s
in N passes through distinct non-primitive nodes v,, v,, v5. Similar, the path which
corresponds to s’ in NV passes through distinct non-primitive nodes v}, v}, v5. By the
definition, these strings meet iff nodes vy and v} coincide. Nodes v, and v, have the
same label A4, so they might coincide in N.

Define a sequence of automata At,, At,, Aty and a sequence of automata Az},
At,, Aty as follows:

At; corresponds to v, and it outputs d, on port 1.
At, corresponds to v, and it behaves like Decrement — two(6, 5, 4).
At corresponds to v, and it behaves like Decrement — two(3, 2, 2).
At corresponds to vy and it outputs d5 on port 7.

At corresponds to v5 and it behaves like Decrement — two(6, 4, 5).

At corresponds to v, and it behaves like Decrement — two(5, 7, 3).
Define the interpretation Int as follows:

Int(A) = At, + At, + At,;At,, because v, and v} are labeled by 4.
Int(B) = At),because v} is the only node labeled by B.

Int(C) = At5 + At%, because v5 and v} are labeled by C and they are the last nodes

of strings s and s’.

Int(D) = At,, because v, is the only node labeled by D.

It is easy to see that the following holds.

Observation 5. Let N be a net in normal form. Assume that a net NV has simple
strings s and s’ and that d,,, ..., ds do not appear in the parameters of the primitive
nodes of N. Net N can produce d, on channel ¢ and d;, on channel » under the
above interpretation Int iff s and s’ do not meet in N.

Let us now describe the general construction.

Let s=ap,B,q,p.B,p,.B,, and s =d'p\B\q}p5B,p., B,, be two strings.
Assume that B,, and B, are non-primitive labels. We are going to define an inter-
pretation Int, . which will distinguish between the nets in which s and s’ meet and
other nets.
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First, define two sequences { Az, --- At,,} and {Af)--- At }of automata.
_ (Decrement —two(p;, q;, 2i) if i<m
" | output 2m-2 on port p,, i=m

I
J

!

Decrement — two(pj, g, 2i+1) if j<m'
output 2n-1 on port p), i=m

Second, define the interpretation Int, .(B) as
Y {At;:B;=Band i<m} +), {At;: Bj=B and j<m'}

+Y {At;; At;: B;=B=B]} and i<m and j<m'}

/

LEMMA 52. Let s=ap,B,q,p,B,p,,B,, and s'=a'p\B\q, p>B5p,, B,
simple strings of a net N. Assume that B,, and B, are non-primitive labels and that
dy, d,--- do not appear in the parameters of copy and generator nodes of N. Under
the interpretation Int, , net N can pass d, on the output channel a and d, on the out-
put channel a' iff s and s' do not meet in N.

be two

Proof. Let Int, be the interpretation which corresponds to the first sum in the
definition of Int, , ie., Int(B)=Y {At;: B;=B and i<m}. Let Int, be the inter-
pretation which corresponds to the second sum in the definition of Int, . It is clear
that d,, (respectively d,) can pass over channel a (respectively channel a') of a net
N under the interpretation Int, (respectively Int,) iff s (respectively s') is a simple
string of N. Hence, if s and s" are simple strings of N then there exists a run in
which d,, is passed over a and there exists a run in which d, is passed over «'.

We have to show that s and s’ do not meet in N iff there exists a run in which
d, passes over a and d, passes over «'.

Let u; be the ith non-primitive node on the path corresponding to s and u; be the
jth non-primitive node on the path corresponding to s'. Node u; is labeled by B,
and node u} is labeled by B;.

It is easy to show that for any run (a) d,; ,, can pass over port p; of u; iff for
every k >1i, d,; 1) have been passed over port p, of u,, and (b) d5; ), can pass
over port p; of u} iff for every /> j, d,; 1, have been passed over port p; of u;.

If the strings s and s" meet in N, then there exists a node v such that v=u,,=u,, .
Let B be the label of the node v. It is clear that B= B,,= B, and the interpretation
assigns to this label the automaton Y. {At;: B,= B and i<m} + 3 {At;: Bj=B and
j<m'} +X {At;At;: B;=B=B;and i<m and j<m'}.

In no run this automaton can produce d,,, ,, over port p,, and dy,, ., over
port p,,.. Indeed, if it produces d,, ;, it should choose the behavior of A4z,,; if it
produces d,,, _ 1y, it should choose the behavior of At . Therefore, in no run it
is possible that d,,, ,, passes over port p,, of u,, and d,,,, ,,,, passes over port
P of u,.. Therefore, it is impossible that d,, is passed on the channel a and d, is
passed on the channel «'.
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It remains to show that if s and s’ do not meet, then there is a run such that d,,
is passed on a and d, is passed on a'.

We are going to describe for the nodes u;, and «; what behavior it should choose
and how the work of the net should be scheduled.

If u; does not lie on the path for s it should behave like Az;. If u; does not lie
on the path of s it should behave like A4¢;. If a node v lies on the path for s and
on the path for 5" then v =u,=u] for some i and j. In this case v should behave like
At;; At;. The following global schedule will insure that d, will pass over a and d,
will pass over «'. First, activate the automata on path s. Eventually d,, will pass over
a. At this moment the jth node on the path s’ can behave like 4] (j=1---m). We
will activate these nodes and eventually, d, will pass over a’. ||

Finally, Proposition 13(1-2) follows from Lemma 51. To prove Proposition 13(3)
note that if proper strings s and s’ meet in N then one of the following cases holds:

I. s and s lead to the same input channel b; in this case s has form
ap\B,q,p>B,--- p,B,b and s’ has form a'p' B' ¢ p> B -+~ p,, B, b.

2. s and s’ lead to the node with non-primitive label; in this case s=
ap]BIQIPZBZH'mem and S’:a,pll ,lq,] p’ZBrzp;n'B;n’ and Bma B;n' ar¢ non-
primitive labels.

3. s and s lead to a generator node; in this case s=ap,B,q,p,B,--
PmBnq,1Gen(t) and s =d'p\B\q,p>B5--- p,, B, q,1Gen(1), and g, =q, and
B,,, B, are non-primitive labels and simple proper chains ap, B,q, p»B, p,,B,, and
da'p B\q\ p5 B, p,, B, meet in N.

In case 1, Lemma 51(3) implies that that s and s’ meet in N, iff they meet in N,.
In case 2 and case 3, Lemma 52 and Lemma 51(3) imply that s and s" meet in N,
iff they meet in N,. Therefore, Proposition 13 holds.
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