Theoretical
Computer Science

Theoretical Computer Science 193 (1998) 197-214

On translations of temporal logic of actions
into monadic second-order logic

A. Rabinovich*

Department of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv 69978, Israel

Received October 1995; revised September 1996
Communicated by W. Thomas

Abstract

The Temporal Logic of Action introduced by Lamport [4] for specifying the behavior of
concurrent systems is compared with monadic second order logic which is accepted as an uni-
versal formalism for specifying temporal behaviors. The consequences of Lamport’s decision
to combine in the existential quantifier of TLA, both the standard existential quantifier and the
non-logical closure under stuttering are investigated. A continuous time interpretation is provided
for TLA and it is argued that this interpretation is more appropriate than the standard discrete
time interpretation. Also, some decidability problems are investigated.

1. Introduction

The temporal logic of actions (TLA) was introduced by Lamport [4] as a logic for
specifying concurrent systems and reasoning about them. One of the main differences
of TLA from other discrete time temporal logics is its unability to specify that one
state should immediately be followed by the other state, though it can be specified that
one state is followed by the other state at some later time.

Lamport [3] argued in favor of this decision ‘The number of steps in a Pas-
cal implementation is not a meaningful concept when one gives an abstract, high
level specification’. For example, programs like Pr| :: x:= True; y := False and Pr, ::
x = True; Skip; y:= False are not distinguishable by the TLA specifications, however,
they are distinguishable in linear time temporal logic, one of the most popular temporal
logics.

As a consequence of the decision not to distinguish between ‘doing nothing and tak-
ing a step that produces no changes’ [4], the language of TLA contains the next time

* E-mail: rabino@math.tau.ac.il.

0304-3975/98/$19.00 © 1998 —Elsevier Science B.V. All rights reserved
PII S0304-3975(97)00075-3

198 A. Rabinovich| Theoretical Computer Science 193 (1998) 197-214

operator in very restricted form. For the same reasons the TLA existential quantifier
37L4 has a semantics different from the standard existential quantifier.

One of our objectives is to investigate the expressive power of this quantifier. We
will show that 3754 is not definable in monadic second-order logic over a discrete-
time structure. On the other hand, we will show that 3744 ‘corresponds’ to the standard
second-order existential quantifier of monadic second-order logic in a continuous time
structure.

Few comments on the status of monadic second-order logic as a specification for-
malism are in order now.

Many formalisms for specifying discrete-time temporal behavior were considered in
the literature, e.g., w-regular expressions, finite state automata, variety of linear-time
temporal logics. One of the most expressive formalisms for which the equivalence of
specifications is still decidable is the monadic second-order theory of order (we denote
its language by L5) over the structure of natural numbers.

The special status of LT among all these discrete-time formalisms rests on the fact
that the specifications in the formalisms mentioned above admit a clear (‘composi-
tional’) reformulation in L5 [12]. Despite the fact that w-regular expressions have the
same expressive power as L5, there exists no compositional translation from L3 into
an equivalent w-regular expression.

The language L5 of monadic second-order logic of order contains individual vari-
ables, second-order variables and the binary predicate <. In the structure « (this
structure will be defined precisely in Section 5), the individual variables are inter-
preted as natural numbers, the second-order variables as monadic functions from the
natural numbers into the booleans and < is the standard order on the set of natural
numbers. We will also consider continuous-time structures for L. In these structures
the individual variables range over real numbers, the second-order variables range over
monadic functions from the reals into the booleans, and < is the standard order relation
on the set of real numbers.

In this paper we consider the fragment of Lamport’s temporal logic of action where
variables can only receive boolean values (BTLA).

First we investigate the question of existence of a meaning preserving translation
from BTLA into L5 over the structure w. Our results are:

(1) There exists no compositional translation from BTLA into L5 over w.
(2) There exists a translation from BTLA into Ly over .

(1) will follow from

(3) The TLA existential quantifier is not definable! in L5 over structure o,
As a by-product of (2) we obtain

(4) The theory of BTLA in its standard discrete-time model is decidable.

It is well known [9] that the monadic second-order logic of order (L5) is undecidable
over the structure of real numbers.

! The notion of definability will be discussed in Sections 5.1 and 9.2.

A. Rabinovich | Theoretical Computer Science 193 (1998) 197-214 199

We consider a substructure of real numbers which we call the signal structure.
In the signal structure individual variables range over non-negative real numbers and
the second-order variables range over special boolean valued functions which we call
signals.

We show that
(5) The L5 theory of the signal structure is decidable.

As opposed to (1), we show that

(6) There exists a compositional translation of BTLA into L5 over the signal structure.
Moreover, in contrast to (3), in our translation the TLA existential quantifier is trans-
lated into the standard second-order existential quantifier over signals.

Recall that the monadic second-order logic is accepted as a kind of an universal
decidable logic for specifying discrete-time temporal behavior. (1)—~3) above show
that TLA is not compatible with the monadic logic over discrete-time. Together with
some unexpected laws of BTLA (see Section 3.3) and a non-logical nature of 3724
(see Section 5.1), these indicate that Lamport’s decision to provide the discrete time
interpretation of temporal logic of action is not the most appropriate. On the other hand,
(6) above shows that the signal (a continuous time) interpretation of TLA is compatible
with the signal interpretation of the monadic logic. Moreover, (5) demonstrates that
the signal interpretation of BTLA is decidable.

The rest of the paper is organized as follows: Section 2 presents some notations
and terminology. Syntax and semantics of BTLA are provided in Section 3. In Sec-
tion 3.3 we also point to some unexpected inference rules that are sound in BTLA.
Syntax and semantics of monadic second-order logic of order LT are given in Sec-
tion 4. In Section 5 we investigate the interaction of 3754 with L5 in the structure
w. We also provide a non-compositional meaning preserving translation from BTLA
into Ly over structure w. Section 6 recalls results about two important continuous
time structures for LT and introduces the signal structure. In Section 7 we intro-
duce the notion of speed independence which is useful for explaining a relationship
between signal and discrete-time specifications. Section 8 presents a compositional
translation of BTLA into L3 over the signal structure. Section 9 states some further
results.

2. Terminology and notations

A state is a function from a set Var of variables into the boolean set
BOOL = {FALSE, TRUE}. We use symbol St for the set of all states and s for
a state.

A state sequence ¢ is an w-sequence {sg,si,...,) of states. Let o= (so,s1...5;,
Si+1,---,) be a state sequence. We denote by ¢” the state sequence (s,,S,.1,...,) and
by head(c) the state s¢. For a state sequence ¢ and a state s we denote by so the state
sequence (s, 80,81,...,).

200 A. Rabinovich ! Theoretical Computer Science 193 (1998) 197-214

The collapse of a state sequence o is the state sequence #¢ which is defined recur-
sively as follows:

o if Vi. s; =sp,
Yo = _
so¥c’ if s; # 59 and s; =150 for all j<i.

Hence, operator ¥ assigns to each state sequence ¢ the sequence obtained by replacing
every finite maximal subsequence (s;,s;+1...) of identical states in ¢ by a state s;.

The state sequences 0 = (9,5 ...Sy,...; and ¢’ = {s{,s]...s,,...) are equivalent up
to a variable x (notation ¢=,¢") if for every n, the states s, and s) coincide on
all variables distinct from x; the state sequences ¢ and ¢’ are stuttering equivalent
(notations ¢ >~ ¢’) if #5 = #6’; they are stuttering equivalent up to x (notations ¢ ~, ¢’)
if there exist o, 0] such that 6 =, 6;, ¢’ =, 0| and g, ~ .

It is easy to check that =,,~ and ~, are equivalence relations on state sequences.

Let L be a set of state sequence, we use the notation Stutt(L) for the stuttering
closure of L which is defined as {¢: there exists ¢’ € L such that 6 ~¢’}. We say that
a set L of state sequences is stuttering closed if L = Sturt(L).

Remark. The formal counterpart of ‘a specification abstracts from a number of steps
in an implementation’ is ‘the specification defines a stuttering closed set of state se-
quences’. For example, it is easy to check that the following transformations on state
sequences preserve stuttering equivalence:

e Contraction: replace a subsequence (s;,s;) of identical states by one state s;.

e Duplication: replace a state s; by the subsequence (s;,s;).

We will use the usual logical abbreviations, e.g., ¥ V /' 2 =(y AY') and ¥ — ' &
WAY YV (Y A=)

Usually, the second-order variables over a set X are interpreted as subsets of X.
There is a one—one correspondence between the subsets of X and their character-
istic functions. It will be a little bit more convenient for us to deal with charac-
teristic functions instead of subsets. Hence, we define a second-order environment
n over a set X as a function from Var into monadic functions from X into the
booleans.

Let n€{x,...,x,} — (Nat = BOOL) be a second-order environment for variables
{x1,...,x,} over the set Nat of natural numbers. With 5 associate the state sequence
6’ = (50,51 ...5,...) defined as s;(x;) 2 n(x;)(k). The above mapping sets up one—
one correspondence between the set {xi,...,x,} — (Nat — BOOL) of environment over
natural numbers and the set Nat — ({x;,...,x,} — BOOL) of state sequences.

Also there exists a one—one correspondence between the set of w-strings over al-
phabet {0,1}" and the set {x,,...,x,} — (Nat — BOOL) of second-order environments
for variables {xj,...,x,} over the set of natural numbers. With an environment # for
variables x|, ...,x, we associate the w-string aoq; ...ay ... over alphabet {0, 1}" defined
by ax £ (b,...,b) where b is 1 if n(x;)(k) holds and b is O otherwise.

A. Rabinovich| Theoretical Computer Science 193 (1998) 197-214 201

To summarize we will use natural one—one correspondences between following three
sets:
1. The set Nat — {x1,...,x,} — BOOL of state sequences.
2. The set {x),...,x,} — Nat — BOOL of second-order environments for the variables
{x1,...,%,} over the set of natural numbers.
3. The set Nat— {0,1}" of w-strings over alphabet {0,1}".
An w-language is a set of w-strings. We will say that an w-language L over alphabet
{0,1}" is definable by a formula ¥(xi,...,x,) if L consists of all w-strings which
‘satisfy’ i in the sense defined below.

3. Temporal logic of actions

We consider the fragment of Lamport’s [4] Temporal Logic of Action where vari-
ables can only receive boolean values (BTLA).

3.1. Syntax

The symbol set of BTLA consists of:

A set Var of variables.

A set Var’ of primed version for variables; Var’ = {x': x € Var}.
Logical connectives A and —.

TLA existential quantifier 3724,

Modal operator o

The special operator Enabled.

The syntax of BTLA formulas is summarized in Fig. 1.

Sk =

Remark (Primed variables). Priming a variable in TLA ‘corresponds’ to applying the
next operator in temporal logic (see Definition 1(2) below). One can see that this next
operator is used in BTLA in very restricted form.

Remark (Free and bound occurrences of variables). A variable x occurs free in x and
in x’. The only binding operator of BTLA is the existential quantifier. 3724x. binds
all free occurrences of x in .

(formula) £ (elementary formula) | —(formula) | (formula) A (formula)
| o(formula) | 3724 x. (formula)

(elementary formula) < (simple state formula) | (enabled formula) |
(action formula)

(enabled formula) £ Enabled((action))

<action fOHHUIa> = D[<acn’on>](simple state formula)

(action) £ boolean combination of variables and primed variables.

(s

simple state formula) boolean combination of variables.

Fig. 1. Syntax of BTLA

202 A. Rabinovich/ Theoretical Computer Science 193 (1998) 197-214

3.2. Semantics of BTLA

We are going to recall the definition of the satisfaction relation between state se-
quences and a superset of BTLA formulas, which was called raw TLA by Lamport
[4]. In the following definition x denotes a BTLA variables and 4 denotes an action.

Definition 1. The satisfaction relation = is defined as follows:
o k=x if head(o)(x) is equal to TRUE.

oEx if ¢ =x.

g Ay if a=Yh and 6 =y

ol -y if not o =4

o = Enabled(4) if there exists ¢’ such that head(o)o’ = A.
o =0y if o” =y for every .

o =3"x . if there is ¢’ such that 6~, ¢’ and o’ .

NS R WD =

For an action 4 and a simple state formula p, the BTLA action formula o[4], is
considered as an abbreviation of the raw TLA formula 0(4 V (p < p’)), where p’ the
formula obtained from p by replacing every variable x by its primed version x’.

Note that the set of sequences which satisfies a BTLA formula is closed under
stuttering, i.e., o =4 and ¢ ~ ¢’ imply o' =.

Remark. (1) It is clear that the union and the intersection of stuttering closed
sets of state sequence is a stuttering closed set of state sequence. Also the comple-
mentation of a stuttering closed set of state sequences is stuttering closed. (2) Note
that the standard existential quantifier does not preserve stuttering closedness. This is
the reason that the definition of 374 is different from the definition of the standard
existential quantifier. In Definition 1.7 of 3724x. stuttering equivalence up to x (=)
is used, whereas in the definition of the standard existential quantifier Jx- equivalence
up to x (=,) is used.

3.3. About TLA existential quantifier and stuttering

Lamport argued (see [4]) that TLA existential quantifier “really is existential
quantification because it obeys the ordinary laws of existential quantification. In par-
ticular, the usual rules ... are sound. From these rules, one can deduce the expected
properties of existential quantification, such as (3™x.F v G) « (3™4x.F) v
3% .GY".

However, the design decision to combine in 3724 both the logical existential quantifi-
cation and the non-logical closure under stuttering has some unexpected consequences.

For example, let y(x) be a BTLA formula with only one free variable x and assume
that 3724x (x) holds. Since every formula of BTLA defines a stuttering closed set,
it is clear that at least one of the following cases holds:

1. oy Ey(x), where all the states of a suffix g} of o) assign to x the value 0.

A. Rabinovich! Theoretical Computer Science 193 (1998) 197-214 203

2. 63 Ey(x), where all the states of a suffix ¢} of g, assign to x the value 1.

3. 03 &= (x), where all even states of a suffix agx" of g3 assign to x the value 0 and

all odd states of 03" assign to x the value 1.

One of the consequences of the above observation is that the following inference rule
is also sound in BTLA:

A BTLA sound inference rule: From the conjunction of 3714x.y;(x), where i=
1,...,4 deduce the disjunction of (3™4x;x; . Ys(x;)AY;(x;)A O O(x; =x;)), where 1 <i <
j<4 and OV is an abreviation for —o—y.

Lamport extensively comments that in TLA variables have no types and can assume
any value.> He writes “This approach may seem strange to computer scientists used to
types in programming languages, but it captures the way mathematicians have reasoned
for thousands years” [4].

However, it seems to us that the decision to consider typeless logic is implicitly
forced by soundness of such unexpected inference rules in typed versions of TLA.

4. Monadic second-order theory of order

In this section we recall the definitions of the syntax and the semantics of monadic
second-order theory of order.

4.1. Syntax

The language L5 of monadic second-order theory of order has a set Var; of indi-
vidual variables, a set Var; of second-order variables, a binary predicate <, the usual
propositional connectives and first- and second-order quantifiers.

We will use t,u,v for individual variables and x, y for second-order variables.

The atomic formulas of LT are formulas of the form ¢ < u and x(¢). The formulas
are constructed from atomic formulas by logical connectives and first- and second-order
quantifiers.

We will write F(x, y,t,u) to indicate that the free variables of a formula F are
among X, y,t, u.

4.2. Semantics

A structure K = (4,B, <) for L5 consists of a set A partially ordered by <x and
a set B of monadic functions from 4 into BOOL.

An environment o for individual variables is a function from the set of individual
variables into 4 and an environment y for the second-order variables is a function
from the set of second-order variables into B. Below the satisfaction relation a,n =
is defined by induction on the structure of L5 formulas.

2 He considers the full Temporal logic of Actions; in this paper we consider its boolean fragment.

204 A. Rabinovich! Theoretical Computer Science 193 (1998) 197-214

Definition 2 (Semantics of L5 formulas).
an =t <u if a(t) < ga(w).

a, 3 E=x(t) if y(x) maps «(¢) to TRUE.
=Y Ay if o=y and o, =y

o, = if not o,y =4,
o, 1 k= 3't4p if there exists o such that a(u)=o'(u) for all u # ¢ and o, = 1.

o, 1 b= Fx .y if there exists #” such that n(y)=n'(y) for all y # x and a, %' =4.

AN o e

Notation. (A) In (5) the first-order existential quantifier 3' was defined and in (6)
the second-order existential quantifier 3* was defined. Symbol 3 will be used for both
these quantifiers in the sequel; the ambiguity will be always resolved by context. If 3
precedes an individual (second-order) variable it will refer to the first (second)-order
existential quantifier. (B) Actually, we had to use K,a,5 = ¥ or a,n Ex ¢ for the
satisfaction relation in a structure K, however, in the sequel the ambiguity always will
be resolved by a context.

5. Monadic second-order theory of w

The structure @ consists of the set of all natural numbers, the standard order relation
on the natural numbers and the set of all monadic functions from the naturals into the
booleans.

In this section, letters £ and m will denote natural numbers.

Let ¥(xy,...,x,) be a formula which does not contain free occurrences of individ-
val variables. ¥ specifies the set of all second-order environments which satisfy it.
Similarly, we associate a set of second-order environments with ¥(x,,...,x,, k), where
Y(xi1,...,Xy,t) is a formula and £ is a natural number.

Recall that the set {x|,...,x,} — Nat — BOOL of second-order environments over ®
is in one~one correspondence with the set of all w-strings over {0,1}". With a formula
iy as above we will associate the set of w-strings which satisfy it.

The language L5 is a very expressive formalism for specifying w-languages. In the
literature many other formalisms for specifying w-languages were considered, e.g., w-
regular expressions, linear-time temporal logic, etc. The w-languages which can be
defined in the above-mentioned formalisms are also definable in LT. Moreover, there
exists a compositional translation from the above mentioned formalisms into L5 . How-
ever, Theorem 3 stated below will imply that there exists no compositional translation
from BTLA into L5 .

5.1. The extension of L5 by the TLA quntifier

Definition 3 (The extension of Ly by 37L4). The extension of L5 by TLA existential
quantifier is defined by adding the following rules to the syntax and the semantics
of L5.

A. Rabinovich! Theoretical Computer Science 193 (1998) 197-214 205

Syntax: If is a formula then 3724x .y is a formula.
Semantics: o,n =34 x . if there exists #’ such that n and #’ are stuttering equiv-
alent up to x and a, 5’ =

We use the notation L5 [3754] for this extension.
Remark. (1) In Section 9.2 we will comment on resticted versions of L5 [3714]
in which 3724 is allowed to be applied only to the formulas without free indi-
vidual variables. (2) Assume that ¥ does not have free individual variables. Then
(a) a,nl=3T % if and only if o, |=3T54x. for every #' which is stuttering
equivalent to #. (b) if x does not occur in ¥, then the set of w-strings definable by
JTLAx 4y is the stuttering closure of the set of w-strings definable by .

Remark (Non-logical nature of 374). The following examples demonstrate a non-
logical nature of stuttering and of TLA existential quantifier. There exists a formula ¢
of L5 which does not contain a second-order variable y, however for some « and #
the following holds: «,% |= ¢ is not true, yet o,y =371y ¢. Take, for example, x(¢)
for ¢, a(¢)=2 and n(x)={0,1}.

Let TWICE be a binary predicate on the natural numbers such that TWICE(k,m)
holds iff £ =2 x m.

Lemma 1. TWICE is definable by an Ly [3751] formula.

Proof. Let SUCC be a binary relation over natural numbers which is interpreted in
the structure o as SUCC(k,m) iff m=k + 1.

It is well known [12] that the successor relation and the unary relation ZERO which
holds only on 0 are definable in L3. Their defining formulas are

Succ(t, Y2t <t A-Fu.(t<uru<t).
Zero(t) 2 ~3u.u < t.

Let us define three auxiliary predicates by formulas Alt(x,t), B(x, y,t) and Almost—
Twice(ty,).

Alt(x,t) & Qug . Zero(up) A x(up))
A NMuy NVuy (g <t A Suce(uy,uz)) — (x(uy) < ~x(uz)))
AVu.uzt — x(u).

For even k, the language defined by A/t(x, k) consisting of a single w-string (10)%2(1)®
over alphabet {0,1}.

206 A. Rabinovich/! Theoretical Computer Science 193 (1998) 197-214
For odd £, the empty language is defined by Alt(x, k):
B(x, y,1)
2 Alt(x,t)
A Jug . Fuy . (Zero(ug) N Succ(ug,uy) A y(ug) A y(uy))
AUy Vuz Vuy . (Succ(uy, u3) A Succ(us, us) A us <t — (y(uz) < —y(ug)))

AVYu.uzt— y(u).

If k is a multiple of 4, then the language defined by B(x, y,k) consists of one w-string

(BIETIITR]) [T oo = (T[T] 3]}

If £ is not multiple of 4, then the empty language is defined by B(x, y,k):

k/4

Almost — Twice(t;, 1) 2 3y. Alt(y,t;) A 3% B(x, y, 1),
Almost — Twice(k,m) holds if k is even and m=2 x k.
Now the predicate TWICE can be defined by the following formula Twice:

Twice(t|,t,) £ Almost — Twice(t),t2) V Juy .uy . uz . (Suce(ty, uy)

A Succ(ty, ur) A Succ(ua,uz) A Almost — Twice(uy, u3)). O
Let L5 [TWICE] be the extension of L5 by the predicate TWICE.

Theorem 2 (Trakhtenbrot [11]). (1) TWICE is not definable in L5, ie., there is no
L5 formula y(t,t") which is equivalent to TWICE(t,t') in the structure .

(2) There exists an w-language definable by an L5 (TWICE) formula but not de-
finable by any L5 formula.

(3) The set of Ly [TWICE] sentences true in w is undecidable.’

Lemma 1 and Theorem 2 imply the following two theorems

Theorem 3. There exists an w-language definable by an L5 [3™4] formula but not
definable by any L5 formula.

Remark. Note that 3724 is a third-order operator. There is no standard notion of de-
finability for third-order operators. However, any reasonable notion would imply that

31n [8, 12], it is attributed to Tarski that the monadic second-order theory of the structure (@, <,+) is
undecidable (i.e., in the language LS extended by the addition predicate). In [12], the above theorem is
stated for the addition predicate. Robinson [8] has shown that the addition predicate is L} -definable from
TWICE in structure .

A. Rabinovich! Theoretical Computer Science 193 (1998) 197-214 207

by adding a definable operator the expressive power of a logical language will not
increase. In this sense the above theorem can be interpreted as: 3724 is not definable
in L over w.

Theorem 4. The set of Ly [3™4] sentences true in w is undecidable.
It is instructive to compare Theorem 4 with
Theorem 5 (Biichi [1]). The set of L5 sentences true in w is decidable.

5.2. A non-compositional translation of BTLA into L3

In contrast to Theorem 3, we will show

Theorem 6. If a set of state sequences is definable in BTLA then this set is L5
definable in structure . Moreover, there exists an algorithm which translates every
BTLA formula into Ly formula which defines the same set of state sequences.

Remark. In view of the remark following Theorem 3 the above translation from BTLA
into LT cannot be compositional.

Note also that Theorems 5 and 6 imply
Theorem 7. BTLA is decidable.

In the rest of this section the sketch for the proof of Theorem 6 is given. All its
arguments are valid for raw BTLA.

Recall [1], that a set L of w-strings is L5 definable iff L is a regular w-language (see
[10] for a survey of automata on infinite objects). Moreover, there exist algorithms for
translations between w-regular expressions and Ly formulas (see [12]).

We will prove that only regular w-languages can be defined in BTLA and that
there exists an algorithm for translating BTLA formulas into equivalent w-regular
expressions.

The proof is by induction on the structure of BTLA formulas.

It is easy to see that every elementary BTLA formula defines a regular w-language
and it is easy to construct for every elementary formula an equivalent w-regular ex-
pression.

It is also well known that regular w-languages are closed under complementation,
conjunction, projection and O operations. Moreover, there exists an algorithm for these
operations on w-regular expressions.

Hence, in order to complete the proof we have to show: for a w-regular expressions
r which defines the same language as a BTLA formula ¥(x,...,x,), one can construct
an w-regular expression for the w-languages defined by the formulas 374x, ..

The proof of this fact follows from Lemmas 8 and 9 given below.

208 A. Rabinovich | Theoretical Computer Science 193 (1998) 197-214

Recall that we use the notation Stust(L) for the stuttering closure of a language L.
One can easily show the following:

Lemma 8. If L is definable by a formula 3y (y,x,...x,) then 37y Y(y,x1 ... x,)
defines language Stutt(L).

Lemma 9. For a regular w-language L the w-language Stutt(L) is reqular. Moreover,
there exists an algorithm which constructs an w-regular expression for Stutt(L) from
an w-regular expression for L.

Proof. Let # be a language morphism defined as h(a) 2 {a": n>0}. It is easy to
show that Stutt(L)=h(h~'(L)). Hence, the first part of the lemma follows from the
following easy generalization of a well-known fact about regular languages over finite
strings (see e.g. [2]).

Fact. Regular w-languages are closed under regular morphisms.

Actually, the proof of this fact gives an algorithm for constructing an w-regular
expression for the image (pre-image) of an w-language L from an w-regular expression
that defines L and regular expressions that define a morphism. From this the second
part of Lemma 9 follows. [

6. Three continuous-time structures for L3

Let R be the set of real numbers and let <y be the standard order on R.

We use the letters 7,7’ to denote real numbers.

Rabin considered the structure F = (R, F,, <g), where F; is the set of monadic
functions from R into BOOL such that xeF; iff x is the characteristic function of a
countable union of closed sets.

Rabin has shown

Theorem 10 (Rabin [5]). The set of L5 sentences true in F is decidable.

Shelah considered the structure M = (R,2R, <g), where 2R is the set of all monadic
functions from R into BOOL. He has shown

Theorem 11 (Shelah [9]). The set of Ly sentences true in M is undecidable.

Now we define signals and a signal structure on the reals. In Section 8 a composi-
tional translation of BTLA into LS over signals is provided.

Definition 4. A function 4 from the non-negative reals into the set BOOL (a finite
set X) is called a boolean signal (respectively, X-signal) if there exists an unbounded

A. Rabinovich! Theoretical Computer Science 193 (1998) 197-214 209

increasing sequence 70=0<1) <T;:--- <T, < --- such that A is constant on every
interval [7;,7;+1).

Let SIGNAL be the set of all boolean signals. The signal structure Sig is defined as
Sig= (R*,SIGNAL, <), where R* is the set of non-negative reals. A signal language
is a set of signals.

Theorem 12. The set of LT sentences true in the signal structure Sig is decidable.

Proof. First let us note that for the restriction of the structure F to non-negative
reals, Theorem 10 still holds. (Below we will overload notations and notions from the
structure F to its restriction on non-negative reals.)

It is clear that if x is a signal then it is the characteristic function of a countable
union of closed sets. Hence, every signal belongs to F;. It is also clear that x& F; is
a signal if and only if it satisfies the formula signa/(x) defined as

signal(x) 2 Vt.38 > 1.V 1<t <ty — (x(t) < x(8)

AVE>0.34 <t . Vh. (1< <t — (x(t) < x(k)).

Below we provide an interpretation of the signal structure Sig inside structure F. (See
[6] for the detailed description of the methods of interpretation.)

If 4 is a monadic second-order formula then the formula 459 obtained from A
by relativizing all second order quantifiers of 4 to signals is defined inductively on
the structure of 4 by the following rules: (1) If 4 is without second order quanti-
fiers then A%9=A. (2) If A=BAC or A=-B or A=3"t.B then A5 =BS4 A C54
or A% =-B59 or 459 =3¢ B9 respectively. (3) If A=3Fx.B or A=V?x.B then
A59 = (3%x . signal(x) A BS9) or 459 = (Fx.signal(x) — B%9), respectively.

This relativization allows to reduce the satisfiability of the formula 4 in structure
Sig to the satisfiability of the formula 457 in the structure F. In particular, if 4 is a
closed formula, then k=g, 4 if and only if =f A% Therefore, Theorem 12 follows
from Theorem 10. [

7. Speed independence

Lemma 13. Ler f be an increasing bijective function between non-negative reals.
Then h is a signal iff ho f & Jv.h(f(v)) is a signal.

Definition 5. Let L be a signal language. We say that L is speed-independent if for
every bijective increasing function f the following condition holds: heL iff ho feL.

Recall that in Section 2 we agree to use a natural one—one correspondence between
the following three sets:
1. The set Nat — {x1,...,x,} — BOOL of state sequences.

210 A. Rabinovich | Theoretical Computer Science 193 (1998) 197-214

2. The set {xi,...,x,} — Nat — BOOL of second order environments for the variables
{x1,...,x,} in the structure w.

3. The set Nat — {0,1}" of w-strings over alphabet {0,1}".

In a similar way there exists a natural one—one correspondence between

4. The set {xi,...,x,} —SIGNAL of second-order environments for the variables
{x1,...,x,} in the structure Sig.

5. The set of signals over alphabet {0,1}".

Below we first define a function Disc (discretization) which assigns to every signal

a set of w-strings (w-language). Then we define a function Cont which assigns to

every w-string a set of signals. These functions are lifted to the function between

the set of w-languages and the set of signal languages. It turns out that, under this

correspondence, the image of any signal language is a stuttering closed w-language.

We show (Lemma 15) that (1) function Conf is a bijection between the set of stuttering

closed w-languages and speed independent signal languages and (2) Disc is its inverse.
We also show that any L3 formulas without free individual variables defines a speed

independent signal language.

Definition 6. An unbounded increasing sequence 79 <7, < --- < 1; < --- is a 7T-sample
sequence for a signal A if

1. To=T.

2. If & is not continuous at 7/ and T < 1’ then there exists i such that 7, =1'.

Definition 7. An w-string ag,a; ... is a discretization of a signal 4 beginning from <
if there exists a 7-sample sequence g, 7j,..., T, ... for & such that a; = A(z;).

Definition 8. A signal 4 is a continuation of an w-string w beginning at 7 if w is a
discretization of k beginning at 1.

Notation. We use notation Disc(h,7) for the set of all discretizations of signal 4 be-
ginning at t; we use Cont(w,7) for the set of all continuations of w-string w, begin-
ning at 7. We extend Disc to a function from the signal languages in a natural way:
Disc(H,t) 2 |J{Disc(h,7): h€ H}; Cont is extended to a function from w-languages
in a similar way.

The following lemmas are straightforward.

Lemma 14 (Stuttering). (1) If w,w’ € Disc(h,7) then w and w' are stuttering equiva-
lent.
(2) If weDisc(h,t) and w' is stuttering equivalent to w then w' € Disc(h, 7).

Lemma 15 (Speed independence vs. stuttering closedness). If L is an w-language
then Cont(L,0) is a speed-independent signal language. If L is a signal language then
Disc(L,0) is a stuttering closed w-language. Moreover, the mapping AL .Disc(L,0)
is a bijection between the set of speed independent signal languages and the set of
stuttering closed w-languages. AL .Cont(L,0) is the inverse of AL.Disc(L,0).

A. Rabinovich | Theoretical Computer Science 193 (1998) 197-214 211

Lemma 16 (Speed independence of any L5 specification). Let f be an increasing
injective function between non-negative reals, o be an individual environment and
n be a second order environment. If

1. &/(2) = f(a(2)) for every individual variable t free in \, and

2. #'(x)=n(x)o f for every second-order variable x free in

then a,n = iff o« ,q' = . In particular, any L5y formula without free individual
variables defines a speed-independent set of signals.

8. A compositional translation of BTLA into L;

Let Y(xy,...,x,) be a BTLA formula with free (propositional) variables in the set
{x1,...,x,}. Our translation which is provided below, will map y to an Ly formula
¥'(x1,...,x,,t) with free second-order variables xi,...,x, and free individual variable 7.
Theorem 17 stated below, justifies this translation.

The notations Y{«'/u} will be used for the substitution of «’ for all free occurrences
of u in .

We will also use the following abbreviations:

NEXT(t1,2,y) & t1 <ta A y(h) # y(0) AVE (1 U<ty — (W(1) = ¥(11)),
NEXT(t1,62,%1,...,%,) £ i <t A@@x1(8) Zx1(2) V-V xu(81) # xa(82))
AVE (<t <ty — () ()=x(t—1)
A Ax(t) = xn(t1))-

Compositional translation: Let us fix two individual variables ¢ and /. Our transla-
tion Tr is parameterized by these two variables.

Actions: The translation of a boolean combination 4 of variables x;...x, and their
primed versions x| ...x), is the formula Tr(4)(xy,..., X, t,t') 2 A'/ANEXT(t,t,x1,...,%,),
where 4’ is obtained from 4 by simultaneous substitution of x;(¢) for x; and x;(t')
for xJ.

Simple state formulas: The translation of a boolean combination p of variables
X|...x, is the formula obtained from p by simultaneous substitution of x;(¢) for x;.

Enabled formulas: Tr(Enabled(4)) £ 3¢ . Tr(4).

Action formulas: Let x,...,x, be the free variables of an action 4 and of a simple
state formula p. Then g[A4], is translated as

3y . (Vu.(y(u) & Tr(p){ujt})
AVGty (2t A NEXT(t,6,X1, ..., %0, V)

— (Tr(D{t/t,u/t'} vV y(1) = y(12))).

212 A. Rabinovich! Theoretical Computer Science 193 (1998) 197-214

Propositional connectives:
Tr(~y) & =Tr(y)
Tr(Yn An) & Tr(dn) A Tr(n)
Quantifier: Tr(3™4x.) £ 3x.Tr(y).
Modality: Tr(oy) 2 Yu.u >t = Tr(y){u/t}.

By induction on the structure of BTLA formulas it is easy to show the following
theorem which explains the relationship between BTLA formulas and their translations.

Theorem 17. Let yi(x|,...,x,) be a BTLA formula and let Y/'(x|,...,x,,t) be its trans-
lation (i.e., ' =Tr(¥)). Let a be an individual environment which maps t to . Let
S be {0: 0 =pra W} and let H(7) be {n: a,n =siy W'} Then for every t

1. § =Disc(H(1),1).

2. H(t)=Cont(S,1).

Recall that Lemma 15 sets up the correspondence between stuttering closed set of
state sequences and speed-independent set of signals. By this correspondence one can
associate with every BTLA formula a speed independent set of signals. The above
theorem implies

Corollary 18. Let y and /' be as in Theorem 17. Then the set of signals defined by
a BTLA formula Yi(xi,...,x,) is the same as the set of signals defined by the L3
Sformula /' (xi,...,x,,0).

Corollary 19 (Preservation of equivalence and refinement relations by the translation).
1. Yy < Yy iff Tr(yn) < Tr(Yn) (ie., Y and n are equivalent BTLA formulas iff
their translations are equivalent monadic formulas in the signal structure).

2.9 = iff Tr(Yn) — Tr(n).

9. Further results

9.1. Expressive completeness of BTLA

Recall that every BTLA formula defines a stuttering closed w-language and every L3
formula defines a speed-independent signal language in the signal structure. Through
the bijection (see Section 7, Lemma 15) between stuttering closed w-languages and
speed-independent signal languages, one can associate with every BTLA formula a
speed-independent signal language. It was shown in [7] that BTLA is complete in the
following sense.

Expressive completeness of BTLA for signal structure: For every L5 formula
Y(xi,...,x,) there exists a BTLA formula ¥/(x,...,x,) which defines the same signal
language.

A. Rabinovich ! Theoretical Computer Science 193 (1998) 197-214 213

9.2. Undefinability of 3™ by an L5 context

The set of L contexts is defined in a standard way by adding the hole |] to the
atomic formulas of LS. For a context C[] and a formula ¢, the formula C[y] is
defined by replacing all occurrences of the hole by a formula .

It is instructive to compare Theorem 3 with the following result from [7].

Theorem 20. There exists no L5 context C[] such that for any formula y(x,...,x,)
which defines a stuttering closed language, the formulas C[y] and 3™4x, .\ define
the same language over the structure .

Remark. Both theorems say that 3724 is undefinable in Ly. Actually, the proof of
Theorem 3 gives an L5[37%4] formula which is not equivalent to any L5 formula.
However, in Ly [374], the TLA existential quantifier can be applied to any formula
(in particular to the formulas which contain free individual variables). Let us consider
Lres: the sub-language of L5 [3™4] in which we allow to apply 374 only to the formulas
without free individual variables. It can be shown that every L. formula is equivalent
to an L5 formula (the proof is similar to the proof of Theorem 6). Let Liy' be the
sub-language of L. in which 324 can be applied only to the formulas which define
stuttering closed languages. Theorem 20 states that 3724 of LS is not definable by
any L5 context. In particular this theorem implies that there exists no compositional

translation from L' into L5 in the structure w.

9.3. Extension of L5 with stuttering

By adding the following rules one can extend L5 by stutterings predicate:

Syntax: If is a formula without free individual variables then stut(y) is a formula.

Semantics: o, = stut(y) if there exists #’ such that # and ’ are stuttering equivalent
and a7’ = .

Note that if defines a regular w-language then, by Lemma 9, the formula stur(y)
also defines a regular w-language. Hence, for any L3 formula ¥ the formula stur(y)
is equivalent to a L5 formula.

However, note that there is no Ly formula STUT(x),x3, y1,)2) such that «,n |
STUT((x1,%2, ¥1, ¥2) if and only if the restriction of # to {x|,x,} is stuttering equivalent
to the restriction of n to {y1,y,}. (This follows from observation that the w-language
over {0,1}* defined by STUT is not w-regular.)

Note also that by extending L5 by this third order predicate STUT we can express
the predicate TWICE. (The proof of this is similar to the proof of Lemma 1 and is
omitted here.)

Acknowledgements

The author is grateful to Yoram Hirshfeld, Albert R. Meyer and Boris A.
Trakhtenbrot for helpful discussions and comments. Many thanks to the anonymous
referees for the suggestions on the exposition of the material.

214 A. Rabinovich| Theoretical Computer Science 193 (1998) 197-214

References

[1] J.R. Biichi, On a decision method in restricted second order arithmetic, in: E. Nagel et al. (Eds.),
Proc. Internat. Congress on Logic, Methodology and Philosophy of Science, Standford University Press,
Standford, 1960, pp. 1-11.

[2] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computations, Addison-
Wesley, Reading, MA, 1979.

[3] L. Lamport, What good is temporal logic, in: R.E.A. Manson (Ed.), Information Processing 83, Proc.
IFIP 9th World Congress, Paris, IFIP, North-Holland, Amsterdam, 1983, pp. 657-668.

{4] L. Lamport, The temporal logic of actions, ACM Trans. Programming Languages Systems 16 (3) (1994)
872-923.

[5] M.O. Rabin, Decidability of second order theories and automata on infinite trees, Trans. Amer. Math.
Soc. 141 (1969) 1-35.

[6] M.O. Rabin, Decidable theories, in: J. Barwise (Ed.), Handbook of Mathematical Logic, North-Holland,
Amsterdam, 1977.

[7] A. Rabinovich, On expressive completeness of temporal logic of action, in preparation.

[8] R.M. Robinson, Restricted set-theoretical definitions in arithmetic, in: Proc. Amer. Math. Soc. 9 (1958)
238-242.

[9] S. Shelah, The monadic theory of order, Ann. Math. 102 (1975) 349-419.

[10] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer
Science, The MIT Press, Cambridge, MA, 1990.

[11] B.A. Trakhtenbrot, Some constructions in the monadic predicate calculus, DAN SSSR 140 (2) (1961)
320-321.

[12] B.A. Trakhtenbrot, Y.M. Barzdin, Finite Automata, North-Holland, Amsterdam, 1973.

