
i Theoretical
Computer Science

Theoretical Computer Science 193 (1998) 197-2 14

On translations of temporal logic of actions
into monadic second-order logic

A. Rabinovich *

Department of’ Computer Science, Raymond and Beverly Sackier Faculty of’ Exact Sciences,
Tel Aviv University, Tel Aviv 69978, Israel

Received October 1995; revised September 1996

Communicated by W. Thomas

Abstract

The Temporal Logic of Action introduced by Lamport [4] for specifying the behavior of
concurrent systems is compared with monadic second order logic which is accepted as an uni-
versal formalism for specifying temporal behaviors. The consequences of Lamport’s decision
to combine in the existential quantifier of TLA, both the standard existential quantifier and the

non-logical closure under stuttering are investigated. A continuous time interpretation is provided
for TLA and it is argued that this interpretation is more appropriate than the standard discrete
time interpretation. Also, some decidability problems are investigated.

1. Introduction

The temporal logic of actions (TLA) was introduced by Lamport [4] as a logic for

specifying concurrent systems and reasoning about them. One of the main differences

of TLA from other discrete time temporal logics is its unability to specify that one

state should immediately be followed by the other state, though it can be specified that

one state is followed by the other state at some later time.

Lamport [3] argued in favor of this decision ‘The number of steps in a Pas-

cal implementation is not a meaningful concept when one gives an abstract, high

level speci$cation’. For example, programs like Pq :: x := True; y := False and Pq ::

x := True; Skip; y := False are not distinguishable by the TLA specifications, however,

they are distinguishable in linear time temporal logic, one of the most popular temporal

logics.

As a consequence of the decision not to distinguish between ‘doing nothing and tak-

ing a step that produces no changes’ [4], the language of TLA contains the next time

* E-mail: rabino@math.tau.ac.iI

0304.3975/98/$19.00 @ 1998 -El sevier Science B.V. All rights reserved

PIZ so304-3975(97)00075-3

198 A. Rabinovich I Theoretid Compuier Science 193 (I 998) 197-214

operator in very restricted form. For the same reasons the TLA existential quantifier

YTLA has a semantics different from the standard existential quantifier.

One of our objectives is to investigate the expressive power of this quantifier. We

will show that 3rLA is not definable in monadic second-order logic over a discrete-

time structure. On the other hand, we will show that gTLA ‘corresponds’ to the standard

second-order existential quantifier of monadic second-order logic in a continuous time

structure.

Few comments on the status of monadic second-order logic as a specification for-

malism are in order now.

Many formalisms for specifying discrete-time temporal behavior were considered in

the literature, e.g., w-regular expressions, finite state automata, variety of linear-time

temporal logics. One of the most expressive formalisms for which the equivalence of

specifications is still decidable is the monadic second-order theory of order (we denote

its language by L:) over the structure o of natural numbers.

The special status of L,< among all these discrete-time formalisms rests on the fact

that the specifications in the formalisms mentioned above admit a clear (‘composi-

tional’) reformulation in L; [12]. Despite the fact that o-regular expressions have the

same expressive power as L;, there exists no compositional translation from L; into

an equivalent w-regular expression.

The language L; of monadic second-order logic of order contains individual vari-

ables, second-order variables and the binary predicate <. In the structure o (this

structure will be defined precisely in Section 5), the individual variables are inter-

preted as natural numbers, the second-order variables as monadic functions from the

natural numbers into the booleans and < is the standard order on the set of natural

numbers. We will also consider continuous-time structures for L;. In these structures

the individual variables range over real numbers, the second-order variables range over

monadic functions from the reals into the booleans, and < is the standard order relation

on the set of real numbers.

In this paper we consider the fragment of Lamport’s temporal logic of action where

variables can only receive boolean values (BTLA).

First we investigate the question of existence of a meaning preserving translation

from BTLA into L; over the structure o. Our results are:

(1) There exists no compositional translation from BTLA into L; over w.

(2) There exists a translation from BTLA into L; over co.

(1) will follow from

(3) The TLA existential quantifier is not definable ’ in L; over structure o,

As a by-product of (2) we obtain

(4) The theory of BTLA in its standard discrete-time model is decidable.

It is well known [9] that the monadic second-order logic of order (L;) is undecidable

over the structure of real numbers.

’ The notion of definability will be discussed in Sections 5.1 and 9.2

A. Rabinovichl Theoretical Computer Science 193 (1998) 197-214 199

We consider a substructure of real numbers which we call the signal structure.

In the signal structure individual variables range over non-negative real numbers and

the second-order variables range over special boolean valued functions which we call

signals.

We show that

(5) The L; theory of the signal structure is decidable.

As opposed to (1), we show that

(6) There exists a compositional translation of BTLA into L: over the signal structure.

Moreover, in contrast to (3), in our translation the TLA existential quantifier is trans-

lated into the standard second-order existential quantifier over signals.

Recall that the monadic second-order logic is accepted as a kind of an universal

decidable logic for specifying discrete-time temporal behavior. (l)-(3) above show

that TLA is not compatible with the monadic logic over discrete-time. Together with

some unexpected laws of BTLA (see Section 3.3) and a non-logical nature of ZITLA

(see Section 5.1), these indicate that Lamport’s decision to provide the discrete time

interpretation of temporal logic of action is not the most appropriate. On the other hand,

(6) above shows that the signal (a continuous time) interpretation of TLA is compatible

with the signal interpretation of the monadic logic. Moreover, (5) demonstrates that

the signal interpretation of BTLA is decidable.

The rest of the paper is organized as follows: Section 2 presents some notations

and terminology. Syntax and semantics of BTLA are provided in Section 3. In Sec-

tion 3.3 we also point to some unexpected inference rules that are sound in BTLA.

Syntax and semantics of monadic second-order logic of order L; are given in Sec-

tion 4. In Section 5 we investigate the interaction of ZITLA with L: in the structure

o. We also provide a non-compositional meaning preserving translation from BTLA

into L; over structure w. Section 6 recalls results about two important continuous

time structures for L; and introduces the signal structure. In Section 7 we intro-

duce the notion of speed independence which is useful for explaining a relationship

between signal and discrete-time specifications. Section 8 presents a compositional

translation of BTLA into L; over the signal structure. Section 9 states some further

results.

2. Terminology and notations

A state is a function from a set V’ar of variables into the boolean set

BOOL = {FALSE, TRUE). We use symbol St for the set of all states and s for

a state.

A state sequence 0 is an o-sequence (sa,st,. . . ,) of states. Let CJ = (ss,sr . . .si,

Si+l, ,) be a state sequence. We denote by cr” the state sequence (s,, s,+l , . . . ,) and

by head(o) the state SO. For a state sequence 0 and a state s we denote by SG the state

sequence (s,so,st,. . . ,).

200 A. Rahinovich I Theoretical Computer Science 193 (1998) 197-214

The collapse of a state sequence CJ is the state sequence 440 which is defined recur-

sively as follows:

CT if Vi. s, =sg,
#CT=

so#o’ if si # SO and Sj = SO for all j < i.

Hence, operator # assigns to each state sequence cs the sequence obtained by replacing

every finite maximal subsequence (s;,s~+, . . .) of identical states in (T by a state si.

The state sequences rr = (so,si . . . s,, . . .) and (T’ = (s&s; .sk,. .) are equivalent up

to a variable x (notation cr=X 0’) if for every IZ, the states S, and s: coincide on

all variables distinct from X; the state sequences 0 and cr’ are stuttering equivalent

(notations CJ N 0’) if 80 = #a’; they are stuttering equivalent up to x (notations CJ zx 0’)

if there exist ~1, g{ such that CT =x ~1, (T’ =X CJ~ and cri ~0;.

It is easy to check that =X, N and rvX are equivalence relations on state sequences.

Let L be a set of state sequence, we use the notation St&t(L) for the stuttering

closure of L which is defined as {cr: there exists cr’ E L such that cr 2 o’}. We say that

a set L of state sequences is stuttering closed if L = Stutt(L).

Remark. The formal counterpart of ‘a specification abstracts from a number of steps

in an implementation’ is ‘the specification defines a stuttering closed set of state se-

quences’. For example, it is easy to check that the following transformations on state

sequences preserve stuttering equivalence:

l Contraction: replace a subsequence (si,si) of identical states by one state si.

l Duplication: replace a state si by the subsequence (si,si).

We will use the usual logical abbreviations, e.g., $ V $’ +i -($ A $‘) and $ H $’ 4

(II/ A $‘) v (+ A 3’).
Usually, the second-order variables over a set X are interpreted as subsets of X.

There is a one-one correspondence between the subsets of X and their character-

istic functions. It will be a little bit more convenient for us to deal with charac-

teristic functions instead of subsets. Hence, we define a second-order environment

r~ over a set X as a function from Var into monadic functions from X into the

booleans.

Let ~E{xi,...,x~} + (Nat + BOOL) be a second-order environment for variables

{xi,. . . ,x,} over the set Nat of natural numbers. With r] associate the state sequence

cr’ = (so,si . .sk,. .) defined as sk(x;) p q(Xi)(k). The above mapping sets up one-

one correspondence between the set {xi,. . . ,x,} + (Nat + BOOL) of environment over

natural numbers and the set Nat + ({xl,. . . ,x,} + BOOL) of state sequences.

Also there exists a one-one correspondence between the set of w-strings over al-

phabet (0, l}” and the set {xi,. .,x,} + (Nat + BOOL) of second-order environments

for variables {xi,. ,x,} over the set of natural numbers. With an environment ye for

variables xi,. . ,x, we associate the o-string aoai . . . ak . . . over alphabet (0, 1)" defined

by ak A (bf,. . . , bt) where bf is 1 if q(xi)(k) holds and bf is 0 otherwise.

A. Rabinovichl Theoretical Computer Science 193 (1998) 197-214 201

To summarize we will use natural one-one correspondences between following three

sets:

1. The set Nat + {XI,. . ,x,} + BOOL of state sequences.

2. The set {xI,...,~,} -+ Nat + BOOL of second-order environments for the variables

{Xl , . . . ,x,} over the set of natural numbers.

3. The set Nat -+ (0, 1)” of w-strings over alphabet (0, 1)“.

An co-language is a set of w-strings. We will say that an o-language L over alphabet

(0, 1)” is definable by a formula $(x1 , . . . ,x,) if L consists of all c.+strings which

‘satisfy’ 11/ in the sense defined below.

3. Temporal logic of actions

We consider the fragment of Lamport’s [4] Temporal Logic of Action where vari-

ables can only receive boolean values (BTLA).

3.1. Syntax

The symbol set of BTLA consists of:

1.

2.

3.

4.

5.

6.

A set Var of variables.

A set Var’ of primed version for variables; Var’ = {x’: x E Var}.
Logical connectives A and 7.

TLA existential quantifier 3 TLA.

Modal operator q .

The special operator Enabled.
The syntax of BTLA formulas is summarized in Fig. 1.

Remark (Primed uariubles). Priming a variable in TLA ‘corresponds’ to applying the

next operator in temporal logic (see Definition l(2) below). One can see that this next

operator is used in BTLA in very restricted form.

Remark (Free and bound occurrences of variables). A variable x occurs free in x and

in x’. The only binding operator of BTLA is the existential quantifier. ZITLAx.$ binds

all free occurrences of x in $.

(formula) 6 (elementary formula) [7(formula) 1 (formula) A (formula)

10 (formula) 1 3 TLAx. (formula)

(elementary formula) 4 (simple state formula) 1 (enabled formula) I

(action formula)

(enabled formula) 4 Enabled((action))

(action formula) 4 0 [(action) 1 (simpk State forda)
(action) p boolean combination of variables and primed variables.

(simple state formula) 4 boolean combination of variables.

Fig. 1. Syntax of BTLA

202 A. Rahinovich I Theoreticd Computer Science 193 (1998) 197-214

3.2. Semantics of BTLA

We are going to recall the definition of the satisfaction relation between state se-

quences and a superset of BTLA formulas, which was called raw TLA by Lamport

[4]. In the following definition x denotes a BTLA variables and A denotes an action.

Definition 1. The satisfaction relation k is defined as follows:

1. o k x if head(o)(x) is equal to TRUE.

2. 0+x’ if CJ’ F.x.

5. 0 k Enabled(A) if there exists CJ’ such that head(c /=A.

6. u+o$ if 0” +$ for every n.

7. ok3 TLA~. $ if there is CJ’ such that c =X cr’ and CJ’ k $.

For an action A and a simple state formula p, the BTLA action formula q [AlP is

considered as an abbreviation of the raw TLA formula q (A V (p ++ p’)), where p’ the

formula obtained from p by replacing every variable x by its primed version x’.

Note that the set of sequences which satisfies a BTLA formula is closed under

stuttering, i.e., Q + II/ and cr E o’ imply cr’ + $.

Remark. (1) It is clear that the union and the intersection of stuttering closed

sets of state sequence is a stuttering closed set of state sequence. Also the comple-

mentation of a stuttering closed set of state sequences is stuttering closed. (2) Note

that the standard existential quantifier does not preserve stuttering closedness. This is

the reason that the definition of 3 ‘LA is different from the definition of the standard

existential quantifier. In Definition 1.7 of 3 rLAx. stuttering equivalence up to x (EX)

is used, whereas in the definition of the standard existential quantifier 3.x. equivalence

up to x (=,) is used.

3.3. About TLA existential quantifier and stuttering

Lamport argued (see [4]) that TLA existential quantifier “really is existential

quantification because it obeys the ordinary laws of existential quantification. In par-

ticular, the usual rules . . . are sound. From these rules, one can deduce the expected

properties of existential quantification, such as (3rLAx .F V G) t) (3 TLA~ .F) V

(gTLAx.G)“.

However, the design decision to combine in 3 ‘LA both the logical existential quantifi-

cation and the non-logical closure under stuttering has some unexpected consequences.

For example, let $(x) be a BTLA formula with only one free variable x and assume

that gTLA x.$(x) holds. Since every formula of BTLA defines a stuttering closed set,

it is clear that at least one of the following cases holds:

1. ~71 k $(x), where all the states of a suffix a? of cri assign to x the value 0.

A. Rabinovich I Theoretical Computer Science 193 (1998) 197-214 203

2. ~2 + t+k(x), where all the states of a suffix a$ of 02 assign to x the value 1.

3. crs k $(x), where all even states of a suffix 0:X” of 03 assign to x the value 0 and

all odd states of azX” assign to x the value 1.

One of the consequences of the above observation is that the following inference rule

is also sound in BTLA:

A BTLA sound inference rule: From the conjunction of EITLAX.$i(X), where i =

1 , . . . ,4 deduce the disjunction of (3 rLAXiXj .$i(~i)r\$j(~j)~ OO(X~ ‘xi)), where 1 <i <

j d 4 and 0 $ is an abreviation for 1 q l$.

Lamport extensively comments that in TLA variables have no types and can assume

any value. 2 He writes “This approach may seem strange to computer scientists used to

types in programming languages, but it captures the way mathematicians have reasoned

for thousands years” [4].

However, it seems to us that the decision to consider typeless logic is implicitly

forced by soundness of such unexpected inference rules in typed versions of TLA.

4. Monadic second-order theory of order

In this section we recall the definitions of the syntax and the semantics of monadic

second-order theory of order.

4.1. Syntax

The language L.2’ of monadic second-order theory of order has a set Varl of indi-

vidual variables, a set Var2 of second-order variables, a binary predicate C, the usual

propositional connectives and first- and second-order quantifiers.

We will use t, u, v for individual variables and x, y for second-order variables.

The atomic formulas of L2< are formulas of the form t < u and x(t). The formulas

are constructed from atomic formulas by logical connectives and first- and second-order

quantifiers.

We will write F(x, y, t, u) to indicate that the free variables of a formula F are

among x, y, t, u.

4.2. Semantics

A structure K = (A, B, < K) for L; consists of a set A partially ordered by <K and

a set B of monadic functions from A into BOOL.

An environment a for individual variables is a function from the set of individual

variables into A and an environment g for the second-order variables is a function

from the set of second-order variables into B. Below the satisfaction relation c(, q k $

is defined by induction on the structure of L; formulas.

2 He considers the full Temporal logic of Actions; in this paper we consider its boolean fragment.

204 A. Rabinovichl Theoretical Computer Science 193 (1998) 197-214

Definition 2 (Semantics of L; formulas).

1. X, rj k t < 2.4 if x(t) < K~(u).

2. sc,q+x(t) if q(x) maps a(t) to TRUE.

3. a, vl+ $I A $2 if ax, v + $1 and @, YI F $2

4. (x, g k 7$ if not CI, q + $.

5. CI, q t= 3’t.$ if there exists a’ such that a(u) = z’(u) for all u # t and a’, 9 k $.

6. a, q + 3*x.$ if there exists g’ such that q(y) = q’(y) for all y # x and CI, V’ /= $.

Notation. (A) In (5) the first-order existential quantifier 3’ was defined and in (6)

the second-order existential quantifier 32 was defined. Symbol 3 will be used for both

these quantifiers in the sequel; the ambiguity will be always resolved by context. If 3

precedes an individual (second-order) variable it will refer to the first (second)-order

existential quantifier. (B) Actually, we had to use K, ~1, q k $ or m,y +K $ for the

satisfaction relation in a structure K, however, in the sequel the ambiguity always will

be resolved by a context.

5. Monadic second-order theory of o

The structure o consists of the set of all natural numbers, the standard order relation

on the natural numbers and the set of all monadic functions from the naturals into the

booleans.

In this section, letters k and m will denote natural numbers.

Let $(x1,..., x,) be a formula which does not contain free occurrences of individ-

ual variables. $ specifies the set of all second-order environments which satisfy it.

Similarly, we associate a set of second-order environments with $(x1, . . . , xn, k), where

$(x1,. . . ,x,, t) is a formula and k is a natural number.

Recall that the set {xi,. . . ,xn} + Nat -+ BOOL of second-order environments over o

is in one-one correspondence with the set of all o-strings over (0, l}“. With a formula

t+!~ as above we will associate the set of w-strings which satisfy it.

The language L; is a very expressive formalism for specifying w-languages. In the

literature many other formalisms for specifying o-languages were considered, e.g., w-

regular expressions, linear-time temporal logic, etc. The o-languages which can be

defined in the above-mentioned formalisms are also definable in L;. Moreover, there

exists a compositional translation from the above mentioned formalisms into L; . How-

ever, Theorem 3 stated below will imply that there exists no compositional translation

from BTLA into L;.

5.1. The extension of L2< by the TLA quntijier

Definition 3 (The extension of L; by 3 TLA). The extension of L; by TLA existential

quantifier is defined by adding the following rules to the syntax and the semantics

of L2<.

A. Rabinovich I Theoretical Computer Science 193 (1998) 197-214 205

Syntax: If $ is a formula then jTLA.x.$ is a formula.

Semantics: a, ij k 3 TLA~. $ if there exists q’ such that n and QJ are stuttering equiv-

alent up to x and a, q’ b $.

We use the notation L; [3 TLA] for this extension.

Remark. (1) In Section 9.2 we will comment on resticted versions of L; [YTLA]

in which 3rLA is allowed to be applied only to the formulas without free indi-

vidual variables. (2) Assume that $ does not have free individual variables. Then

(a) M,v+~ TLAx. $ if and only if a’, v]’ k 3 TLA~.$ for every $ which is stuttering

equivalent to r]. (b) if x does not occur in $, then the set of w-strings definable by

EITLAx. $ is the stuttering closure of the set of o-strings definable by $.

Remark (Non-logical nature of 3 TLA). The following examples demonstrate a non-

logical nature of stuttering and of TLA existential quantifier. There exists a formula $

of L: which does not contain a second-order variable y, however for some x and rl

the following holds: a, y b 4 is not true, yet CI, q /= 3 TLA y . 4. Take, for example, x(t)

for 4, a(t) = 2 and q(x) = (0, 1).

Let TWICE be a binary predicate on the natural numbers such that TWICE(k, m)

holds iff k=2 x m.

Lemma 1. TWICE is dejinable by an L; [3 TLA] formula.

Proof. Let SUCC be a binary relation over natural numbers which is interpreted in

the structure o as SUCC(k, m) iff m = k + 1.

It is well known [121 that the successor relation and the unary relation ZERO which

holds only on 0 are definable in L:. Their defining formulas are

Zero(t) A ~3u.U <t.

Let us define three auxiliary predicates by formulas Alt(x, t), B(x, y, t) and Almost-

Twice(tl, t2).

Alt(x, t) A (3u0 .Zero(u,,) A x(q))

A(Y’u, .VU2.(UI <t Asucc(u1,u2))+(x(uI) * 7x(u2)))

For even k, the language defined by AZt(x, k) consisting of a single o-string (10)k’2(1)”

over alphabet { 0, 1 }.

206 A. Rabinovichl Theoretical Computer Science 193 (1998) 197~214

For odd k, the empty language is defined by Alt(x, k):

B(x, y, t)

If k is a multiple of 4, then the language defined by B(x, y, k) consists of one o-string

([;I [Y] [A] [:]y[:]r OveralphabetCL {[:I [;I [:I [:I}.
If k is not multiple of 4, then the empty language is defined by B(x,y, k):

Almost - Twice(t,,tZ) g Sly. Alt(y, tl) A GITLAx .B(x,y, t2),

Almost - Twice(k,m) holds if k is even and m = 2 x k.

Now the predicate TWICE can be defined by the following formula Twice:

Twice(tl,t2) A Almost - Twice(tl,tz) V 3~1 .u2 .u3 .(Succ(tl,ul)

A Succ(t2,~) A Succ(t.42, ~3) A Almost - Twice(ul, 24)). 0

Let L;[TWZCE] be the extension of L; by the predicate TWICE.

Theorem 2 (Trakhtenbrot [111). (1) TWICE is not dejinable in L;, i.e., there is no

L2< formula $(t, t’) which is equivalent to TWICE(t, t’) in the structure o.

(2) There exists an w-language dejinable by an L:(TWICE) formula but not de-

jinable by any L; formula.

(3) The set of L:[TWICE] sentences true in w is undeciduble.3

Lemma 1 and Theorem 2 imply the following two theorems

Theorem 3. There exists an o-language dejnable by an L;[!lTLA] formula but not

definable by any L: jormulu.

Remark. Note that !lTLA is a third-order operator. There is no standard notion of de-

finability for third-order operators. However, any reasonable notion would imply that

3 In [S, 121, it is attributed to Tarski that the monadic second-order theory of the structure (w, <, +) is

undecidable (i.e., in the language L; extended by the addition predicate). In [121, the above theorem is

stated for the addition predicate. Robinson [8] has shown that the addition predicate is L2<-definable from
TWICE in structure w.

A. Rabinovich / Theoretical Computer Science 193 (1998) 197-214 207

by adding a definable operator the expressive power of a logical language will not

increase. In this sense the above theorem can be interpreted as: SITLA is not definable

in L; over 0.

Theorem 4. The set of L;[ZITLA] sentences true in w is undecidable.

It is instructive to compare Theorem 4 with

Theorem 5 (Biichi [l]). The set of L,< sentences true in o is decidable.

5.2. A non-compositional translation of BTLA into L;

In contrast to Theorem 3, we will show

Theorem 6. If a set of state sequences is definable in BTLA then this set is L;

definable in structure co. Moreover, there exists an algorithm which translates every

BTLA formula into L,< formula which defines the same set of state sequences.

Remark. In view of the remark following Theorem 3 the above translation from BTLA

into L; cannot be compositional.

Note also that Theorems 5 and 6 imply

Theorem 7. BTLA is decidable.

In the rest of this section the sketch for the proof of Theorem 6 is given. All its

arguments are valid for raw BTLA.

Recall [11, that a set L of o-strings is L; definable iff L is a regular o-language (see

[lo] for a survey of automata on infinite objects). Moreover, there exist algorithms for

translations between w-regular expressions and L; formulas (see [12]).

We will prove that only regular w-languages can be defined in BTLA and that

there exists an algorithm for translating BTLA formulas into equivalent w-regular

expressions.

The proof is by induction on the structure of BTLA formulas.

It is easy to see that every elementary BTLA formula defines a regular o-language

and it is easy to construct for every elementary formula an equivalent o-regular ex-

pression.

It is also well known that regular o-languages are closed under complementation,

conjunction, projection and q operations. Moreover, there exists an algorithm for these

operations on m-regular expressions.

Hence, in order to complete the proof we have to show: for a w-regular expressions

r which defines the same language as a BTLA formula $(x1,. . . ,x,,), one can construct

an o-regular expression for the w-languages defined by the formulas 3rLAxi . $.

The proof of this fact follows from Lemmas 8 and 9 given below.

208 A. Rahinouich I Theoretical Computer Science 193 (1998) 197-214

Recall that we use the notation Stutt(L) for the stuttering closure of a language L.

One can easily show the following:

Lemma 8. IJ’L is definable by a formula 3 y . $J(y,xl . . . x,) then 3 TLA y , $(Y,XI . . x,)

defines language Stutt(L).

Lemma 9. For a regular o-language L the o-language Stutt(L) is regular. Moreover,

there exisfs an algorithm which constructs an o-regular expression for Stutt(L) from

an o-regular expression for L.

Proof. Let h be a language morphism defined as h(a) g {a”: n > 0). It is easy to

show that Stutt(L)= h(h-l(L)). Hence, the first part of the lemma follows from the

following easy generalization of a well-known fact about regular languages over finite

strings (see e.g. [2]).

Fact. Regular co-languages are closed under regular morphisms.

Actually, the proof of this fact gives an algorithm for constructing an o-regular

expression for the image (pre-image) of an o-language L from an o-regular expression

that defines L and regular expressions that define a morphism. From this the second

part of Lemma 9 follows. 0

6. Three continuous-time structures for L:

Let [w be the set of real numbers and let <R be the standard order on IF!.

We use the letters r,r’ to denote real numbers.

Rabin considered the structure F = (Iw, F,, <R), where F, is the set of monadic

functions from [w into BOOL such that XE F, iff x is the characteristic function of a

countable union of closed sets.

Rabin has shown

Theorem 10 (Rabin [5]). The set of L.2’ sentences true in F is decidable.

Shelah considered the structure M = (R, 2”, -CR), where 2” is the set of all monadic

functions from lF! into BOOL. He has shown

Theorem 11 (Shelah [9]). The set of L; sentences true in A4 is undecidable.

Now we define signals and a signal structure on the reals. In Section 8 a composi-

tional translation of BTLA into L; over signals is provided.

Definition 4. A function h from the non-negative reals into the set BOOL (a finite

set Z) is called a boolean signal (respectively, C-signal) if there exists an unbounded

A. Rabinovich I Theoretical Computer Science 193 (1998) 197-214 209

increasing sequence to = 0 < rt < ~2 . . . < z, < . ’ . such that h is constant on every

interval [r;, ri+i).

Let SIGNAL be the set of all boolean signals. The signal structure Sig is defined as

Sig = ([W+, SIGNAL, CR), where [w+ is the set of non-negative reals. A signal language

is a set of signals.

Theorem 12. The set of L.2” sentences true in the signal structure Sig is decidable

Proof. First let us note that for the restriction of the structure F to non-negative

reals, Theorem 10 still holds. (Below we will overload notations and notions from the

structure F to its restriction on non-negative reals.)

It is clear that if x is a signal then it is the characteristic function of a countable

union of closed sets. Hence, every signal belongs to F,. It is also clear that x E F, is

a signal if and only if it satisfies the formula signaZ(x) defined as

signal(x) A Qt. 3 tl > t . VtZ . t < t2 d tl + (x(t) H x(t2)

Below we provide an interpretation of the signal structure Sig inside structure F. (See

[6] for the detailed description of the methods of interpretation.)

If A is a monadic second-order formula then the formula As’” obtained from A

by relativizing all second order quantifiers of A to signals is defined inductively on

the structure of A by the following rules: (1) If A is without second order quanti-

fiers then ASi”=A. (2) If A=BA C or A=-B or A=3’t.B then ASiQ=BSig A Csi”
or AskI = 7BsiY or AsiS - - I1 t . Bs’g, respectively. (3) If A = 12x. B or A = Q’x. B then

Asi” = (32x .signaZ(x) A Bs’g) or A sig = (12x. signal(x) + Bsig), respectively.

This relativization allows to reduce the satisfiability of the formula A in structure

Sig to the satisfiability of the formula As@ in the structure F. In particular, if A is a

closed formula, then ksi, A if and only if +F Asiq. Therefore, Theorem 12 follows

from Theorem 10. 0

7. Speed independence

Lemma 13. Let f be an increasing bijective function between non-negative reals.

Then h is a signal ifs h o f A Au. h(f (v)) is a signal.

Definition 5. Let L be a signal language. We say that L is speed-independent if for

every bijective increasing function f the following condition holds: h EL iff h o f EL.

Recall that in Section 2 we agree to use a natural one-one correspondence between

the following three sets:

1. The set Nat + {XI,. . . ,x,,} + BOOL of state sequences.

210 A. Rabinovichl Theoretical Computer Science 193 (1998) 197-214

2. The set {xt,...,~,} --+ Nat + BOOL of second order environments for the variables

{XI, _ . . ,x,} in the structure o.

3. The set Nat 4 (0, 1)” of w-strings over alphabet (0, 1)“.

In a similar way there exists a natural one-one correspondence between

4. The set {xt,...,x,} + SIGNAL of second-order environments for the variables

{XI,. ,x,} in the structure Sig.

5. The set of signals over alphabet (0, l}“.

Below we first define a function Disc (discretization) which assigns to every signal

a set of o-strings (o-language). Then we define a function Cont which assigns to

every w-string a set of signals. These functions are lifted to the function between

the set of o-languages and the set of signal languages. It turns out that, under this

correspondence, the image of any signal language is a stuttering closed o-language.

We show (Lemma 15) that (1) function Cont is a bijection between the set of stuttering

closed o-languages and speed independent signal languages and (2) Disc is its inverse.

We also show that any L: formulas without free individual variables defines a speed

independent signal language.

Definition 6. An unbounded increasing sequence zo < rt < . . -c zi < . . . is a r-sample

sequence for a signal h if

1. ro=r.

2. If h is not continuous at r’ and z < r’ then there exists i such that ri = 7’.

Definition 7. An w-string ao, al . . . is a discretization of a signal h beginning from r

if there exists a z-sample sequence ~0, rt , . . . ,z, . . . for h such that ai = h(Ti).

Definition 8. A signal h is a continuation of an o-string w beginning at r if w is a

discretization of h beginning at r.

Notation. We use notation Disc(h,z) for the set of all discretizations of signal h be-

ginning at z; we use Cont(w,z) for the set of all continuations of w-string w, begin-

ning at Z. We extend Disc to a function from the signal languages in a natural way:

Disc(H,z) g U {Disc(h,z): hEH}; Cont is extended to a function from w-languages

in a similar way.

The following lemmas are straightforward.

Lemma 14 (Stuttering). (1) 1f w, w’ E Disc(h, z) then w and w’ are stuttering equiua-

lent.

(2) If w EDisc(h, z) and w’ is stuttering equivalent to w then w’EDisc(h,z).

Lemma 15 (Speed independence vs. stuttering closedness). If L is an w-language

then Cont(L,O) is a speed-independent signal language. If L is a signal language then

Disc(L, 0) is a stuttering closed w-language. Moreover, the mapping AL. Disc(L, 0)

is a bijection between the set of speed independent signal languages und the set oj

stuttering closed w-languages. AL. Cont(L, 0) is the inverse of AL. Disc(L, 0).

A. Rabinovich I Theoretical Computer Science I93 (1998) 197-214 211

Lemma 16 (Speed independence of any L; specification II/). Let f be an increasing

injective function between non-negative reals, CI be an individual environment and

9 be a second order environment. If

1. r’(t) = f (a(t)) for every individual variable t free in $, and

2. n’(x) = n(x) o f for every second-order variable x free in II/,

then x,q b $ iff a’, g’ b $. In particular, any L: formula without free individual

variables defines a speed-independent set of signals.

8. A compositional translation of BTLA into L;

Let WI,. . . ,x,) be a BTLA formula with free (propositional) variables in the set

{xl,. . ,x,}. Our translation which is provided below, will map II/ to an L; formula

$‘(xr , . . ,x,, t) with free second-order variables XI,. . . , x, and free individual variable t.

Theorem 17 stated below, justifies this translation.

The notations ${u’/u} will be used for the substitution of u’ for all free occurrences

of u in $.

We will also use the following abbreviations:

J’JEm(tl, tz, y> A to < t2 A y(tl > # y(t2) A Vt’ . (tl <t’ < t2 -+ (y(t’) = y(tl)),

NEm(tl, tz,xl ,...,x,) A tl <t2A(xl(tl)#~l(t2)V~~~V~,(tl)#~n(t2))

Avt’.(tl<t’<t2 ----f (x1(t’)=x,(t - 1)

A . . . A xn(t’) = x,(t1))).

Compositional translation: Let us fix two individual variables t and t’. Our transla-

tion Tr is parameterized by these two variables.

Actions: The translation of a boolean combination A of variables XI . . .x,, and their

primed versions xi . . . XL is the formula Tr(A)(x l ,..., x,,t,t’)~A’ANEXT(t,t’,xl ,..., x,),

where A’ is obtained from A by simultaneous substitution of xi(t) for xi and x;(t’)

for xi.

Simple state formulas: The translation of a boolean combination p of variables

XI . . .x,, is the formula obtained from p by simultaneous substitution of xi(t) for xi.

Enabled formulas: Tr(Enabled(A)) A 3 t’ . Tr(A).

Action formulas: Let XI,. . . ,x, be the free variables of an action A and of a simple

state formula p. Then q [A]r is translated as

3~. (vu. (Y(U) * WpHult))

Avtltq.(tlbtANEXT(tl,tz,xl ,..., x,,y))

+ (Tr(A){tllt, h/t’> V y(tl) = y(b))).

212 A. RabinoviehITheorerical Computer Science 193 (1998) 197-214

Propositional connectives:

Tr(l$) A 1Tr($)

Tr($1 A $2) L W$l > A N$2/2)

Quant$er: Tr(3rLAx.$) 4 3x.Tr($).

Modality: Tr(o$) A Vu. u > t + Z’r($){u/t}.

By induction on the structure of BTLA formulas it is easy to show the following

theorem which explains the relationship between BTLA formulas and their translations.

Theorem 17. Let *(xl,. . . ,x,) be a BTLA formula and let *‘(xl,. . . ,x,, t) be its trans-

lation (i.e., I/’ = Tr($)). Let c(be an individual environment which maps t to z. Let

S be {a: o +B~LA II/} and let H(z) be {yl: cx, n +sig t+V}. Then for every z

1. S = Disc(H(z), z).

2. H(z) = Cont(S, z).

Recall that Lemma 15 sets up the correspondence between stuttering closed set of

state sequences and speed-independent set of signals. By this correspondence one can

associate with every BTLA formula a speed independent set of signals. The above

theorem implies

Corollary 18. Let $ and t+V be as in Theorem 17. Then the set of signals dejined by

a BTLA formula $(x1 ,...,x,) is the same as the set of signals defined by the L;

formula @‘(XI,. . . ,x,, 0).

Corollary 19 (Preservation of equivalence and refinement relations by the translation).

1. $1 H $2 iff Tr($l) t) Tr($2) (i.e., $1 and $2 are equivalent BTLA formulas ifs

their translations are equivalent monadic formulas in the signal structure).

2. $1 4 $2 iff Tr(ll/l) 4 Tr($z).

9. Further results

9.1. Expressive completeness of BTLA

Recall that every BTLA formula defines a stuttering closed o-language and every L;

formula defines a speed-independent signal language in the signal structure. Through

the bijection (see Section 7, Lemma 15) between stuttering closed co-languages and

speed-independent signal languages, one can associate with every BTLA formula a

speed-independent signal language. It was shown in [7] that BTLA is complete in the

following sense.

Expressive completeness of BTLA for signal structure: For every L; formula

*(xl , . . . ,x,) there exists a BTLA formula @(xi,. . . ,x,,) which defines the same signal

language.

A. Rabinovich I Theoretical Computer Science I93 (I 998) 197-214 213

9.2. Undefinability of gTLA by an L; context

The set of L; contexts is defined in a standard way by adding the hole [] to the

atomic formulas of L;. For a context C[] and a formula $, the formula C[lc/] is

defined by replacing all occurrences of the hole by a formula $.

It is instructive to compare Theorem 3 with the following result from [7].

Theorem 20. There exists no 1;; context C[] such that for any formula $(x1,. ,x,)

which defines a stuttering closed Language, the formulas C[$] and 3rLA~~ . (I define

the same language over the structure co.

Remark. Both theorems say that 3 TLA is undefinable in L;. Actually, the proof of

Theorem 3 gives an L; [gTLA] formula which is not equivalent to any L; formula.

However, in 1;; [EITLA], the TLA existential quantifier can be applied to any formula

(in particular to the formulas which contain free individual variables). Let us consider

L,,, the sub-language of L; [!ITLA] in which we allow to apply gTLA only to the formulas

without free individual variables. It can be shown that every L,,, formula is equivalent

to an L.2’ formula (the proof is similar to the proof of Theorem 6). Let Lsk: be the

sub-language of L,,,, in which ZITLA can be applied only to the formulas which define

stuttering closed languages. Theorem 20 states that 3TLA of L$$ is not definable by

any L; context. In particular this theorem implies that there exists no compositional

translation from Lfzl into L; in the structure w.

9.3. Extension of L; with stuttering

By adding the following rules one can extend L; by stutterings predicate:

Syntax: If $ is a formula without free individual variables then stut($) is a formula.

Semantics: N, q + stut($) if there exists $ such that q and q’ are stuttering equivalent

and a, $ + $.

Note that if rl/ defines a regular o-language then, by Lemma 9, the formula stut($)

also defines a regular w-language. Hence, for any L; formula rj the formula stut($)

is equivalent to a L2< formula.

However, note that there is no L; formula STUT(x,,x2, yl, ~2) such that LX, ye t=

STUT((xl,xz, ~1, y2) if and only if the restriction of y to {x1,x2} is stuttering equivalent

to the restriction of g to { yl, ~2). (This follows from observation that the o-language

over (0, 1)” defined by STUT is not u-regular.)

Note also that by extending L; by this third order predicate STUT we can express

the predicate TWICE. (The proof of this is similar to the proof of Lemma 1 and is

omitted here.)

Acknowledgements

The author is grateful to Yoram Hirshfeld, Albert R. Meyer and Boris A.

Trakhtenbrot for helpful discussions and comments. Many thanks to the anonymous

referees for the suggestions on the exposition of the material.

214 A. Rabinovich / Theoretical Computer Science 193 (1998) 197-214

References

[l] J.R. Biichi, On a decision method in restricted second order arithmetic, in: E. Nagel et al. (Eds.),

Proc. Internat. Congress on Logic, Methodology and Philosophy of Science, Standford University Press,

Standford, 1960, pp. l-l 1.

[2] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computations, Addison-

Wesley, Reading, MA, 1979.

[3] L. Lamport, What good is temporal logic, in: R.E.A. Manson (Ed.), Information Processing 83, Proc.

IFIP 9th World Congress, Paris, IFIP, North-Holland, Amsterdam, 1983, pp. 6577668.

[4] L. Lamport, The temporal logic of actions, ACM Trans. Programming Languages Systems 16 (3) (1994)

872-923.

[5] M.O. Rabin, Decidabiiity of second order theories and automata on infinite trees, Trans. Amer. Math.

Sot. 141 (1969) l-35.

[6] M.O. Rabin, Decidable theories, in: J. Barwise (Ed.), Handbook of Mathematical Logic, North-Holland,

Amsterdam, 1977.

[7] A. Rabinovich, On expressive completeness of temporal logic of action, in preparation.

[S] R.M. Robinson, Restricted set-theoretical definitions in arithmetic, in: Proc. Amer. Math. Sot. 9 (1958)

238-242.

[9] S. Shelah, The monadic theory of order, Ann. Math. 102 (1975) 349-419.

[IO] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer

Science, The MIT Press, Cambridge, MA, 1990.

[l l] B.A. Trakhtenbrot, Some constructions in the monadic predicate calculus, DAN SSSR 140 (2) (1961)

320-32 1.
[121 B.A. Trakhtenbrot, Y .M. Barzdin, Finite Automata, North-Holland, Amsterdam, 1973.

