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The baker’s yeast mutation collections are extensively used 
genetic resources that are the basis for many genome-wide 
screens and new technologies. Anecdotal evidence has 
previously pointed to the putative existence of a neighboring 
gene effect (NGE) in these collections. NGE occurs when the 
phenotype of a strain carrying a particular perturbed gene is 
due to the lack of proper function of its adjacent gene. Here we 
performed a large-scale study of NGEs, presenting a network-
based algorithm for detecting NGEs and validating software 
predictions using complementation experiments. We applied 
our approach to four datasets uncovering a similar magnitude 
of NGE in each (7–15%). These results have important 
consequences for systems biology, as the mutation collections 
are extensively used in almost every aspect of the field, from 
genetic network analysis to functional gene annotation.

The yeast Saccharomyces cerevisiae has long served as a powerful 
genetic system, more recently because of the availability of sys-
tematic genome-wide mutant collections. These collections have 
been used as a basic resource to screen for specific phenotypes1, 
study gene expression profiles under genetic perturbation2 and 
discover genetic interactions3, among other uses. The basic yeast 
deletion library4 includes ~4,700 haploid strains, each carrying 
a different deleted nonessential gene. Each gene in the collec-
tion has been deleted by replacing the open reading frame (ORF) 
with a selectable marker4, a process that should not influence 
neighboring genes. However, anecdotal observations and some 
published studies1,5–7 indicate that the phenotype of a particular 
strain can actually be due to the effect that the deletion has on an 
adjacent gene. The extent of this problem, the NGE, has not been 
systematically explored to date to our knowledge.

Identifying the causal gene in a deletion analysis is of para-
mount importance. Yeast deletion libraries have been a prime 
workhorse for our understanding of yeast gene function (and 
other organisms by extrapolation), and wrong identification 
leads to erroneous gene annotations8. Furthermore, common 
global analyses such as protein-protein interaction network infer-
ences9 may be biased by NGEs, as misidentified genes distort 
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results and incorrectly link unrelated genes. Finally, as most 
current studies of genetic interactions3 or the effects of particular 
mutants on global transcription (measured by DNA microarray 
hybridization or RNA sequencing10) are usually carried out in 
yeast deletion strains, incorrectly attributed effects are likely to 
have a strong influence on our understanding of genome func-
tion. Hypomorphic mutations in essential genes, including the 
genome-wide ‘decreased abundance by mRNA perturbation’ 
(DAmP) and temperature-sensitive collections11–13 may also be 
susceptible to NGEs.

A difficulty with the NGE is that it is not straightforward to 
detect. For example, the ORF YDL162C has been identified in 
a screen for genes that affect genome stability6; deletion of this 
ORF was shown to affect the expression of its neighbor, CDC9, 
which encodes DNA ligase. One would expect the two genes to 
always appear together in any genetic screen. Remarkably, this is 
not always true, as most screens are not carried out in an exhaus-
tive fashion. In addition, the causative gene may be essential or 
absent from the yeast collection for technical reasons. In the 
CDC9 example, the gene identified in the screen is a dubious 
ORF, whereas its neighbor is a well-studied gene with a known 
function related to the phenotype that was screened for. In 
cases of unknown or ambiguous function, however, NGEs may  
remain undetected.

Here we show that NGE is a widespread phenomenon, affecting 
about 10% of all genes, and is thus likely to substantially distort 
our current perception of gene function and interactions. We 
present a network-based algorithm for identifying NGE cases and 
estimate its extent based on a number of datasets, and we validate 
predictions using complementation experiments.

RESULTS
We reasoned that an automated method to pinpoint the true caus-
ative genes in a given genetic screen must rely on data that do not 
depend on the yeast mutant libraries and thus are not also prone to 
the NGE. We based our approach on protein-protein interaction 
(PPI) information, which has been shown by us and others to be 
a valuable resource for uncovering cellular phenotypes14–19.
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For each gene perturbed in a particular yeast strain, we define 
the genes that could be affected by its deletion, its ‘adjacency set’, 
as those genes totally or partially included in an interval starting 
600 base pairs (bp) upstream of the gene and ending 600 bp down-
stream of it (Online Methods and Fig. 1). These sets usually contain 
the deleted gene and two flanking ORFs, although a few contain 
three, one or no ORFs. We devised a ‘reverse-engineering’ algo-
rithm (NGE inference via a network-based approach; NIRVANA), 
to assign the causative gene(s) in each set by seeking the most prob-
able PPI network that underlies the phenotype in question16.

Our algorithm requires that one or more proteins directly 
responsible for the phenotype are known; these serve as ‘end 
nodes’ in the network (the ‘anchor set’). From every adjacency 
set, the algorithm chooses one or more genes that are the most 
likely to be connected to the anchor set via the PPI network. The 
information in this network is expected to flow from the differ-
ent telomere-length maintenance (TLM) proteins to the anchor. 
The rationale behind NIRVANA is that the true causative gene(s) 
in any set will contribute to a ‘better’ overall PPI subnetwork, 
accounting for the end-node phenotype. Two principles of a  
better subnetwork are used to guide node selection: a selected 
node should be close, or have the fewest possible steps, to the 
anchor set (local factor) and it should be close to other selected 
nodes (global factor). In addition, we positively weighted pro
ximity to the deleted ORF using a Bayesian method (physical  
distance–based factor).

The NIRVANA software and user manual are available as 
Supplementary Software, and updates will be available at 
http://www.cs.tau.ac.il/~bnet/NIRVANA/. We explored the 
scope of NGEs in datasets from two phenotypic screens: the TLM 
system15,16,20,21 and the response to the drug rapamycin22,23.

Manual analysis of NGE in the TLM dataset
Telomere length is maintained by a complex balance between 
positive and negative signals. Previous high-throughput 

measurements of telomere length in mutants with changes in 
non-essential20,21 and essential genes15 have resulted in a collec-
tion of 385 genes (TLM set; Supplementary Table 1). The corres
ponding adjacency sets contained 787 genes with an average of 
2.17 members per set (note that some of the adjacency sets may 
overlap; Supplementary Table 1 and Fig. 1).

As a first estimate of the prevalence of NGE in the TLM set, we 
manually examined each adjacency set. We used three literature-
based decision rules to decide, where possible, which genes (one 
or more) are likely to affect telomere length: (i) proteins annotated 
as telomere-interacting, (ii) proteins shown to be involved in TLM 
in small-scale studies or (iii) proteins that participate in a complex 
for which more than half the subunits have been found in TLM 
screens (Supplementary Table 2).

We considered as NGEs all the cases in which one or more 
genes in an adjacency set satisfied at least one rule (120 adja-
cency sets; Supplementary Tables 1–3). Remarkably, in 25 of 
these sets (20.8%) the only gene marked as causative was actually 
the neighbor of the original gene discovered in the TLM screen. 
In four additional cases (3.3%), the rules resulted in selection of 
both the original gene and its neighbor. We observed this non-
negligible amount of suspected NGEs (29/120 NGEs or 24.1%) 
irrespective of the decision rule (rule i, 22.2%; rule ii, 21.2%; and 
rule iii, 25.7%).

Analysis of NGE in the TLM data by NIRVANA
Our heuristic manual curation procedure can approximate the 
prevalence of NGE in the TLM set but depends on substantial 
information from the literature and, hence, has limited appli-
cability for other datasets. Seeking a more general and unbiased 
procedure, we applied NIRVANA to infer the most probable 
PPI network that connects the adjacency sets to the telomerase 
machinery. As the anchor set we considered ten telomere-binding 
proteins including telomerase subunits and telomerase-interacting  
proteins (accessory factors and exonucleases)16.

a
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Figure 1 | Examples of the NIRVANA method. (a,b) The genomic location of genes involved in TLM, shown in their adjacency sets. ORFs are ordered from 
right to left in top strands and left to right in bottom strands. NIRVANA chooses, from each set, the gene whose product is most likely to be linked to 
the telomere machinery (the anchor point). In a, ARG2 was identified in the screen, but NIRVANA predicted PSF2 as the causative gene. Neighboring 
genes may be chosen as TLM genes (for example, SNF7 (identified in the screen) and SED5 (not identified); HCH1 (identified) and POP3 (not identified). 
In b, SFH1 and RPC53, not found in the TLM screen, were predicted to be the real effectors (instead of the identified VPS65 and BUD30). HTL1, MAK31, 
RSC2 and RSC8, all identified in the screen, were predicted to be true effectors. Neighboring HTL1 and MAK31 were both chosen as TLM genes by the 
algorithm. Both genes encode proteins that act in a complex whose other subunits were also found in the screens: HTL1 is connected to subunits of the 
RSC chromatin-remodeling complex; MAK31 is connected to components of the NatC complex.
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We constructed the network model such that at least one rep-
resentative gene product was chosen from each adjacency set 
and connects to (directly or via contact with other proteins) at 
least one member of the anchor set (Fig. 1). Genes encoding pro-
teins included in the network were predicted to be true effectors 
(Supplementary Table 1). In sets with more than one suitable 
candidate (where several genes contribute similarly to the overall 
likelihood of the network), the algorithm can choose more than 
one node (Fig. 1).

Benchmarking the algorithm against the manual annotation 
of NGEs listed in Supplementary Table 2, we achieved an accu-
racy of 84.4% in predicting the selected gene (versus a random 
expectation of 55.9% ± 5.15% (±s.d.) accuracy; Online Methods). 
Overall, our algorithm estimated that 11.6% of the TLM dataset 
suffers from NGE (37 out of 319 cases; Supplementary Table 1  
and Online Methods). In seven (17.9%) of the NGE cases, the 
predicted gene had been identified in one of the original TLM 
screens (thus, only one of two adjacent TLM genes is the causa-
tive one). In 17 additional NGE cases (45.9%) the predicted gene 
was essential and was not detected in our screen of the DAmP 
collection15. This is not unexpected as hypomorphic alleles do 
not always have phenotypes. In the remaining cases, the causative 
gene could either have been absent from the deletion collection 
or did not give a clear TLM phenotype. Thus, the TLM set has a 
non-negligible number of cases in which the gene adjacent to a 
deleted gene is the causative one.

Experimental validation of NGE in the TLM dataset
To validate our predictions we carried out complementation 
tests. Each deletion strain was transformed with single-copy 
plasmids carrying either the deleted gene, its neighbor, or no 
gene at all. After propagation of the transformants for more 
than 150 generations, their telomere lengths were compared. 
We randomly chose and tested 9 cases from our literature-based 
decision rules (Table 1). We observe a very high concurrence 
between the experimental results and the rules’ predictions 

(7/9). In the two cases in which there was disagreement, 
NIRVANA’s prediction coincided with the experimental result. 
For nine additional genes that cannot be evaluated using infor-
mation from the literature NIRVANA achieved a match of 66.7% 
(6/9). Overall, our complementation experiments matched the 
algorithm’s predictions in 83.4% of the cases (15/18) (Table 1). 
Three examples of NGEs are shown in Figure 2; in each case, 
the telomere length phenotype could be complemented with a 
plasmid bearing the neighboring gene, and not with one bear-
ing the deleted gene.

Using complementation tests we also confirmed 11 cases in 
which the deleted gene is indeed responsible for the observed 
phenotype (that is, there was no NGE); 10 were in agreement 
with the algorithm’s predictions (Table 1 and Fig. 3). The few 
instances in which the algorithm mispredicted the causative gene 
were likely due to poor representation of one of the genes of the 
adjacency set in the original PPI network.

Analysis of NGE in the rapamycin response dataset
Rapamycin is an immunosuppressive and anticancer drug that 
inhibits the conserved serine threonine kinase target of rapa
mycin (TOR). Yeast contains two TOR homologs, TOR1 and 
TOR2 (ref. 24), which form two distinct complexes, TORC1 and 
TORC2. TORC1, which may contain TOR1 or TOR2, controls 
cell growth and is inhibited by rapamycin24. In contrast, TORC2, 
believed to be rapamycin-insensitive, is composed solely of TOR2 
and has a role in cytoskeleton organization24. Two genome-wide 
screens for altered response to rapamycin have been carried out 
using the yeast deletion collections22,23, in both of which 347 
genes had been identified (Supplementary Table 4). The corres
ponding adjacency sets contain 782 genes with an average of 2.43 
members per set (Supplementary Table 4).

Using the heuristic decision rules described above to annotate 
the altered response to rapamycin adjacency sets again predicted 

Table 1 | NGE and Non-NGE predictions in the TLM dataset

Original  
gene

NIRVANA  
prediction

Manual  
assessment

Confirmed by 
complementation

Algorithm  
success rate

APN1 APN1 and RAD27 RAD27 RAD27
FYV12 RPS30B and SER1 – RPS30B
HUR1 PMR1 and SUA5 SUA5 PMR1 Confirmed NGE 

5/7 = 71.4%LST7 RSC1 RSC1 LST7 and RSC1
MRM2 MRM2 – SEC27
RPS17A RPS17A – NSE5
RRP8 RRP8 and STN1 STN1 STN1

ASC1 ASC1 SPC24 ASC1
BUD23 BUD23 – BUD23
ELG1 ELG1 ELG1 ELG1
GCV3 PTA1 – GCV3
HIT1

LDB7

MAK31

MET7

SIW14

SSN8

YOR1

HIT1

LDB7

MAK31

MET7

SIW14

SSN8

YOR1

–

LDB7

MAK31

–

–

SSN8

–

HIT1

LDB7

MAK31

MET7

SIW14

SSN8

YOR1

Confirmed  
non-NGE  
10/11 = 90.9%

–, not predicted by the manual analysis.
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Figure 2 | Examples of NGEs predicted by NIRVANA, which we confirmed 
by complementation tests. (a–c) Strains from the deletion library were 
transformed with plasmids carrying the deleted strain, its neighbor(s) 
or no gene at all (vector). Genes originally identified in the screens are 
colored blue and neighboring genes are in red. Telomeric Southern blots 
show the terminal chromosomal XhoI fragment and two size markers. 
Solid and dashed white lines mark the telomere size of wild-type (WT) 
and deletion strains, respectively. Deletion of RRP8 altered the activity 
of adjacent STN1 (a). Deletion of APN1 affected neighboring RAD27 (b). 
Deletion of HUR1 affected neighboring PMR1 (c).
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a non-negligible NGE (19/88 = 21.5%; Supplementary Table 5).  
For a more systematic identification of NGEs, we applied 
NIRVANA using TOR1, TOR2 and FPR1 (the direct target of 
rapamycin) as anchor points. Comparing the algorithm to the 
manual annotations, we obtained an overall accuracy of 80.85% 
in predicting the gene or genes annotated as causal (versus a ran-
dom expectation of 51.4% ± 7.0%; Online Methods). Similarly to 
the data obtained with the TLM dataset, NIRVANA estimated 
the amount of NGEs in the response to rapamycin data to be 
10.0% (31/310 of adjacency sets; Supplementary Table 4).

Validation of NGE in the rapamycin dataset
We experimentally tested seven NGE cases in which a neighbor-
ing gene predicted by NIRVANA did not come up in any of the 
rapamycin screens. In five cases, mutations in the predicted causa-
tive genes conferred rapamycin sensitivity (Fig. 4a). For example, 
deletion of the uncharacterized gene HHY1 confers sensitivity to 
rapamycin22. Our algorithm predicted that deletion of HHY1 
affects the adjacent ORF, PCM1 (YEL058W), encoding an essential 
N-acetylglucosamine-phosphate mutase; indeed, a hypomorphic 
pcm1 DAmP allele had severe rapamycin sensitivity (Fig. 4a).

To validate our predictions, we conducted complementation 
experiments as above, testing the transformants on plates con-
taining rapamycin (Table 2 and Fig. 4b). Algorithmic predictions 
matched experimental results in seven of nine cases (77%).

Analysis of NGEs in additional datasets
To test the generality of our method, we applied NIRVANA to 
two additional datasets. The first was a set of 191 mutants that 
affect sensitivity to overexpression of the mutant topoisomerase-1 
allele top1-T722A (ref. 25). Using the Top1 protein as an anchor 
point, NIRVANA detected 30 cases of NGEs (15.7%). The second 
was a set of 138 genes that when deleted show hypersensitiv-
ity to the anticancer drug 5-fluorouracil26. Currently, the only 
known direct targets of this drug are the exosome complex and 
the Cdc21 thymidylate synthase. Using this partial list as anchors, 
the NIRVANA algorithm predicted 7.2% NGE in this screen  
(10 cases). This number is expected to be larger when additional 
anchors are introduced.

Potential mechanisms for NGE
To probe the possible mechanisms by which NGE may occur, we 
explored the characteristics of the combined NGE list from the 

TLM and response to rapamycin datasets (a total of 73 pairs of a 
deleted gene and an affected gene; Supplementary Table 6). First, 
we examined the relative orientation of the gene pairs, consid-
ering three possible options: converging, diverging and tandem 
(Supplementary Table 6). We found no significant (chi-squared 
P = 0.97) preferences among NGE cases compared to the entire 
set of adjacent genes in the genome.

To test whether the effects occur at the level of transcription, 
we quantified the adjacent transcript in the deletion and wild-
type strain in our validated NGE cases. Quantitative reverse- 
transcriptase PCR showed a substantial change in the steady-state 
mRNA amount for five of the nine cases tested (Supplementary 
Table 7 and Fig. 4c; in the other four cases the change was mild). 
For example, there was a reduction of about 40% of the mRNA 
level of STN1 in the rrp8∆ strain compared with the wild type 
(Fig. 4c). Thus, in a majority of the cases the deletion affected the 
steady-state amount of the neighboring gene.

Next, we examined whether the transcripts of the interacting 
pairs overlapped27,28. We found overlap in 44 out of 73 NGE cases, 
suggesting that the deletion of one gene may affect either the pro-
duction or stability of its neighboring transcript. Other possible 
explanations for NGEs include the existence of short unannotated 
transcripts (for example, ref. 28) or the influence of the strong 
promoter present in the KanMX cassette commonly used to create 
the deletion collections4 on the neighboring gene.

In both the TLM and rapamycin datasets there were cases in 
which two neighboring genes were predicted to be true effec-
tors. In these cases, it is possible that both genes regulate each 
other through noncoding antisense sequences28. In support of this 
idea, only the presence of both the original gene and its neighbor 
succeeded in fully complementing the phenotype in two cases 
(LST7 and its neighbor RSC1 in the TLM dataset and FYV5 and 
its neighbor KRR1 in the rapamycin dataset).

Table 2 | Predictions in the response to rapamycin dataset

Original 
gene

NIRVANA  
prediction

Manual  
assessment

Confirmed by 
complementation

Algorithm  
success rate

AIM26 UGP1 – UGP1 Confirmed  
NGE 3/3  
= 100%

FYV5

YEL045C

SER1

LST7

YGL211W

 
BUD23

YPR084W

OPI9

KRR1

GLY1
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YGL211W  
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–

–

–

–
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and VAM7

–

–

–
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Figure 3 | Examples of predicted non-NGE confirmed by complementation 
tests. (a–c) Strains from the deletion library were transformed with plasmids 
carrying the deleted strain, its neighbor(s) or no gene at all (vector). Genes 
originally identified in the screens are colored in blue and neighboring 
genes are in red. Solid and dashed white lines mark the telomere size of 
wild-type (WT) and deletion strains, respectively. Wild-type YOR1, but not a 
mutant allele or its neighbor PXR1 restored wild-type telomere length (a). 
ASC1, but neither the neighboring SPC24 nor SNR24 (located inside an ASC1 
intron and encoding a small nucleolar RNA), complemented the telomere 
length of an asc1 strain (b). SIW14 was a true TLM gene (c).
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DISCUSSION
NGEs in yeast mutant collection data may introduce pervasive 
misannotations and misinterpretations. If the deleted gene is a 
known component of a certain pathway, the process studied is 
linked to that pathway. In addition, its neighbor (the true causa-
tive gene) is undetected. Thus, even a few NGEs likely affect our 
understanding of the ways in which genes, proteins and pathways 
are linked. An NGE rate of 1 in 10 (roughly what we observed in 
our analysis) may lead to substantial changes in the topology of 
the global genetic interaction map3 (as currently connected nodes 
should disconnect and new connections should be created).

NIRVANA pinpointed the correct causative genes, but the prob-
lem still exists that more than one gene is affected in a single 
deletion strain. For proven cases of NGEs, possible solutions are 
to create new alleles that are simple insertions to disrupt the ORF, 
smaller deletions (that are likely to be less disruptive of neighbors) 
or, best of all, point mutations.

NIRVANA uses a large database of PPIs to uncover NGEs in 
any cellular system where there is knowledge about the network’s 
‘anchor’, that is, the protein(s) that are direct mediators of the 
phenotype studied. It will contribute to the future analysis of 
additional cellular subsystems as more anchors are established. 

But algorithms should also be developed to analyze cellular net-
works devoid of known anchor points. The acknowledgment of 
the wide scope of the NGE problem, together with the widespread 
application of NIRVANA and its successors, will be important 
for reanalyzing current large-scale datasets toward more accurate 
determination of gene interactions and gene annotations29.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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Figure 4 | Validation of predicted NGE cases in the altered response to 
rapamycin network. (a) Tenfold serial dilutions of yeast haploid strains 
containing the DAmP allele or deletion of indicated genes and a wild-type 
(WT) strain were plated onto medium with or without 8 nM rapamycin. 
Predicted NGE cases (underlined) that had sensitivity to rapamycin 
similarly to the deletion mutant initially identified. (b) Tenfold serial 
dilutions of yeast mutant strains with plasmids carrying the deleted gene, 
its neighbor(s) or no gene at all (vector) plated onto medium with or 
without 8 nM rapamycin. Neighbor genes are underlined. (c) Comparison 
of mRNA levels of the true causative gene in its adjacent (original) gene 
deletion strain. Expression of the indicated verified effector genes in 
the wild type and the original (non-causative) deletion was examined by 
real-time PCR. Values shown are relative mRNA levels after normalization 
to the ACT1 mRNA level and are averages ± s.d. of at least three 
determinations. Only significant changes are shown (P < 0.04).

http://www.nature.com/naturemethods/


©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�  |  ADVANCE ONLINE PUBLICATION  |  nature methods

Articles

13.	 Li, Z. et al. Systematic exploration of essential yeast gene function  
with temperature-sensitive mutants. Nat. Biotechnol. 29, 361–367  
(2011).

14.	 Shachar, R., Ungar, L., Kupiec, M., Ruppin, E. & Sharan, R. A systems-
level approach to mapping the telomere length maintenance gene 
circuitry. Mol. Syst. Biol. 4, 172 (2008).

15.	 Ungar, L. et al. A genome-wide screen for essential yeast genes that 
affect telomere length maintenance. Nucleic Acids Res. 37, 3840–3849 
(2009).

16.	 Yosef, N. et al. Toward accurate reconstruction of functional protein 
networks. Mol. Syst. Biol. 5, 248 (2009).

17.	 Dittrich, M., Klau, G., Rosenwald, A., Dandekar, T. & Müller, T.  
Identifying functional modules in protein-protein interaction networks:  
an integrated exact approach. Bioinformatics 24, i223–i231  
(2008).

18.	 Huang, S.S. & Fraenkel, E. Integrating proteomic, transcriptional, and 
interactome data reveals hidden components of signaling and regulatory 
networks. Sci. Signal. 2, ra40 (2009).

19.	 Yosef, N. et al. ANAT–a software tool for reconstructing and analyzing 
functional networks of proteins. Sci. Signal. 4, l1 (2011).

20.	 Askree, S.H. et al. A genome-wide screen for Saccharomyces cerevisiae 
deletion mutants that affect telomere length. Proc. Natl. Acad. Sci. USA 101,  
8658–8663 (2004).

21.	 Gatbonton, T. et al. Telomere length as a quantitative trait: genome-wide 
survey and genetic mapping of telomere length-control genes in yeast. 
PLoS Genet. 2, e35 (2006).

22.	 Parsons, A.B. et al. Integration of chemical-genetic and genetic 
interaction data links bioactive compounds to cellular target pathways. 
Nat. Biotechnol. 22, 62–69 (2004).

23.	 Chan, T.F., Carvalho, J., Riles, L. & Zheng, X.F. A chemical genomics 
approach toward understanding the global functions of the target of 
rapamycin protein (TOR). Proc. Natl. Acad. Sci. USA 97, 13227–13232 (2000).

24.	 Crespo, J.L. & Hall, M.N. Elucidating TOR signaling and rapamycin action: 
lessons from Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 66,  
579–591 (2002).

25.	 Reid, R.J. et al. Selective ploidy ablation, a high-throughput plasmid 
transfer protocol, identifies new genes affecting topoisomerase I-induced 
DNA damage. Genome Res. 21, 477–486 (2011).

26.	 Gustavsson, M. & Ronne, H. Evidence that tRNA modifying enzymes are 
important in vivo targets for 5-fluorouracil in yeast. RNA 14, 666–674 (2008).

27.	 Tuller, T. et al. Higher-order genomic organization of cellular functions in 
yeast. J. Comput. Biol. 16, 303–316 (2009).

28.	 Xu, Z. et al. Bidirectional promoters generate pervasive transcription in 
yeast. Nature 457, 1033–1037 (2009).

29.	 Snyder, M. & Gallagher, J.E. Systems biology from a yeast omics 
perspective. FEBS Lett. 583, 3895–3899 (2009).



©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.1890 nature methods

ONLINE METHODS
Software. NIRVANA is available as Supplementary Software and 
online at http://www.cs.tau.ac.il/~bnet/NIRVANA/.

Adjacency sets. We reasoned that NGE is most likely caused by 
functional interference with the promoter or the untranslated 
regions of the adjacent genes. According to recent observa-
tions, more than 50% of the intergenic regions in S. cerevisiae 
are smaller than 500 bp27. Thus, in defining the adjacency set, 
we established a threshold distance of 600 bp. Because the closer 
(in physical distance terms) a gene is to its neighbor, the higher 
are the chances that its deletion will create an NGE event, we 
used a simple Bayesian approach to assign a prior probability for 
a gene to be causal as a function of its distance from the deleted 
ORF. The PPI data were assigned confidence scores based on the 
experimental evidence available for each interaction using a logis-
tic regression model adapted from ref. 30. For adjacency sets of 
the essential TLM genes (which belong to the DAmP collection, 
in which the 3′ untranslated regions, rather than the whole gene, 
has been disrupted11), we only considered genes located down-
stream, because this is the only region likely to be affected by 
the gene disruption. Adjacency sets of ORFs encoding a protein 
that does not have any known physical interaction were excluded 
from the analysis.

Protein-protein interaction data source. PPI data was assem-
bled from various sources, which include affinity purification of 
protein complexes31,32 (using the spoke model), yeast two-hybrid 
experiments33,34 and literature curation35,36.

The NIRVANA algorithm. We assigned every PPI (edge) with 
a confidence score (in the range (0,1)) based on the available 
experimental evidence for it, using a logistic regression model we 
have previously described16. We also computed for every member 
in an adjacency set a prior probability for it to be a true effector 
(see below). We added to the network an additional node labeled 
‘root’ and added directed edges to this node from the set of anchor 
proteins (in the telomere case the anchor set includes ten proteins 
that directly bind to the telomere or that compose the telomer-
ase machinery as in ref. 16; in the altered response to rapamycin 
(ARR) case, the anchor set included the genes TOR1, TOR2 and 
FPR1). We then searched for a high-confidence network that con-
nects the root node to at least one member of every adjacency 
set (note that the paths to the root must go through at least one  
member of the anchor set). The algorithm aims to optimize 
local and global features of the reconstructed network. The local  
criterion favors highly reliable pathways between the root and the 
selected representatives of each set, optimizing 

F H p v p eL
e P vv X H H

( ) log( ( )) log( ( ))
( , )( )

= − + −










∈∈

∑∑
root

where H is a reconstructed network; X(H) is the set of representa-
tives from the different adjacency sets that appear in H (at least 
one per set); p(v) is the prior probability assigned to the repre-
sentative v; PH(v,root) is the shortest (highest likelihood) path 
between the representative v and the root node in H; and p(e) is 
the confidence score assigned with an edge e. The global criterion 

(1)(1)

looks for a parsimonious network that connects the root to at least 
one representative of each set, optimizing 

F H p v p eG
e Hv X H

( ) log( ( )) log( ( )).
( )

= − + −
∈∈
∑∑

Considering only the global criterion, this is standard instance of 
the group Steiner tree problem in directed graphs: find the least 
heavy subgraph, rooted in the ‘root’ node that contains at least 
one representative from every group (adjacency set). As we also 
wanted to account for the local criterion, we used the algorithm 
and software presented in refs. 16,37, which allow for a joint and 
balanced optimization of both criteria. We adjusted the algorithm 
to handle groups of target nodes (adjacency sets) rather than  
single nodes using the standard reduction from group Steiner tree 
to directed Steiner tree38.

To avoid an arbitrary choice among equally good choices (that 
is, equally plausible candidates from an adjacency set), our imple-
mentation recorded multiple solutions as in ref. 16. This was done 
by 50,000 random shuffles of the order by which the yeast PPI is 
processed. The random ordering affects the way ties are being 
handled during the run of the algorithm, thus producing differ-
ent solutions. The resulting output network of NIRVANA is the 
union of all solutions obtained.

Fitting a prior probability for NGE. We assigned each member 
of an adjacency set with a probability for it to be the causal gene 
that is conditioned on its distance from the ORF of the deleted 
gene. For each adjacency set we considered all triplets of the 
form <“member gene”, “deleted gene”, distance (bp)> (note that 
the deleted gene is also a member gene with a distance of zero). 
Taking all the adjacency sets together, we divided the pairs into 
bins according to their distance value with intervals of 50 bp.  
We then computed the probability (p) for each bin using a simple  
Bayesian rule: p (NGE | distance) = p (distance | NGE) × p (NGE) / p  
(distance). The values on the right side of the equation were com-
puted based on an external data source: for the TLM set we used 
the manual decision rules of the ARR set to define the set of triples 
and vice versa. After the Bayesian computation, we smoothed the 
posterior so that it was monotonous decreasing with distance using 
the pool adjacent-violators algorithm.

Evaluating prediction accuracy. We computed NIRVANA’s 
accuracy as the average of (percentage of correct predictions in 
adjacency sets annotated as NGE) and (percentage of correct 
predictions in adjacency sets annotated as non-NGE). We com-
pared these results to a random expectation obtained by randomly 
choosing representatives from each adjacency set. In the random 
process we retained the number of adjacency sets in which more 
than one gene was selected (but we randomly selected the adja-
cency set in which more than one gene was picked). We repeated 
the random procedure 1,000 times and for each run computed a 
success rate. We reported the average random success rate plus 
or minus 1 s.d.

Applying NIRVANA on randomized data. To test the stability 
of the NGE estimation using NIRVANA, we repeated the ana
lysis of the TLM and ARR sets with randomized data. To this 
end, we applied NIRVANA on 50 randomized inputs obtained 
from the original (TLM or ARR) adjacency sets. In each random 

(2)(2)
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simulation we retained the original gene set and randomized the 
neighbors. This process retains the structure of the adjacency sets 
(number of neighbors in each set and their prior probabilities) 
and also possible overlaps between neighbor nodes in different 
adjacency sets.

We expect that in the randomized data, NIRVANA would still 
recognize the cases in which the originally deleted gene is not 
likely to be causative. Indeed, we found that in cases in which 
the deleted gene was causative (according to the decision rules)  
NIRVANA did not choose a random ‘decoy’ neighbor instead 
(happened on average only in 2.5% of the cases in TLM and 4.1% 
in ARR), testifying to the stability of the non-NGE predictions.  
Conversely, for cases in which the deleted gene was not the causa-
tive one, NIRVANA was forced to choose between false candi-
dates. Consequently we expected a higher ratio of cases in which 
the deleted gene was not selected. Indeed the observed ratio 
was substantially higher (average of 17.7% in TLM and 18.7% 
in ARR) and reflected the prior probabilities for neighbor selec-
tion (random selection based on the prior probabilities yielded 
an expected rate of 20.7% in TLM and 26.3% in ARR).

To estimate the random expectation for exclusion of the deleted 
node based only on the prior probabilities, we randomly choose 
a representative from every adjacency set G, where the chance of 
a member k to be selected is 

P
P

k

i G iΣ ∈

where pi is the prior probability assigned to member i. As before, 
we retained the number of adjacency sets in which more than one 
gene is selected. This was done by removing the first selected gene 
from the set and recomputing the chances as above using only the 
remaining members.

Confirmation of the causative open reading frame using a 
complementation test. The selected ORFs were tested using 
the relevant strains from the Saccharomyces Genome Deletion 
Project4 or were deleted in the S288c background. These strains 
were transformed with plasmids that contained the wild-type 

(3)(3)

copy of the deleted gene, the adjacent gene or no gene at all. (We 
list all plasmids and primers used for cloning in Supplementary 
Tables 8 and 9, respectively.) Transformant cells underwent at 
least six restreaks (~150 cell divisions) on the appropriate selec-
tive medium to prevent plasmid loss before measuring their  
telomere length.

Total genomic DNA was digested with XhoI and was analyzed 
by Southern blot with the use of a probe specific for subtelomeric 
repeats as described in ref. 15. PCR fragments containing telo-
meric sequences and a genomic region that hybridizes to bands 
(2,044 bp and 779 bp) were used as probes. Each strain and the 
isogenic wild-type controls were run in triplicate.

RNA and real-time PCR. Total cellular RNA was isolated from 
the wild type and deletions strains using MasterPure yeast RNA 
purification kit (Epicentre Biothechnologies). Reverse transcrip-
tion was carried out using Superscript first strand synthesis sys-
tem, followed by real-time quantitative PCR with primers specific 
for each ORF. RNA levels were determined relative to a control 
gene, ACT1. A list of all primers used is found in Supplementary 
Table 9. Statistical methods used in this study are unpaired two-
tailed t-tests, assuming unequal variance.
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