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Abstract
Development of high-throughput monitoring technologies enables interrogation of cancer

samples at various levels of cellular activity. Capitalizing on these developments, various

public efforts such as The Cancer Genome Atlas (TCGA) generate disparate omic data for

large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources

provide the opportunity to gain insights into the molecular changes that drive cancer patho-

genesis and progression. However, these insights are limited by the vast search space and

as a result low statistical power to make new discoveries. In this paper, we propose methods

for integrating disparate omic data using molecular interaction networks, with a view to gain-

ing mechanistic insights into the relationship between molecular changes at different levels

of cellular activity. Namely, we hypothesize that genes that play a role in cancer development

and progression may be implicated by neither frequent mutation nor differential expression,

and that network-based integration of mutation and differential expression data can reveal

these “silent players”. For this purpose, we utilize network-propagation algorithms to simulate

the information flow in the cell at a sample-specific resolution. We then use the propagated

mutation and expression signals to identify genes that are not necessarily mutated or differ-

entially expressed genes, but have an essential role in tumor development and patient out-

come. We test the proposed method on breast cancer and glioblastomamultiforme data

obtained from TCGA. Our results show that the proposed method can identify important pro-

teins that are not readily revealed by molecular data, providing insights beyond what can be

gleaned by analyzing different types of molecular data in isolation.

Author Summary

Identification of cancer-related genes is an important task, made more difficult by hetero-
geneity between samples and even within individual patients. Methods for identifying dis-
ease-related genes typically focus on individual data sets such as mutational and
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differential expression data, and therefore are limited to genes that are implicated by each
data set in isolation. In this work we propose a method that uses protein interaction net-
work information to integrate mutational and differential expression data on a sample-
specific level, and combine this information across samples in ways that respect the com-
monalities and differences between distinct mutation and differential expression profiles.
We use this information to identify genes that are associated with cancer but not readily
identifiable by mutations or differential expression alone. Our method highlights the fea-
tures that significantly predict a gene’s association with cancer, shows improved predictive
power in recovering cancer-related genes in known pathways, and identifies genes that are
neither frequently mutated nor differentially expressed but show significant association
with survival.

Introduction
The sequencing revolution of the last decade is producing vast amounts of data with clinical
relevance. However, translating these data to biomedical understanding remains a formidable
challenge due to the typically low statistical power associated with sequencing studies, disease
heterogeneity, experimental limitations and more. A promising strategy to circumvent some of
these problems is the integration of sequence data with other types of “omic” data [1]. In the
context of cancer, comprehensive data generation efforts such as The Cancer Genome Atlas
(TCGA) and and the COSMIC cancer gene census [2] provide excellent opportunities in this
regard, since they interrogate large sets of samples for multiple types of omic data.

An important and well-studied problem in this field is the prioritization of genes for specific
diseases. State-of-the-art methods for tackling this problem rely on the observation that pro-
teins causing similar diseases tend to lie close to one another in a protein-protein interaction
network. We have previously devised prioritization methods that start from known causal pro-
teins and propagate their signal in the network to predict novel causal proteins [3, 4]. Here, we
aim to harness the network propagation methodology to the integration of multiple omic data
types in the context of cancer, with a view to gaining mechanistic insights into the relationship
between molecular changes at different levels of cellular activity.

Related Work
In recent years, there have been substantial efforts in integrating multiple omic data types that
provide information on cancer pathogenesis and progression, with a view to predicting patient
outcome, identifying drug targets, and understanding the functional relationships among key
players in cancer. In the context of predicting patient outcome, Hofree et al. [5] used a network
propagation based strategy to incorporate the functional relationships among mutated genes
into the clustering of patients. They showed that the resulting clustering correlates with patient
outcomes better than the clustering of patients according to mutation data alone. Similarly, sev-
eral groups demonstrated that integration of transcriptomic data with protein-protein interac-
tion networks leads to the identification of protein subnetworks that serve as reliable markers for
the prediction of survival in such cancers as glioblastoma multiforme [6] and ovarian cancer [7].

In the context of understanding the functional relationships among key players in cancer,
enrichment-based approaches aimed at identifying significantly mutated pathways provide
insights into how different mutations influences similar biological processes [8]. Analysis of
mutually exclusive mutations further elucidate the functional relationships among mutated
genes by interpreting mutual exclusivity among mutations in the context of networks, thereby
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recovering key functional modules that provide systems-level insights into the mechanisms of
pathogenesis [9]. Integration of sequence data with gene expression data based on eQTL analy-
sis is also shown to be effective in the identification of cancer-related pathways [10]. These
studies establish that the addition of network information can enhance predictive power in
many applications, but most of these methods focus on a single data type in addition to net-
work relationships. Though previous studies combine mutational or differential expression
data with protein interaction networks, few use network information to integrate mutational
and expression data. In particular, Nibbe et al. [11] propose a method that integrates protein
expression data with mRNA expression data, with the purpose of extending the scale of of
proteomic data that has limited coverage of the proteome. In Nibbe et al.’s study proteomic
and transcriptomic data from different patients is used to integrate mRNA-level gene expres-
sion and protein expression data. However, efforts like TCGAmake it possible to extract multi-
ple types of omic data (mutation, mRNA expression, microRNA expression etc.). In this study,
we aim to develop an algorithmic framework for the integration of these multi-omic data at the
level of individual samples.

Driving Hypothesis and Computational Workflow
We stipulate that during pathogenesis of cancer, mutations in up-stream proteins may lead to
transcriptional dysregulation of down-stream genes. Similarly, transcriptional dysregulation of
some processes may lead to conservation of certain mutations during neoplastic evolution. The
dynamics of the interplay between genomic mutations and transcriptional dysregulation likely
involves signaling proteins (e.g., kinases, phosphatases, transcription factors) that mediate the
relationship between mutated genes and dysregulated gene products. However, due to limita-
tions in proteomic and phosphoproteomic screening [12], the changes in those mediator pro-
teins may not be readily detectable from genomic and transcriptomic data alone. We propose
that such “silent” proteins can be detected by integrating mutation and differential expression
data in a network context, since these proteins are likely to be in close proximity to both mutated
and differentially expressed proteins in the network of protein-protein interactions (PPIs).

Based on our hypothesis, we develop an algorithmic workflow aimed at quantifying the prox-
imity of all proteins in the human proteome to the products of mutated and differentially
expressed genes in each sample. The proposed workflow is illustrated in Fig 1. Here, our empha-
sis is on utilizing sample-specificity to be able to deal with molecular heterogeneity of pathogen-
esis at the population level. In order to utilize sample-specific data, we use network propagation
to separately score proteins based on their network proximity to 1) mutated and 2) differentially
expressed genes in each sample. This procedure provides us with two vectors in the space of
samples for each protein: a “propagated mutation profile” indicating proximity to genes
mutated in each sample and a “propagated differential expression profile” indicating proximity
to genes differentially expressed in each sample. We then use these vectors to extract descriptive
features for each protein, to be used for predicting its involvement in the disease being studied.

Summary of Results
We apply the proposed method to breast cancer (BRCA) and glioblastoma multiforme (GBM)
data obtained from The Cancer Genome Atlas (TCGA) project. First, we assess the power of
mutation data, expression data, and network-based integration of these two in unsupervised
prediction of genes known to play a role in each cancer. We show that one can gain significant
predictive power by propagating mutation or expression data over a PPI network, as compared
to using raw mutation or differential expression data (area under ROC curve (AUC) gains of
0.16–0.18 for BRCA and 0.17–0.27 for GBM). We then combine the two signals to derive
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several features and used these features to train a supervised predictor with further improved
AUC of 0.836 for BRCA and 0.933 for GBM. Importantly, by using this predictor we are able
to recover important proteins that are not readily revealed by molecular data. These genes are
supported by the literature and by an independent cancer gene resource. This observation sug-
gests that incorporation of network data can provide insights beyond what can be gleaned
from sequence or expression data in isolation. Seven of those novel predictions are further
found be significantly predictive of patient outcome. Our results also suggest important fea-
tures that contribute significantly to the prediction of causal genes in breast cancer and glio-
blastoma multiforme, which provide insights into how the crosstalk among mutated and
differentially expressed proteins contributes to pathogenesis.

Methods
In this section, we first describe the datasets we use. We then explain how we use network
propagation for each sample to generate “propagated mutation” and “propagated differential
expression” profiles for each gene. Finally, we describe the features we extract from these prop-
agated mutation and differential expression profiles and how we use those features to develop a
model to predict causal genes in cancer.

Description of Data
The input to our method consists of BRCA (breast cancer invasive carcinoma) and GBM (glio-
blastoma multiforme) data obtained from TCGA [13]. We use two categories of data: somatic
mutations obtained from whole-exome sequencing and microarray gene expression data. We
also obtain differential expression status for TCGA samples from the COSMIC cancer gene
census [2]. We collect this data into a binary mutation matrixM, and a binary differential gene
expression matrix D, with samples as rows and genes as columns. We use C(A) to denote the
set of column labels of matrix A, so that e.g. C(M) is the set of genes that appear in the TCGA
somatic mutation data. Similarly, we define R(A) as the set of row labels of matrix A, corre-
sponding to the distinct samples present in each data set.

The mutation matricesM are defined as

M½i; j� ¼ 1 if gene j is mutated in sample i;

0 otherwise
ð1Þ

(

Fig 1. The workflow of the proposed algorithmic pipeline that integrates mutation, gene expression, and protein-protein interaction (PPI) data to
test the driving hypothesis and identify causal genes.

doi:10.1371/journal.pcbi.1004595.g001
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The differential expression matrices D are defined similarly, using differential expression status
instead of somatic mutation status for each gene. BRCA data includes somatic mutations in
15189 genes across 974 samples, and differential expression in 18018 for 973 samples. GBM
data likewise includes 9507 genes and 591 samples, with differential expression measurements
in 17660 genes across the same 591 samples.

We use the HIPPIE protein-protein interaction network [14] (version released 2014-09-05),
which contains confidence scores for 160215 interactions over 14680 proteins. All samples pres-
ent in the gene expression data also appear in the mutation data. 12042 genes are contained in
both the mutation and expression data, out of which 9303 are present in the HIPPIE network.

Sample-Specific Network Propagation
We use the network propagation method described in Vanunu et al. [4]. Given a network G =
(V, E, w) with V as the set of proteins, E as the set of their interactions, w(u, v) representing the
reliability of an interaction uv 2 E, and a prior knowledge vector Y: V! [0, 1], we seek to com-
pute a function F(v) 8v 2 V that is both smooth over the network and accounts for the prior
knowledge about each node. In the context of our problem, the prior knowledge about each
node is the mutation or differential expression status of the respective gene in a sample.

As described by Vanunu et al. [4], we use Laplacian normalization to produce the normal-
ized network edge weight w0. Briefly, we construct a |V| × |V| matrixW from the edge weights
w, and construct a diagonal matrix Δ with Δ[i, i] = ∑j W[i, j]. The normalized weight matrix is
computed asW0 = Δ−1/2 WΔ−1/2. OurW0 is a 14680 × 14680 sparse matrix with each row and
column corresponding to a node in the HIPPIE network, and each nonzero entry signifying an
interaction between two proteins.

With the normalized weight matrixW0, we use the iterative procedure described by Zhou
et al. [15] to compute F. Namely, starting with F(0) = Y, we update F at iteration t as follows:

FðtÞ ¼ aW 0Fðt�1Þ þ ð1� aÞY ð2Þ
This procedure is repeated iteratively until convergence; namely we stop the iterations when
kF(t) − F(t−1)k2 < 10−6.

We use network propagation on a sample-specific basis to compute propagated mutation
and differential expression vectors for each sample. Namely, we produce new “propagated”
matricesMP and DP, by separately using each row of matricesM and D as the prior knowledge
vector Y in Eq 2. This is illustrated in Fig 1.

Given the data matrix A (eitherM or D) and each protein in the network v 2 V, we con-

struct the vector Y ðAÞ
i for sample i as follows:

Y ðAÞ
i ½v� ¼ A½i; v� if v 2 CðAÞ \ V ;

0 otherwise
ð3Þ

(

That is, the prior knowledge about a protein is 1 if and only if the protein is part of the HIPPIE
network and the corresponding gene is mutated in sample i or differentially expressed in it. For

each sample i 2 R(A), we denote the prior information vectors by Y ðMÞ
i and Y ðDÞ

i . Subsequently,
using each of these prior information vectors, we use the iterative procedure described above to

compute propagated mutation and expression vectors, denoted respectively as FðMÞ
i and FðDÞ

i for
sample i.

Next, we collect each propagated vector FðAÞ
i into the rows of a “propagated”matrix AP,

where R(AP) = R(A) and C(AP) = V. Intuitively, the propagated matricesMP and DP contain
the per-sample binary vectors ofM and D smoothed over the network. In biological terms,
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each row of these matrices represents the network proximity of each gene product to mutated
and differentially expressed genes in that sample. Consequently, as illustrated in Fig 1, the col-
umns of these matrices provide propagated mutation and differential expression profiles for
each gene product across all samples, indicating the proximity of the respective gene product
to the products of mutated or differentially expressed genes in the respective sample.

Consolidation of Mutation and Expression Data
We seek to use the propagated mutation and differential gene expression matricesMP and DP

(with sample set S = R(MP) = R(DP)) to predict causal genes based on network proximity to
mutated and differentially expressed genes in BRCA. To this end, we define several features
that express the mean, variance and cross-correlation of the columns of those matrices across
the n = |S| samples:

1. mM ½g� ¼ 1
n

Pn
i M ½i; g�: mutation frequency of gene g across samples.

2. mMP
½g� ¼ 1

n

Pn
i MP½i; g�: mean of propagated mutation scores across samples. μMP

[g] quanti-

fies the mean proximity of gene g to mutated genes across all samples.

3. s2MP
½g� ¼ VarMP½�; g�: variance of propagated mutation scores across samples. s2MP

½g�
quantifies how inconsistently the gene products in the neighborhood of gene g are mutated
across different samples.

4. mD½g� ¼ 1
n

Pn
i D½i; g�: differential expression frequency across the n samples.

5. mDP
½g� ¼ 1

n

Pn
i DP½i; g�: mean of propagated differential expression scores across the n sam-

ples. μD[g] quantifies the mean proximity of gene g to differentially expressed genes across
all samples.

6. s2DP
½g� ¼ VarDP½�; g�: variance of propagated differential expression scores across samples.

s2DP
½g� quantifies how inconsistently the gene products in the neighborhood of gene g are

differentially expressed across different samples.

7. ρ[g] = Spearman correlation betweenMP[�, g] and DP [�, g]. ρ[g] quantifies whether samples
that harbor mutations in the neighborhood of gene g also harbor differentially expressed
genes in the neighborhood of gene g and vice versa.

8. d½g� ¼ Pn
i MP½i; g� � DP½i; g�: dot product betweenMP[�, g] and DP[�, g]. δ[g] can be inter-

preted similarly as ρ[g]. However, unlike correlation, this is a non-normalized measure of
the consistency of proximity to mutated and differentially expressed genes. As such, δ[g]
includes information about the magnitude of values in columnsMP[�, g] and DP[�, g] as well
as the agreement between those columns.

9. χmax[g] and χmean[g]: For a gene g, high χ[g] scores denote a gene that is in close proximity
to other genes that are frequently mutated or frequently differentially expressed.

a. χmax[g] = maxi 2 S(max{MP[i, g], DP[i, g]}). A high χmax[g] denotes a gene that is close to
mutations or differential expression in any patient.

b. wmean ½g� ¼ 1
n

Pn
i max fMP½i; g�;DP½i; g�g. χmean[g] represents the gene’s mean distance

to mutations or differential expression across all samples.

10. νmax[g], νmean[g]: A high ν[g] score denotes a gene that is in close proximity to other genes
that are frequently mutated and frequently differentially expressed.
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a. νmax[g] = maxi 2 S(min{MP[i, g], DP[i, g]}). A high νmax[g] denotes a gene that is close to
mutations and differential expression in any sample.

b. nmean ½g� ¼ 1
n

Pn
i min fMP½i; g�;DP½i; g�g. νmean[g] quantifies the gene g’s mean distance

to mutations and differential expression across all samples.

11. γ[g]: Network centrality of gene g, as quantified using eigenvector centrality. Propagation
of mutation and differential expression data across the network may bias results in favor of
nodes that are central to the network or have high degree [3]. Our propagation method
uses node degrees to normalize edge weights, offering some correction for nodecentrality
[4]. However, to explicitly account for node centrality without unfairly penalizing hub
nodes, and to gain insights into the effect of network centrality, we include network cen-
trality as a feature in the model.

An example of the νmean feature in a simulated data set is shown in Fig 2. We see that genes
which score highly via propagated mutation and differential expression frequency are scored
highly with νmean, conversely, genes that are proximal to only mutations or differential expres-
sion may be scored highly in each individual data set but need not be scored highly in this com-
bined feature.

The features described above are used as input to a standard logistic regression model to
predict the causal status of gene g. To train this model, we use prior knowledge of whether each
gene is known to be associated with breast cancer based on the integrated breast cancer path-
way (Table A in S1 Text), or in glioblastoma based on the GBM KEGG pathway (Table B in S1

Fig 2. Visualization of feature νmean across a simulated data set with three samples andmutations across 40 genes.

doi:10.1371/journal.pcbi.1004595.g002
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Text). The logistic regression model represents the probability p that a gene is associated with
the cancer of interest as

log
p

1� p
¼ b0 þ b1x1 þ . . .þ bnxn: ð4Þ

Here, β0 represents the background probability that a gene is related to the disease, each xi rep-
resents one of the features described above, and each βi represents the magnitude to which xi
influences p. In addition to estimating the magnitude of a feature’s effect on p, logistic regres-
sion models also allow for the investigation of whether a feature is statistically significant in the
model fit. This framework therefore allows us to examine the relationship between the role of a
gene in cancer and its mutational frequency, differential expression frequency, network dis-
tance to mutations or differential expression, and the relationship between these distances.

Using the genes labeled based on prior knowledge of the molecular basis of each cancer, we
fit this model using the features described above, perform step-down via AIC (Akaike Informa-
tion Criterion [16]), and use the probabilistic output of the stepped-down model as prediction
scores for further analysis. We perform experiments to investigate whether this model can
effectively recover cancer-related genes even though they are not frequently mutated or differ-
entially expressed in available samples. We also evaluate the model’s performance on an inde-
pendently curated set of genes known to be implicated in cancer. Finally, we investigate which
features significantly contribute to the model fit, in order to gain insights into the factors that
have important roles in pathogenesis.

Results/Discussion
In this section, we apply the logistic regression model we have trained to predict genes associ-
ated with breast cancer and glioblastoma and evaluate its performance and the contribution of
the different features to its success. Subsequently, we examine in detail the novel predictions
made by our model. We identify several predictions that are supported by the literature and
find that our predictions significantly overlap with an independent resource on cancer genes.
Finally, we test the clinical relevance of the predicted genes, identifying several promising can-
didates with significant predictive power with respect to patient survival.

Recovering Known Cancer Genes
We evaluate the predictive ability of our model using ROC curves, using the integrated breast
cancer pathway from the NCBI BioSystems database [17] and the glioblastoma KEGG pathway
[18]. We label a gene as positive if and only if it is contained in the respective pathway, and use
these positive/negative labels to evaluate various prediction schemes. Better scoring systems
naturally induce a higher area under the ROC curve (AUC).

We first examine the ability of naïve scoring methods in recovering known BRCA and GBM
genes. Namely, we investigate how each of mutation frequency, differential expression fre-
quency, and the network propagated mutation and differential expression, i.e., respectively the
column-wise means of matricesM, DG,MP and DP described in “Consolidation of Mutation
and Expression Data”, can predict known BRCA and GBM genes. The results of this analysis
are shown in Fig 3 and Tables 1 and 2. We see that both mutation and differential expression
frequency are slightly informative (AUC 0.581 and 0.625, respectively) in choosing genes that
are part of the integrated BRCA pathway. In other words, frequency of mutation or differential
expression in TCGA breast cancer samples provides some information on whether a gene is
involved in the BRCA pathway, but this information is quite modest.
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We see that the propagated signals (with propagation parameter α = 0.8) show much more
discriminative power: the mutational AUC increases to 0.757 after network propagation, and
likewise the differential expression AUC increases to 0.781. We see similar gains in predictive
power in GBM: raw mutational and differential expression AUC are informative (AUC 0.679
and 0.511, respectively), and the application of network propagation to these signals boots the
AUC values to 0.854 and 0.782.

Though the increase in predictive power through network propagation is considerable, we
seek to improve the AUC values further through a more sophisticated integration of the propa-
gated mutation and differential expression signals. For this purpose, we evaluate the regression
model described in subsection “Consolidation of Mutation and Expression Data.”

We first fit the logistic regression model described in the aforementioned section to the full
data sets, and perform a step-down procedure to remove features that do not significantly con-
tribute to the model fit. We use the standard AIC (Akaike information criterion) measure [16]
to determine whether a model term should be preserved. At each iteration of the step-down
procedure, the AIC is computed for the full model and for reduced models with each single
term removed. The term whose removal most improves AIC is removed from the model. The
step-down procedure terminates when no term removal improves AIC. Fig 4 shows ROC

Fig 3. ROC curves for BRCA (a) and GBM (b) for single scoringmethods: mutation frequency, differential expression frequency, and column
means μM and μG of the matricesMP andDP, respectively.

doi:10.1371/journal.pcbi.1004595.g003

Table 1. AUC values for BRCA for single scoringmethods: mutation frequency, differential expres-
sion frequency, and columnmeans μM and μG of the matricesMP andDP, respectively.

Score AUC

Mut. Freq 0.581

Mut. Prop. Mean 0.757

Diff. Expr. Freq. 0.625

Diff. Expr. Prop. Mean 0.781

doi:10.1371/journal.pcbi.1004595.t001
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Table 2. AUC values for GBM for single scoringmethods: mutation frequency, differential expression
frequency, and columnmeans μM and μG of the matricesMP andDP, respectively.

Score AUC

Mut. Freq 0.679

Mut. Prop. Mean 0.854

Diff. Expr. Freq. 0.511

Diff. Expr. Prop. Mean 0.782

doi:10.1371/journal.pcbi.1004595.t002

Fig 4. ROC curves of predictions from the stepped-downmodels described in Tables 3 and 4. (a) shows genes contained in the integrated BRCA
pathway, (c) shows genes contained in the GBM KEGG pathway, (b) and (d) show prediction of causal genes on an independent dataset: the COSMIC
cancer gene census. Color bars on the right axes denote thresholds on the prediction score; the color along each ROC curve shows the true and false
positive rate at each threshold value.

doi:10.1371/journal.pcbi.1004595.g004
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curves resulting from this analysis; Fig 4a and 4c respectively show performance in recovering
genes in the BRCA and GBM pathways. Fig 4b shows the accuracy in predicting genes’mem-
bership in the COSMIC database using the BRCA model, and likewise Fig 4d shows perfor-
mance in predicting COSMIC membership using the model trained from GBM data. We see
that the stepped-down models improve ROC AUC when compared to the single features
shown in Fig 3, and perform well when selecting genes contained in the COSMIC set.

Evaluation of Features
The final model coefficients and P-values for each disease are shown in Tables 3 and 4. For
BRCA, we see that νmean and δ are highly significant predictors of a gene’s membership in the
integrated BRCA pathway, with a positive coefficient for νmean and a negative coefficient for δ.
We also see a large negative coefficient for feature χmean. We interpret this result by noting that
for some sample i and gene j, the value max{MP[i, j], DP[i, j]} is high if gene j is close to either
mutations or differential expression, and genes that score highly in only one of these measures
are likely to simply be frequently mutated or differentially expressed. Conversely, the ν signals
measure the degree to which a gene is close to bothmutations and differential expression. We
indeed see that νmean is significant (P< 2 × 10−16) with positive coefficient 91.7. We see similar
trends in GBM: again νmean is the most significant individual feature, with positive coefficient,
and δ is also significant with a negative coefficient. Unlike BRCA, in GBM the χ features which
select for proximity to mutations or differential expression are not preserved after AIC step-
down. It is also notable that δ is preserved in both diseases but ρ is not. This result is not
entirely surprising since ρ only represents agreement between propagated differential

Table 3. Logistic regression coefficients and P-values for the stepped-downmodel described in sub-
section “Recovering Known Cancer Genes” for BRCA.

Feature Estimate P-value

Intercept −6.7388 < 2 × 10−16

μDP
615.7567 0.000190

δ −139.1464 1.58 × 10−5

χmean −611.9088 0.000199

νmax −1.7107 0.057922

νmean 91.7271 < 2 × 10−16

μM 124.3517 0.009907

s2
MP

50.5214 0.046352

doi:10.1371/journal.pcbi.1004595.t003

Table 4. Logistic regression coefficients and P-values for the stepped-downmodel described in sub-
section “Recovering Known Cancer Genes” for GBM.

Feature Estimate P-value

Intercept −7.210 < 2 × 10−16

μD 21.506 0.000625

s2
DP

−26.777 0.001136

δ −112.026 9.34 × 10−5

νmax −2.564 0.192329

νmean 154.710 < 2 × 10−16

μM −25.330 0.003619

s2
MP

24.319 0.000748

doi:10.1371/journal.pcbi.1004595.t004
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expression and mutation signals, and δ also quantifies a gene’s total proximity to mutations
and differential expression.

We also evaluate the predictive power added by our combined features in comparison to
models fit with purely mutational and differential expression data. These results are shown in
Fig 5. These results show ROC AUC values for six models in each disease: one fit with all avail-
able mutational features, one fit with all available differential expression features, the full
model with all features, and stepped-down versions of the three aforementioend models. We
see that in both BRCA (Fig 5a) and GBM (Fig 5b), the combined models improve on perfor-
mance of those fit with only mutational or differential expression features.

Additionally, we evaluate the distribution and univariate predictive power of each individual
feature included in the predictive models shown above. Fig 6 shows the AUC values for each
feature defined in “Consolidation of Mutation and Expression Data” in comparison with the
AUC value of the fitted model that combines individual features. Fig 6a shows the AUC values
for recovering BRCA genes; Fig 6b shows GBM. In both cases we see that νmean is the most
informative individual feature, which favors genes that are close to both mutations and differ-
ential expression. In both BRCA and GBM we see that the predictive model improves upon the
AUC values of each individual predictor.

We observe that the mean propagated mutation feature (μMP
) provides better predictive per-

formance than mutation frequency (μM) for BRCA. However, this feature is dropped from the
stepped down model while mutation frequency is preserved. This observation applies to several
other features for both BRCA and GBM as well. This observation demonstrates the benefit of
using logistic regression, in that features that are themselves significant may be almost colinear
and not all of them need to be preserved if there is overlap in the information provided by mul-
tiple features. In particular, the specific observation stated above suggests that the smoothed
mutational signal in μMP

is subsumed by the combined features, whereas mutation frequency

Fig 5. ROCAUC values for predictive models fit with subsets of available features. (a) shows BRCA, (b) shows GBM.

doi:10.1371/journal.pcbi.1004595.g005
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provides information in addition to the information provided by other selected features. It is
also interesting to note that the coefficient of mutation frequency is negative in the stepped
down model. It is likely that this reflects a correction for passenger mutations (mutated genes
that are not functionally related to tumorigenesis), since the information provided by driver
mutations (mutated genes that play a role in tumorigenesis) is incorporated by another feature
(combined propagated mutation and differential expression signals) in the model.

Fig 7 shows the CDFs of each individual feature, with separate curves for genes that are con-
tained in each respective pathway. Fig 7a showsBRCA; Fig 7b shows GBM. These figures indi-
cate significant difference between cancer genes and other genes in terms of the distribution of
some individual features, and reveal bimodality in δ (dot product) in GBM and νmax (minimum
betweenMP and DP, maximum across samples) in both diseases.

We also fit models with multiple values of the propagation parameter α, ranging from 0.01
to 0.99. The results are shown in Fig 8, and we see that the performance of stepped-down pre-
dictive models does not significantly depend on the propagation parameter α.

Prediction of New Cancer Genes
In order to evaluate the utility of our method in predicting new causal genes, we investigate the
high-scoring genes that are not already known to be implicated with breast cancer and glioblas-
toma. The cumulative distributions of genes’ prediction scores (outputs of the stepped-down
logistic regression models) are shown in Fig 9. We see that the distributions of scores are
skewed toward 0, and for demonstration purposes we consider a gene to be high-scoring if its
prediction score is� 0.2. The highest-scoring such genes are shown along the horizontal axis
of Fig 10; (Fig 10a) shows BRCA and (Fig 10b) shows GBM. Several interesting genes appear;
PIK3R1 is known to be implicated in human immunodeficiency [19] and the PI3K kinase has
been shown to regulate insulin-induced cell proliferation in the MCF-7 breast cancer cell line
[20]. GRB2 interacts with BCAR1 as part of the CIN85 complex [21], and CBL is a known
oncogene in myeloid malignancies [22].

Since our goal is the identification of potential “silent players” that cannot be selected by
each data set in isolation, we identify genes scored highly (prediction score� 0.2) by the com-
bined model (Tables 3 and 4) that are not scored highly by the models shown in Fig 5. Genes

Fig 6. AUC scores of univariate predictors included in the BRCA and GBMmodels, in comparison with the AUC scores of the models themselves.
(a) shows BRCA, (b) shows GBM.

doi:10.1371/journal.pcbi.1004595.g006
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for BRCA are shown in Table 5 and genes for GBM are shown in Table 6. Many of these genes
are known to be implicated in diseases, but few have been previously reported as associated
with cancer. GATA3 controls differentiation of luminal cells in mammary glands [23].HRAS
mutations have been reported to cause altered glucose metabolism in mammary carcinogenesis

Fig 7. CDF curves for individual features included in the prediction model. P-values show Kolmogorov-
Smirnov test results. Genes are separated by pathway membership; (a) shows BRCA, (b) shows GBM.

doi:10.1371/journal.pcbi.1004595.g007
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[24] and to promote epithelial-mesenchymal transition in mammary epithelial cells [25].
NOTCH1 [26] has previously been associated with head and neck squamous cell carcinoma
[27], acute lymphoblastic leukemia [28], and chronic lymphocytic leukemia [29]. SHC1 inter-
acts with the atypical kinase PEAK1, which is involved in a basal breast cancer signaling

Fig 8. AUC scores of predictive models fit with varying α, for α 2 {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95,
0.99}.

doi:10.1371/journal.pcbi.1004595.g008

Fig 9. CDF curves of prediction scores from stepped-down logistic regression models for each data set. (a) shows BRCA, (b) shows GBM.

doi:10.1371/journal.pcbi.1004595.g009
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pathway [30]. Alterations in methylation of ANK1 are common in Alzheimer’s disease [31, 32].
Overexpression of ERBB2 (also known as HER2) has been shown in several cancers, including
non-small cell lung [33] and endometrial cancers [34]. Mutations in the tyrosine phosphatase
PTPN11 have been shown to cause a predisposition for leukemia and some solid tumors [35].

As an independent evaluation of our method, we also examine our scoring system’s ability
to select genes that are included in the COSMIC cancer gene census [2]. As with our original

Fig 10. Prediction scores of highest-scoring genes that are not contained in respective pathways: BRCA in (a) and GBM in (b).

doi:10.1371/journal.pcbi.1004595.g010

Table 5. Potential “silent players” in BRCA identified by the combined model shown in Table 3: genes
scored highly by the stepped-downmodel fit with combined features, that do not score highly in mod-
els fit with only mutational or differential expression features.

Gene Prediction Score

AHCTF1 0.244284

ARRB1 0.227461

ATXN1 0.233371

CFTR 0.245543

DISC1 0.228234

ERBB2 0.246014

FLNC 0.415142

GATA3 0.206499

HRAS 0.204533

NCOR1 0.387477

NOTCH1 0.230020

PLCG1 0.281162

SHC1 0.259797

doi:10.1371/journal.pcbi.1004595.t005
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set of BRCA interesting genes, we treat membership in the COSMIC data as a positive label for
a gene, and evaluate our ability to rank these genes higher than others. Fig 4b and 4d show
ROC curves for this gene selection using the models shown in Tables 3 and 4, with AUC values
of 0.7833 for BRCA and 0.7701 for GBM. We evaluate the statistical significance of selection of
genes in the COSMIC database among those not contained in the respective pathways for
BRCA and GBM using hypergeometric tests. In BRCA, 321 genes remain in the COSMIC set
after removing those that are included in the integrated BRCA pathway. 8 of the 36 genes with
prediction scores� 0.2 overlap with the COSMIC dataset; choosing at least 8 of 321 in 36 trials
from the remaining 14562 genes yields P = 5.09 × 10−8. In GBM, 250 genes remain in the COS-
MIC set after removing those that are included in the respective KEGG pathway. 10 of the 40
genes with prediction scores� 0.2 overlap with the COSMIC dataset; choosing at least 10 of
250 in 40 trials from the remaining 14562 genes yields P = 2.06 × 10−9.

Association with Patient Outcome
We also examine our method’s ability to recover genes for which mutation or differential
expression status is predictive of patient outcome (survival). While the main objective of this
study is not to identify markers for predicting patient outcome, these results are presented as
an additional validation of the silent players we identify. As such, for both BRCA and GBM, we
identify the 25 top-scoring genes that are not contained in the respective pathway, and use the
mutational and differential expression status of these genes to repeatedly separate the sample
set into two groups. We then use the logrank test to estimate the significance of the difference
in survival between those groups; P-values are shown in Fig 11. BRCA samples are shown in
Fig 11a, and we see nominal statistical significance from somatic mutations in FLNB and
SHC1. FLNB is involved in vascular repair and has not been shown to be associated with can-
cer, but SHC1 interacts with a kinase signaling pathway that has been implicated in breast can-
cer [36, 37]. Differential expression status in GRB2, FYN, andHTT also show utility in
predicting differences in survival between groups. In GBM, we see that differential expression
status of ESR2 is also nominally significant in stratifying patient survival.

Conclusions
Molecular data is a gold-mine for studying human disease, but current methods do not seem to
exploit its full potential due to computational problems and lack of statistical power to examine
all genomic markers or combinations of those. Network-based analyses provide an appealing

Table 6. Potential “silent players” in GBM identified by the combinedmodel shown in Table 4: genes
scored highly by the stepped-downmodel fit with combined features, that do not score highly in mod-
els fit with only mutational or differential expression features.

Gene Prediction Score

ANK1 0.257832

ATP1A1 0.216836

CTNNB1 0.244790

DYSF 0.415453

ERBB2 0.327729

FLNA 0.211497

LYN 0.455178

PTK2B 0.302009

PTPN11 0.433726

doi:10.1371/journal.pcbi.1004595.t006
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bypass as they greatly narrow the search space. Here we have shown the power of network
propagation in exploiting weak signals, from either sequence or expression studies, to predict
disease causing genes. An application of our approach to breast cancer and GBM data revealed
novel genes with literature support and significant association to disease outcome.

Our preliminary results can be extended in several ways. While our analysis focused on
breast cancer, the methodology is general and could be applied to any multi-factorial disease
for which there are available gene expression and/or sequence data. Furthermore, the method
is extensible to other types of omics data such as protein expression and DNA methylation.
Finally, it is interesting to study how the method can benefit from prior knowledge on disease
causing genes, potentially better guiding the propagation process.

Supporting Information
S1 Text. Tables containing lists of genes in the integrated BRCA and GBM KEGG path-
ways.
(PDF)

Fig 11. Log-rank P-values of differences in patient outcome (survival), using top-scoring genes that are not present each disease’s respective
pathway. BRCA is shown in (a); GBM is shown in (b). For each gene, distinct tests are performed using mutation and differential expression status to
separate the samples into two groups. −log10(log-rank P-value) is plotted on the y-axis. The horizontal grey line denotes the 0.05 P-value cutoff.

doi:10.1371/journal.pcbi.1004595.g011
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