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—— Abstract

Mutational processes shape cancer genomes, leaving characteristic marks that are termed signatures.

The level of activity of each such process, or its signature exposure, provides important information
on the disease, improving patient stratification and the prediction of drug response. Thus, there
is growing interest in developing refitting methods that decipher those exposures. Previous work
in this domain was unsupervised in nature, employing algebraic decomposition and probabilistic
inference methods. Here we provide a supervised approach to the problem of signature refitting and
show its superiority over current methods. Our method, SuRe, leverages a neural network model
to capture correlations between signature exposures in real data. We show that SuRe outperforms
previous methods on sparse mutation data from tumor type specific data sets, as well as pan-cancer
data sets, with an increasing advantage as the data become sparser. We further demonstrate its
utility in clinical settings.
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1 Introduction

The genomes of cancer cells accumulate somatic mutations throughout their developmental
history. These mutations are the result of environmental and endogenous mutational processes
that are active in each cell. The activity, or exposure, of these mutational processes in a
genome can be revealed by the characteristic patterns of mutations they leave, termed
mutational signatures. The discovery of such signatures is most commonly performed via non-
negative matrix factorization (NMF); dozens of mutational signatures have been identified
to date in thousands of sequenced genomes and exomes of diverse cancer types [2, 6]. These
signatures are cataloged in the COSMIC database [20].
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Building on the reconstructed signatures, one of the main goals of mutational signature
analysis is to infer the exposure of relevant signatures in a given sample from the mutations
it harbors. This task is called signature refitting. Perhaps the most popular method in
mutational signature analysis for inferring exposures from rich mutation data is non-negative
least squares (NNLS) [9]. Typically, this method is used to find exposures that minimize the
Kullback-Leibler divergence between the mutation counts and the product of the signatures
and the exposures. Another method that can be used to refit mutational signatures is
Mix [17], which was developed in order to cope with the problem of sparse data, typical
in data derived from targeted sequencing panels. Mix simultaneously clusters the samples
and learns signature exposures per cluster rather than per sample based on a probabilistic
mixture model. Additional methods include: deconstructSigs [16], a heuristic based on
the iterative application of the multiple linear regression and exclusion of signatures with
low relative exposures; SigLASSO [13], which seeks to produce sparse, high-confidence
solutions by jointly optimizing L1 regularized signature refitting and mutation sampling
likelihood; SignatureEstimation [10] that evaluates the stability and confidence of signature
activity levels by applying perturbations to the mutation count inputs; SigNet [18], which
trains artificial neural networks based on labeled datasets to learn the prior frequencies of
signatures and their correlations in whole-exome data; SigProfiler Assignment (also called
SigProfilerAttribution) [2, 11], which takes into account previous knowledge about the
signatures and their biological role, while iteratively adding and removing signatures to the
optimization based on the true count reconstruction similarity; and MuSiCal [12], which
applies a likelihood-based sparse NNLS approach.

Here, we take a different, supervised approach to mutational signature refitting, focusing
on sparse mutations data (5 mutations on average when considering panel sequencing data).
We train a neural network model that learns correlations between signature activity levels in
the input data, in order to improve exposure prediction. We show that our model outperforms
previous methods in the task of mutational signature refitting for sparse data, suggesting
that it successfully captures such correlations within the data. Additionally, we demonstrate
our model’s ability to handle pan-cancer input data and exemplify its utility in a clinical
setting.

2 Methods

2.1 Preliminaries

We focus on single base substitutions, the most common mutation type. A mutation
category denotes the substitution that occurred and the flanking nucleotides. In the standard
categorization there are 96 mutation categories, spanning six substitution options and the
two flanking nucleotides, one on each side [3].

A mutational signature is a probability vector over mutation categories. Its exposure
in a specific sample denotes the number of mutations in that sample that were caused by
the signature. If we normalize an exposure by the total number of mutations in the sample
we obtain a relative exposure. A refitting algorithm receives as input mutation data in a
collection of samples and a set of known signatures. Its goal is to infer the exposure of each
signature in each input sample. In a de novo setting the signatures are unknown and have to
be inferred as well.
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2.2 Mutation data

All main data sets were downloaded from two sources: i) previous analysis of COSMIC
mutation data, based on a legacy version of SigProfiler, that was published in [2], and
ii) re-analysis of the data using a newer version of the software, published in [11]. Specifically,
for (i), we downloaded all available whole genome sequencing mutation counts (aka cata-
logs) in https://www.synapse.org/#!Synapse:synl11726616, as well as the corresponding
patients’ exposures to mutational signatures from https://www.synapse.org/#!Synapse:
syn11804040. For (ii), the WGS data was downloaded from https://doi.org/10.6084/
m9.figshare.20409430, along with synthetically generated samples that were previously
used in [11] and [7] to benchmark extraction and assignment of mutational signatures.

We separated the mutation data into three sets: i) breast cancer data set consisting of 679
patients (195 PCAWG patients and 484 patients from the extended cohort); ii) pan-cancer
data set consisting of 4,568 patients (2,703 from PCAWG and 1,865 from the extended
cohort); and iii) synthetic data set of 2,700 simulated samples, comprising 300 samples from
each of nine distinct cancer types, featuring single base substitution spectra matching those
observed in PCAWG. In total, the breast cancer and pan-cancer data sets consist of a total
of 4,427,411 and 72,222,147 mutations, respectively.

Our analyses are based on the COSMIC v3.3 mutational signatures for the GRCh37
human reference genome. According to the COSMIC analysis there are 20 active SBS (single
base substitutions) signatures in the breast cancer data set, while there are 23 active SBS
signatures according to the re-analysis.

In addition to these data sets, we have collected whole genome mutation data of triple
negative breast cancer patients from Staaf et al. [19], along with their HRD status labels,
predicted by HRDetect [5]. These labels are classified into three groups that represent the
probability of HRD: high (score above 0.7), intermediate (0.2 to 0.7), and low (below 0.2). In
total, 139 patients are predicted as “ high” , while 13 and 85 are predicted as “ intermediate”
and “ low” | respectively. We downsampled the mutation data using the MSK-IMPACT [4]
panel and binarized the labels by excluding the 13 ¢ intermediate” labeled samples, leaving
224 samples, 62% of them with predicted HRD.

2.3 SuRe

We designed a supervised learning-based approach, called SuRe (Supervised Refitting), for
signature refitting. SuRe receives as input a mutation count vector of size 96, where each
entry corresponds to the number of mutation occurrences in a mutation category. Optionally,
it can receive a mapping between the input samples and their corresponding tissues, expressed
as a one-hot encoded vector of size T (the total number of tissues). SuRe employs a neural
network model to predict signature exposures.

2.3.1 Model architecture

We propose a supervised model in which the mutation count vector of each sample i is
processed to predict the relative exposures of that sample. The model’s loss is the mean
squared error between the predicted g; and the actual relative exposure vector y; of sample ¢
(summed over all samples).

The model is based on a Mixture-of-Experts [8] neural network architecture. The
architecture is depicted in Figure 1. It consists of two input layers: one input layer of size 96
(the number of categories), that handles mutation count vectors, and a second input layer of
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size T (the number of distinct tissues in the data set) that handles one-hot encoded tissue-
type vectors. The inputs are concatenated and fed into a hidden layer with 96 + T neuron.
This combined representation of the inputs is fed into e independent modules (experts)
that are comprised of three fully-connected hidden layers, each containing h neurons. Each
hidden layer applies a Rectified Linear Unit (ReLU) activation function, followed by dropout
regularization, which randomly sets a fraction p of the neurons to zero during training, to
prevent overfitting. The final layer of each expert module, consisting of S neurons - the
number of signatures in the data set - utilizes the Softmax activation function to produce the
relative exposures, a probability distribution over S signatures. The combined representation
of the inputs is also fed into a gating network: a fully connected layer, containing h neurons,
and a subsequent fully connected layer of size e. The output is normalized using Softmax to
get the probabilities for each expert. The e module outputs are averaged with the expert
probabilities as weights, to produce the final output. The rationale behind this architecture
is that each expert specializes in a certain type of tissue, cancer type or exposure pattern,
and the gating network decides which experts are best suited for each input.

The model was implemented in PyTorch [15], using a Stochastic Gradient Descent (SGD)
optimizer and a cosine annealing with warm restarts [14] learning rate scheduler with a
minimum learning rate of % the initial learning rate. We implement early stopping to prevent
overfitting: If the validation loss does not improve for 5 epochs, training is stopped and the
weights are restored from the model that had the best performance on the validation set.

2.3.2 Training procedure and hyperparameter tuning

Our training/validation samples are randomly subsampled from a patient in the train/valida-
tion set in the following way: we randomly draw a patient i and a number m of observed
mutations. m is sampled from a power-law distribution with an exponent of 1.15, resulting
in a median of approximately 100 mutations when the distribution is scaled to the average
number of mutations per patient in the whole genome sequencing breast cancer data set
(see Mutation data). We then randomly draw m mutations from the sample to construct a
vector of mutation counts for the sample. By following this subsampling scheme, the model
is exposed during training to more sparse samples, which are inherently more difficult to
predict as they often contain less information. The original WGS samples are also fed to the
model during training.

We split our data sets by patients to train, validation and test sets, so that the total
number of mutations in each set gives an approximate ratio of [0.7, 0.15, 0.15], respectively.
For the pan-cancer data, we perform the split separately for each tissue type, so that each
tissue type is represented in the three sets. The test set is not part of the training process
and is used later for performance evaluation.

The parameter S is set to the number of signatures active in the input data set or the
total number of signatures in the COSMIC database, and the parameter T is set to the
number of tissues that are represented in the data set. We used grid search in order to
tune the other two architecture parameters - e, and h. For the number of experts (e), we
examined the values: 1,4,8, 16, and for the other parameter, we tested h € {10,100, 500}.

The learning rate (r) was tuned as part of the grid search, testing the values r €
{0.1,0.01,0.001}. First, we tuned the three parameters on the breast cancer data set, then
carried the optimal values for r to the pan-cancer data set, performing the search on e and h.
For the breast cancer data set, r = 0.1, h = 100 and e = 4 resulted in the best performance.
We note that further increasing the learning rate r and did not improve the performance on
the breast cancer data set. Further tuning of e and h on the pan-cancer data set resulted in
the optimal assignment of e = 8 and h = 500.
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Figure 1 SuRe Mixture-of-Experts architecture. The tissue type input (size T) is con-
catenated to the mutation count input (96) and fed into a layer of the same size (96+T). This
combined representation of the input is fed into e expert modules, as well as a gating network. Each
expert outputs probabilities over S signatures, and the gating network outputs e probabilities, each
corresponding to an expert. A weighted average is computed over the e expert outputs, using the
gating network outputs as weights, to obtain the relative exposure prediction.

For dropout regularization, we randomly dropped 20% of the units and observed no signs
of overfitting to the training data. We also tested a dropout rate of 30%, which yielded a
decrease in performance.

2.4 Exposure inference assessment

We use two measures to evaluate the quality of the relative exposures predicted by each
method: exposure reconstruction error and exposure correlation. Let E be the ground-truth
exposures for the patients in a data set, and E the corresponding relative exposures (i.e.,
normalized to sum to 1). We define the exposure reconstruction error as the L1 norm between
F and the predicted relative exposures and take the average over the samples. This metric
ranges between 0 and 2: It equals 0 when the predicted relative exposures and the groud-truth
exposures are identical, and equals 2 when they do not overlap at all. Similarly, we define
the exposure correlation to be the average Pearson correlation over samples, i.e., correlation
between the corresponding rows of E and the predicted relative exposures. In the pan-cancer
training data set, the exposure reconstruction error and the exposure correlation between
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two random permutations of the ground-truth exposures are 1.18 and 0.48, respectively.
Lastly, we define prediction bias as the signed error, the difference between predicted and
ground-truth relative exposure to a signature.

For other methods that do not directly use tissue type data, we split the samples by
tissue type and inferred exposures separately for each subset of samples, based only on the
signatures that are associated with that tissue, thus significantly reducing the number of
signatures to be considered. For completeness, we also refitted the data to all COSMIC
signatures using each competing method.

3 Results

We trained a supervised model, which we call SuRe, for signature refitting. Full details on the
model and its architecture are provided in the Methods section. In the following, we conduct
comprehensive testing of our method on synthetic and real data sets and demonstrate its
clinical applications. SuRe is trained using COSMIC exposures for whole genome sequencing
samples (real and synthetic), as targets. The COSMIC exposures were derived by refitting
WGS mutation data to the database of known signatures using SigProfiler.

In order to test our algorithm’s performance under varying numbers of mutations per
sample, we further constructed simulated data sets in which we downsampled the original data
by randomly sampling m € {300, 100, 30, 10, 6, 3} mutations per patient without replacement.

We compare SuRe’s performance against two leading refitting methods: SigProfiler-
Assignment and MuSiCal, as well as Mix - a method specialized in the refitting of sparse
mutation data, and the popular non-negative least squares (NNLS) method that minimizes
the Kullback-Leibler divergence. We could not include SigNet in the comparison as it failed
to install due to an unavailable package requirement.

3.1 Performance evaluation on synthetic data

As a first test of our approach, we evaluated SuRe using synthetically generated samples
that were previously used for benchmarking of both de novo extraction [11] and refitting [7]
scenarios. This data set allows us to compare all methods against ground-truth exposures.
Interestingly, the top-performing method on the full set of genome-wide mutations is MuSiCal.
SuRe outperforms all methods on both metrics when there are less than 300 mutations
per sample. As expected, all methods performed worse when given fewer input mutations,
although SuRe and Mix were more robust to sparse data compared to NNLS, MuSiCal and
SigProfiler. These results are summarized in Figure 2. Supplementary Figure 6 shows the
results when the same synthetic data set is refitted to all COSMIC signatures, instead of only
the signatures that are known to be active in the data set. We see that NNLS, MuSiCal and
SigProfiler perform much worse in this case, as they suffer from over-assignment of exposures
to signatures that are inactive.

3.2 Prediction of COSMIC exposures in breast cancer

As a second test of our approach, we applied it to analyze real samples originating from a single
cancer type, focusing on breast cancer which had the highest number of samples. We further
restricted attention to samples that underwent whole-genome-sequencing as we reasoned
that the COSMIC estimated exposures for these samples were the most accurate. Typically,
whole-genome-sequencing (WGS) yields high mutation counts (thousands of mutations),
leading to larger mutation sample sizes, lower sampling variation, and greater confidence in
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Figure 2 Performance evaluation on synthetic data. Each bar represents the mean value
over [37%01 repetitions, where m is the number mutations per sample. The same m mutations are
used to evaluate all methods in each repetition.

inferring the underlying mutation distribution. In this analysis, we used only mutational
signatures that were active in at least one of the patients in the data set according to
COSMIC. We also provide results for the scenario where the data is refitted to all signatures,
using all competing methods.

The results are summarized in Figure 3 and show that the exposures predicted by SuRe
were in better agreement with COSMIC, in terms of reconstruction error and correlation
across all sampling sizes. The results when the breast cancer data is refitted to all COSMIC
signatures are provided in Supplementary Figure 7, and again demonstrate that SuRe is more
resilient to the challenges of refitting to a large database of potentially inactive signatures.

More recently, a re-analysis of COSMIC samples was published based on a new and
improved version of the SigProfiler software [11]. This re-analysis runs sigProfileExtractor
for de novo extraction of mutational signatures, then refits the mutation counts to these
signatures using SigProfiler Assignment in order to infer sample exposures. We re-trained
SuRe using these predicted exposures. In this case, the exposures predicted by SigProfiler on
the full WGS mutation counts represent the “ ground-truth” exposures, but the algorithm’s
predictions on downsampled instances could deviate from them. The results summarized
in Supplementary Figure 8 show that exposures predicted by SuRe are in better agreement
with the new COSMIC exposures compared to other methods (excluding SigProfiler) on
all sampling sizes. Interestingly, SuRe is comparable in performance to SigProfiler for 300
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Figure 3 Comparative assessment of exposure prediction in breast cancer patients.
Each value represents the mean over [ﬁmo] repetitions, where m is the number mutations per sample.
The same m mutations are used to evaluate all methods in each repetition.

mutations, and outperforms it when there are fewer mutations per sample. As in previous
results, the gap in performance increases when the refitting is done with respect to all
signatures (Supplementary Figure 9).

3.3 A pan-cancer application

Next, we wanted to evaluate SuRe in a pan-cancer setting. Typically, exposure refitting is
performed using a limited set of signatures that are believed to be active in the (type-specific)
data set, based on prior knowledge. This is the case since the inference is more challenging as
the number of mutational signatures to be considered in the refitting is greater (in particular,
there are 58 active signatures in the pan-cancer data set vs. 20 in breast cancer data set), and
often results in over-assignment of non-zero exposures to inactive signatures, as illustrated
in [12]. However, reliably taking into account a broader set of signatures could potentially
reveal the presence of signatures in a patient, which would otherwise have been overlooked.

For pan-cancer refitting, SuRe is capable of leveraging the samples’ cancerous tissue type
(one of 14 ICGC tissue types that are available in the data set), which it receives as input, to
guide the assignment toward signatures that are more likely to be active, while attempting
to refit the mutation data to all 58 signatures. The results on the pan-cancer data set are
summarized in Figure 4, and show a clear advantage for SuRe compared to previous methods.
As expected, previous methods achieve better performance when refitting is based only on
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signatures that are known to be active in the corresponding tissue type, rather than based on
all 58 signatures. The distributions of reconstruction errors and correlations for each method
across tissue types are summarized in Supplementary Figure 10. To assess these results
in a more specific way, we focus on a midrange downsampling size of 30 mutations for the
following analyses (Supplementary Figures 11 and 12). SuRe is the highest scoring method
on all tissue types, when previous methods are refitted to all signatures. When each of the
previous methods is applied separately for each tissue type, SuRe performs best on the vast
majority of tissue types, despite being the only method not explicitly refitted to signatures
that are known to be active in the tissue. Next, we wanted to examine whether the different
characteristics of the cancer-specific data sets correlated with the difference in performance
between SuRe and the other method that performed best on each cancer type. Hence, we
took the difference between the reconstruction error of SuRe and of the competing method
and computed its correlation to several features. We found that the number of samples
and the total number of active signatures in a data set were positively correlated with the
improvement of SuRe over the other top performer (0.41 and 0.53, respectively). This was
also true for the fraction of flat signatures in the data (0.56). To a lesser extent, the fraction
of rare signatures (occur in less than 10% samples) also showed a small positive correlation
(0.17). Finally, to evaluate the importance of tissue-type input data in the performance of
SuRe, we also trained it without providing it with this data. Although this version still
outperforms previous methods in terms of reconstruction error and correlation to COSMIC
exposures, we observe a clear drop in the model’s capability when tissue-type data are
omitted. These results are summarized in Supplementary Figure 16.

3.4 Prediction of clinical attributes

To test the utility of SuRe in a clinical scenario, we examined its ability to predict homologous
recombination deficiency (HRD) status from panel sequencing data. Starting from triple
negative breast cancer samples with known HRD status [19], we downsampled the mutation
data to the genomic regions of the MSK-IMPACT panel [4]. We then applied SuRe and
competing methods to analyze the downsampled data. Since COSMIC’s SBS3 signature
is known to correlate extremely well with HRD status [19], we used the inferred SBS3
exposure to estimate HRD. That is, the predicted SBS3 exposures according to each method
were used to classify the samples as HRD positive or HRD negative based on different
decision thresholds. In order to fully leverage our model capabilities, we fine-tuned SuRe to
specifically predict SBS3 exposure by adjusting its loss to be the mean squared error between
the predicted exposure to SBS3 and the actual exposure to SBS3. Figure 5 shows the ROC
curves of the prediction using each method. As a baseline, we added a classifier that is based
solely on the total mutation burden in each sample. SuRe and Mix were the only methods
that clearly improved over this baseline, and SuRe significantly outperformed Mix.

To further examine these results, we tested the SBS3 prediction bias of each method on
the breast cancer data set. To that end, we computed for each sample the difference between

the predicted relative exposure to SBS3 and the relative exposure according to COSMIC.

We found that other methods tend to underestimate exposure to SBS3 (Supplementary
Figure 13). This phenomenon was also apparent in SBS5, the other flat signature common
in breast cancer samples, but not observed in spiky signatures that are common in breast
cancer (SBS1, SBS2, SBS13, SBS18, SBS34). In comparison, SuRe does not show a tendency
to underestimate or overestimate these signatures (Supplementary Figures 14 and 15).
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Figure 4 Comparative assessment - targeting COSMIC exposures on pan-cancer
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mutations per sample. The same m mutations are used to evaluate all methods in each repetition.

4 Conclusions

We have presented SuRe, a supervised method for mutational signature refitting on sparse
mutation data.

One potential limitation of SuRe is the use of COSMIC exposures as labels for its
training and evaluation. These exposures were estimated using the SigProfiler Attribution
algorithm [2, 11]. Clearly, the use of computationally predicted exposures as ground-truth
labels could restrict and bias the learning process. Nevertheless, we opted to train SuRe
based on the COSMIC exposures, as they serve as a standard in the field and were shown
to correlate with different clinical attributes, including patient age [3, 2], tobacco smoking
history [1], homologous recombination deficiency status [5] and mismatch repair deficiency [3].
Reassuringly, the ability of SuRe to better reconstruct exposures that had been estimated using
rich data from very few mutations suggests that it can successfully leverage information of
signature co-activity, which compensates for the sparse input data. This notion is reaffirmed
by SuRe’s success compared to other methods in predicting homologous recombination
deficiency from sparse panel sequencing data. These results suggest that SuRe could be
leveraged to more accurately analyze large cohorts of targeted sequencing data.

SuRe can be easily fine-tuned to predict exposures of specific signatures, or subsets of
signatures that correspond to specific cancer types or biological mechanisms, by adjusting its
loss function so that the error for these signatures is minimized. In addition, SuRe provides
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a major improvement over previous methods in the handling of pan-cancer data, which could
open the door for reliable refitting to broader sets of signatures, thereby revealing the activity
of rare signatures in a patient.
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Figure 6 Performance evaluation on synthetic data - refitting to all signatures. Each
bar represents the mean value over [2%20] repetitions, where m is the number mutations per sample.
The same m mutations are used to evaluate all methods in each repetition.
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Figure 7 Comparative assessment of exposure prediction in breast cancer data -
refitting to all signatures. Each value represents the mean over f%] repetitions, where m is the
number mutations per sample. The same m mutations are used to evaluate all methods in each
repetition.
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Figure 8 Comparative assessment of exposure prediction in reanalyzed breast cancer
data - refitting to active signatures. Each value represents the mean over f%] repetitions,
where m is the number mutations per sample. The same m mutations are used to evaluate all
methods in each repetition.

WABI 2025



11:18 Mutational Signature Refitting on Sparse Pan-Cancer Data

2.0

(&)

1
1

0.0 I|||| I|||‘ I|||| |||‘| |||‘| ‘||“

o

0

Exposure Reconstruction
Error
(4]

1.00

0.75

0.00 ||II‘ ||II‘ ||||I ||III ||ll| ||Ill
300 100 30 10 6 3

Mutations per sample

Pearson Correlation
o
a
o

o
N
(9]

B SuRe s Mix mmm NNLS mmm  MuSiCal _— SigProfiIerI

Figure 9 Comparative assessment of exposure prediction in reanalyzed breast cancer
data - refitting to all signatures. Each value represents the mean over f%] repetitions, where
m is the number mutations per sample. The same m mutations are used to evaluate all methods in
each repetition.
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Figure 10 Comparative assessment on pan-cancer patients - distribution across tissue
types. Each box represents the values across the 14 tissue types. The black line within each whisker
represents to the median value. Whiskers span from the 25th to the 75th percentile.
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Figure 13 Prediction bias analysis for SBS3 prediction in breast cancer. Each box
represents the values over [2%2] repetitions, where m is the number mutations per sample. The same

m

m mutations are used to evaluate all methods in each repetition. The black line within each whisker
represents to the median value and the diamond marker represents the mean value. Whiskers span

from the 10th to the 90th percentile.
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Figure 14 Prediction bias analysis for flat signatures that are common in breast
cancer (SBS3 and SBS5). Each box represents the values over [222] repetitions, where m is the
number mutations per sample. The same m mutations are used to evaluate all methods in each
repetition. The black line within each whisker represents to the median value and the diamond
marker represents the mean value. Whiskers span from the 10th to the 90th percentile.
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Figure 15 Prediction bias analysis for spiky signatures that are common in breast
cancer (SBS1, SBS2, SBS13, SBS18, SBS34). Each box represents the values over fS—Sf]
repetitions, where m is the number mutations per sample. The same m mutations are used to
evaluate all methods in each repetition. The black line within each whisker represents to the median
value and the diamond marker represents the mean value. Whiskers span from the 10th to the 90th
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Figure 16 Comparative assessment on pan-cancer patients - SuRe vs SuRe without
tissue label data. Each bar represents the mean value over f%] repetitions, where m is the
number mutations per sample. The same m mutations are used to evaluate all methods in each
repetition.
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