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Abstract

Motivation: A chief goal of systems biology is the reconstruction of large-scale executable models of

cellular processes of interest. While accurate continuous models are still beyond reach, a powerful al-

ternative is to learn a logical model of the processes under study, which predicts the logical state of

any node of the model as a Boolean function of its incoming nodes. Key to learning such models is

the functional annotation of the underlying physical interactions with activation/repression (sign)

effects. Such annotations are pretty common for a few well-studied biological pathways.

Results: Here we present a novel optimization framework for large-scale sign annotation that

employs different plausible models of signaling and combines them in a rigorous manner. We apply

our framework to two large-scale knockout datasets in yeast and evaluate its different components

as well as the combined model to predict signs of different subsets of physical interactions. Overall,

we obtain an accurate predictor that outperforms previous work by a considerable margin.

Availability and implementation: The code is publicly available at https://github.com/spatkar94/

NetworkAnnotation.git.

Contact: roded@post.tau.ac.il

1 Introduction

With increased mapping of physical interactions in living cells

(Huttlin et al., 2017), we now have a blueprint of the inner workings

of the cell. However, the functional interpretation of this map to

simulate the behavior of the cell under different genetic and environ-

mental cues is still beyond reach. One fundamental piece of informa-

tion that is often missing is the annotation of the network

interactions with direction of signal flow and functional activation/

repression (sign) effects. The interpretation of the latter effects

depends on the type of the physical interaction being considered.

For protein–DNA interactions (PDIs), aþ/– sign describes a regula-

tory effect; for protein–protein interactions (PPIs), it represents a

functional activation/repression effect. Currently, direction and sign

information is available to only a few well-studied pathways (see

Fig. 1 for an example), although a large fraction (40–70%) of the

PPIs are expected to admit such an annotation (Silberberg et al.,

2014). The inference of such annotation information is a pre-

condition to any logical model of a system under study [see, e.g.

(Morris et al., 2010)].

A pioneering work by Yeang et al. (2004) for network annotation

suggested a simple yet effective logical model for signaling whereby

physical interactions are directed and signed, and a signal can flow

along a directed path with its effect being the aggregate effect of its

member interactions, i.e. the product of their signs. To tackle the an-

notation challenge, Yeang et al. suggested a machine learning frame-

work, but their method was limited to physical networks of small

scale where it is possible to enumerate all paths. Subsequent work in

this area adopted the signaling model suggested by Yeang et al. but

employed (to the most part) combinatorial methods to learn the hid-

den annotations. In the most common scenario, one is given a partial-

ly annotated physical interaction network and a list of pairs of genes

obtained from knockout experiments in which a knockout gene

(cause, or source) affected the expression of some other gene (effect,

or target). The goal is to annotate the remaining interactions in the

physical network with directions and signs such that a maximum

number of knockout pairs can be explained by the model.

The problem of inferring interaction directions so that a maximum

number of pairs admit a directed path from the cause to the effect was

shown to be non-deterministic polynomial time (NP)-hard and a sub-

logarithmic approximation algorithm was given for it (Blokh et al.,

2013). Using SAT solvers and integer linear programming (ILP) tech-

niques, optimal algorithms were given for various variants of the

problem (Gitter et al., 2011; Silverbush et al., 2011; Silverbush and

Sharan, 2014), potentially restricting the length of the path connecting

each cause-effect pair. In addition, a machine learning based inference

method was suggested by Stelzl et al. (2005).
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In contrast, the problem of inferring interaction signs received

far less attention. Ourfali et al. (2007) considered explanatory

paths of very short length (3) and provided ILP formulations to

maximize the expected number of pairs that can be explained in a

probabilistic network. Peleg et al. (2010) showed that the sign as-

signment problem is NP-hard and developed network-free algo-

rithms for predicting genome-wide effects of gene knockouts. A

related approach using regression was adopted by Cosgrove et al.

(2008) to distinguish direct and indirect targets of cell perturb-

ation. Houri and Sharan (2012) were the first to tackle the prob-

lem of inferring physical interaction signs on a network while

accounting for paths of any length. Specifically, they searched for

an assignment that maximized the number of pairs that admit a

path of the required sign. They provided network reduction techni-

ques and an ILP formulation to solve this problem to optimality on

current physical interaction networks. However, their algorithm

could only account for a small fraction of physical interactions in

the network (low coverage), as most were contracted in their net-

work reduction step.

In this paper, we present novel network based ILP formula-

tions for the purpose of predicting interaction signs in a physical

network. The models we propose bypass the issue of network re-

duction and thus significantly improve the scale of predictions

that can be made. In particular, we consider signaling models

where a pair is explained by (i) a shortest path connecting the pair

having a desired sign (ASP), (ii) a directed shortest path connecting

its nodes having a pre-defined sign (AdirSP) and (iii) all shortest

paths connecting its nodes having a desired sign (AllSP). We then

evaluate the performance of each model in predicting physical

interaction signs in yeast over two different gene expression data-

sets. We show that these models lead to �15-fold higher coverage

and higher accuracy than the state-of-the-art method of Houri and

Sharan (2012). Additionally, we propose a machine learning

approach for predicting interaction signs that combines features

from each of these models and show that it improves over any

individual model in predicting signs of previously annotated

interactions.

2 Materials and methods

2.1 An optimization framework for sign prediction
In this section we describe novel algorithms for inferring signs of

physical interactions. We start by formally defining the problem and

sketching the previous approach of (Houri and Sharan, 2012).

Then, we study three variants of the original problem (each describ-

ing a hypothetical signaling model) and develop novel ILP formula-

tions to solve them to optimality on current networks. We assume

we are given a (potentially partially signed) physical interaction

network along with a collection of cause-effect gene pairs, such as

commonly obtained from knockout experiments. The maximum

sign assignment (MSA) problem is to assign signs to the unsigned

edges of the network in a way that best explains the given pairs.

We say that a cause-effect pair (s, t) with sign dst (þ encoding

down-regulation of t in response to the knockout of s, � encoding

up-regulation of t in response to the knockout of s) is explained or

satisfied by a sign assignment, if there exists a path in the network

from s to t whose aggregate sign (the product of the signs along its

edges) is dst. Formally, MSA is defined as follows:

Input. A partially signed network G(V, E) and a set of k cause-

effect pairs s1; t1ð Þ; . . . ; sk; tkð Þ with signs ds1t1
; . . . ; dsk ;tk

2 fþ;�g

Goal. A sign assignment to the unsigned edges of the network

such that a maximum number of input pairs are satisfied by the

assignment.

This problem focuses on the hypothetical A-path signaling model

of Yeang et al. (2004). Houri and Sharan (2012) showed that due to

the nature of the model, any unsigned edge that lies on a cycle in the

network cannot be uniquely signed. They generalized this notion to

any 2-connected component (or block) by determining if these com-

ponents are strongly signed. They then proposed an approach to re-

duce the input network to an acyclic one by contracting all edges in

these strongly signed components without affecting the maximum

number of pairs that could be satisfied. In the reduced network,

every pair is connected by a unique path, facilitating the formulation

of an ILP to assign signs to the unsigned edges of this path such that

Fig. 1. The yeast signaling pathways from KEGG in one network depicting the organization of different types of physical interactions with their respective experi-

mentally derived signs (activation/repression) and directions
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the number of satisfied pairs is maximized. A key drawback of this

approach is that reducing the network to an acyclic one severely restricts

the number of edges participating in the ILP (coverage) and, hence,

restricts the number of interactions that can be uniquely signed. In sub-

sequent paragraphs, we discuss three variants of MSA, each describing

a different plausible signaling model, where edges lying on cycles may

have unique signs and, hence, may no longer be contracted.

The first variant we consider, A-shortest-path (ASP), considers a

signaling model where the length of a satisfying path is always

assumed to be the shortest possible. The shortest path assumption is

motivated from the observation that signaling pathways tend to be

of short length (Silverbush and Sharan, 2014). For each edge

u; vð Þ 2 E, let xuv ¼ 1 denote whether its sign is � (0 ifþ). Similarly,

we re-write the signs dst 2 fþ;�g as dst 2 f0;1g. Due to the nature

of knockout experiments, there are usually much fewer sources com-

pared to targets. Hence, for each source s, we construct a subnet-

work Gs Vs;Esð Þ such that each edge in this subnetwork lies along a

shortest path from s to one of its targets t. This is done by applying a

breadth-first-search starting from each source and target (Silverbush

and Sharan, 2014). Furthermore, we denote by Ns vð Þ the set of

neighbors of v in Gs and by dsv the length of the shortest path from s

to v. Additionally, for each pair (s, v) in Gs, we define auxiliary vari-

ables csv, rsv where csv ¼ 0 implies that under the selected sign as-

signment there exists a shortest path from s to v with aggregate sign

rsv, i.e. the node pair (s, v) is satisfied under the selected assignment.

[Note, (s, s) is trivially assumed to be satisfied]. We also define Eþ;

E� which represent subsets of edges in the ILP with known prior

positive and negative signs, respectively. Then the following ILP for-

mulation can be used to solve this variant of MSA:

max
X

st

yst

s:t: 1þ
X

u2fNs vð Þjdsv¼dsuþ1g
csu�1ð Þ � csv 8s;v2Vsns

rsv¼XOR rsu;xuvjcsv¼0ð Þ 8s; u;vð Þ2fEs : dsv¼dsuþ1g

cstþyst � 1 8 s;tð Þ

rss¼0;css¼0;rst¼ dst 8 s;tð Þ

xuv¼0 8 u;vð Þ2Eþ

xuv¼1 8 u;vð Þ2E�

yst;xuv;rsv;csv 2f0;1g 8s;t;u;v

The XOR relation between rsv, rsu and xuv is conditioned on the value

of csv. That is, rsv ¼ rsu�xuv only if csv¼ 0. It is linearized as follows:

rsv � csv � 2� xuv � rsu

rsv � csv � xuv þ rsu

rsv þ csv � xuv � rsu

rsv þ csv � rsu � xuv

Let l denote a layer of Gs such that all nodes belonging to this layer

have dsv ¼ l. Given a feasible solution to the ILP, if yst ¼ 1 we can

show that there exists a shortest path from s to t with aggregate sign

dst. Indeed, if yst ¼ 1 then cst ¼ 0 by the third constraint. This implies

that
P

u2Ns tð Þjdst¼dsuþ1 csu � 1ð Þ < 0. Thus, if t is in layer l of Gs, there

must exist a neighbor u of t in layer l �1 such that csu ¼ 0.

Furthermore, if cst ¼ 0, xut is bound by the XOR constraint to have a

sign whose product with rsu is dst. Similarly, if csu ¼ 0, there must be a

neighbor w in layer l � 2 where csw ¼ 0 and rsw�xwu�xut ¼ dst. By

carefully investigating the constraints applicable to the subsequent

layers of Gs (i.e. l � 3; . . . ;0) we find that there must exist a shortest

path from s to t such that the product of signs along its edges is dst. The

final two constraints incorporate prior knowledge of signs in the ILP.

The second variant we study, ‘A-directed-shortest-path’

(AdirSP), additionally assumes each shortest path explaining a pair

to be directed from the cause to the effect. It is worth noting that

one cannot adapt existing ILP solutions to the orientation and sign

assignment problems, as both rely on reducing the input graph into

an acyclic one. This reduction does not work when simultaneously

optimizing both. Instead, we simply adapt the ASP formulation

above to simultaneously find sign and direction assignments to the

network. Specifically, we consider a pair (s, t) to be satisfied by a

sign and direction assignment over the network if a directed shortest

path from s to t in this assignment has aggregate sign dst. We call

this variant of MSA the ‘A-directed-shortest-path’ (AdirSP). Let

ouv ¼ 1 denote whether an edge (u, v) is directed from u to v (0 if

from v to u) and let the flow variables f s
uv indicate the existence of a

flow from u to v. The flow variables allow computing pair reach-

ability in a directed network. The new ILP is:

max
X

st

yst

s:t: ouvþovu¼1 8 u;vð Þ2E

f s
uv �

X

w2Ns uð Þnv
f s
wu 8s; u;vð Þ2fEs :

dsv¼dsuþ1;dsu�1g

f s
uv � ouv 8s; u;vð Þ2Es

as
uv¼ 1� f s

uv

� �
ORcsu 8s; u;vð Þ2fEs :dsv¼dsuþ1g

1þ
X

u2Ns vð Þjdsv¼dsuþ1

as
uv�1

� �
� csv 8s;v2Vsns

rsv¼XOR rsu;xuvjcsv¼0;f s
uv¼1

� �
8s; u;vð Þ2fEs :dsv¼dsuþ1g

cstþyst � 1 8 s;tð Þ

rss¼0;css¼0;rst¼dst 8 s;tð Þ

xuv¼0 8 u;vð Þ2Eþ

xuv¼1 8 u;vð Þ2E�

yst;xuv;ouv;a
s
uv;rsv;csv;f

s
uv 2f0;1g 8s;t;u;v

The first constraint ensures that each edge has a unique orientation. In

some feasible solution, if f s
uv¼1, then the second and third constraint

ensure that a directed path exists from s to v containing edge (u, v).

Note that the XOR relation that helps determine the sign of an

edge now additionally depends on the existence of a flow in that

edge. The constraint is linearized as follows:

rsv � csv � 1þ f s
uv � 2� xuv � rsu

rsv � csv � 1þ f s
uv � xuv þ rsu

rsv þ csv þ 1� f s
uv � xuv � rsu

rsv þ csv þ 1� f s
uv � rsu � xuv

Another change from the previous formulation is the definition of

auxiliary variables as
uv for each edge participating the ILP. Their

value depends on the flow in edge (u, v) originating from s and on

csu. The OR relation between these variables is linearized as follows.

as
uv � 1� f s

uv

� �
þ csu

as
uv � 1� f s

uv

as
uv � csu
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Given a feasible solution in which yst ¼ 1, we show that there exists

a shortest path oriented from s to t such that its aggregate sign is dst.

Let t be in layer l of the shortest path graph Gs. If yst ¼ 1, then by

the seventh constraint cst ¼ 0. It follows that
P

u2Ns tð Þjdst¼dsuþ1

as
ut � 1

� �
< 0 (by constraint 5), which implies that there exists a

neighbor u in layer l � 1 where as
ut ¼ 0. This implies f s

ut ¼ 1, csu ¼ 0

(constraint 4) and dst must be the product of the signs given by xut

and rsu (constraint 6). Additionally, csu ¼ 0 implies there exists a

neighbor w in layer l � 2 where as
wu ¼ 0 (constraint 5). This implies

f s
wu ¼ 1, csw ¼ 0 and rsw�xwu�xut ¼ dst. In this manner after care-

fully investigating the constraints through subsequent layers of Gs

(i.e. l � 3; l � 4; . . . ; 0) we can find a directed shortest path from s to

t such that the product of signs along its edges is dst. The last two

constraints account for signs that are already known.

The underlying assumption in both signaling models above is

that a single path is sufficient to force a pre-defined effect. However,

due to the inherent stochasticity in signaling, this might not always

be the case (Ladbury and Arold, 2012). Moreover, on careful exam-

ination of signed interactions of Figure 1, we find that for any node

pair connected by more than one completely signed path, the prod-

uct of signs on each path is the same. Hence, we strengthen the pair

satisfaction assumption in the ASP model to require that a pair (s, t)

is satisfied if all shortest paths connecting s to t admit the same ag-

gregate sign dst. We call this variant ‘All-shortest-paths’ (AllSP) and

solve for it using the following formulation:

max
X

st

yst

s:t: csu � csv 8s; u; vð Þ 2 fEs : dsv ¼ dsu þ 1g

rsv ¼ XOR rsu;xuvjcsv ¼ 0ð Þ 8s; u; vð Þ 2 fEs : dsv ¼ dsu þ 1g

cst þ yst � 1 8 s; tð Þ

rss ¼ 0; css ¼ 0; rst ¼ dst 8 s; tð Þ

xuv ¼ 0 8 u; vð Þ 2 Eþ

xuv ¼ 1 8 u; vð Þ 2 E�

yst; xuv; rsv; csv 2 f0;1g 8s; t;u; v

As above, let t belong to layer l of Gs. Given a feasible solution to

this new formulation, if yst ¼ 1; cst must be 0 (from third constraint).

Hence, for every neighbor u of t that lies in layer l – 1 of Gs, csu ¼ 0

(from first constraint). This in turn constrains the sign assignment of

the respective edges (i.e. rsu�xut ¼ dst, for all neighbors u in layer

l � 1). By carefully investigating the constraints through subsequent

layers of Gs (i.e. l � 2; l � 3; . . . ; 0), it becomes apparent that for any

node v in Gs, all shortest paths from s to v must admit the same ag-

gregate sign (rsv). Hence, all shortest paths from s to t must have an

aggregate sign dst.

Notably, the models discussed above permit mathematically effi-

cient formulations. Specifically, if p is the number of sources

(p� k), then each formulation contains O kþ pjVj þ jEjð Þ variables

and O kþ p jVj þ jEjð Þð Þ constraints.

2.2 Quantifying the activation/repression potential of a

physical interaction
Each of the above models may admit multiple sign assignments with

optimal or near optimal scores. Hence, it is necessary to quantify the

robustness of a sign assignment to an edge. To this end, we solve

each ILP repeatedly n times; each time adding a small Gaussian

noise of mean 0 and variance 0.01 to the objective function as

shown below. This stochastic approach, motivated by Hazan and

Jaakkola (2012), effectively results in a random sampling of

different likely solutions that exist nearby in the optimum solution

space, thereby allowing us to assess the robustness of the sign on

each edge. The procedure is as follows:

An edge score close to 1 implies that the sign is negative with

high confidence, a score close to 0 implies a positive sign with high

confidence and a score close to 0.5 implies that the sign on that edge

cannot be uniquely determined (possibly implicating the absence of

an activation/repression effect). For efficiency, we use n ¼ 10

throughout. Our results remain qualitatively the same for larger val-

ues of n.

3 Results

3.1 Input data
We focused our analysis on budding yeast (Saccharomyces cerevi-

siae). We obtained 4095 PDIs spanning 2079 proteins (conserved

across at least two other yeast species) from MacIsaac et al. (2006).

We additionally downloaded 2930 high-quality experimentally veri-

fied PPIs from Yu et al. (2008), 1361 kinase–substrate/phosphatase–

substrate interactions (KPIs) among 802 proteins from Breitkreutz

et al. (2010), and 189 physical interactions from signaling pathways

of yeast in Kyoto Encyclopedia of Genes and Genomes (KEGG). We

merged these sets into a unified yeast network of 8268 unique phys-

ical interactions among 3695 proteins.

We extracted all 110 487 knockout pairs spanning 6228 proteins

from Reimand et al. (2010) and additionally 699 771 pairs spanning

6110 proteins from Kemmeren et al. (2014). A pair was assigned a

positive sign if the target gene was repressed in response to knockout

of the source, and a negative sign if the target gene was activated/

up-regulated. We restricted ourselves to knockout pairs such that

the absolute log fold change in expression of the target gene is>2

and FDR < 0.001. This leaves us with 1756 significant knockout

pairs from Reimand et al. (2010), referred to here as the Reimand

set, and 3524 significant knockout pairs from Kemmeren et al.

(2014), referred to here as the Kemmeren set. The above choice of

thresholds was made while taking into consideration the inherent

computational complexity of the problem.

3.2 Validation data
For a systematic validation of our sign prediction models we col-

lected sign information as follows. Only 147 of 192 physical interac-

tions in yeast had an experimentally confirmed sign from KEGG

(See Fig. 1).

In addition, following Houri and Sharan (2012), we extracted

gene ontology (GO) molecular function annotations related to tran-

scriptional activators (GO: 0045893) and transcriptional repressors

(GO: 0045892). PDIs originating from transcriptional activators

were given a positive sign whereas PDIs originating from transcrip-

tional repressors were given a negative sign. Finally, we also

1: procedure GETSCORES(ILP, n)

2: scoresuv  0; 8ðu; vÞ 2 E that are in ILP

3: for i ¼ 1: n

4: set objective :
P

stð1þ estÞyst, where est �N (0, 0.01)

5: x�  solveðILPÞ
6: scoresuv ¼ scoresuv þ x�uv=n; 8ðu; vÞ 2 E that are in ILP

7: return scores
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extracted information on protein kinases (GO: 0004672) and pro-

tein phosphatases (GO: 0004721). We reasoned that since there are

roughly three times as many confirmed functionally activating pho-

phorylation sites compared to repressive ones (PhosphoNET data-

base, www.phosphonet.ca), and that 71% of phosphorylation

interactions of yeast in KEGG are annotated as activating and 81%

of de-phosphorylation interactions of yeast are annotated as repres-

sing, kinase–substrate interactions tend to be activating while phos-

phatase–substrate interactions tend to be repressing. Thus, physical

interactions linking a GO annotated kinase and a substrate were

given a positive sign whereas interactions linking a GO annotated

phosphatase to a substrate were given a negative sign. Any inter-

action in the unified network that had conflicting signs was left un-

signed (unless it had sign information from KEGG, in which case

this latter information was used).

In summary, the validation set consists of three groups of signed

interactions in the network: (i) 2014 (1131þ, 883�) signed PDIs,

(ii) 1044 (872þ, 172�) signed kinase/phosphatase–substrate inter-

actions and (iii) 147 (96þ, 51�) signed KEGG interactions.

3.3 Performance evaluation of individual models
We evaluated each of the four models presented above (A-path/ASP/

AdirSP/AllSP) in a 5-fold cross-validation setting on the unified yeast

network, focusing on the interactions covered by each model, i.e.

participating in the corresponding ILP. To this end, we randomly

divided all signed and covered interactions into five equal parts.

Using each model, we predicted the activation/repression potential

of the interactions in each part (see Section 2.2) while constraining

the signs of interactions in the remaining parts. Then we measured

the performance of the activation/repression scores of a given model

across the five parts for different subsets of signed interactions cov-

ered by the model. For each subset, we denote its set of covered posi-

tive and negative interactions by Eþ and E�, respectively.

As a benchmark, we discuss the performance of the previous

A-path model. Recall that in this model we should contract all inter-

actions that lie in a strongly signed block of size � 3 (see Section

2.1). Since all blocks were strongly signed, this resulted in an acyclic

network with 77% of the interactions contracted. When working

with knockout pairs from the Reimand set, we observe that only 1%

of all the network interactions participate in the ILP constraints due

to network reduction, and 25 of them belong to the validation set.

Due to low coverage over the validation set, we instead evaluated

this framework using knockout pairs from the Kemmeren set.

Overall, 4% of network interactions are covered in this instance and

73 interactions from the validation set were part of the ILP formula-

tion, yielding an AUC of 0.66. Since there were only 73 interactions

to validate our predictions, we could not evaluate the performance

on individual subsets.

Next, we evaluated the ASP, AdirSP and AllSP models over the

unified network. Tables 1 and 2 summarize the performance over

the validation PDIs, KPIs and the KEGG interactions. We find that

our new formulations lead to sign assignments on 35% of network

interactions when working with the Reimand set and 59% of net-

work interactions when working with the Kemmeren set; �15-fold

coverage increase compared to previous work (A-path).

In order to directly compare the performance of the A-path

model to our suggested alternative models, we evaluated them on

the restricted validation set of 73 interactions covered by the A-path

model. On this set (jEþj ¼ 49; jE�j ¼ 24) the performance of AdirSP

was lower to A-path (AUC of 0.64), while ASP and AllSP had better

performance (AUCs of 0.73 and 0.68, respectively).

3.4 Performance evaluation of the combined model
Previous work as well as our models above vary in the assumptions

they make on the way a knockout effect is explained, going all the

way from requiring a single path of any length to requiring all paths

of shortest length. Note that we adopt these models partly because

they are grounded in our very own observations of cellular signaling

pathways (see Section 2.1) and because they permit an efficient

mathematical formulation. These descriptions are not perfect. In

turn, the solution of each model allows different degrees of freedom

on the signs of underlying interactions. To make the best inference

possible for each physical interaction given the complex nature of

cellular signaling, we integrate the predictions of each model in an

ensemble. That is, using the sign scores from solutions to ASP,

AdirSP and AllSP as features, we train a hybrid model, specifically a

random forest classifier, that makes an overall prediction of the sign

of an interaction (A-path was excluded due to low coverage).

The ensemble model is evaluated via nested cross-validation. In

detail, the validation set is divided into the same five parts as above.

Four of the parts are used for training the individual models to score

the fifth part. Next, we perform a 5-fold cross-validation on the fifth

part to train and test the classifier. Finally, using the cross-validated

predictions across all parts, we report the mean classifier perform-

ance (AUC) against the signs of different validation subsets.

Tables 3 and 4 summarize the performance of the random forest

classifier on the different knockout sets and validation subsets.

The performances of the classifier and the individual models are

depicted in Figures 2 and 3. Importantly, we observe that the classi-

fier outperforms all individual models on the set of curated interac-

tions from KEGG. It also outperforms the different models with

respect to PDIs and KPIs on the Reimand set. The lower perform-

ance of the classifier on the KPI set (compared with the AllSP model)

when working with the Kemmeren set is likely an artifact resulting

from the skewed distribution of class labels. Such a skew may

Table 1. Performance evaluation using the Reimand set (coverage

of 35%)

Interaction jEþj; jE�j AUC AUC AUC

(ASP) (AdirSP) (AllSP)

PDI 435, 458 0.75 0.63 0.84

KPI 205, 20 0.83 0.56 0.72

KEGG 40, 27 0.56 0.52 0.65

Table 2. Performance evaluation using the Kemmeren set (coverage

of 59%)

Interaction jEþj; jE�j AUC AUC AUC

(ASP) (AdirSP) (AllSP)

PDI 744, 653 0.63 0.59 0.83

KPI 522, 98 0.61 0.51 0.77

KEGG 46, 32 0.58 0.54 0.71

Table 3. Performance evaluation of the random forest classifier

using the Reimand set

Interaction jEþj; jE�j AUC

(classifier)

PDI 435, 458 0.86

KPI 205, 20 0.85

KEGG 40, 27 0.77
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influence ensemble classifier performance on unseen data. (Galar

et al., 2012).

4 Conclusions

In summary, we developed novel ILP formulations for predicting

signs of physical interactions under different signaling models. We

discussed the underlying assumptions guiding the predictions of

each model and its advantages in terms of coverage relative to prior

work by Houri and Sharan (2012). We then measured the cross-

validation accuracy of our models in predicting signs across two

knockout datasets to find that our models lead to improvement in

accuracy and coverage over the previous state-of-the art method by

Houri and Sharan (2012). Finally, we derive a hybrid signaling

model based classifier that uses the sign assignment confidence

scores of each model studied for predicting interaction signs. This

was partly motivated by the fact that the three models presented

in the paper, although mathematically efficient to represent, may be

insufficient to capture the complex nature of cell signaling.

Furthermore, this warrants the exploration of other plausible mod-

els that could be potentially integrated into the classifier to improve

its predictions. For instance, one could additionally formulate an

ILP that considers All-Directed Shortest paths (All-dirSP) as a plaus-

ible signaling mechanism to explain some of the knockout effects.

Notably, the AdirSP model is the first to combine both direction and

sign prediction within the same optimization framework and may

be of independent interest to readers to expand on for the general

problem of annotating a network with directions and signs.

A potential limitation of our approach is the computational cost

involved in solving the models (especially if the network is sparsely

annotated with signs). In this work, running the AllSP model on the

Kemmeren set took the most time (up to 3 h to obtain a single solu-

tion). In all other cases it took on average 3 min to obtain a single

solution (note that these values may differ based on the solver and

the computer used). A theoretical comparison of efficiency can be

done by analytically reasoning about the size of the search space for

each model. The ASP and AdirSP models require O(d) XOR con-

straints to be satisfied to explain a single knockout pair (s, t) (where

d denotes the shortest path distance from s to t). In contrast, the

AllSP model requires a much larger number of O jEjð Þ XOR con-

straints to be satisfied to explain a single knockout effect (where jEj
denotes the number of edges in the network). Each constraint intro-

duces at least one new Boolean variable and hence the search space

for AllSP is much larger than that for ASP or AdirSP. This might

pose a major limitation when it comes to predicting physical inter-

action signs over much larger networks, e.g. the human network,

which still remains mostly unsigned. To enhance the scalability of

our methods, one can pre-process the network and either contract

interactions involved in protein complexes or pre-annotate them

with positive signs (which are logically consistent with their role as a

means to propagate signal forward without influencing the overall

effect of the path taken). This vastly cuts down the size of the solu-

tion space; by half per interaction. The different models we pro-

posed represent a trade-off between model coverage (of networks

edges) and complexity (of its solution).

Another limitation of our results is that they are based on two

approximate sources of sign information, namely KPI signs derived

from whether the source protein is a kinase or a phosphatase and

PDI signs derived from whether the involved transcription factor is

an activator or a repressor. We expect our models to yield more ac-

curate results as better quality sign information becomes available.
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