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The task of deriving a functional annotation for genes is complex as their involvement in various processes depends
on multiple factors such as environmental conditions and genetic backup mechanisms. This study employs a
large-scale model of the metabolism of Saccharomyces cerevisiae to investigate the function of yeast genes and derive a
condition-dependent annotation (CDA) for their involvement in major metabolic processes under various genetic and
environmental conditions. The resulting CDA is validated on a large scale and is shown to be superior to the
corresponding Gene Ontology (GO) annotation, by showing that genes annotated with the same CDA term tend to
be more coherently conserved in evolution and display greater expression coherency than those annotated with the
same GO term. The CDA gives rise to new kinds of functional condition-dependent metabolic pathways, some of
which are described and further examined via substrate auxotrophy measurements of knocked-out strains. The CDA
presented is likely to serve as a new reference source for metabolic gene annotation.

[Supplemental material is available online at www.genome.org.]

In recent years, high-throughput techniques have provided a
wealth of data on the expression and activity of genes and pro-
teins. The task of inferring the involvement of gene products in
various cellular processes, commonly referred to as functional
annotation, is a major goal of current biological research. It in-
volves the definition of a set of biological functions, termed “on-
tology,” and the association of the gene products with ontology
terms. The most comprehensive and commonly used ontology is
the Gene Ontology (GO), consisting of 20,000 terms and numer-
ous associated gene products (Ashburner et al. 2000). Both the
ontology and the corresponding annotation are constantly up-
dated based on various experimental manifestations of gene
function.

The involvement of a gene product in a specific process
depends on multiple factors, such as the environmental condi-
tions (Giaever et al. 2002; Brown et al. 2006) and the genetic
background (Hartman et al. 2001; Tong et al. 2004; van Swin-
deren and Greenspan 2005). Recent work has provided several
lines of evidence for the condition-dependent nature of gene
function in Saccharomyces cerevisiae based on large-scale pheno-
typic screens and gene deletion phenotypes across multiple
growth media (Harrison et al. 2007). However, the GO annota-
tion does not adequately reflect this basic condition-dependency
of gene function as it strives to maintain uniformity in the ex-
perimental conditions underlying the annotation. To achieve
such uniformity, the GO consortium has instructed annotators
that gene products should be annotated with terms reflecting
their activity in standard experimental conditions (http://
www.geneontology.org). The determination of what these nor-
mal experimental conditions are for any particular organism is
then left to the annotator’s judgment. Consequently, the current

ontology specification lacks an overall comprehensive treatment
of the various factors that affect gene function.

The annotation of metabolic genes is a particularly difficult
task, arising from the high level of dependency between the func-
tion of individual metabolic enzymes that form the overall com-
plex network of biochemical reactions. Yet, inspecting the
sources of GO annotation for metabolic genes reveals that most
annotations (56%) are based solely on the involvement of genes
in classical biochemical pathways (Traceable Author Statement
evidence code; Supplemental Fig. 1). Twenty-six percent of the
annotations arise from gene knockout experiments measuring
various metabolic phenotypes (Inferred from Mutant Phenotype
evidence code). As no single “normal” condition is enforced,
these experiments span a large range of environmental condi-
tions and genetic backgrounds, whose identities are not reflected
in the annotation. More complex phenotypic experiments in-
volving the knockout of multiple genes to identify genetic
backup mechanisms account for only 3% of the annotations (In-
ferred from Genetic Interaction evidence code). Notably, such
experiments that determine epistatic interactions between genes
are still difficult to conduct on a genome-wide scale especially in
multiple growth conditions.

In this study, we employ a genome-scale model of cellular
metabolism to investigate the function of genes under multiple
environmental and genetic conditions, deriving a condition-
dependent annotation (CDA) of metabolic genes. The CDA asso-
ciates genes with terms representing metabolic processes under
multiple conditions. Specifically, we employ constraint-based
modeling that uses stoichiometric, thermodynamic, and flux ca-
pacity constraints to predict a space of possible flux distributions
attainable by the metabolic network under various environmen-
tal and genetic conditions. Flux Balance Analysis (FBA) is a spe-
cific constraint-based optimization method that is commonly
used to find flux distributions that minimize or maximize a de-
fined cellular objective such as its biomass production rate. Here
we employ numerous optimization criteria to explore the organ-
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ism’s ability to synthesize metabolites that contribute to biomass
formation under multiple conditions. Constraints-based models
have been successfully used previously for predicting various
metabolic phenotypes such as growth, uptake rates, by-product
secretion, knockout lethality, and pathway activity across differ-
ent conditions (Edwards and Palsson 2000; Schilling et al. 2000;
Schuster et al. 2000; Edwards et al. 2001; Ibarra et al. 2002; Famili
et al. 2003; Forster et al. 2003; Mahadevan and Schilling 2003;
Kuepfer et al. 2005; Shlomi et al. 2005).

We derive a CDA for metabolic genes of the yeast S. cerevi-
siae. The resulting CDA spans two dimensions representing
growth media (minimal/rich) and the availability of oxygen, and
accounts for genetic backups in the form of isozymes and alter-
native pathways. The CDA obtained is compared with the stan-
dard GO annotation, generating novel annotation predictions,
which are validated in a large-scale manner using gene conser-
vation and expression data. To gain insight on the dynamic
metabolic mechanisms underlying the annotation, we derive
functional pathways, which are condition-dependent, network-
based representations of the biosynthetic processes. We then
conduct growth phenotyping of single and double gene deletion
strains in auxotrophic growth conditions to examine these novel
functional pathways.

Results

Deriving a condition-dependent annotation of yeast
metabolism

We have used a genome-scale, metabolic network model of the
yeast S. cerevisiae (Duarte et al. 2004) to derive a condition-
dependent annotation for the involvement of genes in various
metabolic processes under multiple conditions. We focused on
processes that synthesize the 38 different compounds that form
the bulk of yeast biomass, such as amino acids, nucleotides, lip-
ids, etc. The annotation protocol involved simulating the effect
that gene knockouts have on different biosynthesis processes, in
accordance with common experimental procedures for gene an-
notation, such as auxotrophy tests (i.e., tests of the inability of an
organism to synthesize a particular organic compound required
for its growth) (Cherest et al. 1993) and measurements of me-
tabolite concentrations following genetic mutations (Farkas et al.
1991). Specifically, to determine whether a given gene contrib-
utes to the production of a certain compound under a certain
condition, we compute the maximal production rate of the com-
pound when a gene is present in the model and after it is
knocked out and measure the drop in the compound’s produc-
tion rate (Methods). To identify a contribution of a gene to the
production of a certain compound that is backed up by isozymes
or alternative pathways, the annotation protocol involved a sys-
tematic knockout of all genes pairs in the model while measuring
the resulting drop in production rate (Methods). Notably, a pre-
vious study has shown that FBA can reliably predict condition-
specific backup mechanisms (Harrison et al. 2007). The various
simulated conditions are spanned by two dimensions represent-
ing poor and rich media, and aerobic and anaerobic conditions
(Fig. 1). Overall, we analyzed the contribution of 750 metabolic
genes to 38 biosynthetic processes, under two media (poor and
rich) and two environments (aerobic and anaerobic) using single-
and double-knockout analysis.

We define a gene’s multifunctionality level as the number of

processes it contributes to in a given condition. The distribution
of the multifunctionality levels of all genes under single-
knockout conditions exhibits a bimodal shape that peaks at lev-
els 1 and 38. That is, most genes are annotated as being involved
either in a small number of processes or in almost all processes
(Supplemental Fig. 2). A similar bimodal distribution of environ-
mental specificity of predicted synthetic lethal interactions was
previously observed (Harrison et al. 2007). To obtain annotations
for genes that denote their contribution to specific processes (in
contrast to “housekeeping” genes, which contribute across the
board) we excluded genes with a multifunctionality level greater
than a threshold of five in a given environmental condition. We
note that the GO annotation of metabolic genes shows a similar
multifunctionality pattern with <7% of the genes annotated to
more than five processes. The resulting CDA consists of a total of
651 associations between 233 genes and the 38 ontology terms
describing the different metabolic processes under the conditions
examined here. It can be accessed via the supplemental Web site,
http://www.cs.tau.ac.il/∼shlomito/CDA.

Examining the annotation within the different CDA condi-
tions reveals the importance of each annotation dimension
(Table 1). The annotation obtained with single knockout simu-
lations in rich media significantly varies between aerobic and
anaerobic conditions, with the aerobic condition providing 85%
of the total annotations (obtained in either aerobic or anaerobic
condition), and the anaerobic condition providing only 62%.
Similarly, the dimension representing growth media is important
for single-knockout experiments in anaerobic conditions, as we
get only 87% and 60% of the annotations when considering
either poor or rich media, respectively. Interestingly, single
knockouts in aerobic conditions, which form the basis for much
of the existing GO annotations for yeast, are somewhat insensi-
tive to the specific choice of growth medium, as both poor and

Figure 1. Condition-dependent annotation (CDA). A schematic repre-
sentation of the CDA as a set of associations between genes and processes
under various conditions. The basic element is a table specifying an as-
sociation between genes and processes. This condition-dependent asso-
ciation table is the content of each entry of the CDA. These entries are
spanned in turn by two dimensions representing growth media and the
availability of oxygen (but additional dimensions can be added in prin-
ciple in accordance with the data available). We consider two annotation
systems, for single- and for double-knockouts simulations.

Condition-dependent gene annotation

Genome Research 1627
www.genome.org

 Cold Spring Harbor Laboratory Press on February 25, 2008 - Published by www.genome.orgDownloaded from 

http://www.genome.org
http://www.cshlpress.com


rich media provide >88% of the total annotations in these con-
ditions. The double-knockout analysis more than doubled the
number of functional annotations and exhibits even higher
variation between different conditions. These results clearly
show the importance of a CDA that considers the involvement of
genes in various processes, under multiple environmental con-
ditions and genetic backup levels.

The similarity and differences between CDA and GO

Gene Ontology contains specific terms representing the process
of synthesizing each of the 38 essential biomass compounds that
are required for growth according to the metabolic network
model. Yeast GO annotation consists of 361 associations between
199 metabolic genes and these ontology terms (Methods). The
overlap between GO and the CDA, when considering all condi-
tions, is highly significant with 179 common annotations
(hyper-geometric P-value <1 � 10�300). Focusing on specific
CDA conditions, we find that 60% of the CDA annotations in
single-knockout aerobic conditions appear in GO, covering 33%
of the latter annotations. In the single-knockout anaerobic con-
ditions (which are less common within the experiments under-
lying GO) only 49% of the annotations appear also in GO, cov-
ering 19% of the latter. In the double-knockout conditions, <29%
of annotations appear also in GO, sug-
gesting that double-knockout experi-
ments would significantly enrich func-
tional annotations by revealing func-
tional contributions masked by genetic
backup mechanisms. An inspection of
GO annotations that are not included in
the CDA shows that in some cases they
were identified in experiments con-
ducted under growth media other than
the poor or rich media considered here,
or with experiments involving high-
order knockouts (e.g., triple or qua-
druple knockouts) (Johnson et al. 1994).
In some cases the GO annotations that
are not included in the CDA are pre-
dicted to be highly nonspecific as the
corresponding genes are predicted to
contribute to a high number of processes
and thus may potentially reflect overly
specific GO annotations (Supplemental

Table 1). Overall, the CDA consists of 472 novel annotations for
158 unique genes whose biological plausibility is further exam-
ined below.

The number of novel annotations varies across the different
metabolic processes and the different dimensions of the annota-
tion (Supplemental Table 2; Supplemental Fig. 3). For example,
CDA extends the current GO annotation for amino acid biosyn-
thetic processes by 83% under anaerobic conditions, while ex-
tending it by only 60% in aerobic conditions. Examining the
known GO annotation of the novel CDA predictions, we find
that 43% of the novel CDA predictions have a corresponding GO
annotation within a category of closely related terms (Fig. 2).
Almost all of these novel predictions (96%) are within the amino
acids category (Supplemental Fig. 4). For example, several genes
annotated in GO as involved in methionine biosynthesis are also
annotated as involved in cysteine and isoleucine biosynthesis in
the CDA. Other genes are annotated very differently than in GO.
For example, we find several genes annotated in GO as involved
in nucleotide biosynthesis and are predicted to be involved in the
production of the amino acids histidine, cysteine, and methio-
nine.

A network representation of the CDA under single knock-
out, poor media, aerobic and anaerobic conditions, and its com-
parison with GO is shown in Figure 3. The network is clustered
with distinct sets of genes annotated in each category. In the
lipid biosynthesis cluster, we see that many known GO annota-
tions for ergosterol biosynthesis are found in the CDA only in
aerobic conditions. These condition-specific annotations reflect
the known dependency of the ergosterol biosynthesis pathway
on the availability of oxygen (Deytieux et al. 2005). This cluster
is connected to the amino-acids cluster via MET6 (annotated in
GO as involved in methionine biosynthesis), reflecting the de-
pendency of the ergosterol biosynthesis pathway on the cofactor
S-adenosylmethionine. Genes annotated as involved in nucleo-
tide biosynthesis in the CDA are organized in two clusters for
purine and pyrimidine biosynthesis. The amino acids biosynthe-
sis cluster is the largest cluster. It is connected to the purine and
pyrimidine biosynthesis clusters via shared precursor steps in the
biosynthetic pathways (ADE3, ADE12, and ADE13 for purines
and histidine; CPA1 and CPA2 for pyrimidines and arginine).
Another link between these clusters is formed by FUM1 (fuma-

Figure 2. Novel CDA predictions of known GO annotations. Nodes represent GO terms (top curve)
and CDA terms (bottom curve). An edge between GO term x and CDA term y represents a set of novel
CDA associations of genes annotated in GO as involved in term x, and annotated with term y in CDA.
The width of the edge represents the set size. Blue and red edges represent annotations obtained with
single and double knockouts, respectively.

Table 1. CDA statistics

Aerobic Anaerobic Both

Single knockouts
Poor media 214 (111) 206 (98) 247 (121)
Rich media 195 (105) 141 (87) 229 (124)
Both 221 (114) 236 (115) 279 (135)

Double knockouts
Poor media 203 (82) 245 (95) 333 (117)
Rich media 156 (78) 178 (86) 261 (112)
Both 233 (95) 343 (130) 428 (147)

Total
Poor media 417 (176) 451 (175) 564 (212)
Rich media 351 (169) 319 (156) 463 (198)
Both 452 (189) 532 (202) 651 (233)

The number of functional annotations (and the corresponding number of
genes in parenthesis) considering the different dimensions of the CDA.
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rase) which contributes to the production of purines as well as to
histidine and arginine biosynthesis under aerobic conditions by
recycling the fumarate produced by these pathways.

Conservation coherency, expression coherency,
multifunctionality, and evolutionary rate of CDA vs. GO
annotated genes

Genes involved in the same biological processes have been pre-
viously shown to be coherently conserved in evolution (Pelle-
grini et al. 1999). Based on this observation, we tested the bio-
logical plausibility of CDA in comparison to GO by computing
the conservation coherency of the sets of genes that are associ-
ated with similar terms in each annotation. To compute conser-
vation coherency we used phylogenetic profiles of yeast meta-
bolic genes in a set of 10 fungal genomes (Methods). The con-
servation coherency score is defined as the mean similarity in
phylogenetic profiles between genes annotated with the same
term; a significance P-value is computed by comparing this score
to that obtained for a random annotation (i.e., random associa-
tion of genes with terms; Methods). We find that the CDA is
significantly coherently conserved to a higher extent than the
corresponding GO annotation under all single-knockout condi-
tions (Fig. 4A; Supplemental Table 3). The conservation coher-
ency of the CDA in the double-knockout conditions is lower than
that of the single-knockout conditions but is still highly statisti-
cally significant (Supplemental Table 4). The lower conservation
coherency in the double-knockout conditions results from anti-
correlated phylogenetic profiles of genes that back up each oth-
er’s function (e.g., isozymes; Supplemental Section 1). Removing
isozymes from the analysis increases the conservation coherency

scores for the double-knockout CDA
above the scores obtained with the
single knockouts (Supplemental Table
4). The conservation coherency analysis
conducted here is similar to the ap-
proach described in Dolan et al. (2005),
where cross-species comparison was
used to assess the consistency of GO an-
notations provided by different annota-
tion groups.

We next compared the expression
coherency of CDA and GO annotated
genes. Expression coherency is defined
as the mean similarity in expression pat-
terns across different conditions be-
tween genes annotated with the same
term, with a significant P-value com-
puted by comparison to the expression
coherency of a random annotation
(Methods). CDA has a significantly
higher expression coherency score than
that of GO under all single-knockout
conditions (Fig. 4B; Supplemental Table
5). CDA obtained with double knock-
outs is significantly coherently ex-
pressed, but to a lower extent (Supple-
mental Table 6). This lower expression
coherency score is partially attributed to
the availability of isozymes that tend to
have anti-correlated expression patterns
(Ihmels et al. 2004; Kafri et al. 2005). Re-
moving isozymes from the analysis in

turn increases the expression coherency score of the CDA under
all conditions (Supplemental Table 6). These higher conservation
and expression coherency scores of the CDA annotation in com-
parison with GO are robust to different choices of the multifunc-
tionality threshold level (Supplemental Fig. 5).

Previously it was shown that gene multifunctionality level
(as reflected by GO) is correlated with its degree of pleiotropy, the
latter measured by the extent to which its deletion affects sur-
vival under multiple different environmental conditions (He and
Zhang 2006). We repeated the same analysis here focusing on
CDA- and GO-derived multifunctionality measures. There is a
significant correlation between multifunctionality, as it is re-
flected by the CDA and pleiotropy (Spearman = 0.17, P-
value = 0.03), and no correlation between GO multifunctionality
(computed only for the corresponding metabolic genes) and plei-
otropy. Furthermore, we find a significant negative correlation
(Spearman = �0.22, P-value = 0.01) between the CDA multifunc-
tionality measure and the gene evolutionary rate, in accordance
to the negative correlation between pleiotropy and evolutionary
rate shown in He and Zhang (2006). We find no corresponding
correlation between the GO multifunctionality measure and con-
servation rate.

CDA-derived functional pathways

To gain insight on the metabolic mechanisms underlying bio-
synthetic processes, we use the CDA to derive condition-
dependent, network-based representations of various processes,
referred to as “functional pathways.” These functional pathways
can be automatically generated by integrating static metabolic

Figure 3. A network view of CDA in single knockout, poor media conditions, in aerobic and an-
aerobic conditions. Genes are marked with red circular nodes, and process terms with colored dia-
mond nodes. Edges connecting between genes and processes denote annotation associations. Dotted
lines represent annotations that are also present in GO. Wide edges represent an essential contribution
of a gene to a process. Blue, red, and black edges represent contribution under aerobic, anaerobic, and
both conditions, respectively. Note that several CDA annotations (e.g., in the pyrimidine biosynthesis
cluster) have corresponding GO annotations that are highly nonspecific (Methods) and are hence
considered here as novel.
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network structure with the CDA condition-dependent annota-
tion (Methods). We examined in detail the functional pathways
of alanine, proline, and glutamine biosynthesis, focusing on
their condition-dependent nature. To further support the bio-
logical plausibility of specific novel functional pathways pre-
dicted by CDA, we performed phenotyping of relevant single and
double gene deletion strains in auxotrophic growth conditions.

The functional pathway for alanine biosynthesis under poor
media for single and double, aerobic and anaerobic conditions is
shown in Figure 5A. Using single knockouts, only the gene ALT2
(a putative cytoplasmic alanine transaminase) is predicted to
contribute to alanine biosynthesis in both aerobic and anaerobic
conditions. Under aerobic conditions, six additional genes be-
longing to the tryptophan biosynthetic pathway and the kyn-
urenine pathway for tryptophan degradation are predicted to
contribute to alanine biosynthesis based on the double-knockout
analysis. Under anaerobic conditions their contribution vanishes
due to oxygen dependence of the tryptophan degradation path-
way. To identify potential additional alanine biosynthesis path-
ways, we tested whether the ALT2 deletion strain is an alanine
auxotroph in anaerobic conditions (data not shown). The dele-
tion strain showed no growth defect in these conditions, suggest-
ing the existence of an additional alternative pathway. The most
likely backup for ALT2 would be provided by ALT1, a mitochon-
drial isozyme of ALT2. ALT1 was previously considered to be
noncontributing to alanine production in the cytoplasm, due to
the lack of a known mitochondrial alanine transporter. However,
our experimental results suggest that there is an uncharacterized
alanine transporter that allows mitochondrially synthesized ala-
nine to be utilized outside the mitochondria in an ALT2 deletion
strain.

The functional pathway of proline biosynthesis consists of
all the genes annotated in GO as being involved in proline bio-
synthesis as well as several novel CDA predictions (Fig. 5B). Pro-
line is synthesized from L-glutamate gamma-semialdehyde,
which in turn can be synthesized either through the standard
proline biosynthesis pathway involving PRO1 and PRO2 gene
products, or through the arginine catabolic pathway involving
the CAR1 and CAR2 gene products. The arginine catabolic path-
way is inactive when a preferred nitrogen source (e.g., ammo-
nium sulphate) is available, but in the absence of preferred ni-
trogen sources it allows yeast to utilize arginine as a nitrogen
source in aerobic conditions (Dubois et al. 1978). CDA predicts
that CAR2, which codes for an ornithine transaminase, is also
involved in proline biosynthesis, providing a backup function for
PRO1/PRO2 (Fig. 5B). In agreement with this prediction, the aux-

otrophy test for the CAR2/PRO2 double-
knockout strain shows a significant drop
in maximum optical density (OD) in
minimal media compared with the
maximum OD measured in a minimal
media supplemented with proline (Fig.
5C). Furthermore, we find a synthetic
sick interaction between CAR2 and PRO2
in minimal media, with the double
knockout showing a larger drop in maxi-
mum OD compared to the single knock-
outs. The fact that the CAR2/PRO2
double knockout remains viable (though
with a lower maximum OD) suggests the
existence of an additional, uncharacter-
ized parallel pathway that bypasses the

CAR2 deletion (Supplemental Fig. 6). Auxotrophy tests have also
validated the CDA prediction of CIT1 and CIT3 involvement in
glutamine biosynthesis (Supplemental Fig. 7).

Discussion

Utilizing a metabolic network model of S. cerevisiae, we derive a
systematic condition-dependent annotation of yeast metabolic
genes, associating genes with major metabolic processes under
various genetic and environmental conditions. The resulting
CDA, which promises to serve as a new reference source for meta-
bolic gene annotation, is highly dependent on the growth media
(poor or rich), the availability of oxygen, and whether single or
double knockouts are employed. Under these conditions, the
CDA maps annotations for 233 genes that are specifically con-
tributing to some biosynthetic processes, and additional annota-
tions for 62 genes that contribute to many processes and whose
contribution is hence considered nonspecific (out of a total of
750 genes in the model). Considering that the annotation of
many genes in the CDA was determined based on specific con-
ditions (Table 1), we expect that extending the CDA to a variety
of growth media and employing high-order knockouts (Deut-
scher et al. 2006) would significantly increase the number of
annotated genes. The overlap between the CDA and GO is highly
significant, with CDA achieving the highest GO enrichment un-
der aerobic rich media, the common environmental condition in
many of the experiments underlying GO. Indeed, FBA (like most
model) predictions are prone to a certain level of false-positive
and false-negative errors, but overall they have shown to provide
a clear biological signal in recent, condition-dependent double-
knockout studies (Deutscher et al. 2006; Harrison et al. 2007).
Most importantly, a large-scale validation of the predicted CDA
shows that genes annotated with the same term tend to be more
coherently conserved in evolution and display greater expression
coherency than the corresponding GO annotation, thus estab-
lishing the superiority of the new annotation over GO for meta-
bolic genes, and testifying to its veracity.

The common view of metabolic pathways as static, distinct
entities with a defined function may be misleading, considering
the interconnectivity of different pathways through shared co-
factors and metabolites. Here, we extend the classical notion of
metabolic pathways into functional pathways, which are condi-
tion-dependent, network-based representations of biosynthetic
processes. We examine in detail the functional pathways for ala-
nine, glutamine, and proline biosynthesis, and demonstrate their

Figure 4. The conservation (A) and expression (B) coherency of the CDA under different conditions.
The black and gray lines represent the coherency score obtained for a random annotation and for GO,
respectively.
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condition specificity. Experimental growth phenotyping of
single and double gene deletion strains has verified the presence
of the predicted, previously uncharacterized full and partial
backup mechanisms in these pathways.

The CDA is inspired but different from the multidimen-
sional genome annotation framework of Reed et al. (2006), where
the use of the term dimension refers to different kinds of gene
descriptors, such as the functional connectivity between genes
and their three-dimensional organization. In difference, the
dimensions in the CDA represent independent (mostly environ-
mental) factors that affect gene involvement in different cellular
processes. Specifically, we consider dimensions representing
the growth medium, the availability of oxygen, and knock-
out level, giving rise to a set of common conditions for yeast
growth. Future work may consider additional conditions by add-
ing new dimensions to the annotation or by adding new coor-
dinates to dimensions used here. Such an interesting new anno-
tation dimension may represent genotypes of different yeast
strains, allowing for a systematic comparison of gene function
across strains. Additional coordinates for the growth media di-

mension may represent intermediate
environments with different combina-
tions of nutrients, providing further in-
sight on the dependency of gene func-
tion on the presence of specific media
nutrients.

Major efforts have been recently
made to identify genetic interactions on
a large scale, both experimentally (Tong
et al. 2004; Schuldiner et al. 2005) and
computationally (Segre et al. 2005; Deut-
scher et al. 2006). The annotation ap-
proach described here utilizes double-
knockout simulations to identify genetic
interactions between genes that are both
process-specific and condition-specific.
Overall, we find that genetic interac-
tions display higher condition specific-
ity than process specificity, as 37% of the
interactions are predicted to be specific
to a single process, whereas 64% of the
interactions are specific to a single con-
dition (Supplemental Fig. 8), further
supporting the notion of strong condi-
tion dependency of genetic interactions
recently reported in (Harrison et al.
2007). In summary, gene annotation re-
mains a fundamental and open challenge,
considering that complex processes are
the result of the interaction of many genes
and numerous factors. The condition-
dependent annotation described here
presents a new step in addressing this
challenge for metabolic genes.

Methods

Metabolic network analysis
The metabolic network model of Duarte
et al. (2004) consists of 1062 metabo-
lites, 1149 reactions, and 750 genes. The
model specifies a growth reaction that

contains the following 38 essential biomass precursors: (1)
Amino acids: methionine, aspartate, glutamate, glutamine, as-
paragine, alanine, proline, arginine, serine, cysteine, glycine, his-
tidine, threonine, lysine, valine, tyrosine, tryptophan, phenyl-
alanine, leucine, and isoleucine; (2) Carbohydrates: glycogen,
trehalose, mannan, and glucan; (3) Nucleotides: UMP, GMP,
CMP, AMP, DGMP, DAMP, DTMP, and DCMP; and (4) Fatty ac-
ids, sterols, lipids, and phospholipids: triacylglycerol, ergosterol,
phosphatidylcholine, phosphatidylethanolamine, 1-phosphati-
dyl-D-myo-inositol, phosphatidylserine.

Flux Balance Analysis (FBA) was used to compute the pro-
duction rate of each biomass precursor under various growth
media and genetic environments. To simulate the production of
a given metabolite, a new exchange reaction representing the
secretion of this metabolite is added to the model, and the flux
through this reaction is maximized. For the single-knockout an-
notation we systematically knocked out each gene and consid-
ered it as contributing to the production of a certain metabolite
if its knockout reduced the metabolite’s production rate in >20%.
For the double-knockout annotation, we knocked out all gene
pairs whose genes were noncontributing in the single-knockout

Figure 5. Functional pathways of alanine and proline biosynthesis as reflected by CDA. (A) A func-
tional pathway of alanine biosynthesis under aerobic and anaerobic poor media. Rectangular nodes
represent metabolic reactions, specifying names of the coding genes and names of the reactions. The
circular node represents the metabolite alanine. Blue edges represent physical interactions between
enzymes, in the form of a metabolite that is the product of one enzyme and the substrate of the other.
Red edges represent genetic interactions between genes that are specific to alanine biosynthesis. (B) A
functional pathway of proline biosynthesis in aerobic minimal media condition. (C) Proline auxotrophy
experiment for the CAR2 and PRO2 single deletion, and CAR2/PRO2 double deletion strains. The
experiments show a significant drop in maximum optical density (OD) for the CAR2/PRO2 double
mutant strain when proline is removed from the growth medium. The results show the existence of a
synthetic sick interaction between CAR2 and PRO2 in minimal media that lacks proline.
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experiments and considered a pair as contributing if the joint
knockout reduced the metabolite’s production rate in >20% (a
similar threshold was used in Deutscher et al. 2006). All of the
results presented here are robust to the choice of this production
rate threshold (we repeated the analysis for thresholds of 10%
and 30%; data not shown). Furthermore, adding a lower bound
on the biomass production (and hence accounting for the re-
sources required for the production of all growth enabling bio-
mass compounds) when computing the maximal production rate
of some compound (without knockouts) has negligible effect on
the identification of gene contributions (data not shown). Poor
and rich media as well as aerobic and anaerobic conditions were
modeled by varying the bounds on the uptake rates of various
nutrients.

GO annotation extraction
Yeast GO annotation was downloaded from the SGD database.
For each of the 38 biomass compounds included in the model,
we identified the corresponding GO term representing the pro-
cess of synthesizing this compound (Supplemental Data). For
each GO term, we associated all genes that are either annotated
to this term or annotated to its ancestors (situated on the path-
way leading to the root) in the GO hierarchy. This extraction
method was applied to obtain a comprehensive process annota-
tion, as in numerous cases genes that are known to be involved
in a specific process are annotated with one of its ancestor terms
in the GO hierarchy (e.g., in the case of valine, leucine, and
isoleucine biosynthesis, only the parent term called “branched
chain amino acid biosynthesis” is associated with genes that are
known to be involved in the synthesis of all three amino acids).
As in the CDA construction, to eliminate annotations that are
highly nonspecific we excluded genes with a multifunctionality
level greater than a threshold of five.

Phylogenetic profiling analysis
Ten sequenced fungal genomes (S. cerevisiae, Candida albicans,
Candida glabrata, Cryptococcus neoformans, Debaryomyces hansenii,
Encephalitozoon cuniculi, Eremothecium gossypii, Kluyveromyces lac-
tis, Schizosaccharomyces pombe, Yarrowia lipolytica) were used to
construct phylogenetic profiles. The conservation coherency of a
metabolic annotation (i.e., either GO or the CDA) is defined as
the mean similarity of phylogenetic profiles between genes an-
notated to the same term. Similarity between phylogenetic pro-
files is computed using a Jaccard measure (intersection/union).
The statistical significance of the conservation coherency score is
computed by comparison to similar scores obtained for ran-
domly drawn annotations, preserving the same number of genes
annotated with each term.

Expression coherency analysis
Gene expression measurements were obtained from Stanford mi-
croarray database (Ball et al. 2005) and included 973 conditions.
Expression coherency of metabolic annotation is computed as
the mean pairwise Pearson correlations between genes annotated
to the same term. The statistical significance of the expression
coherency score is computed by comparison to similar scores
obtained for randomly drawn annotations, preserving the same
number of genes annotated with each term.

Functional pathways construction
A functional pathway, representing the process of synthesizing a
certain compound under a certain environment, is a subgraph of
the metabolic network (in a “reaction graph” representation)
augmented with functional information on genetic backups. In

this representation, nodes represent metabolic reactions (dis-
played along with their associated coding genes) and directed
edges represent the existence of a metabolite that is produced by
one reaction and consumed by the other. Metabolites participat-
ing in more than two reactions are represented as additional
vertices in the graph. Process-specific genetic interactions be-
tween gene pairs are represented as additional edges between the
genes.

A functional pathway describing the production of a target
compound under a given condition is derived via the following
algorithm:

1. For each gene, g, annotated in the CDA as involved in the
compound’s production under this condition:
a. Use FBA to predict steady-state flux distribution that maxi-

mizes the production rate of the compound.
b. Let G denote the subset of the metabolic network consist-

ing of active metabolic reactions based on the predicted
flux distribution (having non-zero flux) with all currency
metabolites removed (Supplemental Table 7).

c. Find the shortest path between the target compound and
the gene g (via breadth first search in G) and add it to the
functional pathway.

2. For each gene, g, annotated in the CDA as involved in the
compound’s production using double knockout under this
condition, that is backed up by gene b:
a. Repeat steps a–c while knocking out the backup gene b.
b. Add a synthetic sick interaction between g and b to the

functional pathway.

Experimental procedures
The single gene deletion strains were in the BY4741 strain back-
ground (MATa his3�1 leu2�0 met15�0 ura3�0) and were ob-
tained from Open Biosystems. The CIT3/CIT1 and CAR2/PRO2
double gene deletion strains were constructed in a single gene
deletion strain background (cit3� or car2�) using the standard
one-step method using LEU2 as a marker (Christianson et al.
1992; Baudin et al. 1993). All the single and double deletion
strains were verified using PCR with the appropriate gene and
marker-specific primers (Winzeler et al. 1999). Growth rates of
wild type and gene deletion strains were evaluated by using the
Bioscreen C system (Thermo Labsystems). Minimal medium (Van
Hoek et al. 1998) with the appropriate auxotrophic supplements
for the BY4741 background (methionine, leucine, histidine, and
uracil) and additional supplements specific to each experiment
(alanine, glutamine, proline, ornithine) was used to test growth
in aerobic conditions. In the experiments involving the car2�,
pro2�, and car2�pro2� strains (Fig. 5; Supplemental Material)
minimal media without ammonium sulphate was used in order
to avoid nitrogen catabolite repression of proline uptake (me-
thionine, leucine, and histidine were provided in excess as nitro-
gen sources). Maximum specific growth rates and ODs were de-
termined using the Bioscreen C system based on at least three
independent 48-h growth curves obtained as described in Herr-
gard et al. (2006).
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