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Abstract

In this study we propose a novel approach for phasing geestgper long regions, which is based on
combining information from local predictions on short, da@ping regions. The phasing is done in a way
which maximizes a natural maximum likelihood criterion. Ang other things, this criterion takes into ac-
count the physical length between neighboring SNPs. Wadudive a confidence score to each position of
the prediction, and use correlation information from thérerpopulation to correct low confidence predic-
tions. We evaluated our algorithm on two real datasets usinglifferent measures. Our results demonstrate
the effectiveness of the approach. In all our tests we sagifly outperformed the PHASE [20] method.
Our method is publicly available via a webservehat p: / / ww. cal i t 2. net/ conpbi o/ hap/ .

1 Introduction

Single nucleotide polymorphisms (SNPs) are differencesyss the population, in a single base, within
an otherwise conserved genomic sequence. Approximateiyitlion common SNPs [15, 7], each with a
frequency of 10% to 50%, account for the majority of the vidwia between DNA sequences of different
people [17]. Variation in the allelic content of SNPs aresnfassociated with medical condition. Thus,
efficient and accurate methods for SNP typing are of greaicdi, scientific and commercial value.

The sequence of alleles in contiguous SNP positions alomgemmsomal region is calledraplotype
For diploid organisms, two haplotypes make ugemotypewhich is the list of allele-pairs along the chro-
mosomal segment. The genotype contains information solefthe combination of alleles in a given site
and not on the association of each allele with one of the twormmbsomes, also called iphase Current
technology, suitable for large scale polymorphism scregnbbtains the genotype information at each SNP,
but not its phase. The latter information can be obtainedcainaiderably higher cost [17]. It is therefore
desirable to develop efficient methods for inferring hagbets from genotype information.

Numerous approaches have been suggested in the literattesdive haplotypes from genotype data.
These methods include the seminal approach of Clark [1kimpany approaches [8, 9, 12], maximum
likelihood methods [4, 5, 11, 14], statistical methods sasPHASE [20] and HAPLOTYPER [16], and
perfect phylogeny-based approaches [10, 3]. All these odgstiperform very well across short genomic
regions with limited diversity (see Figure 1), but few exddn large regions with high diversity. Consider
for example the entiré03 SNPs in thes16KB region examined in [2]. Out of th@58 haplotypes in the
population, the most common haplotype only occursimdividuals andL69 haplotypes occur only in one
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individual. Indeed, the switch distance of the state-efdint PHASE [20] over this long region is about
11% (See Section 5). As the effort to characterize humartian will be a tremendous undertaking [15],
methods for haplotyping long genomic regions will be esséfdr analyzing data from large-scale genotype
studies.

In this paper, we propose a novel method, HAP-TILE, for piguédbng genomic regions. Our method is
based on using accurate phase predictions over short ppértaregions, obtained by any extant method, to
recover haplotypes over long regions. We present an eftidi@gramic programming algorithm for optimally
combining the overlapping local predictions with respecatnatural maximum likelihood criterion. The
maximum likelihood criterion takes into account an estinaftthe accuracy of the prediction based on the
physical length of the region and the entropy of the distidmof the haplotypes therein. To the best of our
knowledge, the physical distance between neighboring SWRish is an extremely valuable information
for phase reconstruction, was never used in previous hgpta algorithms. To illustrate its importance,
consider for example the data of Dayal. [2]. The distance between SNPs 98 and 99 is 133KB, while the
distance between SNPs 6 and 7 is only 38 bases. Clearly, ghieracorrelation between SNRsand?7 is
higher than the a-priori correlation between SNMBR®nd99.

At each point of our tiled prediction, we assign a confiderom#es, based on the consistency of the local
haplotype predictions with the global one at that point. Toefidence scores reflect an estimation of the
correctness of the prediction in each position. These scgaificantly improve the usability of the system
since in many cases, haplotype resolution is inherentlyigmolois. For instance, such a case occurs when
two heterozygous positions are separated by a very lontglstoé homozygous positions. In these cases the
confidence scores allow a user to determine which part ofibdigtion is reliable.

After performing the tiling and computing the confidenceresp we are typically left with phased
genotypes consisting of high confidence regions separatéal\bconfidence regions. We rephase the low
confidence regions by using correlation information frora émtire population, enhancing the accuracy of
our predictions.

Our method follows similar intuitions to the HAPLOTYPER rhet [16], which was used subsequently
in PL-EM [18]. In the patrtition-ligation (PL) method, a lomggion is partitioned into a set of short regions;
each of the regions is phased; and neighboring regions engptiiased together recursively until a complete
haplotype is reconstructed. One deficiency with the PL neeththat the short regions are chosen arbitrarily,
and due to the nature of the ligation step, the method is natageed to produce a global optimum.
In contrast, our method considers predictions over all iptesshort region segments, and uses a tiling
technique that is guaranteed to find a solution with maximikadihood.

We applied our method to two real datasets. We compared tfierpance of HAP-TILE to that of
the popular PHASE method [20]. Throughout our tests, HAPETproduced significantly more accurate
results according to two figures of merit. HAP-TILE is publiavailable via a webserver at
http://ww. calit?2. net/conpbio/ hap/.

The rest of the paper is organized as follows: Section 2 ptesaur probabilistic model for local hap-
lotype predictions over a given region, and the computatipnoblem of computing a maximum likelihood
solution to the haplotyping problem under this model. Sec8 studies the complexity of the latter problem
and gives a dynamic programming solution for it. Section #itlethe steps of our practical haplotyping
algorithm. Finally, Section 5 presents our results on reshsets.

2 The Generative Probabilistic Model

In this section we define a probabilistic model for the getiencof local predictions of phasing algorithms
given a set of genotypes over some genomic region. We focumsnamy SNPs (having only two alleles).
We use the following notation: A haplotyd# is a binary string. A genotyp€' is a string over the alphabet
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Figure 1: Haplotype diversity as a function of region lenfith the data of Dalyet al. [2]. Each point
corresponds to a region. The x-axis shows the length of thiemean kilobases and the y-axis shows the
entropy of the haplotype distribution. For shorter regiahg entropy of the distribution is smaller, and the
haplotypes are less diverse.

{0,1,2}. We say that a genotyp& € {0,1,2}" is compatiblewith the haplotypedi,, H2 € {0, 1}", if for
everyi the following two conditions hold: (1) I&Z(¢) = 1 or G(¢) = 0, i.e.,: is ahomozygougosition,
thenH, (i) = H2(i) = G(i); and (2) ifG(:) = 2, i.e.,i is anheterozygougposition, thenH; (i) # Ha(7). If
H,, H, are compatible witlG we say tha{ H,, H>) is aphaseof G.

LetGy,. .., Gt be the input genotypes, where the (true) phase;o (F;*, M;*). We conside(n—k-+1)
windows, Wy, W1, ..., W, , each of lengttk, where windowW, contains positions+ 1,...,l + k. For
every genotypes;, and every window;, the model generates two haplotyp#é, H:, € {0,1}*, which
we call thelocal predictionsof window W;. At first, H¢,(j) = M} (L + j) andHi,(j) = Ff (L + j), that is,
H{, andH{, are simply the copies of the two haplotypes in those positivve then swap the values B,
andH?, with probability%. Therefore, the resulting haplotypes satisfy that withoaiaility % H{, is a copy
of F; (in the corresponding positions) aif, is a copy ofM;, and with probability% it is the other way
around. Finally, we independently swap the value#gf(j) and Hi,(5) with probability p < % for every
position1 < j < k.

Suppose now thaf¢,, Hi, are local predictions for the genotypes, generated asitiedcabove, where
i=1,...,tandl = 0,...,n — k. Let(Fy, M,),...,(F;, M) be a suggested phasing of the genotypes.
Then the log likelihood of this solution according to our rebis:

t n—k

. . . p
L= [min{hjy,hi}log - — +klog(1 -~ p))
=1 1=0

wherehj,, for b = 0,1, is the total number of disagreements betwégpand F* and betweerd{, ), and

M?, at positiond + 1,...,1 + k.
Our goal is to find a solution with maximum likelihood. Sintetikelihood function decomposes over
the individuals, we can maximize it separately for eachviadial. For thei-th individual, this amounts to



finding a pair of haplotypegF?, M?), for which 3.7 min{h,, hi,} is minimized. This gives rise to the
following problem:

Problem 1 (Minimum Conflict Phasing (MCP)). Given an unphased genotypgand a set of local pre-
diction for it, each of which is compatible wii, find two haplotypes that are compatible withand
minimize the number of disagreements with the local prieatist

3 The Minimum Conflict Phasing Problem

In this section we study the Minimum Conflict Phasing prohldrirst, we prove that the problem is NP-
hard. We then provide a linear time algorithm for it when thedth of a local prediction is fixed.

Theorem 3.1. Minimum Conflict Phasing is NP-hard.

Proof. We give a reduction from MAX-CUT. Lek K = (V,E),r > be an instance of MAX-CUT.
Define an instance of MCP as follows: We set the window lerigtio |V | 4+ 2|E|, and the length of
the genotyper to |V| + 4|E| — 1. Thus, the total number of windows is— k + 1 = 2|E|. We let
P = {2|E| +1,...,2|E| + |V|} be the set of positions shared by all windows, which we eaftex
positions For convenience, we refer to positi@nE| + ¢, corresponding to verteke V, asv;. We define
the genotype> as having missing entries over all vertex positions, anddabmozygous with a value of
1 elsewhere. With every edgec E we associate two arbitrary windowg,, W.. If e = (3, j), the local
predictions for the two window®,, W are set in the following way: LeH;, H, and H;, H} be the two
pairs of haplotypes corresponding to the two windows. Faitmmsv;,v; we setH;(v;) = Hi(v;) = 0,
Hi(vj) = Hi(vj) = 1, Hy(v;) = Ha(v;) = 1 andH,(v;) = Hy(v;) = 0. For every other vertex position
I we setH;(l) = Hs(l) = 0 andH{(l) = Hj(l) = 1. In every non-vertex position all windows are
homozygous with valug.

We now claim that has a maximum cut with size at leasff the MCP instance has a solution with at
most2(|E||V| — r) disagreements. Suppose there is phagsg with at most2(|E||V| — r) disagreements.
In particular, consider a pha#’, M) that induces a minimum number of disagreements. W.l.amgevery
vertex positionw; we haveF (v;) # M (v;). Consider the cut induced by the st {i € V | F(v;) = 1}
of vertices, whose corresponding positions were assigrned™l Let s denote the number of edges crossing
the cut. For every edg€s,l2) € E, if F(v;,) # F(v;,) then the number of conflicts with the windows
W., W/ in positionsy;, anduv, is zero. IfF(v;,) = F(v,), then the number of disagreements is four. For
every other vertex position, the number of conflicts with, W! is exactly two, and for every non-vertex
position the number of conflicts with,, W/ is zero. Therefore, the total number of conflicts is

4{(h,12) € B|F (v,) = F(v,)}| + 2(|V| = 2)| B[ = 2|E[|[V] — 2s < 2[E[[V] - 2r.

Conversely, given a c(tS, S‘) of size at least, we defineF' to have value 1 in non-vertex positions. For
a vertex positiorv; we defineF'(v;) = 1iff € S, andM(v;) = 1iff i ¢ S. It is easy to verify that the
number of disagreements induced by this solution is at 2@tV | — 2r. O

3.1 A Dynamic Programming Solution

We now provide a linear time dynamic programming solutioMtoP when the size of the windohis fixed.
We assume that we are given a genotgpef lengthn, and local predictiongZy;, Hy; for0 <1 <n — k.
In what follows, we describe the construction of one of thplbypesF. The other haplotypé/ can be
derived fromF' andG in a straightforward manner.

Denote byS(j,r) the best haplotype assignment for the fjrst &£ positions inF', where the lask bits
arer = rq,...,r;. FOrevery assignmemt=rq,...,r; to F at positiongj+1, ..., j+k, denote byh(7,7)
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the total number of disagreements betwé#j; andr and betweert(; _); and, wherer is the implied
assignment td// at these positions. Léi(j,7) = min{ho(j,7), h1(j,r)}. Then the following recurrence
formula givesS(j + 1,r):

S(j + 1, (7’1, - ,Tk)) = minb:(],l {S(j, (b, Tly... ,rk,l)) + h(] + 1, (7’1 .. rk))} ,

whereS(0,7) = h(0,r) for all r. It is easy to computé(y, (r1 . ..rg)) for every possiblegj andr in time
O(2*n). Using the recurrence formula we can fiin — k, ) for all ». By tracing the solution that leads
to a minimal value toS(n — k,r) (over all values of-), we can reconstruct the haplotypes that attain the
maximum likelihood.

4 The Practical Algorithm

We devised a four-step method, called HAP-TILE, for phagiegotype data, which is based on the dy-
namic programming algorithm presented in Section 3.1. HAEE starts by computing local predictions
for all possible short segments of the genotyped regiondugrigth 12). It then uses the dynamic program-
ming algorithm to tile the local predictions into completaplotype predictions. The third step computes
confidence scores for each position in the prediction. KinAlAP-TILE uses information from the entire
population to correct low confidence predictions. Each efdteps is detailed below.

4.1 Computing Local Haplotype Predictions

We scan the genotypes with a sliding window and compute faredlictions in each window. In practice, we
do not use a fixed-size window, but rather use all possiblel@insizes from 2 td. (whereL = 12). This

is needed since the density of heterozygous SNPs may vasydesably along the typed region. Hence, at
every SNPj, we havelL — 1 local predictions starting at this SNP. With each local preoh we associate

a confidence level(j, k), which reflects the probability that a local prediction aidgh £ that starts at SNP

j is correct.

The estimation of these confidence levels assumes thatshalieerse the haplotypes in a region are,
the more accurate their prediction is. We compute a configléenel as the product of two figures. The
first is an a-priori estimate of the probability of havingastg correlation in a certain region based on its
physical length. We use an exponential distribution fos tegtimate, as commonly used for modeling
the occurrence of recombinations. This allows us to take &wcount the distance between SNPs in our
predictions. Returning to our example on the data of [2]alqgwedictions that span SNPs 98 and 99 will
have lower confidence than predictions that span SNPs 6 arith&.second figure is an estimate of the
probability to have such a phase prediction given that the idegenerated by random mating of individuals
from the population, whose sample we observe. This estimatemputed as in [3]. This in turn, can be
shown to be equivalent to the entropy of the haplotype distion.

In order to combine the estimated confidence levels into yimawhic programming algorithm, we rede-
fine h(j,r) as follows: Using the notation of Section 3.1, k{j,r) be the total number of disagreements
for a prediction of lengtti. We define

L

h(j,r) =Y p(j, ) min{hj(5,r), hi (4,7)}

=2



4.2 Computing Global Prediction Confidence Scores

Next, we assign two confidence scores to our global predistizased on the their consistency with the
local predictions. The first is site confidencewhich measures the confidence in the prediction of a specific
site in an individual. The second isphase confidencerhich measures the confidence in the predicted
phase relation between two consecutive SNPs. These tws dfp@nfidence scores correspond to different
potential sources of error. Site confidence corresponds &rar where within a local region, a single SNP
is phased incorrectly with respect to its neighboring SNHtase confidence corresponds to a more global
error, where local regions are incorrectly phased with eesfo each other.

The site confidence for positianin a given haplotype is computed as follows: lc&ti), ¢! (i) denote
the number of predictions, weighted by their confidencel&\bat are consistent with a value®br 1 in
positioni, respectively. Then the site confidence is defined as theapiitly of observing a value of! (3)
or more, assuming a null model in which each local predictibposition: is O with probability 0.5 and 1
with probability 0.5. Ifp(j,k) = 1 for all values ofj andk, then the site confidence is simply the tail of
a binomial distribution with parameter 0.5. Otherwise sitlie average probability over all possible local
predictions at positior, weighted by their likelihoods. For the next step of the atha we also compute
the probability P(¢) to have 1 in the-th position of the haplotypeP (i) = Mﬁ% wherea is a
pseudo-count.

To assess the phase confidence at posit@fra given individual P,(z), we use the following score: For
a given global prediction, we create an alternate prediatibhaplotypes that are identical up to position
and switched after positionfor the remainder of the haplotypes. We then defihé&) as the likelihood of
the original prediction divided by the sum of this likeliband the likelihood of the alternate prediction,
where the likelihood of a prediction is computed as expladimeSection 2

Sometimes, the phase between two successive SNPs is watdeolAn example of such a case is when
two heterozygous sites are separated by a very long stréthbmeozygous sites. In that case the phase
confidence score will be zero. Figure 2 shows a typical outpudur program, which provides the user
with information on the reliability of the predictions. Fekample, the 6th SNP of the first individual has
very low confidence for the heterozygous site, while the IENP has high confidence for one haplotype
but zero confidence for the other. As another example, if wesider the second individual, three regions
with relatively high confidence can be observed (with thé ¢amtaining just a single heterozygous SNP).
However, there is no confidence in their relative phasings.

4.3 Globally Correcting Low Confidence Predictions

The final step of our algorithm is to correct the predictionségions with low phase confidence, using
information from the entire population. Throughout theteetwe assume that for each individual, one
of its two haplotypes was arbitrarily chosen in advance. kVieferring to a site confidence at a certain
position of an individual, we refer to the site confidencetfas chosen haplotype.

For an individuall and positioni, we consider a window of siz2L around:. The idea is to use the
window information for the entire population to compute expected number of individual§! (i), that are
phased in the same mannei aand compare it to the expected number of individuBI;), that are phased
differently. Formally, denote by (4) anszﬂ(z') the likelihood estimates that we computed for individual
and positiori (see Section 4.2). For two individuals, h, let Py, 5,(i) denote the probability that; and
hs have the same value at positibriThat is, Py, j,(i) = P (i) P2 (i) + (1 — PP (3))(1 — P"2(3)). Then

i+L i i+L
S'G) = P@)+ Y [BG) [ Pk +0-B@) [[ Puk) [T O Pauk))]
h#l k=i—L+1 k=i—L+1 k=i+1



1341MF13 GGTTTGTGATGCGGT CCTGCTGCTCTCCCTTTTGOCGCCTCA
1341MF13 GAGTTCTGGGT TGGT CAGGCCACTTTTGCTTCTGCAGCCTCA
Conf 1 -||--]--{7[[9---11--1]--1-11---]---]------
Conf 2 -34--1--60939---99--99--9-99---9---9------
Conf X - xxxx444655333337555533333411112222----- - -
1341MML4 AGGTTCCGATTTGGTCAGGCCACTTTTGI TTTTGOCGCTTCA
1341MML4 AGTTTCTCATTTAGTCAGGCCACTTTTCCTCTTGOCGCCTCA

Conf 1 --f-=-||-=mn|-mmmmmmmeees 1] === |-~
Conf 2 R L - L 99-9------- 6- - -
Conf X - - 5555855555 X X X X XX XX XXX XXXXTTTXXXXXXXX~- - - -

Figure 2: A sample output of confidence scores for two indigld from region 53a in the Gabriet al.

[6] data. The first two lines show the predicted haplotypeke fext two lines give the site confidences
and the last line gives the phase confidence. A pair of dashigses 3 and 4 (site confidences) represents
a homozygous site. A single vertical line in the third ling@nesents a heterozygous site, with the site
confidence for the two predictions in the fourth line. A pdimambers represents the site confidences for
missing genotypes. The format was designed so that a useasiy observe which sites are homozygous,
heterozygous or missing. The phase confidence is reprelskeynt@ number, or “x” for zero confidence. All
confidences values are linearly scaled from 0 to 9 (in ordéit ioto a single position in the output).

i i+L
D'(i) = (1-PYi))+ D [BMi) [ Peak) J] @ Paalk)) +
h#l k=i—L+1 k=i+1
i+L
(1=pB@) [ Puslk)
k=i—L+1

where homozygous sites are ignored in the computation. Vitelswhe phasing in positioniff S'(i) <
D!(i). This step is executed in parallel on all individuals ancitpmss.

5 Experimental Results

We applied our algorithm to two real datasets, and compasgubiformance to that of PHASE [20]. The first
dataset contains the genotypes of 129 mother, father atwitdbs from a European-derived population [2,
19]. The data was collected over a 500KB region of chromossg3d, containind03 SNPs, in an attempt
to identify a genetic risk factor for Crohn’s disease. A dfigant portion of the genotype data0(03%) is
missing. For evaluation purpose, we focused on the chilgesrotypes, and used the pedigree information
on the trios to partially infer their true haplotypes, as3ih [

Our second dataset consists of populatidrend D from the data of Gabriedt al. [6]. Each population
contains approximatel$000 SNPs, partitioned into 62 regions. Populatidonsists 083 individuals from
12 multi-generational pedigrees of European ancestry andlptipn D consists of0 individuals from30
trios from Yoruba. Again, we used the available pedigreerimfation to partially infer the true haplotypes.
In some cases for populatiof, there are Mendelian conflicts in the resolution of the ragdtherational
pedigrees. For these cases, we throw out the entire pedigeeenly report results of predictions over the
non-conflicting pedigrees. Note that in our experimentshis data we used all available individuals, due
to the small number of independent ones.

We evaluated the quality of our predictions using siagtch distanceneasure [13], which is well suited
for measuring errors over long regions. The switch distameasures the number of phase switches that
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separate the predicted from the correct haplotypes. Cenaidet o6 SNPs where the correct haplotypes
areAAAAAA andGGGGGGE. A prediction of AAAGGG andGGG A A A would have a switch distance
of 1, while a prediction ofAGAAAA andG AGGGG would have a switch distance 2f Since the number
of heterozygous genotypes vary per individual, for evadutwe report the total switch distance among all
individuals divided by twice the number of heterozygoussih the data.

We compared the accuracy of our predictions to that of theupo@®HASE method [20]. The average
switch distances obtained by the algorithms on each of ttesdes are summarized in Table 5(A). A more
detailed comparison on the data of Gabagehl. [6] is given in Table 2. Notably, HAP-TILE outperforms
PHASE consistently, over all our experiments, and its dwilistance was on average smaller by al30%t
than that of PHASE.

Dataset HAP-TILE | PHASE Dataset HAP-TILE | PHASE

Daly et al.[2] 0.0599 0.1091 Daly et al.[2] 0.0373 0.0522

Gabrielet al. [6](A) 0.0525 0.0621 Gabrielet al. [6](A) 0.0563 0.0593

Gabirielet al. [6](D) 0.0798 0.1027 Gabirielet al. [6](D) 0.0828 0.1059
A B

Table 1: Comparison between HAP-TILE and PHASE [20] on diffe datasets. For each dataset, shown
are the average switch distance (A) and the average misgtande (B). The smaller distance appears in
bold-face.

We also evaluated the accuracy of the algorithms in predjathissing data. To this end we devised
a missing distanceneasure, which follows the same intuitions of switch diseanFor each sité with
missing data, it computes the number of errors in the predittaplotype, by first correcting its phase
using switches up to site— 1 (including it), and counting the number of errors inducedsda:. These
counts are then averages over all missing sites. For exaegisider as above a set®SNPs where the
correct haplotypes ardAAAAA andGGGGGQG. If the third position is a missing site and the remaining
positions are heterozygous, the number of errors for thdigtiens AAGAAA and GGAGGG would be
2, while the number of errors for the predictiochGGAAA andGAAGGG would be0 since if we correct
the heterozygous sites up to the second position (by peirigrenswitch in the second position), the missing
data would be predicted correctly.

The results of comparing the performance of HAP-TILE and FHAN predicting missing data are
shown in Table 5(B). Detailed results on the data of Galwiedl. [6] are given in Table 3. Again, our
algorithm consistently outperforms PHASE over all dataiset

Finally, we examined the relation between the confidenceishassigned to a position and the correct-
ness of the prediction at that position. To this end we coegptite switch distance of the predictions for
different confidence thresholds, where predictions withgghconfidence below the threshold were omit-
ted. Figure 3 depicts this relation. As the figure shows, nobshe errors are made on low confidence
predictions.
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Region Number | HAP-TILE PHASE Region Number HAP PHASE
of Switch Switch of Switch Switch

SNPs Distance Distance SNPs Distance | Distance

1a 48 0.0489 0.0682 1a 50 0.1019 0.0734
1b 13 0.0648 0.0139 1b 16 0.0488 0.0689
2a 66 0.0448 0.0266 2a 60 0.0705 0.0986
2b 14 0.0565 0.0417 2b 13 0.1304 0.1088
3a 95 0.0407 0.0901 3a 76 0.0602 0.1086
4a 90 0.0415 0.0590 4a 84 0.0590 0.0930
7a 52 0.0620 0.0752 7a 58 0.0513 0.0957
b 12 0.0402 0.0460 7b 13 0.0878 0.0336
8a 58 0.0717 0.1405 8a 51 0.1092 0.1071
9a 37 0.1190 0.0655 9a 63 0.0749 0.0950
10a 59 0.0186 0.0425 10a 47 0.0441 0.1583
1lla 37 0.0113 0.0415 1lla 40 0.0546 0.1167
12b 9 0.0588 0.0000 12b 11 0.0309 0.0854
13a 21 0.0758 0.0606 13a 49 0.0762 0.1062
14a 32 0.0652 0.0185 14a 59 0.0813 0.1086
15a 37 0.0309 0.0714 15a 42 0.0542 0.1068
16a 14 0.0355 0.0129 16a 13 0.0883 0.1039
16b 53 0.0565 0.0687 16b 52 0.0905 0.0876
17a 70 0.0333 0.0097 17a 63 0.0837 0.1294
18a 73 0.0462 0.0536 18a 53 0.0833 0.1136
19a 74 0.0366 0.0701 19a 58 0.0647 0.1106
20a 74 0.0193 0.0227 20a 43 0.0732 0.0802
2la 33 0.1404 0.2544 2la 21 0.0810 0.1091
21b 8 0.1176 0.0882 21b 6 0.0441 0.0417
22a 64 0.0241 0.0385 22a 55 0.0466 0.0701
23a 72 0.0808 0.1016 23a 71 0.0979 0.1209
24a 95 0.0276 0.0407 24a 96 0.0649 0.1260
25a 14 0.0520 0.0360 25a 14 0.0385 0.0710
25b 16 0.0280 0.0000 25b 21 0.0399 0.0848
26a 57 0.0650 0.0669 26a 62 0.0836 0.0841
27a 62 0.0314 0.0512 27a 70 0.0613 0.0833
28a 77 0.0357 0.0581 28a 84 0.0538 0.1219
29a 91 0.0244 0.0347 29a 78 0.0679 0.0582
30a 69 0.0537 0.0396 30a 30 0.0515 0.0983
3la 25 0.0244 0.2195 3la 23 0.0455 0.0730
31b 43 0.0490 0.0168 31b 35 0.0342 0.0704
32a 91 0.0618 0.0809 32a 76 0.0855 0.0926
33a 56 0.0203 0.0645 33a 34 0.0424 0.0972
33b 11 0.0952 0.0238 33b 1 0.0000 0.0000
34a 82 0.0409 0.0736 34a 46 0.0392 0.0579
35a 46 0.0506 0.0326 35a 59 0.0419 0.1047
36a 50 0.0147 0.0147 36a 52 0.0336 0.1083
37a 46 0.0393 0.0436 37a 46 0.0834 0.0820
38a 74 0.0429 0.0425 38a 73 0.0914 0.1126
39%a 71 0.0329 0.0451 39a 56 0.0549 0.0778
39b 9 0.0000 0.0000 39b 9 0.0164 0.0519
40a 79 0.0421 0.0211 40a 74 0.0844 0.0815
41a 124 0.0476 0.1296 41a 114 0.0882 0.1327
42a 94 0.0723 0.1201 42a 89 0.1266 0.1452
43a 44 0.1003 0.0534 43a 48 0.1152 0.0950
44a 38 0.0325 0.0275 44a 41 0.1015 0.1094
44b 49 0.0738 0.0627 44b 48 0.0715 0.1060
45a 60 0.0980 0.0723 45a 67 0.0849 0.1330
46a 7 0.0418 0.0411 46a 64 0.0992 0.0606
47a 44 0.1426 0.0946 47a 42 0.1466 0.1520
48a 58 0.0810 0.0780 48a 61 0.1348 0.1156
49a 25 0.1000 0.2000 49a 27 0.1274 0.1605
50a 71 0.1043 0.0974 50a 60 0.1218 0.1343
5la 58 0.0477 0.0724 5la 50 0.0895 0.0938
52a 52 0.1268 0.1175 52a 34 0.1564 0.1088
53a 42 0.1191 0.0947 53a 54 0.1263 0.1160
54a 62 0.1057 0.0741 54a 56 0.1587 0.1170
TOTAL 3277 0.0525 0.0621 TOTAL 3061 0.07980 0.1027

A

Table 2: Comparison between HAP-TILE and PHASE [20] on the ddGabrielet al. [6], populations A
(panel A) and D (panel B). Shown are the switch distancesradaby the two algorithms for each region,
and the average distance over all regions.
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Region Number | HAP-TILE PHASE Region Number HAP PHASE
of Missing Missing of Missing Missing
SNPs Distance Distance SNPs Distance | Distance
1a 48 0.0450 0.0670 1a 50 0.1054 0.0804
1b 13 0.0628 0.0126 1b 16 0.0597 0.0683
2a 66 0.0460 0.0273 2a 60 0.0706 0.0987
2b 14 0.0588 0.0420 2b 13 0.1267 0.0951
3a 95 0.0478 0.0850 3a 76 0.0657 0.1055
4a 90 0.0440 0.0597 4a 84 0.0610 0.1052
7a 52 0.0796 0.0679 7a 58 0.0597 0.1065
b 12 0.0509 0.0509 7b 13 0.0861 0.0300
8a 58 0.0782 0.1195 8a 51 0.1095 0.1072
9a 37 0.1062 0.0510 9a 63 0.0721 0.1047
10a 59 0.0257 0.0394 10a 47 0.0507 0.1642
1lla 37 0.0182 0.0364 1lla 40 0.0614 0.1189
12b 9 0.0556 0.0000 12b 11 0.0383 0.0942
13a 21 0.0815 0.0494 13a 49 0.0798 0.1053
14a 32 0.0623 0.0163 14a 59 0.0893 0.1084
15a 37 0.0277 0.0585 15a 42 0.0603 0.1058
16a 14 0.0523 0.0138 16a 13 0.1099 0.1083
16b 53 0.0643 0.0627 16b 52 0.0918 0.0953
17a 70 0.0390 0.0107 17a 63 0.0905 0.1319
18a 73 0.0447 0.0540 18a 53 0.0853 0.1177
19a 74 0.0446 0.0677 19a 58 0.0765 0.1194
20a 74 0.0207 0.0245 20a 43 0.0746 0.0839
2la 33 0.1348 0.2057 2la 21 0.1030 0.0793
21b 8 0.1081 0.0811 21b 6 0.0789 0.0238
22a 64 0.0308 0.0415 22a 55 0.0529 0.0749
23a 72 0.0868 0.0998 23a 71 0.0952 0.1206
24a 95 0.0289 0.0380 24a 96 0.0682 0.1305
25a 14 0.0502 0.0323 25a 14 0.0504 0.0793
25b 16 0.0545 0.0109 25b 21 0.0435 0.0813
26a 57 0.0712 0.0616 26a 62 0.0851 0.0841
27a 62 0.0338 0.0530 27a 70 0.0657 0.0861
28a 77 0.0352 0.0533 28a 84 0.0608 0.1288
29a 91 0.0268 0.0350 29a 78 0.0685 0.0704
30a 69 0.0534 0.0412 30a 30 0.0585 0.1080
3la 25 0.0206 0.2165 3la 23 0.0499 0.0670
31b 43 0.0593 0.0162 31b 35 0.0389 0.0675
32a 91 0.0676 0.0741 32a 76 0.0905 0.1016
33a 56 0.0280 0.0604 33a 34 0.0535 0.0956
33b 11 0.0980 0.0196 33b 1 0.0000 0.0000
34a 82 0.0392 0.0653 34a 46 0.0443 0.0697
35a 46 0.0504 0.0330 35a 59 0.0460 0.1078
36a 50 0.0193 0.0129 36a 52 0.0412 0.1083
37a 46 0.0447 0.0411 37a 46 0.0856 0.0928
38a 74 0.0467 0.0415 38a 73 0.0943 0.1168
39%a 71 0.0413 0.0381 39a 56 0.0590 0.0841
39b 9 0.0000 0.0000 39b 9 0.0253 0.0500
40a 79 0.0449 0.0224 40a 74 0.0834 0.0844
41a 124 0.0478 0.1185 41a 114 0.0843 0.1234
42a 94 0.0675 0.1144 42a 89 0.1328 0.1451
43a 44 0.0916 0.0427 43a 48 0.1172 0.0941
44a 38 0.0374 0.0308 44a 41 0.1030 0.1101
44b 49 0.0749 0.0556 44b 48 0.0773 0.1154
45a 60 0.1053 0.0699 45a 67 0.0886 0.1311
46a 7 0.0454 0.0410 46a 64 0.1000 0.0636
47a 44 0.1336 0.0860 47a 42 0.1422 0.1571
48a 58 0.0793 0.0728 48a 61 0.1323 0.1183
49a 25 0.1304 0.1087 49a 27 0.0935 0.1078
50a 71 0.1038 0.0931 50a 60 0.1242 0.1363
5la 58 0.0546 0.0687 5la 50 0.0899 0.0974
52a 52 0.1231 0.0966 52a 34 0.1523 0.1172
53a 42 0.1188 0.0928 53a 54 0.1319 0.1151
54a 62 0.1144 0.0638 54a 56 0.1518 0.1165
TOTAL 3277 0.0563 0.0593 TOTAL 3061 0.0828 0.1059
A

Table 3: Comparison between HAP-TILE and PHASE [20] on thea ddGabrielet al. [6], populations A
(panel A) and D (panel B). Shown are the missing distancesirwdd by the two algorithms for each region,
and the average distance over all regions.
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