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Abstract

In this study we propose a novel approach for phasing genotypes over long regions, which is based on
combining information from local predictions on short, overlapping regions. The phasing is done in a way
which maximizes a natural maximum likelihood criterion. Among other things, this criterion takes into ac-
count the physical length between neighboring SNPs. We further give a confidence score to each position of
the prediction, and use correlation information from the entire population to correct low confidence predic-
tions. We evaluated our algorithm on two real datasets usingtwo different measures. Our results demonstrate
the effectiveness of the approach. In all our tests we significantly outperformed the PHASE [20] method.
Our method is publicly available via a webserver athttp://www.calit2.net/compbio/hap/.

1 Introduction

Single nucleotide polymorphisms (SNPs) are differences, across the population, in a single base, within
an otherwise conserved genomic sequence. Approximately 10million common SNPs [15, 7], each with a
frequency of 10% to 50%, account for the majority of the variation between DNA sequences of different
people [17]. Variation in the allelic content of SNPs are often associated with medical condition. Thus,
efficient and accurate methods for SNP typing are of great clinical, scientific and commercial value.

The sequence of alleles in contiguous SNP positions along a chromosomal region is called ahaplotype.
For diploid organisms, two haplotypes make up agenotype, which is the list of allele-pairs along the chro-
mosomal segment. The genotype contains information solelyon the combination of alleles in a given site
and not on the association of each allele with one of the two chromosomes, also called itsphase. Current
technology, suitable for large scale polymorphism screening, obtains the genotype information at each SNP,
but not its phase. The latter information can be obtained at aconsiderably higher cost [17]. It is therefore
desirable to develop efficient methods for inferring haplotypes from genotype information.

Numerous approaches have been suggested in the literature to resolve haplotypes from genotype data.
These methods include the seminal approach of Clark [1], parsimony approaches [8, 9, 12], maximum
likelihood methods [4, 5, 11, 14], statistical methods suchas PHASE [20] and HAPLOTYPER [16], and
perfect phylogeny-based approaches [10, 3]. All these methods perform very well across short genomic
regions with limited diversity (see Figure 1), but few extend to large regions with high diversity. Consider
for example the entire103 SNPs in the616KB region examined in [2]. Out of the258 haplotypes in the
population, the most common haplotype only occurs in45 individuals and169 haplotypes occur only in one�School of Computer Science and Engineering, Hebrew University. Email: eeskin@cs.huji.ac.ilyCS Department, Princeton University, Princeton, NJ 08544.Email: eran@cs.princeton.edu. Most of this work was
done while the author was in UC Berkeley and ICSI.zInternational Computer Science Institute, 1947 Center St., Berkeley, CA 94704. Email:roded@icsi.berkeley.edu.
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individual. Indeed, the switch distance of the state-of-the-art PHASE [20] over this long region is about
11% (See Section 5). As the effort to characterize human variation will be a tremendous undertaking [15],
methods for haplotyping long genomic regions will be essential for analyzing data from large-scale genotype
studies.

In this paper, we propose a novel method, HAP-TILE, for phasing long genomic regions. Our method is
based on using accurate phase predictions over short overlapping regions, obtained by any extant method, to
recover haplotypes over long regions. We present an efficient dynamic programming algorithm for optimally
combining the overlapping local predictions with respect to a natural maximum likelihood criterion. The
maximum likelihood criterion takes into account an estimate of the accuracy of the prediction based on the
physical length of the region and the entropy of the distribution of the haplotypes therein. To the best of our
knowledge, the physical distance between neighboring SNPs, which is an extremely valuable information
for phase reconstruction, was never used in previous haplotyping algorithms. To illustrate its importance,
consider for example the data of Dalyet al. [2]. The distance between SNPs 98 and 99 is 133KB, while the
distance between SNPs 6 and 7 is only 38 bases. Clearly, the a-priori correlation between SNPs6 and7 is
higher than the a-priori correlation between SNPs98 and99.

At each point of our tiled prediction, we assign a confidence score, based on the consistency of the local
haplotype predictions with the global one at that point. Theconfidence scores reflect an estimation of the
correctness of the prediction in each position. These scores significantly improve the usability of the system
since in many cases, haplotype resolution is inherently ambiguous. For instance, such a case occurs when
two heterozygous positions are separated by a very long stretch of homozygous positions. In these cases the
confidence scores allow a user to determine which part of the prediction is reliable.

After performing the tiling and computing the confidence scores, we are typically left with phased
genotypes consisting of high confidence regions separated by low confidence regions. We rephase the low
confidence regions by using correlation information from the entire population, enhancing the accuracy of
our predictions.

Our method follows similar intuitions to the HAPLOTYPER method [16], which was used subsequently
in PL-EM [18]. In the partition-ligation (PL) method, a longregion is partitioned into a set of short regions;
each of the regions is phased; and neighboring regions are then phased together recursively until a complete
haplotype is reconstructed. One deficiency with the PL method is that the short regions are chosen arbitrarily,
and due to the nature of the ligation step, the method is not guaranteed to produce a global optimum.
In contrast, our method considers predictions over all possible short region segments, and uses a tiling
technique that is guaranteed to find a solution with maximum likelihood.

We applied our method to two real datasets. We compared the performance of HAP-TILE to that of
the popular PHASE method [20]. Throughout our tests, HAP-TILE produced significantly more accurate
results according to two figures of merit. HAP-TILE is publicly available via a webserver at
http://www.calit2.net/compbio/hap/.

The rest of the paper is organized as follows: Section 2 presents our probabilistic model for local hap-
lotype predictions over a given region, and the computational problem of computing a maximum likelihood
solution to the haplotyping problem under this model. Section 3 studies the complexity of the latter problem
and gives a dynamic programming solution for it. Section 4 details the steps of our practical haplotyping
algorithm. Finally, Section 5 presents our results on real datasets.

2 The Generative Probabilistic Model

In this section we define a probabilistic model for the generation of local predictions of phasing algorithms
given a set of genotypes over some genomic region. We focus onbinary SNPs (having only two alleles).
We use the following notation: A haplotypeH is a binary string. A genotypeG is a string over the alphabet
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Figure 1: Haplotype diversity as a function of region lengthfor the data of Dalyet al. [2]. Each point
corresponds to a region. The x-axis shows the length of the region in kilobases and the y-axis shows the
entropy of the haplotype distribution. For shorter regions, the entropy of the distribution is smaller, and the
haplotypes are less diverse.f0; 1; 2g. We say that a genotypeG 2 f0; 1; 2gn is compatiblewith the haplotypesH1;H2 2 f0; 1gn, if for
everyi the following two conditions hold: (1) IfG(i) = 1 or G(i) = 0, i.e., i is a homozygousposition,
thenH1(i) = H2(i) = G(i); and (2) ifG(i) = 2, i.e.,i is anheterozygousposition, thenH1(i) 6= H2(i). IfH1;H2 are compatible withG we say that(H1;H2) is aphaseof G.

LetG1; : : : ; Gt be the input genotypes, where the (true) phase ofGi is (F �i ;M�i ). We consider(n�k+1)
windows,W0;W1; : : : ;Wn�k, each of lengthk, where windowWl contains positionsl + 1; : : : ; l + k. For
every genotypeGi, and every windowWl, the model generates two haplotypesHi0l;Hi1l 2 f0; 1gk , which
we call thelocal predictionsof windowWl. At first, Hi0l(j) = M�i (l + j) andHi1l(j) = F �i (l + j), that is,Hi0l andHi1l are simply the copies of the two haplotypes in those positions. We then swap the values ofHi0l
andHi1l with probability 12 . Therefore, the resulting haplotypes satisfy that with probability 12 ,Hi0l is a copy
of F �i (in the corresponding positions) andHi1l is a copy ofM�i , and with probability12 it is the other way
around. Finally, we independently swap the values ofHi0l(j) andHi1l(j) with probability p < 12 for every
position1 � j � k.

Suppose now thatHi0l;Hi1l are local predictions for the genotypes, generated as described above, wherei = 1; : : : ; t andl = 0; : : : ; n � k. Let (F1;M1); : : : ; (Ft;Mt) be a suggested phasing of the genotypes.
Then the log likelihood of this solution according to our model is:L = tXi=1 n�kXl=0 [minfhi0l; hi1lg log p1� p + k log(1� p)];
wherehibl, for b = 0; 1, is the total number of disagreements betweenHibl andF i and betweenHi(1�b)l andM i, at positionsl + 1; : : : ; l + k.

Our goal is to find a solution with maximum likelihood. Since the likelihood function decomposes over
the individuals, we can maximize it separately for each individual. For thei-th individual, this amounts to
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finding a pair of haplotypes(F i;M i), for which
Pn�kl=0 minfhi0l; hi1lg is minimized. This gives rise to the

following problem:

Problem 1 (Minimum Conflict Phasing (MCP)). Given an unphased genotypeG and a set of local pre-
diction for it, each of which is compatible withG, find two haplotypes that are compatible withG and
minimize the number of disagreements with the local predictions.

3 The Minimum Conflict Phasing Problem

In this section we study the Minimum Conflict Phasing problem. First, we prove that the problem is NP-
hard. We then provide a linear time algorithm for it when the length of a local prediction is fixed.

Theorem 3.1. Minimum Conflict Phasing is NP-hard.

Proof. We give a reduction from MAX-CUT. Let< K = (V;E); r > be an instance of MAX-CUT.
Define an instance of MCP as follows: We set the window lengthk to jV j + 2jEj, and the length of
the genotypen to jV j + 4jEj � 1. Thus, the total number of windows isn � k + 1 = 2jEj. We letP = f2jEj + 1; : : : ; 2jEj + jV jg be the set of positions shared by all windows, which we callvertex
positions. For convenience, we refer to position2jEj + i, corresponding to vertexi 2 V , asvi. We define
the genotypeG as having missing entries over all vertex positions, and being homozygous with a value of
1 elsewhere. With every edgee 2 E we associate two arbitrary windowsWe;W 0e. If e = (i; j), the local
predictions for the two windowsWe;W 0e are set in the following way: LetH1;H2 andH 01;H 02 be the two
pairs of haplotypes corresponding to the two windows. For positionsvi; vj we setH 01(vi) = H1(vi) = 0,H1(vj) = H 01(vj) = 1, H 02(vi) = H2(vi) = 1 andH2(vj) = H 02(vj) = 0. For every other vertex positionl we setH1(l) = H2(l) = 0 andH 01(l) = H 02(l) = 1. In every non-vertex position all windows are
homozygous with value1.

We now claim thatK has a maximum cut with size at leastr iff the MCP instance has a solution with at
most2(jEjjV j � r) disagreements. Suppose there is phase ofG with at most2(jEjjV j � r) disagreements.
In particular, consider a phase(F;M) that induces a minimum number of disagreements. W.l.o.g., for every
vertex positionvi we haveF (vi) 6= M(vi). Consider the cut induced by the setS = fi 2 V j F (vi) = 1g
of vertices, whose corresponding positions were assigned 1in F . Lets denote the number of edges crossing
the cut. For every edge(l1; l2) 2 E, if F (vl1) 6= F (vl2) then the number of conflicts with the windowsWe;W 0e in positionsvl1 andvl2 is zero. IfF (vl1) = F (vl2), then the number of disagreements is four. For
every other vertex position, the number of conflicts withWe;W 0e is exactly two, and for every non-vertex
position the number of conflicts withWe;W 0e is zero. Therefore, the total number of conflicts is4jf(l1; l2) 2 EjF (vl1) = F (vl2)gj+ 2(jV j � 2)jEj = 2jEjjV j � 2s � 2jEjjV j � 2r:

Conversely, given a cut(S; �S) of size at leastr, we defineF to have value 1 in non-vertex positions. For
a vertex positionvi we defineF (vi) = 1 iff i 2 S, andM(vi) = 1 iff i 62 S. It is easy to verify that the
number of disagreements induced by this solution is at most2jEjjV j � 2r.
3.1 A Dynamic Programming Solution

We now provide a linear time dynamic programming solution toMCP when the size of the windowk is fixed.
We assume that we are given a genotypeG of lengthn, and local predictionsH0l;H1l for 0 � l � n� k.
In what follows, we describe the construction of one of the haplotypesF . The other haplotypeM can be
derived fromF andG in a straightforward manner.

Denote byS(j; r) the best haplotype assignment for the firstj + k positions inF , where the lastk bits
arer = r1; : : : ; rk. For every assignmentr = r1; : : : ; rk toF at positionsj+1; : : : ; j+k, denote byhb(j; r)
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the total number of disagreements betweenHbj andr and betweenH(1�b)j and�r, where�r is the implied
assignment toM at these positions. Leth(j; r) = minfh0(j; r); h1(j; r)g. Then the following recurrence
formula givesS(j + 1; r):S(j + 1; (r1; : : : ; rk)) = minb=0;1 fS(j; (b; r1; : : : ; rk�1)) + h(j + 1; (r1 : : : rk))g ;
whereS(0; r) = h(0; r) for all r. It is easy to computeh(j; (r1 : : : rk)) for every possiblej andr in timeO(2kn). Using the recurrence formula we can findS(n� k; r) for all r. By tracing the solution that leads
to a minimal value toS(n � k; r) (over all values ofr), we can reconstruct the haplotypes that attain the
maximum likelihood.

4 The Practical Algorithm

We devised a four-step method, called HAP-TILE, for phasinggenotype data, which is based on the dy-
namic programming algorithm presented in Section 3.1. HAP-TILE starts by computing local predictions
for all possible short segments of the genotyped region (up to length 12). It then uses the dynamic program-
ming algorithm to tile the local predictions into complete haplotype predictions. The third step computes
confidence scores for each position in the prediction. Finally, HAP-TILE uses information from the entire
population to correct low confidence predictions. Each of the steps is detailed below.

4.1 Computing Local Haplotype Predictions

We scan the genotypes with a sliding window and compute localpredictions in each window. In practice, we
do not use a fixed-size window, but rather use all possible window sizes from 2 toL (whereL = 12). This
is needed since the density of heterozygous SNPs may vary considerably along the typed region. Hence, at
every SNPj, we haveL� 1 local predictions starting at this SNP. With each local prediction we associate
a confidence levelp(j; k), which reflects the probability that a local prediction of lengthk that starts at SNPj is correct.

The estimation of these confidence levels assumes that the less diverse the haplotypes in a region are,
the more accurate their prediction is. We compute a confidence level as the product of two figures. The
first is an a-priori estimate of the probability of having strong correlation in a certain region based on its
physical length. We use an exponential distribution for this estimate, as commonly used for modeling
the occurrence of recombinations. This allows us to take into account the distance between SNPs in our
predictions. Returning to our example on the data of [2], local predictions that span SNPs 98 and 99 will
have lower confidence than predictions that span SNPs 6 and 7.The second figure is an estimate of the
probability to have such a phase prediction given that the data is generated by random mating of individuals
from the population, whose sample we observe. This estimateis computed as in [3]. This in turn, can be
shown to be equivalent to the entropy of the haplotype distribution.

In order to combine the estimated confidence levels into the dynamic programming algorithm, we rede-
fineh(j; r) as follows: Using the notation of Section 3.1, lethib(j; r) be the total number of disagreements
for a prediction of lengthi. We defineh(j; r) � LXi=2 p(j; i)minfhi0(j; r); hi1(j; r)g
.
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4.2 Computing Global Prediction Confidence Scores

Next, we assign two confidence scores to our global predictions based on the their consistency with the
local predictions. The first is asite confidence, which measures the confidence in the prediction of a specific
site in an individual. The second is aphase confidencewhich measures the confidence in the predicted
phase relation between two consecutive SNPs. These two types of confidence scores correspond to different
potential sources of error. Site confidence corresponds to an error where within a local region, a single SNP
is phased incorrectly with respect to its neighboring SNPs.Phase confidence corresponds to a more global
error, where local regions are incorrectly phased with respect to each other.

The site confidence for positioni in a given haplotype is computed as follows: Letc0(i); c1(i) denote
the number of predictions, weighted by their confidence levels, that are consistent with a value of0 or 1 in
positioni, respectively. Then the site confidence is defined as the probability of observing a value ofc1(i)
or more, assuming a null model in which each local predictionat positioni is 0 with probability 0.5 and 1
with probability 0.5. Ifp(j; k) = 1 for all values ofj andk, then the site confidence is simply the tail of
a binomial distribution with parameter 0.5. Otherwise, it is the average probability over all possible local
predictions at positioni, weighted by their likelihoods. For the next step of the algorithm we also compute

the probabilityP (i) to have 1 in thei-th position of the haplotype:P (i) � c1(i)+�c0(i)+c1(i)+2� , where� is a
pseudo-count.

To assess the phase confidence at positioni of a given individual,Pp(i), we use the following score: For
a given global prediction, we create an alternate prediction of haplotypes that are identical up to positioni
and switched after positioni for the remainder of the haplotypes. We then definePp(i) as the likelihood of
the original prediction divided by the sum of this likelihood and the likelihood of the alternate prediction,
where the likelihood of a prediction is computed as explained in Section 2

Sometimes, the phase between two successive SNPs is unresolvable. An example of such a case is when
two heterozygous sites are separated by a very long stretch of homozygous sites. In that case the phase
confidence score will be zero. Figure 2 shows a typical outputof our program, which provides the user
with information on the reliability of the predictions. Forexample, the 6th SNP of the first individual has
very low confidence for the heterozygous site, while the 10thSNP has high confidence for one haplotype
but zero confidence for the other. As another example, if we consider the second individual, three regions
with relatively high confidence can be observed (with the last containing just a single heterozygous SNP).
However, there is no confidence in their relative phasings.

4.3 Globally Correcting Low Confidence Predictions

The final step of our algorithm is to correct the predictions in regions with low phase confidence, using
information from the entire population. Throughout the section we assume that for each individual, one
of its two haplotypes was arbitrarily chosen in advance. When referring to a site confidence at a certain
position of an individual, we refer to the site confidence forthis chosen haplotype.

For an individuall and positioni, we consider a window of size2L aroundi. The idea is to use the
window information for the entire population to compute theexpected number of individuals,Sl(i), that are
phased in the same manner asl, and compare it to the expected number of individuals,Dl(i), that are phased
differently. Formally, denote byP l(i) andP lp(i) the likelihood estimates that we computed for individuall
and positioni (see Section 4.2). For two individualsh1; h2 let Ph1;h2(i) denote the probability thath1 andh2 have the same value at positioni. That is,Ph1;h2(i) = P h1(i)P h2(i) + (1� P h1(i))(1� P h2(i)). ThenSl(i) = P lp(i) +Xh6=l[P hp (i) i+LYk=i�L+1Ph;l(k) + (1� P hp (i)) iYk=i�L+1Ph;l(k) i+LYk=i+1(1� Ph;l(k))]
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1341MF13 GGTTTGTGATGCGGTCCTGCTGCTCTCCCTTTTGCCGCCTCA
1341MF13 GAGTTCTGGGTTGGTCAGGCCACTTTTGCTTCTGCAGCCTCA
Conf 1 -||--|--|7||9---||--||--|-||---|---|------
Conf 2 -34--1--60939---99--99--9-99---9---9------
Conf X -xxxx444655333337555533333411112222-------
1341MM14 AGGTTCCGATTTGGTCAGGCCACTTTTGTTTTTGCCGCTTCA
1341MM14 AGTTTCTCATTTAGTCAGGCCACTTTTCCTCTTGCCGCCTCA
Conf 1 --|---||----|--------------||-|-------|---
Conf 2 --4---99----9--------------99-9-------6---
Conf X --5555855555xxxxxxxxxxxxxxx777xxxxxxxx----

Figure 2: A sample output of confidence scores for two individuals from region 53a in the Gabrielet al.
[6] data. The first two lines show the predicted haplotypes. The next two lines give the site confidences
and the last line gives the phase confidence. A pair of dashes in lines 3 and 4 (site confidences) represents
a homozygous site. A single vertical line in the third line represents a heterozygous site, with the site
confidence for the two predictions in the fourth line. A pair of numbers represents the site confidences for
missing genotypes. The format was designed so that a user caneasily observe which sites are homozygous,
heterozygous or missing. The phase confidence is represented by a number, or “x” for zero confidence. All
confidences values are linearly scaled from 0 to 9 (in order tofit into a single position in the output).Dl(i) = (1� P lp(i)) +Xh6=l [P hp (i) iYk=i�L+1Ph;l(k) i+LYk=i+1(1� Ph;l(k)) +(1� P hp (i)) i+LYk=i�L+1Ph;l(k)]
where homozygous sites are ignored in the computation. We switch the phasing in positioni iff Sl(i) <Dl(i). This step is executed in parallel on all individuals and positions.

5 Experimental Results

We applied our algorithm to two real datasets, and compared its performance to that of PHASE [20]. The first
dataset contains the genotypes of 129 mother, father and child trios from a European-derived population [2,
19]. The data was collected over a 500KB region of chromosome5q31, containing103 SNPs, in an attempt
to identify a genetic risk factor for Crohn’s disease. A significant portion of the genotype data (10:03%) is
missing. For evaluation purpose, we focused on the childrengenotypes, and used the pedigree information
on the trios to partially infer their true haplotypes, as in [3].

Our second dataset consists of populationsA andD from the data of Gabrielet al. [6]. Each population
contains approximately3000 SNPs, partitioned into 62 regions. PopulationA consists of93 individuals from12 multi-generational pedigrees of European ancestry and populationD consists of90 individuals from30
trios from Yoruba. Again, we used the available pedigree information to partially infer the true haplotypes.
In some cases for populationA, there are Mendelian conflicts in the resolution of the multi-generational
pedigrees. For these cases, we throw out the entire pedigreeand only report results of predictions over the
non-conflicting pedigrees. Note that in our experiments on this data we used all available individuals, due
to the small number of independent ones.

We evaluated the quality of our predictions using theswitch distancemeasure [13], which is well suited
for measuring errors over long regions. The switch distancemeasures the number of phase switches that
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separate the predicted from the correct haplotypes. Consider a set of6 SNPs where the correct haplotypes
areAAAAAA andGGGGGG. A prediction ofAAAGGG andGGGAAA would have a switch distance
of 1, while a prediction ofAGAAAA andGAGGGGwould have a switch distance of2. Since the number
of heterozygous genotypes vary per individual, for evaluation, we report the total switch distance among all
individuals divided by twice the number of heterozygous sites in the data.

We compared the accuracy of our predictions to that of the popular PHASE method [20]. The average
switch distances obtained by the algorithms on each of the datasets are summarized in Table 5(A). A more
detailed comparison on the data of Gabrielet al. [6] is given in Table 2. Notably, HAP-TILE outperforms
PHASE consistently, over all our experiments, and its switch distance was on average smaller by about30%
than that of PHASE.

Dataset HAP-TILE PHASE
Daly et al. [2] 0.0599 0.1091

Gabrielet al. [6](A) 0.0525 0.0621
Gabrielet al. [6](D) 0.0798 0.1027

Dataset HAP-TILE PHASE
Daly et al. [2] 0.0373 0.0522

Gabrielet al. [6](A) 0.0563 0.0593
Gabrielet al. [6](D) 0.0828 0.1059

A B

Table 1: Comparison between HAP-TILE and PHASE [20] on different datasets. For each dataset, shown
are the average switch distance (A) and the average missing distance (B). The smaller distance appears in
bold-face.

We also evaluated the accuracy of the algorithms in predicting missing data. To this end we devised
a missing distancemeasure, which follows the same intuitions of switch distance. For each sitei with
missing data, it computes the number of errors in the predicted haplotype, by first correcting its phase
using switches up to sitei � 1 (including it), and counting the number of errors induced onsite i. These
counts are then averages over all missing sites. For example, consider as above a set of6 SNPs where the
correct haplotypes areAAAAAA andGGGGGG. If the third position is a missing site and the remaining
positions are heterozygous, the number of errors for the predictionsAAGAAA andGGAGGG would be2, while the number of errors for the predictionAGGAAA andGAAGGG would be0 since if we correct
the heterozygous sites up to the second position (by performing a switch in the second position), the missing
data would be predicted correctly.

The results of comparing the performance of HAP-TILE and PHASE in predicting missing data are
shown in Table 5(B). Detailed results on the data of Gabrielet al. [6] are given in Table 3. Again, our
algorithm consistently outperforms PHASE over all datasets.

Finally, we examined the relation between the confidence that is assigned to a position and the correct-
ness of the prediction at that position. To this end we computed the switch distance of the predictions for
different confidence thresholds, where predictions with phase confidence below the threshold were omit-
ted. Figure 3 depicts this relation. As the figure shows, mostof the errors are made on low confidence
predictions.
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Region Number HAP-TILE PHASE
of Switch Switch

SNPs Distance Distance
1a 48 0.0489 0.0682
1b 13 0.0648 0.0139
2a 66 0.0448 0.0266
2b 14 0.0565 0.0417
3a 95 0.0407 0.0901
4a 90 0.0415 0.0590
7a 52 0.0620 0.0752
7b 12 0.0402 0.0460
8a 58 0.0717 0.1405
9a 37 0.1190 0.0655
10a 59 0.0186 0.0425
11a 37 0.0113 0.0415
12b 9 0.0588 0.0000
13a 21 0.0758 0.0606
14a 32 0.0652 0.0185
15a 37 0.0309 0.0714
16a 14 0.0355 0.0129
16b 53 0.0565 0.0687
17a 70 0.0333 0.0097
18a 73 0.0462 0.0536
19a 74 0.0366 0.0701
20a 74 0.0193 0.0227
21a 33 0.1404 0.2544
21b 8 0.1176 0.0882
22a 64 0.0241 0.0385
23a 72 0.0808 0.1016
24a 95 0.0276 0.0407
25a 14 0.0520 0.0360
25b 16 0.0280 0.0000
26a 57 0.0650 0.0669
27a 62 0.0314 0.0512
28a 77 0.0357 0.0581
29a 91 0.0244 0.0347
30a 69 0.0537 0.0396
31a 25 0.0244 0.2195
31b 43 0.0490 0.0168
32a 91 0.0618 0.0809
33a 56 0.0203 0.0645
33b 11 0.0952 0.0238
34a 82 0.0409 0.0736
35a 46 0.0506 0.0326
36a 50 0.0147 0.0147
37a 46 0.0393 0.0436
38a 74 0.0429 0.0425
39a 71 0.0329 0.0451
39b 9 0.0000 0.0000
40a 79 0.0421 0.0211
41a 124 0.0476 0.1296
42a 94 0.0723 0.1201
43a 44 0.1003 0.0534
44a 38 0.0325 0.0275
44b 49 0.0738 0.0627
45a 60 0.0980 0.0723
46a 77 0.0418 0.0411
47a 44 0.1426 0.0946
48a 58 0.0810 0.0780
49a 25 0.1000 0.2000
50a 71 0.1043 0.0974
51a 58 0.0477 0.0724
52a 52 0.1268 0.1175
53a 42 0.1191 0.0947
54a 62 0.1057 0.0741

TOTAL 3277 0.0525 0.0621

Region Number HAP PHASE
of Switch Switch

SNPs Distance Distance
1a 50 0.1019 0.0734
1b 16 0.0488 0.0689
2a 60 0.0705 0.0986
2b 13 0.1304 0.1088
3a 76 0.0602 0.1086
4a 84 0.0590 0.0930
7a 58 0.0513 0.0957
7b 13 0.0878 0.0336
8a 51 0.1092 0.1071
9a 63 0.0749 0.0950
10a 47 0.0441 0.1583
11a 40 0.0546 0.1167
12b 11 0.0309 0.0854
13a 49 0.0762 0.1062
14a 59 0.0813 0.1086
15a 42 0.0542 0.1068
16a 13 0.0883 0.1039
16b 52 0.0905 0.0876
17a 63 0.0837 0.1294
18a 53 0.0833 0.1136
19a 58 0.0647 0.1106
20a 43 0.0732 0.0802
21a 21 0.0810 0.1091
21b 6 0.0441 0.0417
22a 55 0.0466 0.0701
23a 71 0.0979 0.1209
24a 96 0.0649 0.1260
25a 14 0.0385 0.0710
25b 21 0.0399 0.0848
26a 62 0.0836 0.0841
27a 70 0.0613 0.0833
28a 84 0.0538 0.1219
29a 78 0.0679 0.0582
30a 30 0.0515 0.0983
31a 23 0.0455 0.0730
31b 35 0.0342 0.0704
32a 76 0.0855 0.0926
33a 34 0.0424 0.0972
33b 1 0.0000 0.0000
34a 46 0.0392 0.0579
35a 59 0.0419 0.1047
36a 52 0.0336 0.1083
37a 46 0.0834 0.0820
38a 73 0.0914 0.1126
39a 56 0.0549 0.0778
39b 9 0.0164 0.0519
40a 74 0.0844 0.0815
41a 114 0.0882 0.1327
42a 89 0.1266 0.1452
43a 48 0.1152 0.0950
44a 41 0.1015 0.1094
44b 48 0.0715 0.1060
45a 67 0.0849 0.1330
46a 64 0.0992 0.0606
47a 42 0.1466 0.1520
48a 61 0.1348 0.1156
49a 27 0.1274 0.1605
50a 60 0.1218 0.1343
51a 50 0.0895 0.0938
52a 34 0.1564 0.1088
53a 54 0.1263 0.1160
54a 56 0.1587 0.1170

TOTAL 3061 0.07980 0.1027
A B

Table 2: Comparison between HAP-TILE and PHASE [20] on the data of Gabrielet al. [6], populations A
(panel A) and D (panel B). Shown are the switch distances obtained by the two algorithms for each region,
and the average distance over all regions.
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Region Number HAP-TILE PHASE
of Missing Missing

SNPs Distance Distance
1a 48 0.0450 0.0670
1b 13 0.0628 0.0126
2a 66 0.0460 0.0273
2b 14 0.0588 0.0420
3a 95 0.0478 0.0850
4a 90 0.0440 0.0597
7a 52 0.0796 0.0679
7b 12 0.0509 0.0509
8a 58 0.0782 0.1195
9a 37 0.1062 0.0510
10a 59 0.0257 0.0394
11a 37 0.0182 0.0364
12b 9 0.0556 0.0000
13a 21 0.0815 0.0494
14a 32 0.0623 0.0163
15a 37 0.0277 0.0585
16a 14 0.0523 0.0138
16b 53 0.0643 0.0627
17a 70 0.0390 0.0107
18a 73 0.0447 0.0540
19a 74 0.0446 0.0677
20a 74 0.0207 0.0245
21a 33 0.1348 0.2057
21b 8 0.1081 0.0811
22a 64 0.0308 0.0415
23a 72 0.0868 0.0998
24a 95 0.0289 0.0380
25a 14 0.0502 0.0323
25b 16 0.0545 0.0109
26a 57 0.0712 0.0616
27a 62 0.0338 0.0530
28a 77 0.0352 0.0533
29a 91 0.0268 0.0350
30a 69 0.0534 0.0412
31a 25 0.0206 0.2165
31b 43 0.0593 0.0162
32a 91 0.0676 0.0741
33a 56 0.0280 0.0604
33b 11 0.0980 0.0196
34a 82 0.0392 0.0653
35a 46 0.0504 0.0330
36a 50 0.0193 0.0129
37a 46 0.0447 0.0411
38a 74 0.0467 0.0415
39a 71 0.0413 0.0381
39b 9 0.0000 0.0000
40a 79 0.0449 0.0224
41a 124 0.0478 0.1185
42a 94 0.0675 0.1144
43a 44 0.0916 0.0427
44a 38 0.0374 0.0308
44b 49 0.0749 0.0556
45a 60 0.1053 0.0699
46a 77 0.0454 0.0410
47a 44 0.1336 0.0860
48a 58 0.0793 0.0728
49a 25 0.1304 0.1087
50a 71 0.1038 0.0931
51a 58 0.0546 0.0687
52a 52 0.1231 0.0966
53a 42 0.1188 0.0928
54a 62 0.1144 0.0638

TOTAL 3277 0.0563 0.0593

Region Number HAP PHASE
of Missing Missing

SNPs Distance Distance
1a 50 0.1054 0.0804
1b 16 0.0597 0.0683
2a 60 0.0706 0.0987
2b 13 0.1267 0.0951
3a 76 0.0657 0.1055
4a 84 0.0610 0.1052
7a 58 0.0597 0.1065
7b 13 0.0861 0.0300
8a 51 0.1095 0.1072
9a 63 0.0721 0.1047
10a 47 0.0507 0.1642
11a 40 0.0614 0.1189
12b 11 0.0383 0.0942
13a 49 0.0798 0.1053
14a 59 0.0893 0.1084
15a 42 0.0603 0.1058
16a 13 0.1099 0.1083
16b 52 0.0918 0.0953
17a 63 0.0905 0.1319
18a 53 0.0853 0.1177
19a 58 0.0765 0.1194
20a 43 0.0746 0.0839
21a 21 0.1030 0.0793
21b 6 0.0789 0.0238
22a 55 0.0529 0.0749
23a 71 0.0952 0.1206
24a 96 0.0682 0.1305
25a 14 0.0504 0.0793
25b 21 0.0435 0.0813
26a 62 0.0851 0.0841
27a 70 0.0657 0.0861
28a 84 0.0608 0.1288
29a 78 0.0685 0.0704
30a 30 0.0585 0.1080
31a 23 0.0499 0.0670
31b 35 0.0389 0.0675
32a 76 0.0905 0.1016
33a 34 0.0535 0.0956
33b 1 0.0000 0.0000
34a 46 0.0443 0.0697
35a 59 0.0460 0.1078
36a 52 0.0412 0.1083
37a 46 0.0856 0.0928
38a 73 0.0943 0.1168
39a 56 0.0590 0.0841
39b 9 0.0253 0.0500
40a 74 0.0834 0.0844
41a 114 0.0843 0.1234
42a 89 0.1328 0.1451
43a 48 0.1172 0.0941
44a 41 0.1030 0.1101
44b 48 0.0773 0.1154
45a 67 0.0886 0.1311
46a 64 0.1000 0.0636
47a 42 0.1422 0.1571
48a 61 0.1323 0.1183
49a 27 0.0935 0.1078
50a 60 0.1242 0.1363
51a 50 0.0899 0.0974
52a 34 0.1523 0.1172
53a 54 0.1319 0.1151
54a 56 0.1518 0.1165

TOTAL 3061 0.0828 0.1059
A B

Table 3: Comparison between HAP-TILE and PHASE [20] on the data of Gabrielet al. [6], populations A
(panel A) and D (panel B). Shown are the missing distances obtained by the two algorithms for each region,
and the average distance over all regions.
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