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Abstract

In the minimum fill-in problem, one wishes to find a set of
edges of smallest size, whose addition to a given graph will
make it chordal. The problem has important applicationsin
numerical algebraand has been studied intensively since the
1970s. We give the first polynomial approximation algo-
rithm for the problem. Our algorithm constructs a triangu-
lation whose size is at most eight times the optimum size
squared. The agorithm builds on the recent parameterized
algorithm of Kaplan, Shamir and Tarjan for the same prob-
lem.

For bounded degree graphs we give a polynomia ap-
proximation algorithm with a polylogarithmic approxima-
tion ratio. We also improve the parameterized algorithm.

1 Introduction

A chord in acycleis an edge between non-consecutive ver-
tices on that cycle. A chordless cycle is a cycle of length
greater than 3 that contains no chords. A graph is called
chordal or triangulated, if it contains no chordless cycles. If
G = (V, E) isnot chordal and F' is a set of edges such that
(V,E U F) ischordal, then F' is called afill-in or atriangu-
lation of G. If |F| < k then F' is called a k-triangulation of
G. We use ®(G) to denote the size of the smallest fill-in of
G.

The minimum fill-in problem is to find a minimum tri-
angulation (fill-in) of a given graph. The importance of the
problem stems from its applications to numerical algebra.
In many fields, including VLS| simulation, solution of lin-
ear programs, signal processing and others (cf. [7]), one has
to perform a Gaussian elimination on a sparse symmetric
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positive-definite matrix. During the elimination process zero
entries may become non-zeroes. Different elimination or-
ders may introduce different sets of new non-zero elements
into the matrix. The time of the computation and its storage
needs are dependent on the sparseness of the matrix. It is
therefore desirable to find an elimination order such that a
minimum number of zero entriesis filled-in with non-zeroes
(even temporarily). Rose [20] proved that the problem of
finding an elimination order for asymmetric positive-definite
matrix M, such that fewest new non-zero elements are in-
troduced, is equivalent to the minimum fill-in problem on a
graph whose vertices correspond to the rows of M and in
which (i, j) is an edgeiff M; ; # 0.

In 1979 Garey and Johnson [9] posed the complexity of
the minimum fill-in problem as a major open problem. Yan-
nakakis subsequently proved that the minimum fill-in prob-
lemis NP-complete [22]. Dueto its importance the problem
has been studied intensively [2, 11, 12, 21] and many heuris-
tics have been developed for it [5, 13, 19, 20]. None of those
gives a performance guarantee with respect to the size of the
fill-in introduced. Note that in contrast, the minimal fill-in
problem (finding a a triangulation of G which is minimal
with respect to inclusion) is polynomial [18].

Approximation attempts succeeded only for the related
minimumtriangulated super-graph problem (MTS). INMTS
the goal is to add edges to the input graph in order to ob-
tain a chordal graph with minimum total number of edges.
While as optimization problems MTS and minimum fill-in
are equivalent, they differ drastically as approximation prob-
lems. For example, if we remove two properly chosen edges
from an n-clique we obtain agraph with Q(n?) edges whose
fill-in size equals 1. The approximation results regarding
MTS use the nested dissection heuristic first proposed by
George [10] (see [12] for details). Gilbert [14] showed that
for a graph with maximum degree d there exists a balanced
separator decomposition such that a nested dissection or-
dering based on that decomposition yields a chordal super-
graph, in which the number of edges is within a factor of
O(dlogn) of optimal. (Throughout we use n and m to de-
note the number of vertices and edges, respectively, in a
graph). The result was not constructive as one has yet to



find such a decomposition. Leighton and Rao [17] gave a
polynomial approximation algorithm for finding a balanced
separator in a graph of size within a factor of O(logn) of
optimal. Agrawal, Klein and Ravi [1], using Gilbert’s ideas
and the result of [17], obtained a polynomial approxima-
tion algorithm with ratio O(v/dlog® n) for MTS on graphs
with maximum degree d. They also gave a polynomial ap-
proximation agorithm for MTS on genera graphs, which
generates a chordal super-graph with total number of edges
O(|G*|*/*\/m1og®® n), where |G*| denotes the size of an
optimally triangulated super-graph.

In the parametric fill-in problem the input is a graph G
and a parameter k. The god is to find a k-triangulation of
G, or to determine that none exists. Clearly this can be done
in n®®*) time by enumeration. For fixed k& and growing n,
an algorithm with complexity O(exp(k)poly(n)) issuperior.
Parameterized complexity theory, initiated by Downey and
Fellows (cf. [6]), studies the complexity of such problems.
Parameterized problems that have agorithms of complexity
O(f(k)n®) (with a a constant) are called fixed parameter
tractable. Kaplan, Shamir and Tarjan [16] (henceforth KST)
and independently Cai [3] proved that the minimum fill-in
problem is fixed parameter tractable, by giving an algorithm
of complexity O(exp(k)m) for the problem. KST aso gave
amoreefficient O(exp(k) + k?nm)-time algorithm (hence-
forth KST algorithm).

In this paper we give thefirst polynomial approximation
algorithm for the minimum fill-in problem. Our algorithm
builds on ideas from [16]. For an input graph G with mini-
mum fill-in of size k, our algorithm produces a triangulation
of size at most 8% - within a factor of 8k of optimal. The
approximationis achieved by identifying in G akernel set of
vertices A of size at most 4k, such that one can triangulate
G by adding edges only between vertices of A. Our algo-
rithm produces the triangul ation without prior knowledge of
k. Let M (n) denotethe number of operations needed to mul-
tiply two boolean matrices of order n x n (The current upper
bound on M (n) is O(n?-37%) [4]). The algorithm worksin
O(knm + min{n>M (k)/k,nM (n)}) time, which makes it
potentially suitable for practical use.

Our agorithm is particularly attractive for small fill-in
values. Note that if £ = Q(n) then our algorithm guaran-
tees only the trivial bound of fill-in size - O(n?), but if for
example the fill-in size is constant then the approximation
guarantee is a constant. This type of approximation result is
uncommon. |t opens the question of obtaining polynomial
approximation algorithms with performance guarantees de-
pending on the optimal value for other important problems,
even in the presence of hardness-of-approximation results.

We also obtain better approximation results for bounded
degree graphs. For graphswith maximum degreed we givea
polynomial algorithm which achievesan approximationratio
of O(d?® log*(kd)). Since k = O(n?) this approximation
ratio is polylogarithmic in the input size.

In order to compare our results to the approximation re-

sultsregarding M TS, we trand ate the latter to approximation
ratios in terms of the fill-in obtained. We assume throughout
that m > n. For general graphs the algorithm in [1] guar-
antees that the number of edges in the chordal super-graph
obtained is O((m + k)3/*\/mlog®® n). Interms of the fill-
in, the approximation ratio achievedis O (m' 2> log®® n/k+
Vmlog®® n/k!/*). We obtain a better approximation ratio
whenever £ = O(m5/®log"" n). For graphs with maxi-
mum degree d, the algorithm in [1] achieves an approxima-
tionratio of O(((nd + k)v/dlog® n)/k). We providea better
ratio when & = O(n/d). When any of these upper bounds
on k is satisfied, our algorithm also achieves a better approx-
imation ratio than [1] for the M TS problem.

Kaplan et a. posed in [16] an open problem of obtain-
ing an algorithm for the parametric fill-in problem with time
O(exp(k) + km). The motivation is to match the perfor-
mance of the O(ezp(k)m) agorithm for all k. We make
some progress towards solving that problem by providing a
faster O(exp(k) + knm + min{n>M (k)/k,nM (n)})-time
implementation of their algorithm. We also give a variant of
the algorithm which produces a smaller kernel. Finally, we
apply our approximation algorithm to the chain completion
problem, and obtain an approximation ratio of 8%, where k
denotesthe size of an optimal solution.

The paper is organized as follows: Section 2 contains a
description of KST agorithm and some background. Sec-
tion 3 improves the complexity of KST algorithm and re-
duces the size of the kernel produced. Section 4 describes
our approximation algorithm for general graphs. Section 5
gives an approximation algorithm for graphs with bounded
degree. Section 6 gives further reduction of the kernel size,
and Section 7 gives an approximation algorithm for the chain
completion problem.

2 Preliminaries

Let G = (V,E) be agraph. We denote its set of vertices
asoby V(G) andits set of edgesaso by E(G). ForU C V
we denote by G the subgraph induced by the verticesin U.
For avertex v € V wedenoteby N (v) the set containing all
neighbors of v in G. We let N[v] = N(v) U {v}. A path
with [ edgesis called an [-path and its length is . A single
vertex is considered a0-path. We call acyclewith [ edgesan
l-cycle.

Our polynomial approximation algorithm for the mini-
mum fill-in problem builds on KST agorithm [16]. In the
following we describe this algorithm.

Fact 2.1 A minimal triangulation of a chordless!-cycle con-
sists of I — 3 edges.

Lemma 2.2 [16, Lemma2.5] Let C bea chordlesscycleand
let pbeani-pathonC,1 <1 < |C|—2.Ifl =|C|—-2then
in every minimal triangulation of C' there are at least [ — 1
chords incident with vertices of p. If [ < |C|—2 thenin
every minimal triangulation of C' there are at least [ chords
incident with vertices of p.



Let < G = (V,E),k > be the input to the paramet-
ric fill-in problem. The agorithm has two main stages. In
the first stage, which is polynomial in n, m, k, the algorithm
produces a partition A, B of V and a set F' of non-edges
in G 4, such that |A] = O(k®) and no chordless cycle in
G' = (V,E U F) intersects B. We shall call this stage the
partition algorithm. In the second stage, which is exponen-
tial in k, an exhaustive search is applied to find a minimum
triangulation F' of G’;. (F'UF") isthen proved to be amin-
imum triangulation of G.

The partition algorithm applies sequentially the follow-
ing three procedures. All three maintain a partition A, B of
V' and alower bound cc on the minimum number of edges
needed to triangulate G. Initially A=0, B=V and cc=0.

e Procedure P, (k): Extracting independent chordless cy-
cles. Search repeatedly for chordless cyclesin G and
move their vertices from B to A. For each chordless
[-cycle found, increment cc by I — 3. If a any time
cc > k, stop and declare that the graph admits no k-
triangulation.

e Procedure P»(k): Extracting related chordless cycles
with independent paths. Search repeatedly for chordless
cyclesin G containing at least two consecutive vertices
from B. Let C' besuchacycle, |C| =1. If Il > k+3
stop with a negative answer. Otherwise, suppose that C
contains j > 1 digoint maximal sub-pathsin G g, each
of length at least 1. Movethe vertices of those sub-paths
from B to A. Denote their lengths in decreasing order
byls,...,l;. If j = 1 weincressecc either by (I, 1) if
li=1-2,0rbyl if {; <I—2. Otherwise cc isincreased
by max{$ >>7_, l;,1;}. If at any time cc > k, stop and
declare that the graph admits no k-triangulation.

Definition 2.3 For every z,y € A suchthat (z,y) ¢ E, de-
noteby A, , theset of all verticesb € B suchthat z, b, y oc-
cur consecutively on some chordlesscyclein G. If |4, ,| >
2k then (x, y) iscalled a k-essential edge.

e Procedure Ps(k): Adding k-essential edgesin G 4. For
every z,y € A suchthat (z,y) ¢ E compute the set
Agy. If (z,y) is ak-essential edge, then add it to G.
Otherwise, moveall verticesin A, , from B to A.

Denote by A?, B? the partition obtained after procedure
P; is completed, for i = 1,2,3. We will omit the index
i when it is clear from the context. The size of A2 is at
most 4k, since in a triangulation of G there should be an
edge incident on at least one of any two vertices occurring
consecutively on achordless cycle. Thesize of A% isO(k?)
since there are O(k?) non-edgesin G 4= and the number of
vertices moved to A dueto any such non-edgeis at most 2.

K ST Partition Algorithm
Execute procedure P; (k).
Execute procedure P (k).
Execute procedure Ps (k).

The partition algorithm is summarized above. Let G' de-
note the graph obtained after the execution of procedure Ps.
KST provethat every k-essential edge must appear in any k-
triangulation of G [16, Lemma2.7], and that in G’ no chord-
less cycle intersects B [16, Theorem 2.10]. Therefore, by
the following theorem it suffices to search for a minimum
triangulation of G/,.

Theorem 2.4 [16, Theorem2.13] Let A, B be a partition of
the vertex set of a graph G, such that the vertices of every
chordless cyclein G are containedin A. A set of edges F' is
aminimal triangulation of G iff F'isaminimal triangulation
of G 4.

The complexity of the partition algorithm is O (k2nm)
[16]. The complexity of fi ndi ng a minimum triangulation
of a given graph is O( ) 3/2m) [3]. Since G’y contains

O(k®) edges, a minimum triangulation of G', can be found
in O(k*54%) time. Hence, the complexity of KST algorithm
isO(k*nm + k*54F).

3 Improvements to the Partition Algorithm

In this section we show some improvements to the parti-
tion algorithm of KST. We assume throughout that the in-
putis< G = (V,E), k >. We first show how to imple-
ment procedure P; in O(nm + min{n?M (k)/k,nM (n)})-
time. We then prove that the size of A% is only O(k?).
These resultsimply that KST algorithm can be implemented
in O(knm + min{n2M (k) /k,nM (n)} + k*>4%)-time.

Lemma 3.1 Procedure P; can be implemented in O(nm +
min{n?M (k)/k,nM (n)})-time.

Proof: LetS = {(z,y) € E:x,y € A?}. Thebottleneck
in the complexity of Ps is computing the sets A4, , for every
(z,y) € S. Todo that, we find for every b € B al pairs
(z,y) € Ssuchthatb € A, ,. We then construct the sets
A, 4. Thisisdoneasfollows:

Fix b € B. Compute the connected componentsof G* =
G — NJb]. Thistakes O(m) time. Denote the connected
components of G® by C?,...,C}. Foreachz € AN N(b)
compute a binary vector (vf,...,vJ") such that vf = 1 iff
C® contains a neighbor of z, 1 < j < . Each vector can
be computed in O(n) time. Denote the vectors obtained by
u1,...,v. Defineak’ x [ boolean matrix M whose i-th
row is the vector 73, 1 < i < k'. Notethat ¥’ = O(k) and
I <n. Let M* = MMT. It can be seen that M;; > 1iff
be A, (fori # j). Sincek’,l < nwecancomputeM*
inO(M(n)) time. If k& = o(n) then we can compute M *
in O(nM (k)/k) time. Hence, the computation of A/* takes
O(min{nM (k)/k, M (n)}) time.

After the above calculations are performed for every b €
B, it remains to compute the sets A, ,. We can do that in
O(min{k?n,n3}) time. Thetotal timeistherefore O(nm +
min{n?M (k)/k,nM(n)}). m



Observation 3.2 Let z,y € A% (z,y) ¢ E. If Ay, # 0
then for any triangulation F' of G, either (z,y) € F, or for
every b € A, ,, F' contains an edge incident on b.

Lemma 3.3 Assume that G admits a k-triangulation, and
that in procedure P; all sets A, ,, moved into A are of size
at most d. Then | A3 — A?| < Mk, where M = max{d, 2}.

Proof: Letthe non-edgesin G 4= be (z1,y1), - - ., (z1, y1)-
We process the sets A, y,,- .., Ay, 0 this order. Let
A = A2 Let A be the set A right after A,, ,, was
processed, and let A; = A, ,, — AU~ forl <i <.

Let ¢ bealower bound on the minimum number of edges
neededtotriangulate G. Initialy Ps startswitht = cc. Lett;
be the value of ¢ right after A,, ,, was processed (¢t = cc).
If A; # 0 then by Observation 3.2, ¢ should increase by
min{1, |A;|/2}. We must maintaint < k. If t;—t;,_1 =
t;—t;—1 > 1then|A;| < d. Thereforeforal 1 < i <,
|Az| < M(tz — tifl). Now,

!
|A% — A%| = |A(l) _A(0)| :Z|A(i) —A(i*1)| -

i=1

! !
SOIAN <MY (ti — tioy) = M(t — to) < Mk.
i=1 i=1

Corollary 3.4 If G has a k-triangulation, then the partition
algorithmterminateswith |A| < 2k(k + 2).

Proof: Let us assume that all essential edges were added
to G, and denote the new set of edgesin G by E’. For all
z,y € A% (z,y) ¢ E' we know that |4, ,| < 2k. By
Lemma3.3|4% — A?| < 2k%. Since|A?| < 4k the corollary
follows. m

Theorem 3.5 The algorithm of KST can be implemented in
O(knm + min{n>M (k)/k,nM (n)} + k>-54F)-time.

Proof: By the analysis in [16], P, takes O(km) time,
and P, takes O(knm) time. By Lemma 3.1 the complex-
ity of P; isO(nm + min{n2M (k)/k,nM (n)}). By Corol-
lary 3.4 if G' admits a k-triangulation then the size of A3 is
O(k?). Hence, aminimum triangulation of G, can be found
in O(k%?4%) time. The complexity follows. m

4 The Approximation Algorithm

Let G = (V, E) betheinput graph. Let k,,: = ®(G). The
key idea in our approximation algorithm is to find a set of
vertices A C V, such that |A| = O(kop:) and, moreover,
one can triangulate G' by adding edges only between vertices

of A. Since there are O(kZ,;) such edges, we achieve an
approximation ratio of O (kopt)-

In order to find such a set A we use ideas from the par-
tition algorithm. If we knew k,,; we could execute the par-
tition algorithm and obtain aset A, with |A| = O(kZ,;) (by
Corollary 3.4), such that G can be triangulated by adding
edges only in G 4. Thiswould aready give an O(k2,;) ap-
proximation ratio.

Before describing our algorithm we analyze the role of
the parameter & given to the partition algorithm. If k < kop¢
then the algorithm might stop during P; or P, and declare
that no k-triangulation exists. Moreover, k-essential edges
are not necessarily k,p;-essential. If k> k,,: then the size of

A may bew(k2,;). Thealgorithmis as follows:

Algorithm APPROX
Procedure P;: Execute P, (c0).
Procedure P;: Execute P, (o).
Procedure P;: Execute P;(0).
Let G’ be the resulting graph.
Procedure P;: Find aminimal triangulation of G',.

Procedures P and P; execute P, and P respectively,
without bounding the size of the triangulation implied. Pro-
cedure Pj takes advantage of the fact that we no longer seek
a minimum triangulation, but rather a minimal one. In or-
der to obtain our approximation result we want to keep A as
small as possible. Hence, instead of moving new verticesto
A we add new 0-essential edges accommodating for those
vertices. By the same arguments as in [16] and Section 2,
thesizeof A after P; isat most 4k,,:. Since P; does not add
new vertices to A, its size remains at most 4k,,; through-
out. The size of the triangulation found by the algorithm is
therefore at most 8k7,;. The correctness of algorithm AP-
PROX is established in the sequel. We need the following
lemmawhich is essentially provenin [16, Lemma2.9]. The
subsequent theorem is along the lines of [16, Theorem 2.10].

Lemma4.l Let G = (V,E) beagraphandletv € V.
Let F' be a set of non-edges in G — {v}, such that each
e = (z,y) € Fisachord in a chordless cycle C, =
(z,2e,y,...,x) In G, where z, is not an endpoint of any
edgein F. Let G' = (V,E U F). If there exists a chord-
less cycle C' in G’ with vy, v, vo OCcurring consecutively on
C, then either there exists a chordless cycle in G on which
vy, v, v OCCUr consecutively, or there exists a chordless cy-
clein G, on which v and z. occur consecutively, for some
ec F.

Theorem 4.2 No chordlesscyclein G’ intersects B.

Proof:  Supposeto the contrary that C' is a chordless cycle
inG'" with at least onevertex from B. Letv € CNB. Denote
by v1 and v, thetwo neighborsof v on C. Let F = E(G') —
E(G). C must contain at least oneedge ¢ = (x,y) € F,



since otherwise C' exists in G and either v would have been
moved to A by P; or Pj, or (v, vs) would have been added
to G’ by Pj. By construction e isachordinachordlesscycle
C. inG, suchthat if P! and P? arethe two paths connecting
z and y in C,, with 2 and y removed from each path, then
at least one of them consists of asingle vertex z, € B. As
v, z. € B, they are not incident on any edgein F'. Applying
Lemma4.1 wefind that there are two possible cases:

1. There exists a chordless cycle in G on which vy, v, vs
occur consecutively, a contradiction.

2. There exists a chordless cyclein G on which v and z,
occur consecutively. But then at least one of v and z,
should have been moved to A by P| or P;, acontradic-
tion.

Theorem 4.3 Let G be a graph and let k,,;, = ®(G). The
algorithmfinds a triangulation of G of size at most 8k ;, in
time O (kopenm + min{n>M (kopt) /kopt, nM (n)}).

Proof: Correctness. By Theorems 4.2 and 2.4 a minimal
triangulation of G’y isaminimal triangulation of G'. There-
fore at the end of the algorithm G is triangulated. Through-
out the algorithm the only edges added to G are between
verticesof A. Since|A| < 4k, thesize of thetriangulation
isat most 8%3,;.

Complexity: The complexity analysis of procedures P,
and P, in [16] implies that P{ and P, can be performed in
O(kopenm) time. By Lemma 3.1 the complexity of Pi is
O(nm+min{n®M (kopt) /kopt,n.M (n)}). Procedure P; re-
quires finding a minimal triangulation of G’,. Since |A| =
O(min{kop,n}) and |E(G'y)| = O(min{k2,,,n*}), this
requires O(min{k},;,n*}) time [18]. Thus, the agorithm
takes O (kpenm +min{n? M (kopt) /kopt, nM (n)}) time. m

5 Bounded Degree Graphs

In order to improve the approximation ratio for bounded de-
gree graphs, we improve P;. Instead of simply finding a
minimal triangulation of G’,, we use the triangulation a go-
rithm of Agrawal, Klein and Ravi [1]. This aone does not
suffice to prove a better approximation ratio, since adding
0-essentia edges (in P;) might increase the minimum fill-in
size. To overcome this difficulty we use KST partition algo-
rithmwith & = oo asitsinput parameter. The approximation
algorithmis asfollows:

e Execute KST partition algorithm with & = oc.

¢ Find aminimal triangulation of G 4 using the algorithm
in[1].

Assume that the input graph G has maximum degree
d, and let k = ®(G). We will show that the algorithm

achieves an approximation ratio of O(d?* log® (kd)). Since
k = O(n?), thisis in fact a polylogarithmic approxima-
tion ratio. It improves over the O(k) approximation ratio
obtained in the previous section, when k/ log* k = Q(d??).

Theorem 5.1 The algorithm finds a triangulation of G of
size within a factor of O (d?*® log® (kd)) of optimal.

Proof: Correctness: By the correctness of KST partition
algorithm, we obtain a partition A, B for which no chordless
cyclein G intersects B (a parameter £ = oo implies that
no new edges will be added to G 4 by Ps3). By Theorem 2.4
aminimal triangulation of G 4 isaminimal triangulation of
G. Therefore, the algorithm correctly computes a minimal
triangulation of G.

Approximation Ratio: When executing P; the size of
each set 4, , isa most d. By Lenma 3.3 |4* — 4?| =
O(kd). Since |A?] = O(k), the size of A when the par-
tition terminates is O(kd). Setting the parameter value to
oo in P; guarantees that no new edge is added to G 4, and
therefore its maximum degree remains d and |E(G 4)| =
O(kd?). Using the algorithmin [1] we can produce achordal
super-graph of G 4 with O((kd> + k)v/dlog*(kd)) edges.
The size of thefill-in obtained is therefore within a factor of
O(d?5 log* (kd)) of optimal. m

6 Reducing the Kernel Size

We now return to the parametric fill-in problem. By modify-
ing procedure P3 in KST partition algorithm we will obtain
apartition A, B of V for which no chordlesscyclein G' in-
tersects B and |A| = O(k). In fact we will obtain at most
2% such partitions and prove that if G has a k-triangulation,
then at least for one of those partitions G’y admitsa (k—«)-
triangulation, where o = |E(G'y) — E(G 4)|. Reducing the
size of A results in improving the complexity of finding a
minimum triangulation of G’, to O(v/k4*), although the to-
tal time of the algorithm increases, since we have to handle
up to 2* partitions. We include this result since it gives fur-
ther insight of the problem.

Asinthe original agorithm we start by executing proce-
dures P, (k) and P> (k). We store the value of cc. We aso
computethesets 4, , forall z,y € A%, (z,y) & E. If (2,y)
is k-essential, we add it to G. Otherwise we do nothing.
Denote the new graph obtained by G’ = (V, E'). Define
P={(v,y) € E':x,y € A%}.

The algorithm now enumerates all subsets S C P. For
agiven S, every (z,y) € S is added as an edge in the tri-
angulation, and for every (z,y) € P —.S, the vertices in
A, , aremoved from B to A. Theagorithm isimplemented
by the recursive procedure below, and is invoked by calling
BRANCH(cc, 0, P, A?).



Procedure BRANCH(cc, F,, P, A)
If cc > k return.
While there exists (z,y) € P such that

|Az ., —A| =1do:
A:=AUA,,.
P:=P- {(Jf,y)}
cc:=cc+1/2.

Deletefrom P al (z,y) suchthat A, , C A.
If P = () savethe pair (A, F') and return.
Chooseany (z,y) € P.
Cdl BRANCH(cc + 1, F U {(z,y)},

P — {(Jf,y)},A)
Call BRANCH(cc + |4,y — Al/2, F,

P —{(z,y)}, AU Az ).
Return.

Lemma 6.1 Thealgorithmterminatesafter at most 282 —1
calls to procedure BRANCH. The number of pairs saved by
the algorithmis at most 2*.

Proof: Denote by T'(i) the number of calls to procedure
BRANCH, when invoked with cc = i (including the first
cal). Clearly T'(i) <1+ 2T(i + 1), where T'(j) = 1 for all
j > k. Thesolution of thisrecursion givesT'(0) < 2k+2 —1.

Denote by P(7) the number of pairs saved by procedure
BRANCH, when invoked with cc = i. Clearly P(i) <
2P(i + 1), where P(k) < 1. The solution of this recursion
gives P(0) < 2. m

Asusual, for aset A C V saved by the algorithm, B
denotes V' — A.

Theorem 6.2 For every pair (A, F) saved by the algorithm,
|A| < 6k, and no chordlesscyclein G' = (V, E U F) inter-
sects B.

Proof: Whenever apartitionis saved cc < k. Since |A —
A?%|/2 < cc, & most 2k new vertices were added to A? in
any partition obtained. Since |A2%| < 4k we conclude that
|A] < 6k.

Assume to the contrary that C' is a chordless cycle in
G' intersecting B. Letv € C N B. Letv; and vy be the
neighbors of v on C'. v is not the endpoint of any edgein F’
sincev € B. Every edgee = (z,y) € Fisachordina
chordlesscycle C, = (z, ze, vy, - - -, x), Where z, € B (since
the only edges we add in the algorithm are pairs (z, y) such
that there exist avertex b € B, and a chordless cyclein G,
onwhich z, b, y occur consecutively). Applying Lemma4.1
we find that two cases are possible;

1. There exists a chordless cycle in G on which vy, v, vs
occur consecutively. But then either v would have been
movedto A by P; or P, or BRANCH, or (v, v2) would
have been added as an edge by BRANCH, a contradic-
tion.

2. There exists a chordless cycle in G on which v and z,
(for somee € F) occur consecutively. But then at least
one of v and z, would have been moved to A by P; or
P,, acontradiction.

Definition 6.3 A pair (A, F') saved by BRANCH is called
good, if ®(G) = ®(G') + |F|,whereG' = (V,E U F).

Lemma6.4 If &(G) < k then at least one output of the
algorithmis good.

Proof: Let A, B beapartition obtained by executing KST
partition algorithm with the same input. Let F'* denote a
minimum triangulation of G. After executing P, our algo-
rithm produces the same initial partition A2, B2 asthe KST
algorithm. For that partition, define S = {(z,y) ¢ E :
z,y € A%, A, , # 0}. By observation 3.2,

* * 1
|F*[ > S N F*| + 5 T
(z,y)ES—F*

Since |F*| < k, procedure BRANCH will save the pair
(A, SNF*).m

Theorem 6.5 The complexity of the new partition algorithm
isO(knm + min{n>M (k)/k,nM (n)} + k>2%).

Proof: By [16] P, and P, take O(knm) time. By Lemma
3.1 the complexity of computing the sets A, , for all z,y €
A% (z,y) & EisO(nm + min{n?M (k)/k,nM(n)}). By
Lemma6.1 the number of callsto BRANCH is O(2F). Since
|P| = O(k?), |A] = O(k) and cc < k, each call can be
carried outin O (k?) time. Thetotal work done by BRANCH
istherefore O(k32%). m

7 An Approximation Algorithm for the Chain
Completion Problem

A bipartite graph G = (P, Q, E) is caled a chain graph
if there exists an ordering 7 of P, 7 : P — {1,...,|P|},
suchthat N(7~1(1)) C N(7=1(2)) C ... C N(z=1(|P])).
Thisclass of graphswas introduced by Yannakakis[22], and
independently by Golumbic (cf. [15, page 260]). The chain
completion problem is defined as follows. Given a hipartite
graph G = (P, Q, E), find a minimum set of non-edges F'
such that (P, @, E U F) is achain graph. We call |F| the
chain fill-in. Yannakakis proved that the chain completion
problem is NP-complete and used this result to show that the
minimum fill-in problemis NP-complete[22]. Chain graphs
have a so recently been investigated in [8], where a similar
graph modification problem arises.



Theorem 7.1 There exists a polynomial approximation al-
gorithm for the chain completion problem, achieving an ap-
proximation ratio of 8%, where & denotes the minimum chain
fill-in. The complexity of the algorithmis O (kn?).

Proof: Let G = (U,V,E) be an input bipartite graph
with chain fill-in k. We apply the reduction given by Yan-
nakakis [22] from the chain completion problem to the min-
imum fill-in problem, as follows: Build agraph G' = (U U
V,E"), where ' = EU {(u,v) : u,v € U} U {(u,v) :
u,v € V}. Observethat G isachain graphiff G’ ischordal.
Hence, a set of edges F triangulates G' iff (U,V,EU F) is
a chain graph.

Approximation Ratio: By the above argument k equals
®(G"). Using our approximation algorithm for the minimum
fill-in, we can find atriangulation of G’ of size at most 8k2.
Adding these edges to G produces a chain graph. The num-
ber of new edgesis within afactor of 8% of optimal.

Complexity: G’ can becomputedin O(n?) time. Dueto
the reduction |E(G')| = ©(n?). Therefore the complexity
of the approximation algorithmis O(kn?). m
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