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Abstract

In the minimum fill-in problem, one wishes to find a set of
edges of smallest size, whose addition to a given graph will
make it chordal. The problem has important applications in
numerical algebra and has been studied intensively since the
1970s. We give the first polynomial approximation algo-
rithm for the problem. Our algorithm constructs a triangu-
lation whose size is at most eight times the optimum size
squared. The algorithm builds on the recent parameterized
algorithm of Kaplan, Shamir and Tarjan for the same prob-
lem.

For bounded degree graphs we give a polynomial ap-
proximation algorithm with a polylogarithmic approxima-
tion ratio. We also improve the parameterized algorithm.

1 Introduction

A chord in a cycle is an edge between non-consecutive ver-
tices on that cycle. A chordless cycle is a cycle of length
greater than 3 that contains no chords. A graph is called
chordal or triangulated, if it contains no chordless cycles. If
G � �V�E� is not chordal and F is a set of edges such that
�V�E � F � is chordal, then F is called a fill-in or a triangu-
lation of G. If jF j � k then F is called a k-triangulation of
G. We use ��G� to denote the size of the smallest fill-in of
G.

The minimum fill-in problem is to find a minimum tri-
angulation (fill-in) of a given graph. The importance of the
problem stems from its applications to numerical algebra.
In many fields, including VLSI simulation, solution of lin-
ear programs, signal processing and others (cf. [7]), one has
to perform a Gaussian elimination on a sparse symmetric
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positive-definite matrix. During the elimination process zero
entries may become non-zeroes. Different elimination or-
ders may introduce different sets of new non-zero elements
into the matrix. The time of the computation and its storage
needs are dependent on the sparseness of the matrix. It is
therefore desirable to find an elimination order such that a
minimum number of zero entries is filled-in with non-zeroes
(even temporarily). Rose [20] proved that the problem of
finding an elimination order for a symmetric positive-definite
matrix M , such that fewest new non-zero elements are in-
troduced, is equivalent to the minimum fill-in problem on a
graph whose vertices correspond to the rows of M and in
which �i� j� is an edge iff Mi�j �� �.

In 1979 Garey and Johnson [9] posed the complexity of
the minimum fill-in problem as a major open problem. Yan-
nakakis subsequently proved that the minimum fill-in prob-
lem is NP-complete [22]. Due to its importance the problem
has been studied intensively [2, 11, 12, 21] and many heuris-
tics have been developed for it [5, 13, 19, 20]. None of those
gives a performance guarantee with respect to the size of the
fill-in introduced. Note that in contrast, the minimal fill-in
problem (finding a a triangulation of G which is minimal
with respect to inclusion) is polynomial [18].

Approximation attempts succeeded only for the related
minimum triangulated super-graph problem (MTS). In MTS
the goal is to add edges to the input graph in order to ob-
tain a chordal graph with minimum total number of edges.
While as optimization problems MTS and minimum fill-in
are equivalent, they differ drastically as approximation prob-
lems. For example, if we remove two properly chosen edges
from an n-clique we obtain a graph with ��n�� edges whose
fill-in size equals 1. The approximation results regarding
MTS use the nested dissection heuristic first proposed by
George [10] (see [12] for details). Gilbert [14] showed that
for a graph with maximum degree d there exists a balanced
separator decomposition such that a nested dissection or-
dering based on that decomposition yields a chordal super-
graph, in which the number of edges is within a factor of
O�d logn� of optimal. (Throughout we use n and m to de-
note the number of vertices and edges, respectively, in a
graph). The result was not constructive as one has yet to



find such a decomposition. Leighton and Rao [17] gave a
polynomial approximation algorithm for finding a balanced
separator in a graph of size within a factor of O�logn� of
optimal. Agrawal, Klein and Ravi [1], using Gilbert’s ideas
and the result of [17], obtained a polynomial approxima-
tion algorithm with ratio O�

p
d log� n� for MTS on graphs

with maximum degree d. They also gave a polynomial ap-
proximation algorithm for MTS on general graphs, which
generates a chordal super-graph with total number of edges
O�jG�j���pm log��� n�, where jG�j denotes the size of an
optimally triangulated super-graph.

In the parametric fill-in problem the input is a graph G
and a parameter k. The goal is to find a k-triangulation of
G, or to determine that none exists. Clearly this can be done
in nO�k� time by enumeration. For fixed k and growing n,
an algorithm with complexityO�exp�k�poly�n�� is superior.
Parameterized complexity theory, initiated by Downey and
Fellows (cf. [6]), studies the complexity of such problems.
Parameterized problems that have algorithms of complexity
O�f�k�n�� (with � a constant) are called fixed parameter
tractable. Kaplan, Shamir and Tarjan [16] (henceforth KST)
and independently Cai [3] proved that the minimum fill-in
problem is fixed parameter tractable, by giving an algorithm
of complexity O�exp�k�m� for the problem. KST also gave
a more efficient O�exp�k� � k�nm�-time algorithm (hence-
forth KST algorithm).

In this paper we give the first polynomial approximation
algorithm for the minimum fill-in problem. Our algorithm
builds on ideas from [16]. For an input graph G with mini-
mum fill-in of size k, our algorithm produces a triangulation
of size at most �k� - within a factor of �k of optimal. The
approximation is achieved by identifying in G a kernel set of
vertices A of size at most 	k, such that one can triangulate
G by adding edges only between vertices of A. Our algo-
rithm produces the triangulation without prior knowledge of
k. LetM�n� denote the number of operations needed to mul-
tiply two boolean matrices of order n�n (The current upper
bound on M�n� is O�n������ [4]). The algorithm works in
O�knm�minfn�M�k��k� nM�n�g� time, which makes it
potentially suitable for practical use.

Our algorithm is particularly attractive for small fill-in
values. Note that if k � ��n� then our algorithm guaran-
tees only the trivial bound of fill-in size - O�n��, but if for
example the fill-in size is constant then the approximation
guarantee is a constant. This type of approximation result is
uncommon. It opens the question of obtaining polynomial
approximation algorithms with performance guarantees de-
pending on the optimal value for other important problems,
even in the presence of hardness-of-approximation results.

We also obtain better approximation results for bounded
degree graphs. For graphs with maximum degree d we give a
polynomial algorithm which achieves an approximation ratio
of O�d��� log��kd��. Since k � O�n�� this approximation
ratio is polylogarithmic in the input size.

In order to compare our results to the approximation re-

sults regarding MTS, we translate the latter to approximation
ratios in terms of the fill-in obtained. We assume throughout
that m � n. For general graphs the algorithm in [1] guar-
antees that the number of edges in the chordal super-graph
obtained is O��m � k����

p
m log��� n�. In terms of the fill-

in, the approximation ratio achieved is O�m	��� log��� n�k�p
m log��� n�k	���. We obtain a better approximation ratio

whenever k � O�m��
 log	��� n�. For graphs with maxi-
mum degree d, the algorithm in [1] achieves an approxima-
tion ratio ofO���nd�k�

p
d log� n��k�. We provide a better

ratio when k � O�n�d�. When any of these upper bounds
on k is satisfied, our algorithm also achieves a better approx-
imation ratio than [1] for the MTS problem.

Kaplan et al. posed in [16] an open problem of obtain-
ing an algorithm for the parametric fill-in problem with time
O�exp�k� � km�. The motivation is to match the perfor-
mance of the O�exp�k�m� algorithm for all k. We make
some progress towards solving that problem by providing a
faster O�exp�k� � knm�minfn�M�k��k� nM�n�g�-time
implementation of their algorithm. We also give a variant of
the algorithm which produces a smaller kernel. Finally, we
apply our approximation algorithm to the chain completion
problem, and obtain an approximation ratio of �k, where k
denotes the size of an optimal solution.

The paper is organized as follows: Section 2 contains a
description of KST algorithm and some background. Sec-
tion 3 improves the complexity of KST algorithm and re-
duces the size of the kernel produced. Section 4 describes
our approximation algorithm for general graphs. Section 5
gives an approximation algorithm for graphs with bounded
degree. Section 6 gives further reduction of the kernel size,
and Section 7 gives an approximation algorithm for the chain
completion problem.

2 Preliminaries

Let G � �V�E� be a graph. We denote its set of vertices
also by V �G� and its set of edges also by E�G�. For U � V
we denote by GU the subgraph induced by the vertices in U .
For a vertex v � V we denote by N�v� the set containing all
neighbors of v in G. We let N 
v� � N�v� � fvg. A path
with l edges is called an l-path and its length is l. A single
vertex is considered a �-path. We call a cycle with l edges an
l-cycle.

Our polynomial approximation algorithm for the mini-
mum fill-in problem builds on KST algorithm [16]. In the
following we describe this algorithm.

Fact 2.1 A minimal triangulation of a chordless l-cycle con-
sists of l�� edges.

Lemma 2.2 [16, Lemma 2.5] LetC be a chordless cycle and
let p be an l-path on C,  � l � jCj��. If l � jCj�� then
in every minimal triangulation of C there are at least l�
chords incident with vertices of p. If l � jCj�� then in
every minimal triangulation of C there are at least l chords
incident with vertices of p.



Let � G � �V�E�� k � be the input to the paramet-
ric fill-in problem. The algorithm has two main stages. In
the first stage, which is polynomial in n�m� k, the algorithm
produces a partition A�B of V and a set F of non-edges
in GA, such that jAj � O�k�� and no chordless cycle in
G� � �V�E � F � intersects B. We shall call this stage the
partition algorithm. In the second stage, which is exponen-
tial in k, an exhaustive search is applied to find a minimum
triangulation F � of G�

A. �F �F �� is then proved to be a min-
imum triangulation of G.

The partition algorithm applies sequentially the follow-
ing three procedures. All three maintain a partition A�B of
V and a lower bound cc on the minimum number of edges
needed to triangulate G. Initially A��� B�V and cc��.

	 Procedure P	�k�: Extracting independent chordless cy-
cles. Search repeatedly for chordless cycles in GB and
move their vertices from B to A. For each chordless
l-cycle found, increment cc by l � �. If at any time
cc � k, stop and declare that the graph admits no k-
triangulation.

	 Procedure P��k�: Extracting related chordless cycles
with independent paths. Search repeatedly for chordless
cycles in G containing at least two consecutive vertices
from B. Let C be such a cycle, jCj � l. If l � k � �
stop with a negative answer. Otherwise, suppose that C
contains j 
  disjoint maximal sub-paths in GB , each
of length at least 1. Move the vertices of those sub-paths
from B to A. Denote their lengths in decreasing order
by l	� � � � � lj . If j �  we increase cc either by �l	�� if
l	� l��, or by l	 if l	�l��. Otherwise cc is increased
by maxf 	�

Pj
i�	 li� l	g. If at any time cc � k, stop and

declare that the graph admits no k-triangulation.

Definition 2.3 For every x� y � A such that �x� y� �� E, de-
note by Ax�y the set of all vertices b � B such that x� b� y oc-
cur consecutively on some chordless cycle in G. If jAx�yj �
�k then �x� y� is called a k-essential edge.

	 Procedure P��k�: Adding k-essential edges in GA. For
every x� y � A such that �x� y� �� E compute the set
Ax�y. If �x� y� is a k-essential edge, then add it to G.
Otherwise, move all vertices in Ax�y from B to A.

Denote by Ai� Bi the partition obtained after procedure
Pi is completed, for i � � �� �. We will omit the index
i when it is clear from the context. The size of A� is at
most 	k, since in a triangulation of G there should be an
edge incident on at least one of any two vertices occurring
consecutively on a chordless cycle. The size of A� is O�k��
since there are O�k�� non-edges in GA� and the number of
vertices moved to A due to any such non-edge is at most �k.

KST Partition Algorithm
Execute procedure P	�k�.
Execute procedure P��k�.
Execute procedure P��k�.

The partition algorithm is summarized above. Let G� de-
note the graph obtained after the execution of procedure P�.
KST prove that every k-essential edge must appear in any k-
triangulation of G [16, Lemma 2.7], and that in G� no chord-
less cycle intersects B [16, Theorem 2.10]. Therefore, by
the following theorem it suffices to search for a minimum
triangulation of G�

A.

Theorem 2.4 [16, Theorem 2.13] Let A�B be a partition of
the vertex set of a graph G, such that the vertices of every
chordless cycle in G are contained in A. A set of edges F is
a minimal triangulation ofG iff F is a minimal triangulation
of GA.

The complexity of the partition algorithm is O�k�nm�
[16]. The complexity of finding a minimum triangulation
of a given graph is O� �k

�k�	����
m� [3]. Since G�

A contains

O�k�� edges, a minimum triangulation of G�

A can be found
in O�k���	k� time. Hence, the complexity of KST algorithm
is O�k�nm� k���	k�.

3 Improvements to the Partition Algorithm

In this section we show some improvements to the parti-
tion algorithm of KST. We assume throughout that the in-
put is � G � �V�E�� k �. We first show how to imple-
ment procedure P� in O�nm�minfn�M�k��k� nM�n�g�-
time. We then prove that the size of A� is only O�k��.
These results imply that KST algorithm can be implemented
in O�knm�minfn�M�k��k� nM�n�g� k���	k�-time.

Lemma 3.1 Procedure P� can be implemented in O�nm �
minfn�M�k��k� nM�n�g�-time.

Proof: Let S � f�x� y� �� E � x� y � A�g. The bottleneck
in the complexity of P� is computing the sets Ax�y for every
�x� y� � S. To do that, we find for every b � B all pairs
�x� y� � S such that b � Ax�y. We then construct the sets
Ax�y. This is done as follows:

Fix b � B. Compute the connected components of Gb �
G � N 
b�. This takes O�m� time. Denote the connected
components of Gb by Cb

	 � � � � � C
b
l . For each x � A � N�b�

compute a binary vector �vx	 � � � � � v
x
l � such that vxj �  iff

Cb
j contains a neighbor of x,  � j � l. Each vector can

be computed in O�n� time. Denote the vectors obtained by
�v	� � � � � �vk� . Define a k� � l boolean matrix M whose i-th
row is the vector �vi,  � i � k�. Note that k� � O�k� and
l � n. Let M� � MMT . It can be seen that M�

i�j 
  iff
b � Ai�j (for i �� j). Since k�� l � n we can compute M�

in O�M�n�� time. If k � o�n� then we can compute M �

in O�nM�k��k� time. Hence, the computation of M � takes
O�minfnM�k��k�M�n�g� time.

After the above calculations are performed for every b �
B, it remains to compute the sets Ax�y. We can do that in
O�minfk�n� n�g� time. The total time is therefore O�nm�
minfn�M�k��k� nM�n�g�.



Observation 3.2 Let x� y � A�� �x� y� �� E. If Ax�y �� �
then for any triangulation F of G, either �x� y� � F , or for
every b � Ax�y, F contains an edge incident on b.

Lemma 3.3 Assume that G admits a k-triangulation, and
that in procedure P� all sets Ax�y moved into A are of size
at most d. Then jA� �A�j �Mk, where M � maxfd� �g.

Proof: Let the non-edges in GA� be �x	� y	�� � � � � �xl� yl�.
We process the sets Ax��y� � � � � � Axl�yl in this order. Let
A�� � A�. Let A�i� be the set A right after Axi�yi was
processed, and let �i � Axi�yi �A�i�	�, for  � i � l.

Let t be a lower bound on the minimum number of edges
needed to triangulateG. Initially P� starts with t � cc. Let ti
be the value of t right after Axi�yi was processed (t � cc).
If �i �� � then by Observation 3.2, t should increase by
minf� j�ij��g. We must maintain t � k. If ti� ti�	 �
� then j�ij � �. If ti� ti�	 � �� then j�ij � . If
ti� ti�	 
  then j�ij � d. Therefore for all  � i � l,
j�ij �M�ti � ti�	�. Now,

jA� �A�j � jA�l� �A��j �
lX

i�	

jA�i� �A�i�	�j �

lX

i�	

j�ij �M

lX

i�	

�ti � ti�	� �M�t� t� �Mk�

Corollary 3.4 If G has a k-triangulation, then the partition
algorithm terminates with jAj � �k�k � ��.

Proof: Let us assume that all essential edges were added
to G, and denote the new set of edges in G by E �. For all
x� y � A�� �x� y� �� E� we know that jAx�yj � �k. By
Lemma 3.3 jA��A�j � �k�. Since jA�j � 	k the corollary
follows.

Theorem 3.5 The algorithm of KST can be implemented in
O�knm�minfn�M�k��k� nM�n�g� k���	k�-time.

Proof: By the analysis in [16], P	 takes O�km� time,
and P� takes O�knm� time. By Lemma 3.1 the complex-
ity of P� is O�nm�minfn�M�k��k� nM�n�g�. By Corol-
lary 3.4 if G admits a k-triangulation then the size of A� is
O�k��. Hence, a minimum triangulation of G�

A can be found
in O�k���	k� time. The complexity follows.

4 The Approximation Algorithm

Let G � �V�E� be the input graph. Let kopt � ��G�. The
key idea in our approximation algorithm is to find a set of
vertices A � V , such that jAj � O�kopt� and, moreover,
one can triangulateG by adding edges only between vertices

of A. Since there are O�k�opt� such edges, we achieve an
approximation ratio of O�kopt�.

In order to find such a set A we use ideas from the par-
tition algorithm. If we knew kopt we could execute the par-
tition algorithm and obtain a set A, with jAj � O�k�opt� (by
Corollary 3.4), such that G can be triangulated by adding
edges only in GA. This would already give an O�k�opt� ap-
proximation ratio.

Before describing our algorithm we analyze the role of
the parameter k given to the partition algorithm. If k�kopt
then the algorithm might stop during P	 or P� and declare
that no k-triangulation exists. Moreover, k-essential edges
are not necessarily kopt-essential. If k�kopt then the size of
A may be 	�k�opt�. The algorithm is as follows:

Algorithm APPROX
Procedure P �

	: Execute P	���.
Procedure P �

�: Execute P����.
Procedure P �

�: Execute P����.
Let G� be the resulting graph.
Procedure P �

�: Find a minimal triangulation of G�

A.

Procedures P �

	 and P �

� execute P	 and P� respectively,
without bounding the size of the triangulation implied. Pro-
cedure P �

� takes advantage of the fact that we no longer seek
a minimum triangulation, but rather a minimal one. In or-
der to obtain our approximation result we want to keep A as
small as possible. Hence, instead of moving new vertices to
A we add new �-essential edges accommodating for those
vertices. By the same arguments as in [16] and Section 2,
the size of A after P �

� is at most 	kopt. Since P �

� does not add
new vertices to A, its size remains at most 	kopt through-
out. The size of the triangulation found by the algorithm is
therefore at most �k�opt. The correctness of algorithm AP-
PROX is established in the sequel. We need the following
lemma which is essentially proven in [16, Lemma 2.9]. The
subsequent theorem is along the lines of [16, Theorem 2.10].

Lemma 4.1 Let G � �V�E� be a graph and let v � V .
Let F be a set of non-edges in G � fvg, such that each
e � �x� y� � F is a chord in a chordless cycle Ce �
�x� ze� y� � � � � x� in G, where ze is not an endpoint of any
edge in F . Let G� � �V�E � F �. If there exists a chord-
less cycle C in G� with v	� v� v� occurring consecutively on
C, then either there exists a chordless cycle in G on which
v	� v� v� occur consecutively, or there exists a chordless cy-
cle in G, on which v and ze occur consecutively, for some
e � F .

Theorem 4.2 No chordless cycle in G� intersects B.

Proof: Suppose to the contrary that C is a chordless cycle
inG� with at least one vertex fromB. Let v � C�B. Denote
by v	 and v� the two neighbors of v on C. Let F �E�G���
E�G�. C must contain at least one edge e � �x� y� � F ,



since otherwise C exists in G and either v would have been
moved to A by P �

	 or P �

�, or �v	� v�� would have been added
toG� by P �

�. By construction e is a chord in a chordless cycle
Ce in G, such that if P 	

e and P �
e are the two paths connecting

x and y in Ce, with x and y removed from each path, then
at least one of them consists of a single vertex ze � B. As
v� ze � B, they are not incident on any edge in F . Applying
Lemma 4.1 we find that there are two possible cases:

1. There exists a chordless cycle in G on which v	� v� v�
occur consecutively, a contradiction.

2. There exists a chordless cycle in G on which v and ze
occur consecutively. But then at least one of v and ze
should have been moved to A by P �

	 or P �

�, a contradic-
tion.

Theorem 4.3 Let G be a graph and let kopt � ��G�. The
algorithm finds a triangulation of G of size at most �k�opt, in
time O�koptnm�minfn�M�kopt��kopt� nM�n�g�.
Proof: Correctness: By Theorems 4.2 and 2.4 a minimal
triangulation of G�

A is a minimal triangulation of G�. There-
fore at the end of the algorithm G is triangulated. Through-
out the algorithm the only edges added to G are between
vertices of A. Since jAj � 	kopt the size of the triangulation
is at most �k�opt.

Complexity: The complexity analysis of procedures P	

and P� in [16] implies that P �

	 and P �

� can be performed in
O�koptnm� time. By Lemma 3.1 the complexity of P �

� is
O�nm�minfn�M�kopt��kopt� nM�n�g�. ProcedureP �

� re-
quires finding a minimal triangulation of G�

A. Since jAj �
O�minfkopt� ng� and jE�G�

A�j � O�minfk�opt� n�g�, this
requires O�minfk�opt� n�g� time [18]. Thus, the algorithm
takes O�koptnm�minfn�M�kopt��kopt� nM�n�g� time.

5 Bounded Degree Graphs

In order to improve the approximation ratio for bounded de-
gree graphs, we improve P �

�. Instead of simply finding a
minimal triangulation of G�

A, we use the triangulation algo-
rithm of Agrawal, Klein and Ravi [1]. This alone does not
suffice to prove a better approximation ratio, since adding
�-essential edges (in P �

�) might increase the minimum fill-in
size. To overcome this difficulty we use KST partition algo-
rithm with k �� as its input parameter. The approximation
algorithm is as follows:

	 Execute KST partition algorithm with k ��.

	 Find a minimal triangulation of GA using the algorithm
in [1].

Assume that the input graph G has maximum degree
d, and let k � ��G�. We will show that the algorithm

achieves an approximation ratio of O�d��� log��kd��. Since
k � O�n��, this is in fact a polylogarithmic approxima-
tion ratio. It improves over the O�k� approximation ratio
obtained in the previous section, when k� log� k � ��d����.

Theorem 5.1 The algorithm finds a triangulation of G of
size within a factor of O�d��� log��kd�� of optimal.

Proof: Correctness: By the correctness of KST partition
algorithm, we obtain a partitionA�B for which no chordless
cycle in G intersects B (a parameter k � � implies that
no new edges will be added to GA by P�). By Theorem 2.4
a minimal triangulation of GA is a minimal triangulation of
G. Therefore, the algorithm correctly computes a minimal
triangulation of G.

Approximation Ratio: When executing P� the size of
each set Ax�y is at most d. By Lemma 3.3 jA� � A�j �
O�kd�. Since jA�j � O�k�, the size of A when the par-
tition terminates is O�kd�. Setting the parameter value to
� in P� guarantees that no new edge is added to GA, and
therefore its maximum degree remains d and jE�GA�j �
O�kd��. Using the algorithm in [1] we can produce a chordal
super-graph of GA with O��kd� � k�

p
d log��kd�� edges.

The size of the fill-in obtained is therefore within a factor of
O�d��� log��kd�� of optimal.

6 Reducing the Kernel Size

We now return to the parametric fill-in problem. By modify-
ing procedure P� in KST partition algorithm we will obtain
a partition A�B of V for which no chordless cycle in G� in-
tersects B and jAj � O�k�. In fact we will obtain at most
�k such partitions and prove that if G has a k-triangulation,
then at least for one of those partitions G�

A admits a �k���-
triangulation, where � � jE�G�

A� �E�GA�j. Reducing the
size of A results in improving the complexity of finding a
minimum triangulation of G�

A to O�
p
k	k�, although the to-

tal time of the algorithm increases, since we have to handle
up to �k partitions. We include this result since it gives fur-
ther insight of the problem.

As in the original algorithm we start by executing proce-
dures P	�k� and P��k�. We store the value of cc. We also
compute the sets Ax�y for all x� y � A�� �x� y� �� E. If �x� y�
is k-essential, we add it to G. Otherwise we do nothing.
Denote the new graph obtained by G� � �V�E��. Define
P � f�x� y� �� E� � x� y � A�g.

The algorithm now enumerates all subsets S � P . For
a given S, every �x� y� � S is added as an edge in the tri-
angulation, and for every �x� y� � P �S, the vertices in
Ax�y are moved fromB to A. The algorithm is implemented
by the recursive procedure below, and is invoked by calling
BRANCH(cc� �� P� A�).



Procedure BRANCH(cc� F� P�A)
If cc � k return.
While there exists �x� y� � P such that
jAx�y�Aj �  do:

A �� A � Ax�y.
P �� P � f�x� y�g�
cc �� cc� ��.

Delete from P all �x� y� such that Ax�y � A.
If P � � save the pair �A�F � and return.
Choose any �x� y� � P .
Call BRANCH(cc� � F � f�x� y�g�

P � f�x� y�g� A).
Call BRANCH(cc� jAx�y �Aj��� F�

P � f�x� y�g� A � Ax�y).
Return.

Lemma 6.1 The algorithm terminates after at most �k���
calls to procedure BRANCH. The number of pairs saved by
the algorithm is at most �k.

Proof: Denote by T �i� the number of calls to procedure
BRANCH, when invoked with cc � i (including the first
call). Clearly T �i� �  � �T �i� �, where T �j� �  for all
j � k. The solution of this recursion gives T ��� � �k���.

Denote by P �i� the number of pairs saved by procedure
BRANCH, when invoked with cc � i. Clearly P �i� �
�P �i � �, where P �k� � . The solution of this recursion
gives P ��� � �k.

As usual, for a set A � V saved by the algorithm, B
denotes V �A.

Theorem 6.2 For every pair �A�F � saved by the algorithm,
jAj � �k, and no chordless cycle in G� � �V�E � F � inter-
sects B.

Proof: Whenever a partition is saved cc � k. Since jA �
A�j�� � cc, at most �k new vertices were added to A� in
any partition obtained. Since jA�j � 	k we conclude that
jAj � �k.

Assume to the contrary that C is a chordless cycle in
G� intersecting B. Let v � C � B. Let v	 and v� be the
neighbors of v on C. v is not the endpoint of any edge in F
since v � B. Every edge e � �x� y� � F is a chord in a
chordless cycle Ce � �x� ze� y� � � � � x�, where ze � B (since
the only edges we add in the algorithm are pairs �x� y� such
that there exist a vertex b � B, and a chordless cycle in G,
on which x� b� y occur consecutively). Applying Lemma 4.1
we find that two cases are possible:

1. There exists a chordless cycle in G on which v	� v� v�
occur consecutively. But then either v would have been
moved toA by P	 or P� or BRANCH, or �v	� v�� would
have been added as an edge by BRANCH, a contradic-
tion.

2. There exists a chordless cycle in G on which v and ze
(for some e � F ) occur consecutively. But then at least
one of v and ze would have been moved to A by P	 or
P�, a contradiction.

Definition 6.3 A pair �A�F � saved by BRANCH is called
good, if ��G� � ��G�� � jF j, where G� � �V�E � F �.

Lemma 6.4 If ��G� � k then at least one output of the
algorithm is good.

Proof: Let �A� �B be a partition obtained by executing KST
partition algorithm with the same input. Let F � denote a
minimum triangulation of G. After executing P�, our algo-
rithm produces the same initial partition A�� B� as the KST
algorithm. For that partition, define S � f�x� y� �� E �
x� y � A�� Ax�y �� �g. By observation 3.2,

jF �j 
 jS � F �j� 

�
j
�

�x�y��S�F�

Ax�yj

Since jF �j � k, procedure BRANCH will save the pair
� �A�S � F ��.

Theorem 6.5 The complexity of the new partition algorithm
is O�knm�minfn�M�k��k� nM�n�g� k��k�.

Proof: By [16] P	 and P� take O�knm� time. By Lemma
3.1 the complexity of computing the sets Ax�y for all x� y �
A�� �x� y� �� E is O�nm �minfn�M�k��k� nM�n�g�. By
Lemma 6.1 the number of calls to BRANCH is O��k�. Since
jP j � O�k��, jAj � O�k� and cc � k, each call can be
carried out inO�k�� time. The total work done by BRANCH
is therefore O�k��k�.

7 An Approximation Algorithm for the Chain
Completion Problem

A bipartite graph G � �P�Q�E� is called a chain graph
if there exists an ordering 
 of P , 
 � P  f� � � � � jP jg,
such that N�
�	��� � N�
�	���� � � � � � N�
�	�jP j��.
This class of graphs was introduced by Yannakakis [22], and
independently by Golumbic (cf. [15, page 260]). The chain
completion problem is defined as follows: Given a bipartite
graph G � �P�Q�E�, find a minimum set of non-edges F
such that �P�Q�E � F � is a chain graph. We call jF j the
chain fill-in. Yannakakis proved that the chain completion
problem is NP-complete and used this result to show that the
minimum fill-in problem is NP-complete [22]. Chain graphs
have also recently been investigated in [8], where a similar
graph modification problem arises.



Theorem 7.1 There exists a polynomial approximation al-
gorithm for the chain completion problem, achieving an ap-
proximation ratio of �k, where k denotes the minimum chain
fill-in. The complexity of the algorithm is O�kn��.

Proof: Let G � �U� V�E� be an input bipartite graph
with chain fill-in k. We apply the reduction given by Yan-
nakakis [22] from the chain completion problem to the min-
imum fill-in problem, as follows: Build a graph G� � �U �
V�E��, where E� � E � f�u� v� � u� v � Ug � f�u� v� �
u� v � V g. Observe that G is a chain graph iff G� is chordal.
Hence, a set of edges F triangulates G� iff �U� V�E � F � is
a chain graph.

Approximation Ratio: By the above argument k equals
��G��. Using our approximation algorithm for the minimum
fill-in, we can find a triangulation of G� of size at most �k�.
Adding these edges to G produces a chain graph. The num-
ber of new edges is within a factor of �k of optimal.

Complexity: G� can be computed inO�n�� time. Due to
the reduction jE�G��j � ��n��. Therefore the complexity
of the approximation algorithm is O�kn��.
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