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Abstract� We study several problems arising in haplotype block parti�
tioning� Our objective function is the total number of distinct haplotypes
in blocks� We show that the problem is NP�hard when there are errors
or missing data� and provide approximation algorithms for several of its
variants� We also give an algorithm that solves the problem with high
probability under a probabilistic model that allows noise and missing
data� In addition� we study the multi�population case� where one has to
partition the haplotypes into populations and seek a di�erent block par�
tition in each one� We provide a heuristic for that problem and use it to
analyze simulated and real data� On simulated data� our blocks resemble
the true partition more than the blocks generated by the LD�based al�
gorithm of Gabriel et al� 
��� On single�population real data� we generate
a more concise block description than extant approaches� with better
average LD within blocks� The algorithm also gives promising results on
real ��population genotype data�

Keywords� haplotype� block� genotype� SNP� sub�population� strati�cation� al�
gorithm� complexity�

� Introduction

The availability of a nearly complete human genome sequence makes it possible
to look for telltale di�erences between DNA sequences of di�erent individuals on
a genome�wide scale� and to associate genetic variation with medical conditions�
The main source of such information is single nucleotide polymorphisms �SNPs��
Millions of SNPs have already been detected 	
�� 
�
� out of an estimated total of

� millions common SNPs 	�
� This abundance is a blessing� as it provides very
dense markers for association studies� Yet� it is also a curse� as the cost of typing
every individual SNP becomes prohibitive� Haplotype blocks allow researchers
to use the plethora of SNPs at a substantially reduced cost�

The sequence of alleles in contiguous SNP positions along a chromosomal re�
gion is called a haplotype� A major recent discovery is that haplotypes tend to be
preserved along relatively long genomic stretches� with recombination occurring



�

primarily in narrow regions called hot spots 	�� 
�
� The regions between two
neighboring hot spots are called blocks� and the number of distinct haplotypes
within each block that are observed in a population is very limited� typically�
some ������ of the haplotypes within a block belong to very few ����� common
haplotypes 	
�
� The remaining haplotypes are called rare haplotypes� This �nd�
ing is very important to disease association studies� since once the blocks and
common haplotypes are identi�ed� one can hopefully obtain a much stronger as�
sociation between a haplotype and a disease phenotype� Moreover� rather than
typing every individual SNP� one can choose few representative SNPs from each
block that su�ce to determine the haplotype� Using such tag SNPs allows a
major saving in typing costs�

Due to their importance� blocks have been studied quite intensively recently�
Daly et al� 	�
 and Patil et al� 	
�
 used a greedy algorithm to �nd a partition into
blocks that minimizes the total number of SNPs that distinguish a prescribed
fraction of the haplotypes in each block� Zhang et al� 	��
 provided a dynamic
programming algorithm for the same purpose� Koivisto et al� 	
�
 provided a
method based on Minimum Description Length to �nd haplotype blocks� Bafna
et al� 	�
 proposed a combinatorial measure for comparing block partitions and
suggested a di�erent approach to �nd tag SNPs� that avoids the partition into
blocks� For a recent review on computational aspects of haplotype analysis� see
	
�
�

In this paper we address several problems that arise in haplotype studies�
Our starting point is a very natural optimization criterion� We wish to �nd
a block partition that minimizes the total number of distinct haplotypes that
are observed in all the blocks� This criterion for evaluating a block partition
follows naturally from the above mentioned observation� that within blocks in
the human genome� only a few common haplotypes are observed 	
�� �� �
� The
same criterion is used in the pure parsimony approach for haplotype inference�
where the problem is to resolve genotypes into haplotypes� using a minimum
number of distinct haplotypes 	


� In this case� the problem was shown to be
NP�hard 	
�
� This criterion was also proposed by Gus�eld 	
�
 as a secondary
criterion in re�nements to Clark�s inference method 	�
� Minimizing the total
number of haplotypes in blocks can be done in polynomial time if there are no
data errors� using a dynamic programming algorithm�The problem becomes hard
when errors are present or some of the data are missing� In fact� the problem of
scoring a single given block turns out to be the bottleneck� Note that in practice�
one has to account for rare haplotypes and hence minimize the total number of
common haplotypes�

The input to all the problems we address is a binary haplotype matrix A with
columns corresponding to SNPs in their order along the chromosome and rows
corresponding to individual chromosomal segments typed� Aij is the allele type
of chromosome i in SNP j� The �rst set of problems that we study concerns the
scoring of a single block in the presence of errors or missing data� In one problem
variant� we wish to �nd a minimumnumber of haplotypes such that by making at
most E changes in the matrix� each row vector is transformed into one of them�
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We call this problem Total Block Errors �TBE�� We show that the problem in
NP�hard� and provide a polynomial ��approximation algorithmwhen the number
of haplotypes is bounded� In a second variant� we wish to minimize the number
of haplotypes when the maximum number of errors between a given row and its
�closest� haplotype is bounded by e� We call this problem Local Block Errors
�LBE�� This problem is shown to be NP�hard too� and we provide a polynomial
algorithm �for �xed e�� which guarantees a logarithmic approximation factor� In
a third variant� some of the data entries are missing �manifested as �question
marks� in the block matrix�� and we wish to replace each of them by zero or one�
so that the total number of haplotypes is minimum� Again� we show that this
Incomplete Haplotypes �IH� problem is NP�hard� To overcome the hardness we
resort to a probabilistic approach� We de�ne a probabilistic model for generating
haplotype data� including errors� missing data and rare haplotypes� and provide
an algorithm that scores a block correctly with high probability under this model�

Another problem that we address is stratifying the haplotype populations� It
has been shown that the block structure in di�erent populations is di�erent 	�
�
When the partition of the sample haplotypes into sub�populations is unknown�
determining a single block structure for all the haplotypes can create arti�cial
solutions with far too many haplotypes� We de�ne the Minimum Block Haplo�
types �MBH� problem� where one has to partition the haplotyped individuals
into sub�populations and provide a block structure for each one� so that the
total number of distinct haplotypes over all sub�populations and their blocks is
minimum� We show that MBH is NP�hard� but provide a heuristic for solving it
in the presence of errors� missing data and rare haplotypes� The algorithm uses
ideas from the probabilistic analysis�

We applied our algorithm to several synthetic and real datasets� We show that
the algorithm can identify the correct number of sub�populations in simulated
data� and is robust to noise sources� When compared to the LD�based algorithm
of Gabriel et al� 	�
� we show that our algorithm forms a partition into blocks
that is much more faithful to the true one� On a real dataset of Daly et al� 	�

we generate a more concise block description than extant approaches� with a
better average value of the high LD�con�dence fraction within blocks� As a �nal
test� we applied our MBH algorithm to the two largest sub�populations reported
in Gabriel et al� 	�
� As this was genotype data� we treated heterozygotes as
missing data� Nevertheless� the algorithm was able to determine that there are
two sub�populations and correctly classi�ed over ��� of the haplotypes�

The paper is organized as follows� In Section � we study the complexity of
scoring a block under various noise sources and present our probabilistic scor�
ing algorithm� In Section � we study the complexity of the MBH problem and
describe a practical algorithm for solving it� Section � contains our results on
simulated and real data�






� Scoring Noisy Blocks

In this section we study the problem of minimizing the number of distinct haplo�
types in a block under various noise sources� This number will be called the score
of the block� The scoring problem arises as a key component in block partitioning
in single� and multiple�population situations�

The input is a haplotype matrix A with n rows �haplotypes� and m columns
�SNPs�� Amay contain errors �where ��� is replaced by �
� and vice versa�� result�
ing from point mutations or measurement errors� and missing entries� denoted by
���� Clearly� if there are no errors or missing data then a block can be scored in
time proportional to its size by a hashing algorithm� Below we de�ne and analyze
several versions of the scoring problem which incorporate errors into the model�
We assume until Section ��� that there are no rare haplotypes� In the following
we denote by vi the i�th row vector �haplotype� of A� and by V � fv�� � � � � vng
the set of all n row vectors�

��� Minimizing the Total Number of Errors

First we study the following problem� We are given an integer E� and wish to
determine the minimum number of �possibly new� haplotypes� called centroids�
such that by changing at most E entries in A� every row vector is transformed
into one of the centroids� Formally� let h��� �� denote the Hamming distance
between two vectors� De�ne the following problem�

Problem � �Total Block Errors �TBE��� Given a block matrix A and an integer
E� �nd a minimumnumber k of centroids v�� � � � � vk� such that

P
u�V mini h�u� vi�

� E�

Determining if k � 
 can be done trivially in O�nm� time by observing that
the minimum number of errors is obtained when choosing v� to be the consensus
vector of the rows of A� The general problem� however� is NP�hard� as shown
below�

Theorem �� TBE is NP�hard�

Proof� We provide a reduction from VERTEX COVER� Given an instance �G �
�V � f
� � � � �mg� F � fe�� � � � � eng�� k� of VERTEX COVER� where w�l�o�g�
k � m � 
� we form an instance �A� k � 
� E� of TBE� A is an �n �mn�� �m
matrix� whose rows are constructed as follows�


� For each of edge ei � �s� t� � F � we form a binary vector vei with �
� in
positions s and t� and ��� in all other places�

�� For vertex i � V de�ne the vertex vector ui as the vector with �
� in its i�th
position� and ��� otherwise� For each i � V we form a set Ui of n

� identical
copies of ui�



�

We shall prove that G has a vertex cover of size at most k i� there is a solution
to TBE on A with at most k � 
 subsets and E � n� n��m� k� errors�

��� Suppose that G has a vertex cover fv�� � � � � vtg with t � k� Partition the
rows of A into the following subsets� For 
 � i � t the i�th subset will contain all
vectors corresponding to edges that are covered by vi �if an edge is covered by
two vertices� choose one arbitrarily�� along with the n� vectors in Ui� Its centroid
will be vi� The �t�
��st subset will contain all vectors corresponding to vertices
of G that are not members of the vertex cover� with its centroid being the all��
vector� It is easy to verify that the number of errors induced by this partition is
exactly n� n��m� t� � E�

��� Suppose that A can be partitioned into at most t�
 subsets �with t � k�
such that the number E� of induced errors is at most E� W�l�o�g� we can assume
that for each i all vectors in Ui belong to the same set in the partition� For
each vertex i � V � the set Ui induces at least n

� errors� unless ui is one of the
centroids� Let l be the number of centroids that correspond to vertex vectors�
Then the number of errors induced by the rest �m � l� sets of vertex vectors is
E� � �m � l�n� � �m � k�n� � n� Hence� k � l � t � 
 � k � 
� Suppose to
the contrary that l � k � 
� Since the Hamming distance of any two distinct
vertex vectors is �� we get E� 	 ��m � k � 
�n� � E �since m � k � 
�� a
contradiction� Thus� l � k� We claim that these k vertices form a vertex cover of
G� By the argument above each other vertex vector must belong to the �k�
��st
subset and� moreover� its centroid must be the all�� vector� Consider a vector w
corresponding to an edge �u�w�� If w is assigned to the �k�
��st subset it adds
� to E�� Similarly� if w is assigned to one of the �rst k subsets corresponding
to a vertex v and u�w 
� v then w adds � to E�� Since there are n edges and
the assignment of vertex vectors induced E� � n��m � k� 	 E � n errors� each
edge can induce at most one error� Hence� each edge induces exactly one error�
implying that every edge is incident to one of the k vertices� ut

Thus� we study enumerative approaches to TBE� A straightforward approach
is to enumerate the centroids in the solution and assign each row vector of A to
its closest centroid� Suppose there are k centroids in an optimum solution� Then
the complexity of this approach is O�kmn�mk�� which is feasible only for very
small m and k� In the following we present an alternative approach to a variant
of TBE� in which we wish to minimize the total number of errors induced by the
solution� We devise a �� � �

n
��approximation algorithm for this variant� which

takes O�n�m� knk��� time�
To describe the algorithm and prove its correctness we use the following

lemma� that focuses on the problem of seeking a single centroid v � V to the
n vectors v�� � � � � vn� Denote evb � argminv�f���gm

Pn
i�� h�v� vi�� and let E be

maxv�V h�v� evb��
Lemma �� Let vb � argminv�V

Pn
i�� h�v� vi�� Then

Pn
i�� h�vb� vi� � ��� �

n
�E�

Proof� De�ne s �
P

��i�j�n h�vi� vj�� We �rst claim that s � E�n� 
�� Then�

s �
X
i�j

h�vi� vj� �
X
i�j

	h�vi� evb� � h�evb� vj�
 � �n� 
�
X
i

h�vi� evb� � �n� 
�E �



�

The �rst inequality follows since the Hamming distance satis�es the triangle
inequality� The last equality follows by using evb as the centroid� This proves the
claim�

By the de�nition of vb� for every vc 
� vb we have

X
vi�V

h�vb� vi� �
X
vi�V

h�vc� vi�

Summing the above inequality for all n vectors� noting that h�v� v� � �� we get

n
X
vi�V

h�vb� vi� � �
X

��i�j�n

h�vi� vj� � �s � �E�n� 
�

ut

Theorem �� TBE can be ��� �
n
��approximated in O�n�m� knk��� time�

Proof� Algorithm� Our algorithm enumerates all possible subsets of k rows in
A as centroids� assigns each other row to its closest centroid and computes the
total number of errors in the resulting solution�

Approximation factor� Consider two �possibly equal� partitions of the
rows of A� Palg � �A�� � � � � Ak�� the one returned by our algorithm� and Pbest �

� �A�� � � � � �Ak�� a partition that induces a minimumnumber of errors� For 
 � i � k
denote vib � argminv�Ai

P
vj�Ai

h�v� vj� and �vib � argminv� �Ai

P
vj� �Ai

h�v� vj��

The number of errors induced by Palg and Pbest are Ealg �
Pk

i��

P
v�Ai

h�vib� v�

and Ebest �
Pk

i��

P
v� �Ai

h��vib� v�� respectively� Finally� let ni � j �Aij and de�

note by ei the minimum number of errors induced in subset �Ai� by the optimal
solution� In particular�

Pk
i�� ni � n and

Pk
i�� ei � Ebest�

Since our algorithm checks all possible solutions that use k of the original
haplotypes as centroids and chooses a solution that induces a minimal number
of errors� Ealg � Ebest� By Lemma 
�

P
v� �Ai

h��vib� v� � �� � �
ni
�ei for every


 � i � k� Summing this inequality over all 
 � i � k we get

Ealg � Ebest �

kX
i��

X
v� �Ai

h��vib� v� �

kX
i��

���
�

ni
�ei �

kX
i��

���
�

n
�ei � ���

�

n
�E �

Complexity� As a preprocessing step we compute the Hamming distance
between every two rows in O�n�m� time� There are O�nk� possible sets of cen�
troids� For each centroid set� assigning rows to centroids and computing the total
number of errors takes O�kn� time� The complexity follows� ut

��� Handling Local Data Errors

In this section we treat the question of scoring a block when the maximum
number of errors between a haplotype and its centroid is bounded� Formally� we
study the following problem�



�

Problem � �Local Block Errors �LBE��� Given a block matrixA and an integer e�
�nd a minimumnumber k of centroids v�� � � � � vk and a partition P � �V�� � � � � Vk�
of the rows of A� such that h�u� vi� � e for every i and every u � Vi�

Theorem �� LBE is NP�hard even when e � 
�

Proof� We use the same construction as in the proof of Theorem 
� We claim
that the VERTEX COVER instance has a solution of cardinality at most k i�
the LBE instance has a solution of cardinality at most k � 
 such that at most
one error is allowed in each row� The �only if� part is immediate from the proof of
Theorem 
� For the �if� part observe that any two vectors corresponding to a pair
of independent edges cannot belong to the same subset in the partition� and so is
the case for a vertex vector and any vector corresponding to an edge that is not
incident on that vertex� This already implies a vertex cover of size at most k�
�
Sincem � k�
 there must be a subset in the partition that contains at least two
vectors corresponding to distinct vertices� But then either it contains no edge
vector� or it contains exactly one edge vector and the vectors corresponding to
its endpoints� In any case we obtain a vertex cover of the required size� ut

In the following we present an O�logn� approximation algorithm for the
problem�

Theorem �� There is an O�logn� approximation algorithm for LBE that takes
O�n�me� time�

Proof� Our approximation algorithm for LBE is based on a reduction to SET
COVER� Let V be the set of row vectors of A� De�ne the e�set of a vector v with
respect to a matrix A as the set of row vectors in A that have Hamming distance
at most e to v� Denote this e�set by e�v�� Let U be the union of all e�sets corre�
sponding to row vectors of A� We reduce the LBE instance to a SET COVER
instance �V�S�� where S � fe�v� � V � v � Ug� Clearly� there is a 
�
 map�
ping between solutions for the LBE instance and solutions for the SET COVER
instance� and that mapping preserves the cardinality of the solutions� We now
apply an O�logn��approximation algorithm for SET COVER �see� e�g�� 	�
� to
�V�S� and derive a solution to the LBE instance� which is within a factor of
O�logn� of optimal� The complexity follows by observing that jU j � O�nme��

ut

��� Handling Missing Data

In this section we study the problem of scoring an incomplete matrix� i�e�� a
matrix in which some of the entries may be missing� The problem is formally
stated as follows�

Problem � �Incomplete Haplotypes �IH��� Given an incomplete haplotype matrix
A� complete the missing entries so that the number of haplotypes in the resulting
matrix is minimum�



�

Theorem �� IH is NP�hard�

Proof� By reduction from GRAPH COLORING 	�
� Given an instance �G �
�V�E�� k� of GRAPH COLORING we build an instance �A� k� of IH as follows�
Let V � f
� � � � � ng� Each i � V is assigned an n�dimensional row vector vi in A
with �
� in the i�th position� ��� in the j�th position for every �i� j� � E and ���
in all other positions�

Given a k�coloring of G� let V�� � � � � Vk be the corresponding color classes� For
each class Vi � fvj� � � � � � vjig we complete the ����s in the vectors corresponding
to its vertices as follows� Each ��� in one of the columns j�� � � � � ji is completed
to 
� and all other are completed to �� The resulting matrix contains exactly k
distinct haplotypes� Each haplotype corresponds to a color class� and has �
� in
position i i� i is a member of the color class�

Conversely� given a solution to IH of cardinality at most k� each of the solution
haplotypes corresponds to a color class in G� This follows since any two vectors
corresponding to adjacent vertices must have a column with both ��� and �
� and�
thus� represent two di�erent haplotypes� ut

��� A Probabilistic Algorithm

In this section we de�ne a probabilistic model for the generation of haplotype
block data� The model is admittedly naive� in that it assumes equal allele frequen�
cies and independence between di�erent SNPs and distinct haplotypes� However�
as we shall see in Sections � and �� it provides useful insights towards an e�ective
heuristic� that performs well on real data� We give a polynomial algorithm that
computes the optimal score of a block under this model with high probability
�w�h�p��� Our model allows for all three types of confusing signals mentioned
earlier� Rare haplotypes� errors and missing data�

Denote by T the hidden true haplotype matrix� and by A the observed one�
Let T � be a submatrix of T � which contains one representative of each haplotype
in T �common and rare�� We assume that the entries of T � are drawn indepen�
dently according to a Bernoulli distribution with parameter ���� T is generated
by duplicating each row in T � an arbitrary number of times� This completes
the description of the probabilistic model for T � Note that we do not make any
assumption on the relative frequencies of the haplotypes� We now introduce er�
rors to T by independently  ipping each entry of T with probability � � ����
Finally� each entry is independently replaced with a ��� with probability p� Let
A be the resulting matrix� and let A� be the submatrix of A induced by the rows
in T �� Under these assumptions� the entries of A� are independently identically
distributed as follows� A�

ij � � with probability ��p
� � A�

ij � 
 with probability
��p
� and A�

ij �� with probability p�
We say that two vectors x and y have a con	ict in position i if one has value


 and the other � in that position� De�ne the dissimilarity d�x� y� of x and y as
the number of their con icting positions �in the absence of ���s� this is just the
Hamming distance�� We say that x is independent of y and denote it by x k y�
if x and y originate from two di�erent haplotypes in T � Otherwise� we say that



�

x and y are mates and denote it by x 
 y� Intuitively� independent vectors will
have higher dissimilarity compared to mates� In particular� for any i�

pI � Prob�xi � yijx k y� xi� yi � f�� 
g� � ���� �
�

pM � Prob�xi � yijx 
 y� xi� yi � f�� 
g� � �� � �
� ��� � ��� �

Problem 
 �Probabilistic Model Block Scoring �PMBS��� Given an incomplete
haplotype block matrix A� �nd a minimum number k of centroids v�� � � � � vk�
such that under the above probabilistic model� w�h�p�� each vector u � A is a
mate of some centroid�

Our algorithm for scoring a block A under the above probabilistic model
is described in Figure 
� It uses a threshold t� on the dissimilarity between
vectors� to decide on mate relations� t� is set to be the average of the expected
dissimilarity between mates and the expected dissimilarity between independent
vectors �see proof of Theorem ��� The algorithm produces a partition of the rows
into mate classes of cardinalities s� 	 s� 	 � � � 	 sl� Given any lower bound �
on the fraction of rows that need to be covered by the common haplotypes� we
give A the score h � argminj

Pj
i�� si 	 �n� We prove below that w�h�p� h is

the correct score of A�

Score�A��

�� Let V be the set of rows in A�
�� Initialize a heap S�
�� While V �� � do�

�a� Choose some v � V �
�b� H � fvg�
�c� For every v� � V n fvg do�

If d�v� v�� � t� then H � H � fv�g�
�d� V � V nH�
�e� Insert�S	jHj��


� Output S�

Fig� �� An algorithm for scoring a block under a probabilistic model of the data�
Procedure Insert�S�s� inserts a number s into a heap S�

Theorem 	� If m � ��logn� then w�h�p� the algorithm computes the correct
score of A�

Proof� We prove that w�h�p� each mate relation decided by the algorithm is
correct� Applying a union bound over all such decisions will give the required
result� Fix an iteration of the algorithm at which v is the chosen vertex and let
v� 
� v be some row vector in A� Let Xi be a binary random variable which is 

i� vi and v

�
i are in con ict� Clearly� allXi are independent identically distributed



	�

Bernoulli random variables� De�ne X � d�v� v�� �
Pm

i��Xi and f � �
 � p���
Using Equation 
 we conclude�

�X jv� k v� � Binom�m� f�
� pI�� �

�X jv� 
 v� � Binom�m� f�
� pM �� �

We now require the following Cherno� bound �cf� 	

�� If Y � Binom�n� s�
then for every 	 � � there exists c� � � that depends only on 	� satisfying�

Prob	jY � nsj 	 	ns
 � �e�c�ns�

Let 
 � mf�
� pM �� De�ne 	 � ���pI�����pM �
����PM � and t� � 	
� Applying Cherno�

bound we have that for all c � ��

Prob�X � t�jv� 
 v� � �e�c��m �



nc
� P rob�X � t�jv� k v� � �

nc
�

Since we check whether d�v� v�� � t� a total of O�n�� times� applying a union
bound we conclude that the probability that throughout the algorithm some
implied mate relation is incorrect� is bounded by a polynomial in �

n
� ut

When using the algorithm as part of a practical heuristic �see Section ��� we
do not report the rare haplotypes� Instead� we report only the smallest number of
most abundant haplotypes as computed by the algorithm that together capture
a fraction � of all haplotypes� In applications in which the error rate � is not

known� t� cannot be directly computed� Instead� we calculate the ratio d�v��v��
fm

for any two row vectors� and keep these values in a sorted array� d� � � � � � d�n��
�

Next we �nd �a� b� � argmaxa�di�b�di��� ��i��n��
	b � a
� Then we set t� � a�b

� �

It can be shown that using this strategy the algorithm solves PMBS with high
probability�

� Minimum Block Haplotypes

Suppose that the matrix A contains haplotypes from several homogeneous pop�
ulations� The partitioning into blocks can di�er among populations 	�
� Here� we
study how to reconstruct the partitioning of the rows of A into sets called sub�
populations� and the columns in each set into blocks� such that the sum of the
scores of the submatrices corresponding to these blocks is minimized� Formally�

Problem � �Minimum Block Haplotypes �MBH��� Given a haplotype matrix A�
�nd a partition of its rows into sub�populations so that the total number of block
haplotypes is minimized�

We usually know which populations the haplotypes came from� however� in
certain situations� there may be a hidden strati�cation of the population� that
can dramatically change the conclusions of association studies�



		

Given a partition of the rows� one can compute the score in the noiseless
case using a simple adaptation of the dynamic programming algorithm of 	��
�
However� the general MBH problem is NP�hard�

Theorem 
� MBH is NP�hard�

For lack of space� the proof is omitted here� Interestingly� the problem can be
solved in polynomial time if each sub�population is required to be a contiguous
set of rows� This may be useful for designing heuristics that permute the matrix
rows for local improvement�

We now present an e�cient heuristic for MBH� The algorithm has three com�
ponents� A block scoring procedure� a dynamic programming algorithm to �nd
the optimum block structure for a single sub�population� and a simulated anneal�
ing algorithm to �nd an optimum partition into homogeneous sub�populations�
We describe these components below�

The dynamic programming component computes the score for a given sub�
population in a straightforward manner� similar to 	��
� Let Ti� � � i � m� be
the minimum number of block haplotypes in the submatrix of A induced on the
columns 
� � � � � i� where T� � �� For a pair of columns i� j let Bij be the score
of the block induced by the row in S and the columns in fi� � � � � jg� Then the
following recursive formula can be used to compute Tm�

Ti � min
��j�i��

Tj �Bji �

For scoring a block within the dynamic programming� we use the probabilistic
algorithm described in Section ��� with a small modi�cation� Instead of using a
�xed threshold t�� we compute a di�erent threshold t�v�v� for every two vectors
v� v�� This is done by counting the number l of positions� in which none of the

vectors has ���� and setting t�v�v� �
l����pM �����PI��

� � Scoring an n� t block takes
O�tnk� time� where k is a bound on the number of common haplotypes� Hence�
the dynamic programming takes O�mb�nk� total time� where b is an upper bound
on the allowed block size� Additional saving may be possible by precomputing
the pairwise distances of rows in contiguous matrix segments of size up to b�

The goal of the annealing process is to optimize the partition of the haplo�
types into sub�populations� We de�ne a neighboring partition as any partition
that can be obtained from the current one by moving one haplotype from one
group to another� A crucial factor in obtaining a good solution is the initial�
ization of the annealing process� We perform the initialization as follows� We
compute pairwise similarities between every two haplotypes� The similarity Suv
of vectors u and v is calculated as follows� Initially we set Suv � �� We then slide
a window of size w � �� along u and v� For each position i we check whether
d��ui� � � � � ui�w���� �vi� � � � � vi�w���� � w�� If this is the case� we increment Suv
and jump to i � w for the next iteration� Otherwise� we jump to i � 
� The
intuition is that rows from the same sub�population should be more similar in
blocks in which they share the same haplotypes and� thus� have better chance to
hit good windows� and accumulate higher score in the scan� We next cluster the



	�

haplotypes based on their similarity values� using the K�means algorithm 	
�
�
The resulting partition is taken to be the starting point for the process� To de�
termine the number of sub�populations K� we try several choices and pick the
one that results in the lowest score�

The running time of the practical algorithm is dominated by the cost of
each annealing step� Since an annealing step changes the haplotypes of two sub�
populations only� it su�ces to recompute the scores of these sub�populations
only�

� Experimental Results

��� Simulations

We applied our algorithm to simulated and real haplotype data� First� we con�
ducted extensive simulations to check the ability of our algorithm to detect
sub�populations and recognize their block structure� Our simulation setup was
as follows� Each simulated haplotype matrix contained 
�� haplotypes and ���
SNPs� The number of sub�populations varied in the simulations� Sub�populations
were of equal sizes� For each sub�population we generated block boundaries using
a Poisson process with rate ��� Each block within a sub�population contained ���
common haplotypes covering ��� of the block�s rows �with the rest 
�� being
rare haplotypes�� Errors and missing data were introduced with varying rates up
to ���� The haplotype matrix was created according to the probabilistic model
described in Section ����

As a �rst test we simulated several matrices with 
�� sub�populations and
applied our algorithm with K ranging from 
 to �� For each K we computed the
score of the partition obtained� as described in Section �� In each of the simula�
tions the correct number got the lowest score �Figure ��A�� Next� we simulated
several matrices with � sub�populations and di�erent levels of errors and missing
data� Figure ��B summarizes our results in correctly assigning a haplotype to a
sub�population �the set with the largest overlap with the true one was declared
as correct�� It can be seen that the MBH algorithm gives highly accurate results
for missing data and error levels up to 
���

For comparison� we also implemented the LD�based algorithm of Gabriel et
al� 	�
 for �nding blocks� We compared the block structures output by our algo�
rithm and the LD�based algorithm to the correct one� using an alignment score
similar to the one used in comparison of two DNA restriction enzyme maps 	
��
Sec� ��
�
� The score of two partitions P� and P� of m SNPs is computed as
follows� We form two vectors of size m� 
� in which �
� in position i denotes a
block boundary between SNPs i and i � 
� and ��� denotes that the two SNPs
belong to the same block� We then compute an alignment score of these vectors
using an a�ne gap penalty model with penalties �� � and ��� for mismatch� gap
open and gap extension� respectively� and a match score of zero�

We simulated one population with ���� haplotypes� computed its block struc�
ture with both algorithms and compared them to the true one� We repeated this
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Fig� �� Simulation results� A� Determining the number of sub�populations� For each
simulated matrix� containing 	�
 sub�populations� the �gure shows the score assigned
by the algorithm to partitions �y�axis� with di�erent number of sub�populations �x�
axis�� Simulations were performed with 	� errors and no missing entries� B� Accuracy
of haplotype classi�cation by the MBH algorithm for di�erent noise levels� Data are
for � sub�populations�

experiment with di�erent error and missing data rates� The results are shown
in Figure ��A� It can be observed that our algorithm yields partitions that are
closer to the true ones� particularly as the rate of errors and missing data rises�
An example of the actual block structures produced is shown in Figure ��B�

��� Real Data

We applied our algorithm to two published datasets� The �rst dataset of Daly et
al� 	�
 consists of ��� haplotypes and 
�� SNPs� We applied our block partition�
ing algorithm with the following parameters� The maximal allowed error ratio
between two vectors� to be considered as resulting from a single haplotype� was
����� In addition� we allowed �� of rare haplotypes� i�e�� in scoring a block we
sought the minimum number of di�erent haplotypes that together cover ��� of
the rows�

In order to assess our block partitioning and compare it to the one reported by
Daly et al� 	�
� we calculated LD�based measures for both partitions� Speci�cally�
we calculated the LD�con�dence values between every pair of SNPs inside the
same block� using a ���test� For each block� we calculated the fraction of SNP
pairs in the block whose LD�con�dence value exceeded ��� �high LD pairs�� The
average fraction over all blocks was computed as the ratio of the total number
of high LD pairs inside blocks to the total number of SNP pairs within blocks�

A comparison between our block partition to the one obtained by Daly et
al� is presented in Table 
� Overall� the two block partitions have similar bound�
aries and similar scores� The average fraction of high LD pairs in blocks for our
partition was ������ For the partition of Daly et al� the average fraction was
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Fig� �� Block structure reconstruction� A� Accuracy in reconstruction by the PMBS
algorithm �solid line� and the algorithm of Gabriel et al� 
�� �dashed line�� y�axis� the
score of aligning the reconstructed structure with the correct one� x�axis� the noise
rate� B� An example of the block structures produced for an error rate of 	� by our
algorithm �bottom�� the LD�based algorithm of 
�� �top� and the true solution �middle��
Each block boundary is denoted by a vertical line�

������ Another available partition for this data by Eskin et al� 	�
� was based
on minimizing the number of representative SNPs� Their partition contained 


blocks and its average fraction of high LD pairs was ���
��

The second dataset we analyzed� due to Gabriel et al� 	�
� contains unresolved
genotype data� In order to apply our algorithm to this data� we transformed it
into haplotype data by treating heterozygous SNPs as missing data� Notably� the
fraction of heterozygous sites was relatively small� so the loss in information was
moderate� We considered the two largest populations in the data� A �European�
and D �individuals from Yoruba�� consisting of �� and �� samples� respectively�
Each population was genotyped in ��� di�erent regions in the genome� We
analyzed � of those regions that contained over �� SNPs� In all cases we were
able to detect two di�erent populations in the data and classify correctly over
��� of the haplotypes�

The results are shown in Table �� The results with three populations were
poorer� due to the smaller size of the third population�

� Concluding Remarks

We have introduced a simple and intuitive measure for scoring and detecting
blocks in a haplotype matrix� The total number of distinct haplotypes in blocks�
Using this measure along with several error models� we have studied the compu�
tational problems of scoring of a block� and of �nding an optimal block structure�
Most versions of the scoring problem that address imperfect data are shown to
be NP�hard� A similar situation occurred with the f score function of Zhang et
al� 	��
� We devised several algorithms for di�erent variants of the problem� In
particular� we gave a simple algorithm� which� under an appropriate probabilistic
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Table �� Comparison between the blocks of Daly et al� 
�� and the blocks generated
by our algorithm�

Chromosome�
�SNPs Discovered blocks

	 Correct Chromosome�
�SNPs Discovered blocks

	 Correct
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cations Region classi
cations
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Table �� Separation to populations and block �nding on di�erent regions in part of
the data of 
��� which includes populations A and D�

model� scores a block correctly with high probability� in the presence of errors�
missing data and rare haplotypes�

Note that our measure is adequate only when the ratio n�m of the data
matrix is not too extreme� When the number of typed individuals n is very
small and the number of SNPs m is large� our measure might be optimized by
the trivial solution of a single block�

In simulations� our score leads to more accurate block detection than the
LD�based method of Gabriel et al� 	�
� While the simulation setup is quite naive�
it seems to act just as favorably for the LD�based methods� The latter methods
apparently tend to over�partition the data into blocks� as they demand a very
stringent criterion between every pair of SNPs in the same block� This crite�
rion is very hard to satisfy as block size increases� and the number of pairwise
comparisons grows quadratically� On the data of Daly et al� 	�
 we generated a



	�

slightly more concise block description than extant approaches� with a somewhat
better fraction of high LD pairs�

We also treated the question of partitioning a set of haplotypes into sub�
populations based on their di�erent block structures� and devised a practical
heuristic for the problem� On a genotype dataset of Gabriel et al� 	�
 we were
able to identify sub�populations correctly� in spite of ignoring all heterozygous
types� A principled method of dealing with genotype data remains a compu�
tational challenge� While in some studies the partition into sub�populations is
known� others may not have this information� or further� �ner partition may
be detectable using our algorithm� In our model we implicitly assumed that
block boundaries in di�erent sub�populations are independent� In practice� some
boundaries may be common due to the common lineage of the sub�populations�
A more detailed treatment of the block boundaries in sub�populations should be
considered when additional haplotype data reveal the correct way to model this
situation�
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