
A Fully Dynamic Algorithm for Modular

Decomposition and Recognition of Cographs

Ron Shamir

School of Computer Science� Tel�Aviv University� Tel�Aviv ������ Israel

Roded Sharan

International Computer Science Institute� ��	� Center St
� Suite ���� Berkeley

CA �	��	

Abstract

The problem of dynamically recognizing a graph property calls for e�ciently decid�
ing if an input graph satis�es the property under repeated modi�cations to its set
of vertices and edges� The input to the problem consists of a series of modi�cations
to be performed on the graph� The objective is to maintain a representation of the
graph as long as the property holds� and to detect when it ceases to hold�

In this paper we solve the dynamic recognition problem for the class of cographs
and some of its subclasses� Our approach is based on maintaining the modular
decomposition tree of the dynamic graph� and using this tree for the recognition� We
give the �rst fully dynamic algorithm for maintaining the modular decomposition
tree of a cograph� We thereby obtain fully dynamic algorithms for the recognition
of cographs� threshold graphs� and trivially perfect graphs� All these algorithms
work in constant time per edge modi�cation and O�d� time per d�degree vertex
modi�cation�

Key words� Fully dynamic algorithm� cograph� recognition� modular
decomposition�

� Introduction

In a dynamic graph problem one has to maintain a graph representation
throughout a series of on�line modi�cations� i�e�� insertions or deletions of a

Email addresses� rshamir�tau�ac�il �Ron Shamir��
roded�icsi�berkeley�edu �Roded Sharan��

Preprint submitted to Elsevier Science �� March ����

vertex or an edge� The representation should allow to answer queries regarding
certain properties of the dynamic graph� e�g�� �is it connected��� Algorithms
for the problem are called dynamic algorithms� and are categorized depend�
ing on the modi�cation operations they support	 An incremental
decremen�

tal� algorithm supports only vertex insertions
deletions�� An additions�only

deletions�only� algorithm supports only edge additions
deletions�� An edges�

only fully dynamic algorithm supports both edge additions and edge deletions�
A fully dynamic algorithm supports edge modi�cations as well as vertex mod�
i�cations�

This paper investigates dynamic recognition problems in which the queries are
of the form	 �Does the graph belong to a certain class ���� An algorithm for
the problem is required to maintain a representation of the dynamic graph as
long as it belongs to �� and to detect when it ceases to belong to ��

Several authors have studied the problem of dynamically recognizing spe�
ci�c graph families� Hell� Shamir and Sharan �� have given a near optimal
fully dynamic algorithm for recognizing proper interval graphs� which works
in O
d � logn� time per modi�cation involving d edges� i�e�� d � � in case
of an edge modi�cation� and d is the degree in case of a vertex modi�cation�

Throughout� we denote the number of vertices and edges in a graph by n and
m� respectively�� Ibarra �� has given an edges�only fully dynamic algorithm for
chordal graph recognition� which handles each edge operation in O
n� time�
and an edges�only fully dynamic algorithm for split graph recognition� which
handles each edge operation in constant time� Recently� Ibarra �� has also
devised an edges�only fully dynamic algorithm for interval graph recognition�
which handles each edge operation in O
n logn� time� Incremental recognition
algorithms were given by Hsu for interval graphs ��� and by Deng� Hell and
Huang for connected proper interval graphs ���

A very useful representation of a graph is its modular decomposition tree

we defer technical de�nitions to Section ��� The problem of generating the
modular decomposition tree of a graph was studied by many authors and
several linear�time algorithms were developed for it ����� For the problem of
dynamically maintaining the modular decomposition tree of a graph only two
partial results are known� Muller and Spinrad �� have given an incremental
algorithm for modular decomposition� which handles each vertex insertion in
O
n� time� Corneil� Perl and Stewart ��� have given an optimal incremental
algorithm for the recognition and modular decomposition of cographs� which
handles the insertion of a vertex of degree d in O
d� time�

In this paper we give the �rst fully dynamic algorithm for maintaining the
modular decomposition tree of a cograph� Our algorithm works in O
d� time
per operation involving d edges� Based on this algorithm we develop fully
dynamic algorithms for the recognition of cographs� threshold graphs and

�

trivially perfect graphs� All these algorithms handle a modi�cation involving
d edges in O
d� time� This is optimal with respect to all operations� with the
possible exception of vertex deletion�

The paper is organized as follows	 Section � contains the de�nitions and the
terminology used in the paper� Section � presents the fully dynamic algorithm
for recognizing cographs and maintaining their modular decomposition tree�
Section � contains the recognition algorithms for threshold graphs and trivially
perfect graphs�

� Preliminaries

We provide here some basic de�nitions and background� We refer the reader
to ��� for further background reading� All graphs in this paper are simple
and undirected� Let G �
V�E� be a graph� We denote its set of edges E
also by E
G�� For a subset R � V we denote by G
R� the subgraph induced
by the vertices in R� The complement of G is the graph G �
V�E�� where
E � f
u� v� �� E 	 u �� vg� The complement�connected components of G are the
connected components ofG� The graph P� is a path on four vertices� The graph
C� is a cycle on four vertices� For a vertex v � V we denote by N
v� the open
neighborhood of v� consisting of all neighbors of v� We let N v� � N
v� � fvg�
For a new vertex z �� V and a set of edges Ez between z and vertices of V � we
denote by G� z the graph
V �fzg� E �Ez� obtained by adding z to G� For a
vertex z � V we denote by G n z the graph G
V n fzg� obtained by removing
z from G�

A module M in G is a set of vertices M � V such that every vertex in V nM
is either adjacent to every vertex in M � or non�adjacent to every vertex in M �
A module M is called trivial if M � V or M contains a single vertex� M is
called connected if G
M� is a connected subgraph� M is called complement�

connected if G
M� is a connected graph� For brevity� we shall often refer to a
module as if it was the subgraph induced by its vertices�
For example� we shall
talk about the connected components of a module�� A disconnected module is
called parallel� A complement�disconnected module is called series� A module
which is both connected and complement�connected is called a neighborhood

module� Note� that every module is exactly one of the three types	 Series�
parallel or neighborhood�

A module M is strong if for any module N with N �M �� �� we have N �M

or M � N � A strong module M is a maximal submodule of a module N �M �
if no strong submodule of N properly contains M and is properly contained
in N � It has been shown
cf� ���� that every vertex of a non�trivial module
M is in a unique maximal submodule of M � Clearly� the maximal submodules

�

of a parallel module are its connected components� and the maximal submod�
ules of a series module are its complement�connected components� Hence� the
structure of the modules of a graph G can be captured by the following mod�

ular decomposition tree TG	 The nodes of TG correspond to strong modules of
G� The root node is V � and the set of leaves of TG consists of all the vertices of
G� The children of every internal node M of TG are the maximal submodules
ofM � Each internal node in TG is labeled �series�� �parallel�� or �neighborhood��
depending on the type of its corresponding module� Note� that the modular
decomposition tree of a given graph is unique�

In the sequel we denote the modular decomposition tree of a graph G by TG�
We refer to a node M of TG by the set of vertices it represents� that is� the set
of vertices in the leaves of the subtree rooted at M � For two vertices u� v � V �
we denote by Muv the least common ancestor of fug and fvg in TG�

Let � be a graph class� A fully dynamic algorithm for ��recognition maintains
a data structure of the current graph G �
V�E� and supports the following
operations	

� Edge Insertion	 Given a non�edge
u� v� �� E� update the data structure
if G � f
u� v�g � �� or output False and halt otherwise�

� Edge Deletion	 Given an edge
u� v� � E� update the data structure if
G n f
u� v�g � �� or output False and halt otherwise�

� Vertex Insertion	 Given a new vertex v �� V and a set of edges between v
and vertices of G� update the data structure if G � v � �� or output False
and halt otherwise�

� Vertex Deletion	 Given a vertex v � V � update the data structure if
G n v � �� or output False and halt otherwise�

Traditionally� fully dynamic algorithms handle only edge modi�cations� since
vertex modi�cations can be performed by a series of edge modi�cations�
For
example� in dynamic graph connectivity adding a vertex of degree d is equiv�
alent to adding an isolated vertex� and then adding its edges one by one��
However� in our context we have to be more careful� since we may not be able
to add or delete one edge at a time without ceasing to satisfy property �
and
even if there is a way to do that� it might be non�trivial to �nd it�� In other
words� adding or deleting a vertex can preserve the property� but adding or
removing one edge at a time might fail to do so� Hence� vertex modi�cations
must be handled separately by the dynamic algorithm�

��� A Reduction

A graph class � is called complement�invariant if G � � implies G � ��
Examples for complement�invariant classes include perfect graphs� cographs�

�

split graphs� threshold graphs and permutation graphs�

We say that a dynamic algorithm Alg for recognizing some graph property is
based on modular decomposition if	
�� Alg maintains the modular decompo�
sition tree of the dynamic graph� and
�� the only operations that Alg makes
are updates to the tree� or queries regarding the tree�

Observation � The modular decomposition trees of a graph and its comple�

ment are identical up to exchanging the labels �series� and �parallel��

Theorem � Let � be a complement�invariant graph property� Let Alg be a

dynamic algorithm for ��recognition� which supports either edge insertions

only or edge deletions only� and is based on modular decomposition� Then Alg

can be extended to support both operations with the same time complexity�

PROOF� Suppose that Alg is an additions�only algorithm� The proof for the
case that Alg is a deletions�only algorithm is analogous� Let G �
V�E� be
the current graph� In order to delete an edge
u� v� � E we perform an insert
operation on G� by treating each parallel node in TG as a series node and vice�
versa� By Observation �� the modular decomposition tree of G is identical to

TG up to exchanging the labels �series� and �parallel�� Since G � f
u� v�g �
G n f
u� v�g� the algorithm performs the update successfully if and only if
G n f
u� v�g � �� �

� Cographs

A graph is called a cograph
complement reducible graph� if it contains no
induced P� ���� This class of graphs is clearly complement�invariant� In this
section we give a fully dynamic algorithm for recognizing cographs and main�
taining their modular decomposition tree� The algorithm works in O
d� time
per operation involving d edges� It is based on the following fundamental char�
acterization of cographs	

Theorem � ������ A graph is a cograph if and only if its modular decompo�

sition tree contains only parallel and series nodes�

Another viewpoint on the modular decomposition tree of a cograph is as a
method to build the graph	 Going recursively up the tree� the subgraph of a
parallel node is formed by taking the union of its children�s subgraphs� For a
series node� all edges between vertices in distinct child modules are added to
that graph�

�

Theorem � implies that a cograph is either connected� or complement�connected�
but not both� It also implies that in a modular decomposition tree of a cograph
parallel and series nodes alternate along any path starting from the root� We
use these facts often in the sequel�

��� The Data Structure

Let G �
V�E� be the input graph� We maintain the modular decomposition
tree TG of G as follows	 For each vertex of G we keep a pointer to its corre�
sponding leaf�node in TG� For each node M of TG we keep its type� which can
be �series�� �parallel� or �leaf�� and its number of children� We also keep pointers
from M to its parent and to its children� The parent pointer of the root node
points to itself� In detail� each node M has an associated doubly linked list L�
Each element of L corresponds to a child N ofM � and consists of two pointers�
one pointing to N and the other to M � The parent pointer of N points to its
corresponding element in L� This data structure allows detaching a child from
its parent in constant time� Note� that a node in TG has no explicit record of
the vertices that it contains as a module�

Initially TG is calculated in linear time� e�g�� using the algorithm of ���� If G
is discovered to contain an induced P� then our algorithm outputs False and
halts� In the description below we assume that G is a cograph�

��� Adding an Edge

Let
u� v� be the edge to be added� and let G� � G�f
u� v�g� We observe that
Muv cannot be a series module since this would imply that the edge
u� v� is
already present in G� Hence� by Theorem � Muv is a parallel module� Let Cu

and Cv denote the maximal submodules
equivalently� connected components�
of Muv which contain u and v� respectively� Without loss of generality� jCuj 	
jCvj� The edge insertion algorithm is based on the following theorem	

Theorem 	 G� is a cograph if and only if jCuj � � and v is adjacent to every

other vertex in Cv�

PROOF�

 Suppose that jCuj � �� Then Cu contains some vertex a which is adjacent to
u� and Cv contains some vertex b which is adjacent to v� Hence� fa� u� v� bg
induce a P� in G�� so G� is not a cograph�

�

Suppose that w � Cv n fvg is not adjacent to v� Let v� x�� � � � � xk � w be
a shortest path from v to w in Cv� k � �� Then fu� v� x�� x�g induce a P� in
G�� so G� is not a cograph�

� Suppose that G� contains an induced P�� Since G is a cograph� an induced
P� in G� must contain the edge
u� v�� Suppose that fu� v� x� yg induce a P�

in G�
not necessarily in this order�� One of x and y is therefore adjacent
to exactly one of u and v� Without loss of generality� let x be adjacent to
exactly one of u and v� Since every vertex in V nMuv is either adjacent to
both u and v� or non�adjacent to both of them� we have x �Muv� If x � Cu�
jCuj � � and we are done� If x � Cv� then x is adjacent to v and not to u�
As fu� v� x� yg induce a P�� y is adjacent either to u only
out of u� v and
x�� or to x only� In the �rst case we have y � Cu� implying that jCuj � ��
In the latter case� we conclude that y � Cv� But
v� y� �� E
G���

�

Note that the theorem implies that fvg is a child of Cv in TG� since otherwise
the path from Cv to fvg in TG would contain a parallel node� and v would not
be adjacent to all vertices of Cv�

Let us assume for now that G� is a cograph and we have already identi�ed
Muv� Cu and Cv� We show below how to update TG in this case� Later� we
shall show how to check the conditions of Theorem � and how to �nd each of
Muv� Cu and Cv�

Let r be the number of children of Muv in TG� If both Cu and Cv contain a
single vertex� we update TG as follows	 If r � �� then the updates depend on
the position of Muv in TG� If Muv lies at the root of TG� we change its label
to �series�� Otherwise� we connect fug and fvg as children of the parent P of
Muv
which is a series module�� and delete Muv� If r � �� we make fug and
fvg the children of a new series node fu� vg� and connect this node as a child
of Muv�

Suppose now that jCvj � �� By Theorem �
since G� is a cograph� jCuj � �
and v is adjacent to every vertex in Cv nfvg� We update TG by �rst detaching
fug� fvg and Cv from their parents and forming a new parallel node K �
fug �
Cv n fvg�� We continue according to one of the following cases	

�� r � �	 We add a new series node fug � Cv as a child of Muv� We then
make fvg and K the children of fug � Cv�

�� r � �	 We connect fvg and K to the parent node of Muv
which might
be Muv itself if it is the root�� We then delete Muv� unless it lies at the
root of TG� in which case we change its label to �series��

�

It remains to describe the subtree of TG� rooted at the new parallel node K�
Let K�� � � � � Kl� fvg be the complement�connected components of Cv� There
are two cases to consider	

�� l � �	 In this case Cv n fvg is necessarily connected� Hence� we need
to make fug and Cv n fvg the children of K� and connect K�� � � � � Kl

to Cv n fvg as its children
see Figure ��� In order to carry out these
changes e�ciently� we do not introduce a new node Cv n fvg� Instead� we
make Cv the child of K� Since a node has no record of its corresponding
vertex set� this alternative update is equivalent to the requested one�
Correspondingly� we shall now refer to the former node Cv as Cv n fvg�

Muv

u

v

Cv

v

Muv

u

fug � Cv

Cv n fvg

fug��Cv nfvg�

Kl

K� Kl

K�

Fig� 	� The updates to the modular decomposition tree in case Muv and Cv have
more than two children each� and jCuj
 	� Series nodes are drawn shaded�

�� l � �	 If K� � Cv n fvg contains a single vertex w� we make fug and fwg
the children ofK� Otherwise� K� is complement�connected and� therefore�
it is disconnected� Let J�� � � � � Jp be the connected components of K��
p � �� Then we need to make fug and J�� � � � � Jp the children of K�
Instead of introducing the new node K� we make
the former node� K�

a child of fug �Cv
in addition to fvg�� and attach fug as an additional
child of K�� Finally� we delete Cv�

Obviously� all the above updates to TG can be carried out in constant time�
Updating the number of children at each node can be also supported in con�
stant time� It remains to show how to �nd Muv� Cu and Cv e�ciently� and how
to verify the conditions of Theorem �� In other words� we have to check if one
of fug and fvg is a child of Muv� and the other is connected to every vertex

�

in its connected component in G
Muv�� It is straightforward to see that this
is the case if and only if Muv is parallel and is either the parent of fug and
the grandparent of fvg� or vice versa
assuming that jCuj � � or jCvj � ���
One can determine if such a con�guration exists in constant time� by checking
if the parent of fug
fvg� is parallel� and coincides with the grandparent of
fvg
fug�� If such a con�guration exists� then it immediately identi�esMuv� Cu

and Cv� and we update TG accordingly� Otherwise� the algorithm outputs False
and halts�

The following theorem and corollary summarize our results	

Theorem
 There is an optimal additions�only algorithm for recognizing cographs

and maintaining their modular decomposition tree� which handles each edge

insertion in constant time�

Corollary � There is an optimal edges�only fully dynamic algorithm for rec�

ognizing cographs and maintaining their modular decomposition tree� which

handles each edge modi	cation in constant time�

��� Vertex Modi	cations

We shall generalize our algorithm to handle vertex insertions and deletions as
well� Supporting vertex insertions is based on the incremental algorithm for
cograph recognition of Corneil et al� ���� This algorithm handles the insertion
of a vertex of degree d in O
d� time� updating the modular decomposition tree
accordingly� and can be supported by our data structure with some trivial
extensions�

It remains to show how to handle the deletion of a vertex u of degree d from
G� Let G� � G n u� G� is a cograph as an induced subgraph of G� Hence� we
concentrate on updating TG� Let P be the parent node of fug in TG� There
are four cases to consider	

�� If TG contains fug only� then TG� is empty�

�� If P has at least three children then TG� is obtained from TG by deleting

fug�

�� If P has only two children that are both leaves� fug and fvg� then TG� is

obtained from TG by deleting fug and replacing P with fvg�

�� If P has only two children fug and M � where M is an internal node of

TG� then two cases are possible	

a� If P lies at the root of TG� then TG� is the subtree of TG which is

rooted at M �

b� Otherwise� let F be the parent of P � Then TG� is formed from TG by

connecting the children of M to F � and deleting fug� P and M �

�

Proposition � The deletion of a vertex u of degree d can be handled in O
d�
time�

PROOF� All cases except �b can be handled in constant time� Consider this
last case� If P is a series module� then u is adjacent to all vertices of M � and
TG� can be constructed in O
d� time� If P is a parallel module� then instead of
deleting M we replace F with M � attaching the former children of F
except
P � as children of M � Since u is adjacent to all the vertices of these children
modules� this takes O
d� time� �

We are now ready to state our main result	

Theorem There is a fully dynamic algorithm for recognizing cographs and

maintaining their modular decomposition tree� which handles insertions and

deletions of vertices and edges� and works in O
d� time per operation involving

d edges�

	 Subclasses of Cographs

�� Threshold Graphs

A graph G �
V�E� is called a threshold graph if there exist non�negative real
numbers wv� v � V and t such that for every U � V �

P
v�U wv 	 t if and

only if U is an independent set ���� We use the following characterization of
threshold graphs	

Theorem � �cf� ����� A graph is a threshold graph if and only if it is both a

cograph and a split graph�

We also use the split recognition algorithm of Ibarra ��� which handles in�
sertions and deletions of edges in constant time� Ibarra�s algorithm builds on
a characterization of split graphs by their degree sequence ���� Upon each
modi�cation it updates the degree sequence of the dynamic graph and checks
if it continues to satisfy the split graph characterization�

Theorem �� There is a fully dynamic algorithm for threshold recognition�

which works in O
d� time per operation involving d edges�

PROOF� By Theorem � there exists a fully dynamic algorithm A� for co�
graph recognition with the same time bounds� By a simple generalization of

��

the split recognition algorithm of Ibarra ��� one can obtain a fully dynamic
algorithm A� for split recognition� which handles also vertex modi�cations�
and works in O
d� time per modi�cation involving d edges� Our algorithm for
threshold recognition executes A� and A� in parallel� and upon a modi�ca�
tion outputs False and halts if and only if any of these algorithms outputs
False� �

�� Trivially Perfect Graphs

A graph is called trivially perfect if it is a cograph and contains no induced C�

���� Note that this class of graphs is not complement�invariant� For example�
the graph C� is not trivially perfect� but its complement
a pair of indepen�
dent edges� is� In this section we present a fully dynamic algorithm for triv�
ially perfect graph recognition� Our algorithm is an extension of the cograph
recognition algorithm� which after each modi�cation checks also whether the
current graph contains an induced C��

Suppose that G �
V�E� is a trivially perfect graph� If we delete a vertex from
G then the resulting graph is clearly trivially perfect� If we add an edge to G
and the new graph is a cograph� then it is also a trivially perfect graph� This
follows by noting that if an induced C� is created� then G must have contained
an induced P�� Hence� it su�ces to show how to check for the existence of
an induced C� after edge deletions and vertex insertions� We assume in the
following that the current graph G is trivially perfect� and that the modi�ed
graph G� is a cograph� as otherwise� the cograph recognition algorithm outputs
False and we are done�

���� Adding a Vertex

Let z be a new vertex of degree d to be added� and let G� � G � z� Clearly�
if G� contains an induced C�� it is of the form fa� b� c� zg for some vertices
a� b� c � V
where
a� c� and
b� z� are the non�edges��

If z connects two or more connected components of G then it must be adjacent
to every vertex in these components� or else G� would contain an induced P��
Therefore� in this case G� is a trivially perfect graph� If z is adjacent to all
vertices of a single component then again G� is trivially perfect� One of these
cases applies if and only if fzg is either a child of a series root module
if
G� contains a single connected component�� or a grandchild of a parallel root
module
if G� contains more than one component�� We can check for such
con�gurations in constant time� The remaining case is when z is adjacent to
some but not all vertices of a single connected component C of G� We handle
this case below�

��

Lemma �� A cograph contains an induced C� if and only if its modular de�

composition tree has a series node with at least two non�trivial children�

PROOF� If H is a cograph and fa� b� c� dg induce a C� in H� then the least
common ancestor of fag�fbg�fcg and fdg in TH is a series module with at
least two non�trivial maximal submodules
one containing a� c and the other
containing b� d��

Conversely� if the modular decomposition tree of a cograph H contains a series
node with two non�trivial children M� andM�� then any two vertices from M�

together with any two vertices from M� induce a C� in H� �

Lemma �� implies that in order to check whether a C� is formed inG� it su�ces
to check if the updates to the modular decomposition tree produce any series
node with more than one non�leaf child� In order to verify that e�ciently� we
introduce at each internal node N of TG a counter� which stores the number of
children of N that are not leaves� These counters can be easily maintained and
checked by our dynamic modular decomposition algorithm with no increase
to its time complexity� Hence� handling a vertex insertion can be supported
in O
d� time�

���� Deleting an Edge

Let
a� c� � E be an edge to be deleted� and let G� � G n f
a� c�g� Clearly�
any induced C� in G� is of the form fa� b� c� dg for some vertices b� d � V � By
the previous discussion� in order to check whether G� contains an induced C��
it su�ces to check whether the updates to the modular decomposition tree
produce any series node with a counter greater than one� By examining the
updates to the tree it can be seen that the only series node whose counter
might exceed one is Mac� the least common ancestor of fag and fcg in TG�

Using the notation of Section � this happens when jCaj � jCcj � � and r � ���
We provide below a direct proof for that�

Lemma �� If fa� b� c� dg induce a C� in G� then N a� � N c� in G�

PROOF� By our assumption
a� c� � E� Suppose to the contrary that v � V

is adjacent to only one of a and c� Without loss of generality� suppose v is ad�
jacent to a only� Hence� v must be adjacent to both b and d� or else G� contains
an induced P�� But then fd� v� b� cg induce a C� in G� a contradiction� �

Lemma �� If fa� b� c� dg induce a C� in G�� and v � V is adjacent to b or d�

then v is adjacent to both a and c in G�

��

PROOF� By Lemma ��� N a� � N c� in G� Hence� it su�ces to prove that
v is adjacent to a� Suppose to the contrary that
v� a� �� E� If
v� b� � E or

v� d� � E then fd� a� b� vg induce a forbidden subgraph in G
either a P� or a
C��� a contradiction� �

Let M �

ac be the least common ancestor of fag and fcg in TG�� Since
a� c� ��
E
G��� M �

ac is a parallel module� If M �

ac lies at the root of TG� then G� is a
trivially perfect graph� since a and c are disconnected
and� therefore� cannot
be part of the same induced C��� We assume in the sequel that this is not the
case�

Theorem �	 Let P be the parent of M �

ac in TG� � Then G� is a trivially perfect

graph if and only if M �

ac is the only non�trivial maximal submodule of P �

PROOF� Suppose to the contrary that G� is not a trivially perfect graph�
Then there exist two vertices b� d � V such that fa� b� c� dg induce a C� in G��
By Lemma ��� N
a� � N
c� in G�� Hence� M �

ac is the parent of both fag and
fcg� We claim thatM �

ac � fa� cg� Suppose to the contrary that v �M �

acnfa� cg�
then v is non�adjacent to a and c
since M �

ac is parallel�� By Lemma ��� v is
non�adjacent to b and d� However� both a and c are adjacent to b and d� Hence�
b must be a vertex of M �

ac� implying that a and c are in the same connected
component in G�
M �

ac�� a contradiction�

Let M �

abcd be the least common ancestor of M �

ac� fbg and fdg in TG� � We now
prove that M �

abcd � P � Let S� be a maximal submodule of M �

abcd such that
S� M �

ac� Since a is adjacent to both b and d� M �

abcd must be a series module�
Hence� any vertex v � S� n fa� cg is adjacent to b or d� By Lemma ��� v is also
adjacent to a and c� Since this holds for all v � S� n fa� cg� and since M �

abcd is
a series module� S� � fa� cg � M �

ac� implying that M �

abcd � P � Finally� since
P is a series module� its maximal submodule that contains both b and d is a
non�trivial submodule of P
di�erent from M �

ac�� a contradiction�

Conversely� suppose that P contains a non�trivial maximal submodule L ��
M �

ac� Since M
�

ac is a parallel module� P is a series module� Let b and d be two
non�adjacent vertices of L� Then fa� b� c� dg induce a C� in G�� a contradic�
tion� �

Consider the updates to TG as a result of deleting the edge
a� c�� If G� is not
a trivially perfect graph� then Mac was the parent of both fag and fcg in TG�
and due to the update a new node M �

ac � fa� cg was created and attached as
a child of Mac� Hence� P � Mac and in order to determine if G� is trivially
perfect� it su�ces to check the counter of Mac after the update� We conclude	

��

Theorem �
 There is a fully dynamic algorithm for trivially perfect graph

recognition which works in O
d� time per operation involving d edges�

Acknowledgments

We thank Pavol Hell and Haim Kaplan for helpful conversations� R� Sharan
was supported by a Fulbright grant� R� Shamir was supported in part by the
Israel Science Foundation
grant number ��� ����

References

�	� P� Hell� R� Shamir� R� Sharan� A fully dynamic algorithm for recognizing and
representing proper interval graphs� SIAM Journal on Computing 	�	� ������
�������

��� L� Ibarra� Fully dynamic algorithms for chordal graphs� in� Proceedings of the
Tenth Annual ACM�SIAM Symposium on Discrete Algorithms �SODA�����
	���� pp� �������

�� L� Ibarra� A fully dynamic algorithm for recognizing interval graphs using the
clique�separator graph� Tech� rep�� University of Victoria� Victoria� Canada
����	��

��� W��L� Hsu� On�line recognition of interval graphs in O�m�n log n� time� Lecture
Notes in Computer Science 		�� �	���� �����

��� X� Deng� P� Hell� J� Huang� Linear time representation algorithms for proper
circular arc graphs and proper interval graphs� SIAM Journal on Computing
����� �	���� ������

��� R� M� McConnell� J� P� Spinrad� Linear�time modular decomposition and
e�cient transitive orientation of comparability graphs� in� Proc� Fifth Annual
ACM�SIAM Symp� on Discrete Algorithms �SODA����� ACM Press� 	���� pp�
�������

��� A� Cournier� M� Habib� A new linear algorithm for modular decomposition� in�
	�th International Colloquium �CAAP����� 	���� pp� ������ lNCS ����

��� E� Dahlhaus� J� Gustedt� R� McConnell� E�cient and practical modular
decomposition� in� Proceedings of the Eighth Annual ACM�SIAM Symposium
on Discrete Algorithms �SODA����� 	���� pp� �����

��� J� Muller� J� Spinrad� Incremental modular decomposition� Journal of the ACM
� �	� �	���� 	�	��

��

�	�� D� Corneil� Y� Perl� L� Stewart� A linear recognition algorithm for cographs�
SIAM Journal on Computing 	���� �	���� �������

�		� A� Brandst�adt� V� B� Le� J� P� Spinrad� Graph Classes � a Survey�
SIAM� Philadelphia� 	���� sIAM Monographs in Discrete Mathematics and
Applications�

�	�� J� Spinrad� Two dimensional partial orders� Ph�D� thesis� Dept� of Computer
Science� Princeton University �	�����

�	� D� G� Corneil� H� Lerchs� L� Stewart Burlingham� Complement reducible graphs�
Discrete Applied Mathematics �	��	� 	��	���

�	�� N� Mahadev� U� Peled� Threshold Graphs and Related Topics� Elsevier� North�
Holland� 	���� annals of Discrete Mathematics� Vol� ���

�	�� P� L� Hammer� B� Simeone� The splittance of a graph� Combinatorica 	 �	��	�
��������

�	�� M� C� Golumbic� Trivially perfect graphs� Discrete Math� �� �	���� 	���	���

��

