A Fully Dynamic Algorithm for Modular
Decomposition and Recognition of Cographs

Ron Shamir

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

Roded Sharan

International Computer Science Institute, 1947 Center St., Suite 600, Berkeley
CA 94704

Abstract

The problem of dynamically recognizing a graph property calls for efficiently decid-
ing if an input graph satisfies the property under repeated modifications to its set
of vertices and edges. The input to the problem consists of a series of modifications
to be performed on the graph. The objective is to maintain a representation of the
graph as long as the property holds, and to detect when it ceases to hold.

In this paper we solve the dynamic recognition problem for the class of cographs
and some of its subclasses. Our approach is based on maintaining the modular
decomposition tree of the dynamic graph, and using this tree for the recognition. We
give the first fully dynamic algorithm for maintaining the modular decomposition
tree of a cograph. We thereby obtain fully dynamic algorithms for the recognition
of cographs, threshold graphs, and trivially perfect graphs. All these algorithms
work in constant time per edge modification and O(d) time per d-degree vertex
modification.

Key words: Fully dynamic algorithm, cograph, recognition, modular
decomposition.

1 Introduction

In a dynamic graph problem one has to maintain a graph representation
throughout a series of on-line modifications, i.e., insertions or deletions of a

Email addresses: rshamir@tau.ac.il (Ron Shamir),
roded@icsi.berkeley.edu (Roded Sharan).

Preprint submitted to Elsevier Science 29 March 2003

vertex or an edge. The representation should allow to answer queries regarding
certain properties of the dynamic graph, e.g., “is it connected?”. Algorithms
for the problem are called dynamic algorithms, and are categorized depend-
ing on the modification operations they support: An incremental (decremen-
tal) algorithm supports only vertex insertions (deletions). An additions-only
(deletions-only) algorithm supports only edge additions (deletions). An edges-
only fully dynamic algorithm supports both edge additions and edge deletions.
A fully dynamic algorithm supports edge modifications as well as vertex mod-
ifications.

This paper investigates dynamic recognition problems in which the queries are
of the form: “Does the graph belong to a certain class II?”. An algorithm for
the problem is required to maintain a representation of the dynamic graph as
long as it belongs to II, and to detect when it ceases to belong to II.

Several authors have studied the problem of dynamically recognizing spe-
cific graph families. Hell, Shamir and Sharan [1] have given a near optimal
fully dynamic algorithm for recognizing proper interval graphs, which works
in O(d + logn) time per modification involving d edges, i.e., d = 1 in case
of an edge modification, and d is the degree in case of a vertex modification.
(Throughout, we denote the number of vertices and edges in a graph by n and
m, respectively.) Ibarra [2] has given an edges-only fully dynamic algorithm for
chordal graph recognition, which handles each edge operation in O(n) time,
and an edges-only fully dynamic algorithm for split graph recognition, which
handles each edge operation in constant time. Recently, Ibarra [3] has also
devised an edges-only fully dynamic algorithm for interval graph recognition,
which handles each edge operation in O(nlogn) time. Incremental recognition
algorithms were given by Hsu for interval graphs [4], and by Deng, Hell and
Huang for connected proper interval graphs [5].

A very useful representation of a graph is its modular decomposition tree
(we defer technical definitions to Section 2). The problem of generating the
modular decomposition tree of a graph was studied by many authors and
several linear-time algorithms were developed for it [6-8]. For the problem of
dynamically maintaining the modular decomposition tree of a graph only two
partial results are known. Muller and Spinrad [9] have given an incremental
algorithm for modular decomposition, which handles each vertex insertion in
O(n) time. Corneil, Perl and Stewart [10] have given an optimal incremental
algorithm for the recognition and modular decomposition of cographs, which
handles the insertion of a vertex of degree d in O(d) time.

In this paper we give the first fully dynamic algorithm for maintaining the
modular decomposition tree of a cograph. Our algorithm works in O(d) time
per operation involving d edges. Based on this algorithm we develop fully
dynamic algorithms for the recognition of cographs, threshold graphs and

trivially perfect graphs. All these algorithms handle a modification involving
d edges in O(d) time. This is optimal with respect to all operations, with the
possible exception of vertex deletion.

The paper is organized as follows: Section 2 contains the definitions and the
terminology used in the paper. Section 3 presents the fully dynamic algorithm
for recognizing cographs and maintaining their modular decomposition tree.
Section 4 contains the recognition algorithms for threshold graphs and trivially
perfect graphs.

2 Preliminaries

We provide here some basic definitions and background. We refer the reader
to [11] for further background reading. All graphs in this paper are simple
and undirected. Let G = (V, E) be a graph. We denote its set of edges E
also by F(G). For a subset R C V we denote by G(R) the subgraph induced
by the vertices in R. The complement of G is the graph G = (V, E), where
E = {(u,v) € E : u # v}. The complement-connected components of G are the
connected components of G. The graph P, is a path on four vertices. The graph
Cy is a cycle on four vertices. For a vertex v € V we denote by N(v) the open
neighborhood of v, consisting of all neighbors of v. We let N[v] = N(v) U{v}.
For a new vertex z ¢ V and a set of edges E, between z and vertices of V', we
denote by G U z the graph (V U{z}, EUE,) obtained by adding z to G. For a
vertex z € V we denote by G \ z the graph G(V \ {z}) obtained by removing
z from G.

A module M in G is a set of vertices M C V such that every vertex in V '\ M
is either adjacent to every vertex in M, or non-adjacent to every vertex in M.
A module M is called trivial if M = V or M contains a single vertex. M is
called connected if G(M) is a connected subgraph. M is called complement-
connected if G(M) is a connected graph. For brevity, we shall often refer to a
module as if it was the subgraph induced by its vertices. (For example, we shall
talk about the connected components of a module.) A disconnected module is
called parallel. A complement-disconnected module is called series. A module
which is both connected and complement-connected is called a neighborhood
module. Note, that every module is exactly one of the three types: Series,
parallel or neighborhood.

A module M is strong if for any module N with N N M # (), we have N C M
or M C N. A strong module M is a mazximal submodule of a module N D M,
if no strong submodule of N properly contains M and is properly contained
in N. It has been shown (cf. [12]) that every vertex of a non-trivial module
M is in a unique maximal submodule of M. Clearly, the maximal submodules

of a parallel module are its connected components, and the maximal submod-
ules of a series module are its complement-connected components. Hence, the
structure of the modules of a graph G can be captured by the following mod-
ular decomposition tree Tg: The nodes of T correspond to strong modules of
G. The root node is V', and the set of leaves of T consists of all the vertices of
G. The children of every internal node M of T are the maximal submodules
of M. Each internal node in T is labeled ’series’, 'parallel’, or 'neighborhood’,
depending on the type of its corresponding module. Note, that the modular
decomposition tree of a given graph is unique.

In the sequel we denote the modular decomposition tree of a graph G by Tg.
We refer to a node M of Tz by the set of vertices it represents, that is, the set
of vertices in the leaves of the subtree rooted at M. For two vertices u,v € V,
we denote by M, the least common ancestor of {u} and {v} in Tg.

Let II be a graph class. A fully dynamic algorithm for II-recognition maintains
a data structure of the current graph G = (V, E) and supports the following
operations:

e Edge Insertion: Given a non-edge (u,v) ¢ E, update the data structure
if G U {(u,v)} € II, or output False and halt otherwise.

e Edge Deletion: Given an edge (u,v) € E, update the data structure if
G\ {(u,v)} € II, or output False and halt otherwise.

e Vertex Insertion: Given a new vertex v ¢ V and a set of edges between v
and vertices of G, update the data structure if G U v € II, or output False
and halt otherwise.

e Vertex Deletion: Given a vertex v € V, update the data structure if
G \ v € II, or output False and halt otherwise.

Traditionally, fully dynamic algorithms handle only edge modifications, since
vertex modifications can be performed by a series of edge modifications. (For
example, in dynamic graph connectivity adding a vertex of degree d is equiv-
alent to adding an isolated vertex, and then adding its edges one by one.)
However, in our context we have to be more careful, since we may not be able
to add or delete one edge at a time without ceasing to satisfy property IT (and
even if there is a way to do that, it might be non-trivial to find it). In other
words, adding or deleting a vertex can preserve the property, but adding or
removing one edge at a time might fail to do so. Hence, vertex modifications
must be handled separately by the dynamic algorithm.

2.1 A Reduction

A graph class II is called complement-invariant if G € II implies G € II.
Examples for complement-invariant classes include perfect graphs, cographs,

split graphs, threshold graphs and permutation graphs.

We say that a dynamic algorithm Alg for recognizing some graph property is
based on modular decomposition if: (1) Alg maintains the modular decompo-
sition tree of the dynamic graph; and (2) the only operations that Alg makes
are updates to the tree, or queries regarding the tree.

Observation 1 The modular decomposition trees of a graph and its comple-
ment are identical up to exchanging the labels ’series’ and ’parallel’.

Theorem 2 Let II be a complement-invariant graph property. Let Alg be a
dynamic algorithm for Il-recognition, which supports either edge insertions
only or edge deletions only, and is based on modular decomposition. Then Alg
can be extended to support both operations with the same time complexity.

PROOF. Suppose that Algis an additions-only algorithm. The proof for the
case that Alg is a deletions-only algorithm is analogous. Let G = (V, E) be
the current graph. In order to delete an edge (u,v) € E we perform an insert
operation on G, by treating each parallel node in T as a series node and vice-
versa. By Observation 1, the modular decomposition tree of G is identical to
T up to exchanging the labels ’series’ and ’parallel’. Since G U {(u,v)} =
G \ {(u,v)}, the algorithm performs the update successfully if and only if
G\{(u,v)} €Il. O

3 Cographs

A graph is called a cograph (complement reducible graph) if it contains no
induced P, [13]. This class of graphs is clearly complement-invariant. In this
section we give a fully dynamic algorithm for recognizing cographs and main-
taining their modular decomposition tree. The algorithm works in O(d) time
per operation involving d edges. It is based on the following fundamental char-
acterization of cographs:

Theorem 3 ([13]) A graph is a cograph if and only if its modular decompo-
sitton tree contains only parallel and series nodes.

Another viewpoint on the modular decomposition tree of a cograph is as a
method to build the graph: Going recursively up the tree, the subgraph of a
parallel node is formed by taking the union of its children’s subgraphs. For a
series node, all edges between vertices in distinct child modules are added to
that graph.

Theorem 3 implies that a cograph is either connected, or complement-connected,
but not both. It also implies that in a modular decomposition tree of a cograph
parallel and series nodes alternate along any path starting from the root. We
use these facts often in the sequel.

3.1 The Data Structure

Let G = (V, E) be the input graph. We maintain the modular decomposition
tree Tg of G as follows: For each vertex of G we keep a pointer to its corre-
sponding leaf-node in T(z. For each node M of Tz we keep its type, which can
be ’series’, 'parallel’ or ’leaf’, and its number of children. We also keep pointers
from M to its parent and to its children. The parent pointer of the root node
points to itself. In detail, each node M has an associated doubly linked list L.
Each element of L corresponds to a child N of M, and consists of two pointers,
one pointing to N and the other to M. The parent pointer of N points to its
corresponding element in L. This data structure allows detaching a child from
its parent in constant time. Note, that a node in T has no explicit record of
the vertices that it contains as a module.

Initially T¢ is calculated in linear time, e.g., using the algorithm of [10]. If G
is discovered to contain an induced P, then our algorithm outputs False and
halts. In the description below we assume that G is a cograph.

3.2 Adding an Edge

Let (u,v) be the edge to be added, and let G' = GU{(u,v)}. We observe that
M., cannot be a series module since this would imply that the edge (u,v) is
already present in GG. Hence, by Theorem 3 M, is a parallel module. Let C,
and C,, denote the maximal submodules (equivalently, connected components)
of M, which contain u and v, respectively. Without loss of generality, |C),| <
|Cy|. The edge insertion algorithm is based on the following theorem:

Theorem 4 G’ is a cograph if and only if |Cy,| =1 and v is adjacent to every
other vertex in C,,.

PROOF.

= Suppose that |C,| > 1. Then C, contains some vertex a which is adjacent to
u, and C,, contains some vertex b which is adjacent to v. Hence, {a,u, v, b}
induce a P, in G', so G' is not a cograph.

Suppose that w € C, \ {v} is not adjacent to v. Let v, xq,..., 2 = w be
a shortest path from v to w in C,, k > 2. Then {u, v, z1, 22} induce a Py in
G', so G' is not a cograph.
< Suppose that G' contains an induced Pj. Since G is a cograph, an induced
P, in G' must contain the edge (u,v). Suppose that {u, v, z,y} induce a P,
in G' (not necessarily in this order). One of z and y is therefore adjacent
to exactly one of v and v. Without loss of generality, let = be adjacent to
exactly one of v and v. Since every vertex in V' \ M, is either adjacent to
both u and v, or non-adjacent to both of them, we have x € M,,,. If x € C,,
|Cy| > 1 and we are done. If z € C,, then z is adjacent to v and not to w.
As {u,v,z,y} induce a P, y is adjacent either to u only (out of u,v and
z), or to z only. In the first case we have y € C,, implying that |C,| > 1.
In the latter case, we conclude that y € C,. But (v,y) € E(G").

O

Note that the theorem implies that {v} is a child of C, in Tg, since otherwise
the path from C, to {v} in Tg would contain a parallel node, and v would not
be adjacent to all vertices of C,,.

Let us assume for now that G’ is a cograph and we have already identified
M,,,C, and C,. We show below how to update Tg in this case. Later, we
shall show how to check the conditions of Theorem 4 and how to find each of
M., C, and C,.

Let r be the number of children of M, in Tg. If both C, and C, contain a
single vertex, we update Ty as follows: If » = 2, then the updates depend on
the position of M, in Tg. If M,, lies at the root of T, we change its label
to ’series’. Otherwise, we connect {u} and {v} as children of the parent P of
M, (which is a series module), and delete M,,. If r > 2, we make {u} and

{v} the children of a new series node {u, v}, and connect this node as a child
of M,,.

Suppose now that |C,| > 1. By Theorem 4 (since G' is a cograph) |C,| =1
and v is adjacent to every vertex in C, \ {v}. We update T¢ by first detaching
{u},{v} and C, from their parents and forming a new parallel node K =
{u} U (C, \ {v}). We continue according to one of the following cases:

(1) r > 2: We add a new series node {u} U C, as a child of M,,. We then
make {v} and K the children of {u} U C,.

(2) r = 2: We connect {v} and K to the parent node of M,, (which might
be M,, itself if it is the root). We then delete M,,, unless it lies at the
root of T, in which case we change its label to ’series’.

It remains to describe the subtree of Tixr rooted at the new parallel node K.
Let Kji,...,K;, {v} be the complement-connected components of C,. There
are two cases to consider:

(1) I > 1: In this case C, \ {v} is necessarily connected. Hence, we need
to make {u} and C, \ {v} the children of K, and connect Kj,..., K]
to C, \ {v} as its children (see Figure 1). In order to carry out these
changes efficiently, we do not introduce a new node C, \ {v}. Instead, we
make C, the child of K. Since a node has no record of its corresponding
vertex set, this alternative update is equivalent to the requested one.
Correspondingly, we shall now refer to the former node C, as C, \ {v}.

Ov Ok O K Ov/

O

.— I
i

K, ()I(l

Fig. 1. The updates to the modular decomposition tree in case M,, and C, have
more than two children each, and |C),| = 1. Series nodes are drawn shaded.

(2) I=1:.1f K; = C, \ {v} contains a single vertex w, we make {u} and {w}
the children of K. Otherwise, K, is complement-connected and, therefore,
it is disconnected. Let Ji,...,J, be the connected components of K,
p > 2. Then we need to make {u} and Ji,...,J, the children of K.
Instead of introducing the new node K, we make (the former node) K,
a child of {u} U C, (in addition to {v}), and attach {u} as an additional
child of K;. Finally, we delete C,.

Obviously, all the above updates to T can be carried out in constant time.
Updating the number of children at each node can be also supported in con-
stant time. It remains to show how to find M,,, C, and C, efficiently, and how
to verify the conditions of Theorem 4. In other words, we have to check if one
of {u} and {v} is a child of M,,, and the other is connected to every vertex

in its connected component in G(M,,). It is straightforward to see that this
is the case if and only if M,, is parallel and is either the parent of {u} and
the grandparent of {v}, or vice versa (assuming that |C,| > 1 or |C,| > 1).
One can determine if such a configuration exists in constant time, by checking
if the parent of {u} ({v}) is parallel, and coincides with the grandparent of
{v} ({u}). If such a configuration exists, then it immediately identifies M,,, C,,
and C,, and we update T accordingly. Otherwise, the algorithm outputs False
and halts.

The following theorem and corollary summarize our results:

Theorem 5 There is an optimal additions-only algorithm for recognizing cographs
and maintaining their modular decomposition tree, which handles each edge
insertion in constant time.

Corollary 6 There is an optimal edges-only fully dynamic algorithm for rec-
ognizing cographs and maintaining their modular decomposition tree, which
handles each edge modification in constant time.

3.3 Vertex Modifications

We shall generalize our algorithm to handle vertex insertions and deletions as
well. Supporting vertex insertions is based on the incremental algorithm for
cograph recognition of Corneil et al. [10]. This algorithm handles the insertion
of a vertex of degree d in O(d) time, updating the modular decomposition tree
accordingly, and can be supported by our data structure with some trivial
extensions.

It remains to show how to handle the deletion of a vertex u of degree d from
G. Let G' = G \ u. G' is a cograph as an induced subgraph of G. Hence, we
concentrate on updating Tg. Let P be the parent node of {u} in T. There
are four cases to consider:

(1) If TG contains {u} only, then T is empty.
(2) If P has at least three children then Tg: is obtained from T by deleting
(3) If P has only two children that are both leaves, {u} and {v}, then T¢ is
obtained from Tg by deleting {u} and replacing P with {v}.
(4) If P has only two children {u} and M, where M is an internal node of
T, then two cases are possible:
(a) If P lies at the root of Tg, then Tg is the subtree of Tg which is
rooted at M.
(b) Otherwise, let F' be the parent of P. Then T is formed from T by
connecting the children of M to F, and deleting {u}, P and M.

Proposition 7 The deletion of a vertex u of degree d can be handled in O(d)
time.

PROOF. All cases except 4b can be handled in constant time. Consider this
last case. If P is a series module, then u is adjacent to all vertices of M, and
T can be constructed in O(d) time. If P is a parallel module, then instead of
deleting M we replace F with M, attaching the former children of F' (except
P) as children of M. Since u is adjacent to all the vertices of these children
modules, this takes O(d) time. O

We are now ready to state our main result:

Theorem 8 There is a fully dynamic algorithm for recognizing cographs and
maintaining their modular decomposition tree, which handles insertions and
deletions of vertices and edges, and works in O(d) time per operation involving
d edges.

4 Subclasses of Cographs

4.1 Threshold Graphs

A graph G = (V, E) is called a threshold graph if there exist non-negative real
numbers w,, v € V and ¢ such that for every U C V, > .y w, < t if and
only if U is an independent set [14]. We use the following characterization of
threshold graphs:

Theorem 9 (cf. [11]) A graph is a threshold graph if and only if it is both a
cograph and a split graph.

We also use the split recognition algorithm of Ibarra [2], which handles in-
sertions and deletions of edges in constant time. Ibarra’s algorithm builds on
a characterization of split graphs by their degree sequence [15]. Upon each
modification it updates the degree sequence of the dynamic graph and checks
if it continues to satisfy the split graph characterization.

Theorem 10 There is a fully dynamic algorithm for threshold recognition,
which works in O(d) time per operation involving d edges.

PROOF. By Theorem 8 there exists a fully dynamic algorithm A; for co-
graph recognition with the same time bounds. By a simple generalization of

10

the split recognition algorithm of Ibarra [2], one can obtain a fully dynamic
algorithm A, for split recognition, which handles also vertex modifications,
and works in O(d) time per modification involving d edges. Our algorithm for
threshold recognition executes A; and A, in parallel, and upon a modifica-
tion outputs False and halts if and only if any of these algorithms outputs
False. O

4.2 Trivially Perfect Graphs

A graph is called trivially perfect if it is a cograph and contains no induced Cj
[16]. Note that this class of graphs is not complement-invariant. For example,
the graph Cy is not trivially perfect, but its complement (a pair of indepen-
dent edges) is. In this section we present a fully dynamic algorithm for triv-
ially perfect graph recognition. Our algorithm is an extension of the cograph
recognition algorithm, which after each modification checks also whether the
current graph contains an induced Cj.

Suppose that G = (V, E) is a trivially perfect graph. If we delete a vertex from
G then the resulting graph is clearly trivially perfect. If we add an edge to G
and the new graph is a cograph, then it is also a trivially perfect graph. This
follows by noting that if an induced C} is created, then G must have contained
an induced P,. Hence, it suffices to show how to check for the existence of
an induced C, after edge deletions and vertex insertions. We assume in the
following that the current graph G is trivially perfect, and that the modified
graph G’ is a cograph, as otherwise, the cograph recognition algorithm outputs
False and we are done.

4.2.1 Adding a Vertex

Let z be a new vertex of degree d to be added, and let G' = G U z. Clearly,
if G' contains an induced Cy, it is of the form {a,b,c, 2z} for some vertices
a,b,c € V (where (a,c) and (b, z) are the non-edges).

If z connects two or more connected components of G then it must be adjacent
to every vertex in these components, or else G' would contain an induced P;.
Therefore, in this case G' is a trivially perfect graph. If z is adjacent to all
vertices of a single component then again G' is trivially perfect. One of these
cases applies if and only if {z} is either a child of a series root module (if
G' contains a single connected component), or a grandchild of a parallel root
module (if G' contains more than one component). We can check for such
configurations in constant time. The remaining case is when z is adjacent to
some but not all vertices of a single connected component C' of G. We handle
this case below.

11

Lemma 11 A cograph contains an induced Cy if and only if its modular de-
composition tree has a series node with at least two non-trivial children.

PROOF. If H is a cograph and {a, b, c,d} induce a Cy in H, then the least
common ancestor of {a},{b},{c} and {d} in Ty is a series module with at
least two non-trivial maximal submodules (one containing a,c and the other
containing b, d).

Conversely, if the modular decomposition tree of a cograph H contains a series
node with two non-trivial children M; and M;, then any two vertices from M;
together with any two vertices from M, induce a Cy in H. 0O

Lemma 11 implies that in order to check whether a C4 is formed in G’ it suffices
to check if the updates to the modular decomposition tree produce any series
node with more than one non-leaf child. In order to verify that efficiently, we
introduce at each internal node N of Tz a counter, which stores the number of
children of N that are not leaves. These counters can be easily maintained and
checked by our dynamic modular decomposition algorithm with no increase
to its time complexity. Hence, handling a vertex insertion can be supported
in O(d) time.

4.2.2 Deleting an Edge

Let (a,c) € E be an edge to be deleted, and let G' = G \ {(a,c)}. Clearly,
any induced Cy in G’ is of the form {a,b, c,d} for some vertices b,d € V. By
the previous discussion, in order to check whether G’ contains an induced Cy,
it suffices to check whether the updates to the modular decomposition tree
produce any series node with a counter greater than one. By examining the
updates to the tree it can be seen that the only series node whose counter
might exceed one is M,,, the least common ancestor of {a} and {c} in Tg.
(Using the notation of Section 3 this happens when |C,| = |C.| =1 and r > 2.)
We provide below a direct proof for that.

Lemma 12 If {a,b,c,d} induce a Cy in G' then N[a] = N|c] in G.

PROOF. By our assumption (a,c) € E. Suppose to the contrary that v € V
is adjacent to only one of a and c. Without loss of generality, suppose v is ad-
jacent to a only. Hence, v must be adjacent to both b and d, or else G' contains
an induced Pj. But then {d,v,b,c} induce a Cy in G, a contradiction. 0O

Lemma 13 If {a,b,c,d} induce a Cy in G', and v € V is adjacent to b or d,
then v is adjacent to both a and ¢ in G.

12

PROOF. By Lemma 12, N[a] = Nic| in G. Hence, it suffices to prove that
v is adjacent to a. Suppose to the contrary that (v,a) € E. If (v,b) € E or
(v,d) € E then {d,a,b,v} induce a forbidden subgraph in G (either a P, or a
Cy), a contradiction. O

Let M. be the least common ancestor of {a} and {c} in T . Since (a,c) ¢
E(G"), M|, is a parallel module. If M!, lies at the root of T then G' is a
trivially perfect graph, since a and ¢ are disconnected (and, therefore, cannot
be part of the same induced Cy). We assume in the sequel that this is not the
case.

Theorem 14 Let P be the parent of M, in Tg:. Then G' is a trivially perfect
graph if and only if M) is the only non-trivial mazimal submodule of P.

PROOF. Suppose to the contrary that G’ is not a trivially perfect graph.
Then there exist two vertices b,d € V such that {a,b, c,d} induce a Cy in G'.
By Lemma 12, N(a) = N(c) in G'. Hence, M, is the parent of both {a} and
{c}. We claim that M. = {a,c}. Suppose to the contrary that v € M. \{a,c},
then v is non-adjacent to a and ¢ (since M, is parallel). By Lemma 13, v is
non-adjacent to b and d. However, both a and ¢ are adjacent to b and d. Hence,
b must be a vertex of M , implying that a and c are in the same connected

ac)?
component in G'(M],), a contradiction.

Let M!,.; be the least common ancestor of M, {b} and {d} in Tg. We now
prove that M, , = P. Let S; be a maximal submodule of M, ; such that
S1 2 M. Since a is adjacent to both b and d, M, ., must be a series module.
Hence, any vertex v € S7 \ {a, c} is adjacent to b or d. By Lemma 13, v is also
adjacent to a and c. Since this holds for all v € S; \ {a,c}, and since M/, _, is
a series module, S; = {a,c} = M, implying that M],., = P. Finally, since

P is a series module, its maximal submodule that contains both b and d is a
non-trivial submodule of P (different from M].), a contradiction.

Conversely, suppose that P contains a non-trivial maximal submodule L #
M. Since M, is a parallel module, P is a series module. Let b and d be two
non-adjacent vertices of L. Then {a,b,c,d} induce a Cy in G', a contradic-
tion. O

Consider the updates to T as a result of deleting the edge (a,c). If G' is not
a trivially perfect graph, then M,. was the parent of both {a} and {c} in Tg,
and due to the update a new node M. = {a,c} was created and attached as
a child of M,.. Hence, P = M,. and in order to determine if G’ is trivially
perfect, it suffices to check the counter of M, after the update. We conclude:

13

Theorem 15 There is a fully dynamic algorithm for trivially perfect graph
recognition which works in O(d) time per operation involving d edges.

Acknowledgments

We thank Pavol Hell and Haim Kaplan for helpful conversations. R. Sharan
was supported by a Fulbright grant. R. Shamir was supported in part by the
Israel Science Foundation (grant number 565/99).

References

1]

2]

4]

[5]

[6]

P. Hell, R. Shamir, R. Sharan, A fully dynamic algorithm for recognizing and
representing proper interval graphs, STAM Journal on Computing 31(1) (2002)
289-305.

L. Ibarra, Fully dynamic algorithms for chordal graphs, in: Proceedings of the
Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99),
1999, pp. 923-924.

L. Ibarra, A fully dynamic algorithm for recognizing interval graphs using the
clique-separator graph, Tech. rep., University of Victoria, Victoria, Canada
(2001).

W.-L. Hsu, On-line recognition of interval graphs in O(m+nlogn) time, Lecture
Notes in Computer Science 1120 (1996) 27-38.

X. Deng, P. Hell, J. Huang, Linear time representation algorithms for proper
circular arc graphs and proper interval graphs, STAM Journal on Computing
25(2) (1996) 390-403.

R. M. McConnell, J. P. Spinrad, Linear-time modular decomposition and
efficient transitive orientation of comparability graphs, in: Proc. Fifth Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA’94), ACM Press, 1994, pp.
536-545.

A. Cournier, M. Habib, A new linear algorithm for modular decomposition, in:
19th International Colloquium (CAAP’94), 1994, pp. 68-82, INCS 787.

E. Dahlhaus, J. Gustedt, R. McConnell, Efficient and practical modular
decomposition, in: Proceedings of the Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’97), 1997, pp. 26-35.

J. Muller, J. Spinrad, Incremental modular decomposition, Journal of the ACM
36 (1) (1989) 1-19.

14

[10] D. Corneil, Y. Perl, L. Stewart, A linear recognition algorithm for cographs,
SIAM Journal on Computing 14(4) (1985) 926-934.

[11] A. Brandstadt, V. B. Le, J. P. Spinrad, Graph Classes - a Survey,
STIAM, Philadelphia, 1999, sTAM Monographs in Discrete Mathematics and
Applications.

[12] J. Spinrad, Two dimensional partial orders, Ph.D. thesis, Dept. of Computer
Science, Princeton University (1982).

[13] D. G. Corneil, H. Lerchs, L. Stewart Burlingham, Complement reducible graphs,
Discrete Applied Mathematics 3 (1981) 163-174.

[14] N. Mahadev, U. Peled, Threshold Graphs and Related Topics, Elsevier, North-
Holland, 1995, annals of Discrete Mathematics, Vol. 56.

[15] P. L. Hammer, B. Simeone, The splittance of a graph, Combinatorica 1 (1981)
275-284.

[16] M. C. Golumbic, Trivially perfect graphs, Discrete Math. 24 (1978) 105-107.

15

