
Cluster Graph Modification Problems

Ron Shamir∗ Roded Sharan* Dekel Tsur*

Abstract

In a clustering problem one has to partition a set of elements into homogeneous and well-separated subsets.
From a graph theoretic point of view, a cluster graph is a vertex-disjoint union of cliques. The clustering problem is
the task of making fewest changes to the edge set of an input graph so that it becomes a cluster graph. We study the
complexity of three variants of the problem. In the Cluster Completion variant edges can only be added. In Cluster
Deletion, edges can only be deleted. In Cluster Editing, both edge additions and edge deletions are allowed. We also
study these variants when the desired solution must contain a prespecified number of clusters.

We show that Cluster Editing is NP-complete, Cluster Deletion is NP-hard to approximate to within some con-
stant factor, and Cluster Completion is polynomial. When the desired solution must contain exactly p clusters, we
show that Cluster Editing is NP-complete for every p ≥ 2; Cluster Deletion is polynomial for p = 2 but NP-complete
for p > 2; and Cluster Completion is polynomial for any p. We also give a constant factor approximation algorithm
for Cluster Editing when p = 2.

1 Introduction

Problem Definition and Motivation: Clustering is a central optimization problem with applications in numerous
fields including computational biology (cf. [15]), image processing (cf. [16]), VLSI design (cf. [7]), and many more.
The input to the problem is typically a set of elements and pairwise similarity values between elements. The goal is
to partition the elements into subsets, which are called clusters, so that two meta-criteria are satisfied: Homogeneity
- elements inside a cluster are highly similar to each other; and separation - elements from different clusters have
low similarity to each other. Concrete realizations of these criteria generate a variety of combinatorial optimization
problems (cf. [8]).

In the basic graph theoretic approach to clustering, one builds from the raw data a similarity graph whose vertices
correspond to elements and there is an edge between two vertices if and only if the similarity of their corresponding
elements exceeds a predefined threshold (cf. [8, 9]). Ideally, the resulting graph would be a cluster graph, that is,
a graph composed of vertex-disjoint cliques. In practice, it is only close to being such, since similarity data is
experimental and, therefore, error-prone.

Following [2] we formalize the resulting problem as the task of changing (adding or deleting) fewest edges of
an input graph so as to obtain a cluster graph. We call this problem Cluster Editing. In the related Cluster Deletion
problem one has to remove fewest edges from an input graph so that it becomes a cluster graph. The Cluster
Completion problem is to add fewest edges to the input graph to make it a cluster graph. Completion (deletion)
problems arise when the data contains only false negative (positive) errors. The above problems belong to the class
of edge modification problems (cf. [13]), in which one has to minimally change the edge set of a graph so as to
satisfy a certain property. Another variant of these problems arises when the solution is also required to contain
a prespecified number of clusters. This variant is motivated by many real-life applications where a partition of
elements into a known number of categories is desired (see, e.g., [1, 6]).

∗School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Email: {rshamir,roded,dekelts}@post.tau.ac.il.

1

Previous Results: Edge modification problems were studied extensively in [13] where earlier studies are also
reviewed. Most of these problems were shown to be NP-complete. Polynomial algorithms were given for bounded
degree input graphs. In particular, a constant factor approximation algorithm was given for editing and deletion
problems with respect to any property that can be characterized by a finite set of forbidden induced subgraphs. Since
a graph is a cluster graph if and only if it is P2-free (i.e., does not contain an induced path of two edges), this result
implies a 3d-approximation algorithm for Cluster Editing and Cluster Deletion on input graphs with degree bounded
by d.

The Cluster Editing problem was first studied by Ben-Dor et al. [2], who presented a polynomial algorithm that
solves the problem with high probability under a stochastic data model. The complexity of the problem was left
open. The Cluster Deletion problem was shown to be NP-complete by Natanzon [12].

Contribution of This Paper: We prove that Cluster Editing is NP-complete, Cluster Deletion is NP-hard to ap-
proximate to within some constant factor, and Cluster Completion is polynomial. We also study the p-Cluster
versions of these problems, in which the required graph must also be a vertex-disjoint union of p cliques. We show
that p-Cluster Editing is NP-complete for every p ≥ 2; p-Cluster Deletion is polynomial for p = 2 but NP-complete
for p > 2; and p-Cluster Completion is polynomial for any p. We also give a 0.878-approximation algorithm for a
weighted variant of 2-Cluster Editing.

Organization of The Paper: Section 2 contains terminology and problem definitions. In Section 3 we prove the
NP-completeness of the Cluster Editing variants, and provide a 0.878-approximation algorithm to a weighted variant
of 2-Cluster Editing. In Section 4 we give polynomial algorithms for the Cluster Completion variants. Finally, in
Section 5 we study the complexity of the Cluster Deletion variants. For lack of space some proofs are only sketched
or omitted.

2 Preliminaries

All graphs in this paper are simple, i.e., contain no parallel edges or self-loops. Let G = (V,E) be a graph. We
denote its set of vertices also by V (G), and its set of edges also by E(G). For a vertex v ∈ V , we denote by NG(v)
the set of its neighbors in G. For a set S ⊆ V , we denote by GS the subgraph of G induced by the vertices in S. For
two disjoint subsets A,B ⊆ V , we denote by EA,B (EA,B) the set of all edges (non-edges) with one endpoint in A
and the other in B. The complement graph of G is G = (V, {(u, v) ∈ (V × V) \ E : u �= v}). See [3] for more
definitions of graphs and hypergraphs.

A graph G = (V,E) is called a cluster graph if every connected component of G is a complete graph. G is
called a p-cluster graph if it is a cluster graph with p connected components, or equivalently, if it is a vertex-disjoint
union of p cliques. If G is any graph and F ⊂ V ×V is such that G′ = (V,E�F) is a cluster graph, then F is called
a cluster editing set for G (E�F denotes the symmetric difference between E and F , i.e., (E \ F) ∪ (F \ E)). If
in addition F ⊆ E, then F is called a cluster deletion set for G. If F ∩ E = φ then F is called a cluster completion
set for G. p-cluster editing set, p-cluster deletion set, and p-cluster completion set are similarly defined. We denote
by P (F) the partition of V into disjoint subsets of vertices according to the connected components (cliques) of G′.
For a partition P = (V1, . . . , Vl) of V , we denote by NP the size of the cluster editing set implied by P , that is,

NP ≡ |
l⋃

i=1

{(u, v) �∈ E : u, v ∈ Vi} ∪ {(u, v) ∈ E : u ∈ Vi, v ∈ Vj, i �= j}| .

The problems we study in this paper are of two types:

Problem 1 (Cluster Editing/Completion/Deletion) Given a graph G and an integer k, determine if G has a cluster
editing/completion/deletion set of size at most k.

2

Problem 2 (p-Cluster Editing/Completion/Deletion) Given a graph G and an integer k, determine if G has a
p-cluster editing/completion/deletion set of size at most k.

3 Cluster Editing

We prove in this section that Cluster Editing is NP-complete by reduction from a restriction of exact cover by 3-sets:

Problem 3 (3-Exact 3-Cover (3X3C)) Given a collection C of triplets of elements from a set U = {u1, . . . , u3n},
such that each element of U is a member of at most 3 triplets, determine if there exists a sub-collection I ⊆ C of
size n which covers U .

The 3X3C problem is known to be NP-complete [4, Problem SP2].

Theorem 1 Cluster Editing is NP-complete.

Proof: Membership in NP is trivial. We prove NP-hardness by reduction from 3X3C. Let m ≡ 30n. Given an
instance < C,U > of 3X3C we build a graph G = (V,E) as follows:

V =
⋃

S∈C

{v1(S), . . . , vm(S)} ∪ U ,

E = E1 ∪ E2 ∪ E3 ,

E1 = {(vi(S), u) : S ∈ C, 1 ≤ i ≤ m,u ∈ S} ,

E2 = {(vi(S), vj(S)) : S ∈ C, 1 ≤ i < j ≤ m} ,

E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} .

In words, we build a clique of size m + 3 around each triplet S by fully connecting S and m additional vertices.
For each triplet S ∈ C we denote VS = {v1(S), . . . , vm(S)} and call the elements of VS , S-vertices. Let q =∑

S∈C |S| = 3|C|. Define N ≡ m(q − 3n) and M ≡ |E3| − 3n. We prove that there is an exact cover of U iff there
is a cluster editing set for G of size at most N + M :

⇒ Suppose that I ⊆ C is an exact cover of U . Let F1 = {(vi(S), u) : S �∈ I, 1 ≤ i ≤ m,u ∈ S} and let
F2 = {(u, u′) ∈ E3 :� ∃S ∈ I s.t. u, u′ ∈ S}. It is easy to verify that F = F1 ∪ F2 is a cluster editing set for
G, whose size is |F | = |F1| + |F2| = N + M .

⇐ Let F ′ be a cluster editing set for G with |F′| ≤ N +M . Let F be an optimum cluster editing set for G. Then
|F | ≤ |F ′| ≤ N + M . We shall prove that |F | = N + M and one can derive from F an exact cover of U .
This implies that |F ′| = |F |, and hence, F ′ is an optimum cluster editing set from which an exact cover of U
can be obtained.

Since each element of U occurs in at most 3 triplets, q ≤ 9n. Also, |NG(u) ∩ U | ≤ 6 for each vertex u ∈ U ,
implying that |E3| ≤ 3n·6

2 = 9n. Hence, |F | ≤ N + M ≤ 6mn + 6n = 180n2 + 6n < m
2 (m

2 − 2).

Let G′ = (V,E�F) be the cluster graph obtained by editing G according to F . We shall prove that for every
subset S ∈ C there exists a unique clique in G′ which contains VS . To this end, we first show that there exists
a clique KS in G′ such that |KS ∩ VS | ≥ m/2 + 3: Suppose that the vertices of VS are partitioned among k
cliques X1, . . . ,Xk in G′. Let s(Xi) = |VS∩Xi|, i = 1, . . . , k. Suppose to the contrary that s(Xi) ≤ m/2+2
for all i. Therefore,

2|F | ≥
k∑

i=1

s(Xi)(m − s(Xi)) ≥
k∑

i=1

s(Xi)(
m

2
− 2) = m(

m

2
− 2) .

A contradiction follows.

3

Let KS be the clique Xi for which s(Xi) is maximum (|KS ∩ VS | ≥ m/2 + 3). We next prove that VS ⊆
KS ⊆ VS ∪ S. Let x = |KS \ (VS ∪ S)|. Consider a new partition P ′ of V , which is obtained from P (F) by
splitting KS into KS ∩ (VS ∪ S) and KS \ (VS ∪ S). Clearly, NP (F) − NP ′ ≥ (m/2 + 3)x − 3x = xm/2.
But F is an optimum cluster editing set. Therefore, x = 0 and KS ⊆ VS ∪ S. To see that KS ⊇ VS , suppose
to the contrary that there exists some index 1 ≤ i ≤ m such that vi(S) �∈ KS . Let K ′ be the clique in G′

which contains vi(S). Let P ′′ be a new partition of V , which is obtained from P (F) by moving vi(S) from
K ′ to KS . Then NP (F) −NP ′′ ≥ m/2 + 3− (m/2− 3 + 3) = 3, a contradiction. We conclude that for every
S ∈ C there is a unique clique in G′ which contains VS and is contained in VS ∪ S.

Examine an element u ∈ U which is a member of (at least) two subsets S1, S2 ∈ C . By the previous claim,
VS1 and VS2 are subsets of distinct cliques in G′. Hence, either EVS1

,{u} ⊆ F , or EVS2
,{u} ⊆ F (or both).

Let F1 = F ∩ E1. Then |F1| ≥ N , with equality iff each vertex u ∈ U is adjacent in G′ to the S-vertices of
exactly one subset S and u ∈ S. Moreover, since |F1| ≤ N + M and M ≤ 6n, each vertex u ∈ U must be
adjacent in G′ to at least m − 6n ≥ 24n S-vertices of exactly one subset S ∈ C which contains u. Call this
set a majority set of u.

Let F2 = F \ F1. For every two vertices u, u′ ∈ U such that (u, u′) ∈ E, and the majority sets of u and u′

differ, we must have (u, u′) ∈ F2. Since each subset in C contains 3 elements, |NG′(u) ∩ U | ≤ 2 for every
u ∈ U . Therefore, |F2| ≥ M , with equality iff there is a partition of U into triplets of elements, such that the
majority set of the elements in each triplet is the same. Since |F | ≤ N + M , we must have |F | = N + M ,
and the implied partition into triplets induces an exact cover of U .

We note, that the same reduction can be used to show that Cluster Deletion is NP-complete.

3.1 p-Cluster Editing

In this section we study the p-Cluster Editing problem. We first show that 2-Cluster Editing is NP-complete. We
then conclude that p-Cluster Editing is NP-complete for every p ≥ 2.

To prove the hardness of 2-Cluster Editing, we define the following problem:

Problem 4 (3-Uniform Hypergraph Balanced 2-Colorability) Given a 3-uniform hypergraph G, determine if there
exists a 2-coloring of G, such that the number of vertices that are colored by each color is the same.

This problem can be shown to be NP-complete by a trivial reduction from Hypergraph 2-Colorability on 3-
uniform hypergraphs, whose NP-hardness was shown by Lovasz [11].

Theorem 2 2-Cluster Editing is NP-complete.

Proof: Membership in NP is trivial. We reduce from 3-Uniform Hypergraph Balanced 2-Colorability. Given a
hypergraph G = (V,E), we build an instance of 2-Cluster Editing < G′ = (V ′, E′), k > as follows: Let n
and m be the number of vertices and hyperedges, respectively, in G. Let M ≡ 2n3. We define V ′ = ∪n

i=1Vi

where Vi = {vi,j : j = 1, . . . ,M}. For a triplet of indices 1 ≤ i < j < l ≤ n define the set Ei,j,l =
{(vi,r, vj,r), (vj,r+1, vl,r), (vl,r+1, vi,r+1)}, where r = 2(n2i + nj + l) − 1. We add edges to G′ by building a
clique around each Vi, and for every triplet of indices i < j < l such that (i, j, l) /∈ E, we add the edges of Ei,j,l.
Finally, we set k ≡ 2

(n/2
2

)
(M2 − (n − 2)) + (n

2)2(n − 2) − m.
The sets V1, . . . , Vn will be called clusters. We say that a partition (S, V ′ \S) splits a cluster Vi if Vi∩S �= φ and

Vi �⊆ S. For convenience we also define a graph G′′ which is built like G′ except that it contains the edges Ei,j,l for
every triplet i < j < l. We now prove the correctness of this reduction, namely that there is a balanced 2-coloring
of G iff there is a 2-cluster editing set of G′ of size at most k.

⇒ Suppose that f : V → {0, 1} is a balanced 2-coloring of G. Let S = ∪i:f(i)=0Vi, and let F ′, F ′′ be the
2-cluster editing sets of G′ and G′′, respectively, that correspond to the partition (S, V \ S). Since f is balanced,
each side of the partition (S, V \ S) consists of n/2 clusters. We first compute the size of F′′. For two clusters

4

Vi and Vj (with i < j), and for each l �= i, j, one of Ei,j,l, Ei,l,j, or El,i,j contains exactly one edge between Vi

and Vj . Therefore, between each pair of clusters in G′′ there are exactly n − 2 edges. It follows that F′′ consists
of 2

(n/2
2

)
(M2 − (n − 2)) edges that are not in E between clusters in the same set in the partition (S, V \ S), and

(n
2)2(n − 2) edges in E between clusters in different sets in the partition. Thus, |F′′| = 2

(n/2
2

)
(M2 − (n − 2)) +

(n
2)2(n − 2). We now compute the size of F ′. For each edge (i, j, l) ∈ E, the edges of Ei,j,l in G′′ contribute two

edges to F ′′ (as the clusters Vi, Vj , and Vk are not all in the same set in the partition), while the nonexistence of the
edges of Ei,j,l in G′ contributes only one edge to F′ (between the two clusters on the same side). It follows that
|F ′| = |F ′′| − m = k.

⇐ Suppose that F is a 2-cluster editing set of G′ of minimum size, and |F | ≤ k. Let P (F) = (S, V ′ \ S). We
first claim that (S, V ′ \ S) splits no cluster. Suppose conversely that (S, V ′ \ S) splits at least one cluster.

If (S, V ′ \ S) splits more than one cluster, then let Vi be a cluster that is split by the partition such that |Vi ∩ S|
is minimum, and let Vj be a cluster that is split by the partition such that |Vj ∩ S| is maximum and j �= i. Denote
a = |Vi ∩ S| and b = |Vj ∩ S|. Select some vertex u ∈ Vi ∩ S and a vertex w ∈ Vj \ S. Let S′ = S ∪ {w} \ {u},
and let F ′ be the 2-cluster editing set that corresponds to (S′, V ′ \ S′). We will show that |F | − |F ′| ≥ 0. Note
that a vertex v ∈ Vi has at most one neighbor outside Vi. If such a neighbor exists, denote it by nv. The number of
edges in F that are incident on u is at least (M − a) + (|S| − a − 1) (the term −1 is due to the possibility that nu
exists and nu ∈ S) and the number of edges in F that are incident on w is is at least b + (nM − |S| − (M − b)− 1)
(the term −1 is due to the possibility that nw exists and nw ∈ V ′ \ S). The total number of edges of these
two kinds is nM − 2a + 2b − 2. Similarly, the number of edges in F′ that are incident on u or w is at most
a + (nM − |S| − (M − a) − 1) + (M − b) + (|S| − b − 1) = nM + 2a − 2b − 2. It follows that

|F | − |F ′| ≥ (nM − 2a + 2b − 2) − (nM + 2a − 2b − 2) = 4(b − a) ≥ 0.

If a < b, we have that |F ′| < |F |, a contradiction to the minimality of F . In the case when a = b, namely the value
of |Vl ∩ S| is equal amongst all the clusters, we have that |F′| = |F |. We build a set S′′ from S′ using the same
process as above, and since |Vl ∩ S′| is not equal amongst the clusters, it follows that the 2-cluster editing set F′′

that corresponds to S′′ satisfies |F ′′| < |F ′| = |F |, and again we have a contradiction.
Now suppose that the partition (S, V ′\S) splits exactly one cluster, and denote this cluster by Vi. Let a = |Vi∩S|.

Out of the rest n − 1 clusters, suppose that r clusters are contained in S, and n − r − 1 clusters are contained in
V ′ \S. W.l.o.g. suppose that n− r− 1 ≤ r, and since n is even we have n− r− 1 ≤ r− 1. Define S′ = S \Vi, and
let F ′ be the corresponding 2-cluster editing set. For each v ∈ Vi ∩ S, there are at least rM − 1 edges in F between
v and S \ Vi, and M − a edges between v and Vi \ S, so the number of edges in F that are incident on v is at least
rM − 1 + M − a. On the other hand, an edge in F′ that is incident on v is either between v and nv, or between v
and (V ′ \ S) \ Vi. The number of edges of the latter type is (n − 1 − r)M , so the number of edges in F that are
incident on v is at most (n − 1 − r)M + 1 ≤ (r − 1)M + 1. It follows that

|F | − |F ′| ≥ a (rM − 1 + M − a − ((r − 1)M + 1)) = a (2M − a − 2) > 0,

contradicting the minimality of F . Therefore F splits no cluster.
We now claim that the number of clusters that are contained in S is exactly n/2. Conversely, suppose w.l.o.g.

that r > n/2. Let Vi be some cluster contained in S. Let S′ = S \ Vi and let F ′ be the corresponding 2-cluster
editing set. Similarly to the above, we have that

|F | − |F ′| ≥ M((r − 1)M − 1 − ((n − r)M + 1)) ≥ M(M − 2) > 0,

a contradiction. Hence, S contain n/2 clusters.
Define a coloring f : V → {0, 1} by f(i) = 0 iff Vi ⊆ S. By the argument above, f is balanced. It remains to

show that f is a legal 2-coloring. For a hyperedge (i, j, k) ∈ E, if i, j, k have the same color then |F ∩ Ei,j,l| = 3.
Otherwise, |F ∩ Ei,j,l| = 1 since two of the edges in Ei,j,l must connect vertices in clusters on different sides of
the partition (S, V ′ \ S). Hence, each monochromatic hyperedge adds two to the size of F . By the first direction
of the proof, for a legal 2-coloring, the corresponding editing set is of size exactly k, and thus no monochromatic
hyperedge is possible in f . It follows that f is a balanced 2-coloring of G.

5

Corollary 1 p-Cluster Editing is NP-complete for any p ≥ 2.

Proof: Fix p > 2. We provide a reduction from 2-Cluster Editing. Given an input instance < G = (V,E), k >
of 2-Cluster Editing, |V | = n, we form an instance < G′ = (V ′, E′), k > of p-Cluster Editing as follows: Define
V ′ = V ∪ ∪p−2

i=1 Vi where Vi = {wi,j : j = 1, . . . , n2}. The edges of G′ include all the edges in E and a clique on
each Vi.

Clearly, every 2-cluster editing set of G is a p-cluster editing set of G′ (of the same size). Conversely, suppose
that F ′ is a p-cluster editing set of G′ of size at most k, and let (S1, . . . , Sp) be the corresponding partition. We show
that F ′ is also a 2-cluster editing set for G.

If there exists a set Vi such that Vi ∩ Sj �= φ and Vi �⊆ Sj for some j, then F ′ contains EVi∩Sj ,Vi\Sj
. The

number of such edges is at least n2 − 1 > k, a contradiction. Therefore, every set Vi is contained in some set Sj .
Furthermore, every set Sj contains at most one set Vi since otherwise we have |F ′| ≥ n4 > k, a contradiction. It
follows that all edges in F ′ are incident on vertices of V , which implies that F′ is a 2-cluster editing set of G.

3.2 A 0.878-Approximation Algorithm

We give in this section a polynomial approximation algorithm for a weighted variant of 2-Cluster Editing which is
defined as follows:

Problem 5 (Weighted 2-Cluster Editing) Given a graph G and a weight function on vertex pairs w : E(G) ∪
E(G) → N , find in G a 2-cluster editing set of maximum total weight of unedited vertex pairs.

Note, that the decision version of Weighted 2-Cluster Editing reduces to that of 2-Cluster Editing when w ≡ 1
(i.e., w(e) = 1 for every e ∈ E(G) ∪ E(G)).

Let n = |V | and let Sn denote the n-dimensional unit sphere. We define the following semi-definite relaxation
of Weighted 2-Cluster Editing:

max
1
2
[

∑

(i,j)∈E

(wij(1 + vi · vj)) +
∑

(i,j)�∈E

(wij(1 − vi · vj))]

s.t. vi ∈ Sn ∀i

We claim that this is indeed a relaxation of Weighted 2-Cluster Editing, that is, for every partition P = (A,B)
of G there exist vectors v1, . . . , vn ∈ Sn such that the total weight of unedited vertex pairs as implied by P is
1
2 [

∑
(i,j)∈E(wij(1 + vi · vj)) +

∑
(i,j)�∈E(wij(1− vi · vj))]. Indeed, let (A,B) be a partition of G. Let v0 be any unit

vector in Sn. For every i ∈ A set vi = v0, and for every i ∈ B set vi = −v0. The claim follows.
Our approximation algorithm solves this semi-definite relaxation and then rounds the solution obtained using

the random hyperplane technique.

Theorem 3 The algorithm approximates Weighted 2-Cluster Editing with an expected approximation ratio of at
least 0.878.

Proof: Follows directly from [5, Theorem 6.1].

4 Cluster Completion

The Cluster Completion problem is trivially polynomial: The optimum solution is obtained by simply transforming
each connected component of the input graph into a complete graph. In this section we give a polynomial algorithm
to p-Cluster Completion for any fixed p ≥ 2.

Let G = (V,E) be an input graph with n vertices and t connected components. If t < p we output False. We
assume henceforth that t ≥ p. To find the optimum completion set we compute partitions of the t components of G

6

S0 = {(0, . . . , 0)}
For i = 1 to t do:

Si = Si−1 ∪ {(v + Ciej : v ∈ Si−1, j = 1, . . . , p − 1}
Pick in St a vector v∗ minimizing

∑p−1
i=1 v2

i + (n − ∑p−1
i=1 vi)2.

Figure 1: An algorithm for p-Cluster Completion. ej denotes a (p− 1)-dimensional unit vector with 1 in position j.

into p sets (splitting no connected components) and choose the partition which results in a minimum completion set.
Using dynamic programming, we only need to consider a polynomial number of partitions. Note that since we only
add edges, we seek to minimize the sum of the number of edges in each of the p sets of the partition, or equivalently,
the sum of the squared sizes of the sets.

Let C1, . . . , Ct be the cardinalities of the connected components in G. Our algorithm will denote each possible
partition by a (p − 1)-long vector of integers which describes the sizes of the sets in the partition (the size of the
last set is the difference from n). We will maintain a set Si of the vectors that correspond to all possible partitions
of the first i connected components. The algorithm is given in Figure 1. The actual partition can be obtained by
maintaining for each v ∈ Si a pointer to its parent vector in Si−1.

Theorem 4 The algorithm correctly solves the p-Cluster Completion problem in O(tnp−1) time.

5 Cluster Deletion

We now focus on the cluster deletion problem. We shall give a gap preserving reduction (cf. [10]) from a restricted
version of SET-COVER to Cluster Deletion. This reduction implies that there exists some constant ε > 0 such that
it is NP-hard to approximate Cluster Deletion to within a factor of 1 + ε. We begin by introducing the SET-COVER
restriction.

Problem 6 (Minimum Restricted Exact Cover (REC)) The input is a set of elements U = {u1, . . . , ut}, and a
collection C of subsets of U which satisfies the following conditions:

• There exists a constant k1 > 0 such that for each S ∈ C , |S| ≤ k1.

• There exists a constant k2 > 0 such that for all u ∈ U , |{S ∈ C : u ∈ S}| ≤ k2.

• If S ∈ C and S′ ⊂ S then S′ ∈ C .

The goal is to find a sub-collection I ⊆ C of minimum cardinality, such that
⋃

S∈I S = U , and the sets in I are
pairwise-disjoint.

Note, that the third condition guarantees that a solution to REC always exists (we assume that
⋃

S∈C S = U).
REC can be shown to be MAX-SNP complete by a simple L-reduction from a restriction of SET-COVER in which
the size of every set is bounded and each element occurs in a bounded number of sets. This latter problem is known
to be MAX-SNP complete [14]. Hence, there exists a constant δREC > 0 such that it is NP-hard to approximate
REC to within a factor of 1 + δREC .

Theorem 5 There exists some constant ε > 0 such that it is NP-hard to approximate Cluster Deletion to within a
factor of 1 + ε.

Proof: By a gap preserving reduction from REC (similar to the one in Theorem 1). For an instance IREC of REC,
the reduction produces in polynomial time an instance ICD of Cluster Deletion such that opt(IREC) ≤ c implies
opt(ICD) ≤ c′ and opt(IREC) > (1 + δREC)c implies opt(ICD) > (1 + ε)c′, where opt(I) denotes the optimal
value for instance I .

7

We now describe the reduction. Let IREC =< U,C >, and let |U | = t. Suppose that each set in C has size at

most k1, and each element occurs in at most k2 sets. Let m = k2
1k2

δREC
and let q =

∑
S∈C |S|. We build an instance

ICD =< G = (V,E) > of Cluster Deletion as follows:

V =
⋃

S∈C

{v1(S), . . . , vm(S), w(S)} ∪ U ,

E = E1 ∪ E2 ∪ E3 ∪ E4 ,

E1 = {(vi(S), u) : S ∈ C, 1 ≤ i ≤ m,u ∈ S} ,

E2 = {(vi(S), vj(S)) : S ∈ C, 1 ≤ i < j ≤ m} ,

E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} ,

E4 = {(vi(S), w(S)) : S ∈ C, 1 ≤ i ≤ m} .

In words, for each S ∈ C we form a clique on S and a set of m new vertices, and also connect all the new vertices
to a single extra vertex w(S). For each subset S ∈ C we denote VS = {v1(S), . . . , vm(S)} and call the elements of
VS , S-vertices. Note, that |E3| ≤ (k1 − 1)k2t/2 < k1k2t/2 and q ≤ k2t. Clearly, t/k1 ≤ opt(IREC) ≤ t. Let c
be any constant such that t/k1 ≤ c ≤ t. Define c′ ≡ (q − t + c)m + |E3| and ε ≡ δREC

2k1k2+δREC
. We prove that this

reduction is gap preserving:

1. Suppose that opt(IREC) ≤ c. Let I ⊆ C be an exact cover of U , |I| ≤ c. For u ∈ U denote by Iu the set in I
which contains u. Let Ī = C \ I .

To obtain a cluster subgraph G′ of G we delete the following edges:

(a) For all S ∈ Ī , u ∈ S delete all the edges in EVS ,{u}.
(b) For all S ∈ I delete all the edges in EVS ,{w(S)}.
(c) For all u ∈ U, u′ ∈ U \ Iu delete the edge (u, u′) if it exists.

One can easily verify that G′ is a cluster graph, and therefore, opt(ICD) ≤ (q − t + c)m + |E3| = c′.

2. Suppose that opt(IREC) > (1 + δREC)c. We can make the following observations with respect to opt(ICD):

(a) In any cluster subgraph of G, every u ∈ U is adjacent to the S-vertices of at most one set S ∈ C .
Therefore, opt(ICD) ≥ (q − t)m.

(b) There exists an optimum solution F of ICD for which the following is true: If a vertex u ∈ U is adjacent
to an S-vertex in (V,E \ F), for some S ∈ C , then F contains all the edges in EVS ,{w(S)}. Indeed, if
F ′ is a cluster deletion set such that u1, . . . , ur (1 ≤ r ≤ k1) are adjacent to an S-vertex in (V,E \ F′),
then F ′′ = (F ′ ∪ EVS ,{w(S)}) \ (

⋃r
i=1 EVS ,{ui} ∪ {vi(S), vj(S) : i �= j}) is also such a cluster deletion

set, and |F ′′| ≤ |F ′|. Examine now F . For each u ∈ U , either F contains all edges connecting u to
vertices in V \ U , or there exists a single set S ∈ C such that EVS ,{u} ∩ F = φ and EVS ,{w(S)} ⊆ F .
Hence, F contains at least (q − t)m edges between vertices in U and vertices in V \ U (S-vertices), as
well as at least opt(IREC)m additional edges. It follows that opt(ICD) ≥ (q − t + opt(IREC))m >
(q − t + (1 + δREC)c)m.

We conclude that

opt(ICD) > (q − t + (1 + δREC)c)m = c′ + (δRECcm − |E3|)
> c′(1 +

δRECcm − |E3|
qm + |E3|) > c′(1 +

δREC(t/k1)m − k1k2t/2
k2tm + k1k2t/2

)

= c′(1 +
2δRECm/k1 − k1k2

2k2m + k1k2
) = c′(1 +

δREC

2k1k2 + δREC
)

= c′(1 + ε) .

8

5.1 p-Cluster Deletion

We give in this section a polynomial algorithm for the optimization version of 2-Cluster Deletion. We then show
that p-Cluster Deletion is NP-complete for every p > 2.

Let G = (V,E) be an input graph with n vertices. W.l.o.g., G is connected, as otherwise, either G is already a
2-cluster graph, or we output False. The algorithm is described in Figure 2. Recall that G is the complement of G.

Let C1, . . . , Ct be the connected components of G.
For i = 1, . . . , t do:

If Ci is not bipartite then output False and halt.
Else find a bipartition (Ai, Bi) of Ci such that |Ai| ≥ |Bi|.

Output the set that corresponds to (A1 ∪ . . . ∪ At, B1 ∪ . . . ∪ Bt).

Figure 2: An algorithm for 2-Cluster Deletion.

Theorem 6 The algorithm correctly solves 2-Cluster Deletion in O(n + |E(G)|) time.

Proof: Correctness: Since the complement of a 2-cluster graph is a complete bipartite graph, a solution exists if
and only if G is bipartite. Hence, the algorithm outputs False iff no solution exists. Moreover, the partition produced
by the algorithm has the property that if two vertices are assigned to the same set then they are adjacent. Therefore,
the set of edges F returned by the algorithm is a 2-deletion set of G. Hence, it suffices to prove that F is optimal.

Denote S1 = A1 ∪ . . . ∪ At and S2 = B1 ∪ . . . ∪ Bt. Clearly, F consists of edges in G with one endpoint in S1

and the other in S2. Therefore,

|F | = |ES1,S2| = |S1||S2| − E(G) = |S1|(n − |S1|) − E(G).

Let F ∗ be an optimal 2-deletion set of G, and let P (F∗) = (S∗
1 , S∗

2), where |S∗
1 | ≤ |S∗

2 |. We have that |F∗| =
|S∗

1 |(n − |S∗
1 |) − E(G). For every i ≤ t, either Ai ⊆ S∗

1 or Bi ⊆ S∗
1 , and therefore |S1| ≤ |S∗

1 | ≤ n/2. It follows
that |F | ≤ |F ∗|. Hence, F is an optimal 2-deletion set of G.

Complexity: The bottleneck in the complexity of the algorithm is computing the connected components of G
and finding a bipartition for each of them. Each of these tasks can be performed in O(n + |E(G)|) time.

Theorem 7 p-Cluster Deletion is NP-complete for any p ≥ 3.

Proof: Membership in NP is trivial. We provide a reduction from p-Coloring. Given an input graph G = (V,E), the
reduction outputs its complement G and a bound k = |E|. A p-coloring f of G trivially translates into a p-deletion
set {(u, v) /∈ E : f(u) �= f(v)} of G of size at most k. Conversely, suppose that F is a p-deletion set of G with
|F | ≤ k, and let C1, . . . , Cp be the cliques of (V,E \ F). The coloring f defined by f(v) = i for all v ∈ Ci is a
p-coloring of G.

Note that the reduction works with any k ≥ |E| and in fact shows that even deciding whether a graph has a
p-cluster deletion set is NP-hard, for p ≥ 3.

Acknowledgments

R. Shamir was supported in part by the Israel Science Foundation formed by the Israel Academy of Sciences and
Humanities. R. Sharan was supported by an Eshkol fellowship from the Ministry of Science, Israel.

9

References

[1] A. A. Alizadeh, M. B. Eisen, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression
profiling. Nature, 403(6769):503–511, 2000.

[2] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal of Computational
Biology, 6(3/4):281–297, 1999.

[3] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman and Co., San Francisco, 1979.

[5] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145, 1995.

[6] T. R. Golub, D. K. Slonim, et al. Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science, 286:531–537, October 1999.

[7] C. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 11(9):1074–1085, 1992.

[8] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Mathematical Programming,
79:191–215, 1997.

[9] J.A. Hartigan. Clustering Algorithms. John Wiley and Sons, 1975.

[10] D. S. Hochbaum, editor. Approximation Alogrithms for NP-Hard Problems. PWS Publishing, Boston, 1997.

[11] L. Lovasz. Covering and coloring of hypergraphs. In Proc. 4th Southeastern Conf. on Combinatorics, Graph
Theory, and Computing. Utilitas Mathematica Publishing, 1973.

[12] A. Natanzon. Complexity and approximation of some graph modification problems. Master’s thesis, Depart-
ment of Computer Science, Tel Aviv University, 1999.

[13] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modification problems. Dis-
crete Applied Mathematics, 113:109–128, 2001.

[14] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. J. of Computer
and System Science, 43:425–440, 1991.

[15] R. Sharan and R. Shamir. CLICK: A clustering algorithm with applications to gene expression analysis. In
Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB),
pages 307–316, 2000.

[16] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory and its application to
image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1101–1113,
1993.

10

