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ABSTRACT
Mounting evidence shows that many protein complexes are
conserved in evolution. Here we use conservation to find
complexes that are common to yeast S. Cerevisiae and bac-
teria H. pylori. Our analysis combines protein interaction
data, that are available for each of the two species, and or-
thology information based on protein sequence comparison.
We develop a detailed probabilistic model for protein com-
plexes in a single species, and a model for the conservation
of complexes between two species. Using these models, one
can recast the question of finding conserved complexes as a
problem of searching for heavy subgraphs in an edge- and
node-weighted graph, whose nodes are orthologous protein
pairs.

We tested this approach on the data currently available for
yeast and bacteria and detected 11 significantly conserved
complexes. Several of these complexes match very well with
prior experimental knowledge on complexes in yeast only,
and serve for validation of our methodology. The complexes
suggest new functions for a variety of uncharacterized pro-
teins. By identifying a conserved complex whose yeast pro-
teins function predominantly in the nuclear pore complex,
we propose that the corresponding bacterial proteins func-
tion as a coherent cellular membrane transport system. We
also compare our results to two alternative methods for de-
tecting complexes, and demonstrate that our methodology
obtains a much higher specificity.
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1. INTRODUCTION
With the sequences of dozens of genomes at hand, and the

accumulating information on the transcriptomes and pro-
teomes of different organisms, a new research paradigm is
emerging in molecular biology. At the core of this paradigm
is the comparative analysis of biological properties of two or
more species, using the wealth of organisms to enhance weak
relations and to draw conclusions on one species, based on
available information on other species. Comparative analy-
sis, in the form of pairwise alignment, is frequently used in
predicting protein function and structure. Recently, com-
parative approaches have been proven useful in diverse do-
mains, including gene finding [5], motif finding [12], cis-
regulation [19] and metabolic pathways [15, 22].

Protein interactions are crucial to cellular function, both
in assembling protein machinery and complexes and in sig-
naling cascades, where protein interactions enable one pro-
tein to modify another to transmit biological information.
Recent technological advances enable us for the first time
to characterize networks of protein interactions. Among the
most direct and systematic methods for measuring protein
interactions are co-immunoprecipitation [13] and the two-
hybrid system [9], that have defined large protein-protein in-
teraction networks for organisms including S. cerevisiae [8],
H. pylori [17], and C. elegans [6].

The growing information on protein networks for differ-
ent organisms naturally lends itself to comparative analysis,
which tries to determine the extent to which protein net-
works are conserved among species and make use of the dis-
covered conservation to predict novel networks or parts of
networks. Mounting evidence suggests that conserved pro-
tein interaction pathways indeed exist and may be ubiqui-
tous: For example, proteins in the same pathway are typ-
ically present or absent in a genome as a group [16], and
several hundred protein-protein interactions in yeast have



also been identified for the corresponding protein orthologs
in worms [14].

Previously, we have studied the conservation of pathways
between the budding yeast S. cerevisiae and the bacterial
pathogen H. pylori by performing a whole-network-based
comparison between the protein-protein interaction networks
of the two species [11]. Our analysis suggested many simi-
larities between the two networks. Some of these similarities
correspond to well-known biological pathways, while others
represent new biological discoveries.

Here we study another aspect of the similarity between
the yeast and bacterial protein networks, namely, the con-
servation of complexes between the two species. In both the
present study and the earlier one the goal is to find two sets
of proteins, one in yeast and one in bacteria, such that many
of the proteins in each set have orthologous counterparts in
the other, there is a high level of interaction among the pro-
teins in each set, and the patterns of interaction in the two
sets are similar. But while the methods of the earlier study
were aimed at finding chain-like patterns of interaction of
the type that might occur in signal transduction pathways,
the present study focuses on protein complexes and looks
for dense, clique-like interaction patterns that are conserved
in the two species.

At the heart of our analysis is a novel probabilistic model
for protein interaction network in a single species, and a
two-species model, which combines, in a unified manner,
the interaction model of each species as well as information
on the similarity of protein pairs between the two species.
This model is used to construct an orthology graph, whose
nodes correspond to pairs of putative orthologs, and whose
edges correspond to protein interactions. The edges of the
graph are assigned weights with probabilistic meaning, so
that high weight subgraphs correspond to conserved protein
complexes. We propose a practical method to search the or-
thology graph for complexes of densely interacting proteins,
which is based on forming high weight seeds and extending
them using local search.

We applied our algorithm to data on protein interactions
and protein sequences for yeast and bacteria. The algorithm
identified 11 significantly conserved complexes, with sizes
ranging between 6 and 20 protein pairs. Several of these
complexes match very well with prior experimental knowl-
edge on complexes in yeast only, and serve for validation
of our methodology. The identified complexes suggest new
functions for a variety of uncharacterized proteins. In par-
ticular, by identifying a conserved complex whose yeast pro-
teins function predominantly in the nuclear pore complex,
we propose that the corresponding bacterial proteins func-
tion as a coherent cellular membrane transport system. We
also compared our results to two alternative methods for de-
tecting complexes, and demonstrated that our methodology
obtains a much higher specificity. In addition, we showed
the utility of using our probabilistic model for analyzing in-
teraction data from a single species.

The paper is organized as follows: In Section 2 we present
our probabilistic model for comparative protein interaction
data. In Section 3 we describe our algorithm for identifying
high-scoring, conserved protein complexes. The application
to real data and comparison to extant approaches are pre-
sented in Section 4.

2. A PROBABILISTIC MODEL
FOR PROTEIN COMPLEXES

In this section we present a probabilistic model for protein
interaction data within a single species, and then extend it
to two species. Given a dataset of protein interactions of
some organism, we translate it into an interaction graph G,
whose vertices are the organism’s interacting proteins, and
whose edges represent pairwise interactions between distinct
proteins. Using this formulation, a protein complex corre-
sponds to a subgraph of G that is typically dense. Hence,
surprisingly dense subgraphs in G may be suggested as pu-
tative protein complexes.

In the case of perfect data, each edge in the interaction
graph represents a known interaction, each non-edge rep-
resents a known non-interacting pair, and we are seeking a
surprisingly dense subgraph of G. To this end we formulate a
log likelihood ratio model that is additive over the edges and
non-edges of G, such that highly scoring subgraphs would
correspond to likely protein complexes. Such a model re-
quires specifying a null model and a protein-complex model
for vertex pairs. Similarly to the probabilistic approach
taken in [20], we define the two models as follows: The
protein-complex model, Mc, assumes that every two proteins
in a complex interact with some high probability β. In terms
of the graph, the assumption is that two vertices that belong
to the same complex are connected by an edge with prob-
ability β. While our model assumes a clique structure of a
protein complex, other reasonable models could be formu-
lated, such as a “hub” model, in which all vertices connect
to a center vertex of high degree.

In contrast, the null model, Mn, assumes that each edge
is present with the probability that one would expect if the
edges of G were randomly distributed but respected the de-
grees of the vertices. More precisely, we let F G be the family
of all graphs having the same vertex set as G and the same
degree sequence, and we define the probability of observing
the edge (u, v) to be the fraction of graphs in F G that in-
clude this edge. Note that in this way, edges incident on
vertices with higher degrees have higher probability.

A complicating factor in constructing the interaction graph
is that we do not know the real protein interactions, but
rather have partial, noisy observations of these interactions.
Formally, let us denote by Tuv the event that two proteins
u, v interact, and by Fuv the event that they do not interact.
Denote by Ouv the (possibly empty) set of available observa-
tions on the proteins u and v, that is, the set of experiments
in which an interaction between u and v was, or was not,
observed. Using prior biological information one can esti-
mate for each protein pair the probability Pr(Ouv|Tuv) of
the observations on this pair given that it interacts, and
the probability Pr(Ouv|Fuv) of our observations given that
this pair does not interact. Also, one can estimate the prior
probability Pr(Tuv) that two random proteins interact.

Given a subset U of the vertices, we wish to compute the
likelihood of U under a protein-complex model and under a
null model. Denote by OU the collection of all observations



on vertex pairs in U . Then

Pr(OU |Mc) =
�

(u,v)∈U×U

Pr(Ouv|Mc)

=
�

(u,v)∈U×U

[Pr(Ouv|Tuv, Mc)Pr(Tuv|Mc) +

Pr(Ouv|Fuv, Mc)Pr(Fuv|Mc)]

=
�

(u,v)∈U×U

[βPr(Ouv|Tuv) +

(1 − β)Pr(Ouv|Fuv)] .

The first equality follows from the assumption that all pair-
wise interactions are independent. The second equality is
derived using the law of complete probability. The last
equality follows by noting that given the hidden event of
whether u and v interact, Ouv is independent of any model.

It remains to compute Pr(OU |Mn). Since our suggested
null model depends on having the degree sequence of the
interaction graph, we cannot use it as is. To overcome this
difficulty we approximate the degree sequence of the hidden
interaction graph: Let d1, . . . , dn denote the expected de-
grees of the vertices in G, rounded to the closest integer. In
order to compute the expected degrees we apply Bayes’ rule
to derive the expectation of every vertex pair:

Pr(Tuv|Ouv) =
Pr(Ouv|Tuv)Pr(Tuv)

Pr(Ouv|Tuv)Pr(Tuv) + Pr(Ouv|Fuv)Pr(Fuv)

Our refined null model assumes that G is drawn uniformly
at random from the collection of all graphs, whose degree se-
quence is d1, . . . , dn. For every vertex pair (u, v) this induces
a probability puv that G contains an edge connecting u and
v. We can now calculate the probability of OU according to
the null model:

Pr(OU |Mn) =
�

(u,v)∈U×U

[puvPr(Ouv|Tuv) +

(1 − puv)Pr(Ouv|Fuv)]

Finally, the log likelihood ratio that we assign to a subset of
vertices U is

L(U) = log
Pr(OU |Mc)

Pr(OU |Mn)
=

�

(u,v)∈U×U

log
βPr(Ouv|Tuv) + (1 − β)Pr(Ouv|Fuv)

puvPr(Ouv|Tuv) + (1 − puv)Pr(Ouv|Fuv)

Applying Bayes’ rule and cancelling common terms in the
numerator and denominator, it can be seen that the com-
putation of L(U) requires specifying the prior probability
Pr(Tuv) and the conditional probability Pr(Tuv|Ouv) for
every pair of proteins (u, v).

2.1 Two-Species Conservation Model
Consider now the case of data on two species 1 and 2, de-

noted throughout by a corresponding superscript. We wish
to score a conserved complex that is defined by two subsets
of proteins, one from each species, and a many to many cor-
respondence associating proteins in one species with their
orthologous proteins in the other species. Consider two sub-
sets U1 = {u1

1, . . . , u
1
k1
} and V 2 = {v2

1 , . . . , v2
k2
} and some

mapping θ : U1 → V 2 between them. Assuming that the in-
teraction graphs of the two species are independent of each

other, the log likelihood ratio score for these two sets is sim-
ply:

L(U1, V 2) = log
Pr(OU1 |M1

c )

Pr(OU1 |M1
n)

+ log
Pr(OV 2 |M2

c )

Pr(OV 2 |M2
n)

However, this score does not take into account the degree
of sequence conservation among the pairs of proteins associ-
ated by θ. In order to include such information we have to
define a conserved complex model and a null model for pairs
of proteins from two species. Our conserved complex model
assumes that pairs of proteins associated by θ are ortholo-
gous. The null model assumes that such pairs consist of two
independently chosen proteins. Let Euv denote the BLAST
E-value assigned to the similarity between proteins u and v,
and let huv, h̄uv denote the events that u and v are ortholo-
gous, or non-orthologous, respectively. The likelihood ratio
corresponding to a pair of proteins (u, v) is therefore

Pr(Euv|Mc)

Pr(Euv|Mn)
=

Pr(Euv|huv)

Pr(Euv|huv)Pr(huv) + Pr(Euv|h̄uv)Pr(h̄uv)

Using Bayes’ rule we get that this ratio is simply Pr(huv|Euv)
Pr(h)

,

where Pr(h) is the prior probability that two proteins are
orthologous.

Thus, the complete score of U1 and V 2 under the mapping
θ is:

Sθ(U
1, V 2) = L(U1, V 2) +

k1�

i=1

�

v2
j∈θ(u1

i )

log
Pr(hu1

i v2
j
|Eu1

i v2
j
)

Pr(h)

3. SEARCHING FOR CONSERVED
COMPLEXES

Using the above model for comparative interaction data,
the problem of identifying conserved protein complexes re-
duces to the problem of identifying a subset of proteins in
each species, and a correspondence between them, such that
the score of these subsets exceeds a threshold. This problem
is NP-hard even when considering a single species, where all
contributions of vertex pairs to the score are 1 or -1 [18].
Thus, in the following, we propose a heuristic strategy for
the search problem.

To allow efficient search for conserved protein complexes,
we define a complete weighted orthology graph (extending [11]).
We focus on yeast and bacteria. Denote by superscripts p
and y the model parameters corresponding to bacteria and
yeast, respectively. For two yeast proteins y1 and y2 define

wy
(y1,y2) = log

βyPr(Oy1y2 |T y
y1y2) + (1 − βy)Pr(Oy1y2 |F y

y1y2)

py
y1y2Pr(Oy1y2 |T y

y1y2) + (1 − py
y1y2)Pr(Oy1y2 |F y

y1y2)

Similarly, for two bacterial proteins p1 and p2 define

wp
(p1,p2) = log

βpPr(Op1p2 |T p
p1p2) + (1 − βp)Pr(Op1p2 |F p

p1p2)

pp
p1p2Pr(Op1p2 |T p

p1p2) + (1 − pp
p1p2)Pr(Op1p2 |F P

p1p2)

Every pair (y1, p1) of yeast and bacterial proteins is as-
signed a node, whose weight reflects the similarity of the
proteins, that is,

w(y1,p1) = log
Pr(h|Ey1p1)

Pr(h)

Every two distinct (but possibly overlapping) nodes (y1, p1)
and (y2, p2), are connected by an edge, which is associated
with a pair of weights (wy

(y1,y2), w
p
(p1,p2)). If y1 = y2 (p1 =



p2) we set the first (second) coordinate to 0. The edge is
called strong if the sum of its associated weights is positive.

By construction, an induced subgraph of the orthology
graph corresponds to two subsets of proteins, one from each
species, and a many to many correspondence between them.
We define the z-score of an induced subgraph with vertex
sets U1 and V 2 and a mapping θ between them, as the log
likelihood ratio score Sθ(U

1, V 2) for the subgraph, normal-
ized by subtracting its mean and dividing by its standard
deviation. In computing the z-score we assume that node-
and edge-weights are independent, so the mean and variance
of Sθ(U

1, V 2) are obtained by summing the means and vari-
ances of the corresponding nodes and edges. High-scoring
induced subgraphs in the orthology graph correspond to pu-
tative conserved protein complexes.

In order to reduce the complexity of the graph and fo-
cus on biologically plausible conserved complexes, we filter
nodes from the graph as follows: We start with an initial
set of yeast-bacterial protein pairs, whose BLAST E-value
is smaller than 10−2. We filter from this set pairs for which
at least one of the proteins has no interactions with other
proteins (in our data). Let S be the resulting set of pairs.
Pairs of proteins that do not belong to S are considered to
have low likelihood to take part in a conserved complex [11].
Hence, we consider them only if they satisfy the following
condition: For every node (p, y) �∈ S we check whether there
exist two nodes (p1, y1), (p2, y2) ∈ S such that p interacts
with p1 and p2 and y interacts with y1 and y2. If no such
nodes exist, we remove (p, y) from the graph. Otherwise, we
retain it. The added nodes serve as ’bridges’ in the orthol-
ogy graph between protein pairs, whose members in each
species are not known to directly interact.

Next, we perform a bottom-up search for heavy subgraphs
in the orthology graph. We start from high weight seeds, re-
fine them by exhaustive enumeration, and then expand them
using local search. A similar approach based on local search
was shown to work well in analyzing high-throughput ge-
nomic data [20]. In the first phase of the search we compute
a seed around each node v, which consists of v and all its
neighbors u such that (u, v) is a strong edge. If the size of
this set is above a threshold (e.g., 10) we iteratively remove
from it the node whose contribution to the subgraph score
is minimum, till we reach the desired size. Next, for each
seed S we enumerate all subsets of S of size at least 3 that
contain v. Each such subset is a refined seed on which we ap-
ply a local search heuristic. During the local search process
we iteratively add a node, whose contribution to the cur-
rent seed is maximum, or remove a node whose contribution
to the current seed is minimum, as long as this operation
increases the overall score of the current subgraph. In the
process we preserve the original seed and do not delete nodes
from it. For each node in the orthology graph we record up
to k (e.g., 5) heaviest subgraphs that were discovered around
that node.

The resulting subgraphs may overlap considerably, so we
use a greedy algorithm to filter subgraphs whose percentage
of intersection is above a threshold. The algorithm itera-
tively finds the highest weight subgraph, adds it to the final
output list, and removes all other intersecting subgraphs (see
Section 4 for precise details on the filtering criterion).

In order to evaluate the statistical significance of identi-
fied complexes we compute two kinds of p-values. The first
is based on the z-scores that we compute, and relies on a

normal approximation to the score of a subgraph, assum-
ing that its nodes and edges contribute independent terms
to the score. The latter probability is Bonferroni corrected
for multiple testing, according to the size of the subgraph.
The second is based on empirical runs on randomized data.
The randomized data is produced by random shuffling of
the original interaction graphs of the two species, preserv-
ing their degree sequences. For each randomized dataset
we use our heuristic search to find the highest-scoring con-
served complex of a given size. We then estimate the p-value
of a suggested complex of the same size, as the fraction of
random runs in which the output complex had larger score.

4. EXPERIMENTAL RESULTS

4.1 Building the Orthology Graph
and Parameter Estimation

Our goal was to find conserved complexes between S. cere-
visiae and H. pylori. We first constructed a protein-protein
interaction network for each species. The yeast network con-
tained 14,848 pairwise interactions among 4,716 proteins,
and is based on several systematic studies using protein
co-immunoprecipitation and the yeast two-hybrid system.
The bacterial network contained 1,403 pairwise interactions
among 732 proteins, which come from a single two-hybrid
study [17]. All interactions were extracted from DIP [25]
(August 2003 version).

Protein sequences for both species were obtained from
PIR [24]. Alignments and associated E-values were com-
puted using BLAST 2.0 [3] with parameters b = 0; e = 1E6;
f =”C;S”; v = 6E5. Altogether, 1909 protein pairs had E-
value below 0.01, out of which 822 pairs contained proteins
with some measured interaction. Adding 1242 additional
pairs with weak homology (as described in Section 3), and
removing nodes with no incident strong edge, resulted in a
final orthology graph G with 866 nodes and 12,420 edges. In
total, 248 distinct bacterial proteins and 527 yeast proteins
participated in these nodes.

A good estimation of the probabilistic parameters in the
model is a precondition to obtaining meaningful results. We
computed the parameters based on an estimate of 6,334 pro-
teins and 20,000 true protein-protein interactions in yeast [4].
We used the maximum likelihood method of Deng et al. [7]
for estimating the reliability of observed interactions. The
method provides reliability estimates that depend on the ex-
perimental method used to detect the interaction, and on the
number of times each interaction was observed. We did not
use negative information on interactions that were tested but
were not observed, as such data was not readily available.
The prior probability that a yeast protein and a bacterial
protein are orthologous was computed as the frequency of
protein pairs from both species that are in the same COG
(cluster of orthologous genes) [21] (see also [11]). The con-
ditional probability that a pair of proteins are orthologous,
given their BLAST E-value, was computed as in [11]. For
each species, the probabilities of observing each particular
edge in a random graph with the same degree sequence, was
computed by Monte-Carlo simulations as follows. Starting
from the original interaction graph, we performed a long se-
ries of random edge crosses, each time picking at random
two edges (a, b), (c, d), and replacing them with (a, c), (b, d)
(disallowing self-loops), provided that the latter two edges
were not present in the current graph. The percentage of



simulations in which an edge was observed was the estimate
of its probability. The concrete values of the parameters are
listed in the appendix.

4.2 Identifying Conserved Protein Complexes
We applied our algorithm to the yeast-bacteria orthology

graph in search of conserved complexes. Altogether, the
algorithm identified 11 non-redundant complexes, whose p-
values were smaller than 0.05, after correction for multi-
ple testing. These complexes were also found to be signifi-
cant when scored against empirical runs on randomized data
(p < 0.05). The complexes are listed in Table 1. Complex
sizes varied between 6 to 20 protein pairs (20 was the max-
imum allowed size). Redundant complexes were filtered by
disallowing large overlap between two complexes. Precisely,
if 60% of the nodes or 60% of the distinct proteins in each
species were common to two complexes, the one with the
poorer p-value was removed.

To validate the results, we first used information about
known protein complexes in yeast. We extracted assign-
ments of yeast genes to complexes from the MIPS database [1]
(August 2003 version). 285 nodes in the orthology graph
had such assignments. We used complex categories at level
3 of the MIPS complex hierarchy. In total, 18 categories
had at least three genes from the orthology graph, and six
categories had at least five. For each of our complexes we
computed the largest number of proteins from a single cat-
egory, as a fraction of all its categorized members. This
fraction is called the purity of the complex. High purity in-
dicates a conserved complex that corresponds to a known
complex in yeast, and serves as a validation for the result.
Low purity may either indicate an incorrect complex or a
previously unidentified correct one. Note that most com-
plexes also contain proteins that are not known to belong to
any complex in yeast, and so our results suggest additional
members in known complexes.

For bacteria, since experimental information on complexes
is unavailable, we used functional annotations instead. We
extracted 864 functional annotations of bacterial genes from
the TIGR database [2]. We used a categorization of H. pylori
genes into 13 broad functional classes, spanning 757 nodes
in our orthology graph. Purity was computed in the same
manner.

Our conserved protein complexes suggest new functions
for a variety of uncharacterized proteins. For instance, com-
plex 17 (Figure 1(a)) defines a set of conserved interac-
tions for the cell’s protein degradation machinery. Bacterial
proteins HP0849 and HP0879 are largely uncharacterized,
but their appearance among yeast and bacterial proteins
involved in proteolysis suggests that they also play an im-
portant role in this process. Furthermore, it appears that
the yeast proteins Hsm3 and Rfa1 (with known functional
roles in DNA-damage repair) may also be associated with
the yeast proteasome. Complexes 19 and 31 (Figure 1(b,d))
suggest that their component proteins, some of which are
uncharacterized, are involved in protein synthesis.

As another example of protein functional prediction, Fig-
ure 1(c) shows a conserved complex which contains yeast
proteins that function in the nuclear pore (NUP) complex.
The NUP complex is integral to the eukaryotic nuclear mem-
brane and serves to selectively recognize and shuttle molec-
ular cargos (e.g., proteins) between the nucleus and cyto-
plasm. Unlike the yeast proteins, the corresponding bacte-

rial proteins are not well characterized, although three have
been associated with the cell envelope due to their predicted
transmembrane domains. Our results therefore indicate that
the bacterial proteins may function as a coherent cellular
membrane transport system in bacteria, similar to the nu-
clear pore in eukaryotes. Although further experimentation
will be necessary to explore this hypothesis, it is possible
that these proteins comprise the ancestral prokaryotic ma-
chinery from which the NUP transport system evolved.

4.3 Comparisons to Extant Approaches
In order to assess the advantage of our approach, we

searched for complexes in the data using two other meth-
ods: First, we formed a variant of our algorithm which uses
only the protein-protein interactions in yeast, and searched
for yeast complexes. This test was aimed at seeing what
is gained (and lost) by using the constraint of cross-species
conservation. Second, we tested our previous probabilistic
model for protein interactions [11]. That latter model is
much less involved than the current one: The weight of each
vertex in the orthology graph is set to the logarithm of the
probability that the member proteins are orthologous. The
weight of an edge is set to the logarithm of the probability
that it represents a true interaction.

We used three measures to compute the quality of the re-
sults. All three quantify the similarity between a given solu-
tion and a reference, putatively true, solution. In our case,
we used the known complex categories in yeast as the refer-
ence solution, since no knowledge on conserved complexes is
available. The Jaccard measure, which is often used in clus-
tering (cf. [10]), uses the notion of mates. Two proteins are
called mates in a solution if they appear together in at least
one complex in that solution. Given two solutions, let n11 be
the number of pairs that are mates in both, and let n10 (n01)
be the number of pairs that are mates in the first (second)
only. The Jaccard score is n11/(n11 + n10 + n01). Hence,
it measures the correspondence between protein pairs that
belong to a common complex according to one or both so-
lutions. Two identical solutions would get a score of 1, and
the higher the score the better the correspondence. The
sensitivity measure quantifies the extent to which a solution
captures complexes from the different yeast categories. It is
formally defined as the number of categories for which there
was a complex with at least half the annotated elements
in the category, divided by the number of categories with
at least three annotated proteins. The specificity measure
quantifies the accuracy of the solution. Formally, it is the
fraction of predicted complexes whose purity exceeded 0.5.

A comparison of the performance the three approaches
is presented in Table 2. The Jaccard score is significantly
better in our current approach than in [11]. The sensitivity
is lower, as we capture fewer categories, but the specificity
is much higher, so our predicted complexes are much more
accurate. Interestingly, when applying our algorithm using
only data on yeast we get even higher sensitivity, although
again at the cost of specificity. The Jaccard score of this run
is comparable to that of the comparative algorithm. This
shows that our new probabilistic model can be effectively
used, even for detecting complexes using interaction data
from a single species. Note that we evaluated the results
using data on yeast complexes only, not all of which are
expected to be conserved. Still, the use of the bacterial
data significantly improved the specificity of the results.



ID Score Size Yeast enrichment Bacterial enrichment
Purity Complex Category Purity Functional Category

1 16.16 12 (12,10) 0.17 (1/6) Translation (1) 0.56 (5/9) DNA-metabolism (7)
8 3.31 6 (6,6) 1.00 (4/4) Respiration (4) 0.33 (2/6) Energy-metabolism (71)
17 141.31 12 (6,12) 0.90 (9/10) Proteasome (9) 0.50 (2/4) Protein-synthesis (30)
18 37.31 13 (9,13) 0.45 (5/11) Proteasome (9) 0.25 (2/8) DNA-metabolism (7)
19 19.09 6 (6,6) 1.00 (6/6) Translation (10) 0.80 (4/5) Protein-synthesis (30)
25 40.16 10 (8,10) 0.67 (4/6) Replication (4) 0.20 (1/5) Energy-metabolism (71)
28 9.39 9 (9,9) 0.60 (3/5) Translation (10) 0.50 (4/8) Protein-synthesis (30)
30 383.52 20 (12,20) 0.55 (6/11) NUP (6) 0.43 (3/7) Cell-envelope (27)
31 7.21 6 (6,6) 0 - 1.00 (4/4) Protein-synthesis (30)
32 3.05 7 (6,7) 0.67 (2/3) Transcription (3) 0.25 (1/4) Transcription (13)
33 15.68 13 (12,12) 0.40 (2/5) RNA-processing (2) 0.33 (3/9) DNA-metabolism (7)

Table 1: Conserved protein complexes identified between yeast and bacteria. For each complex the table
lists its score (-log p-value, adjusted for multiple testing); its size (with the numbers of distinct bacterial
and yeast proteins in parentheses); purity, as measured using MIPS level 3 categorization of complexes in
yeast (with the number of proteins from the most abundant category, and the total number of categorized
proteins in the complex, in parentheses); the most abundant category (and its size in parentheses); functional
purity, as measured using functional annotation in bacteria; and the most abundant class (with its size in
parentheses). A zero enrichment for a complex indicates that there is at most one annotated member of the
complex. Abbreviations: NUP (nuclear pore complex).

Algorithm Jaccard Sensitivity Specificity
This study 0.32 0.33 0.7

Kelley et al. [11] 0.22 0.44 0.4
Yeast only 0.33 0.67 0.48

Table 2: Performance comparison of three algo-
rithms for complex detection.

Conclusions
We have presented a novel probabilistic model for the de-
tection of conserved complexes among two species, and an
algorithm to search for significant complexes. We applied
our approach to study the conservation between yeast and
bacterial protein interaction networks. We identified highly
specific complexes that were validated using known com-
plexes in yeast and functional annotation in bacteria. Al-
though the present work has already revealed several con-
served biological structures that may have functional sig-
nificance, many refinements and extensions to our method
should be explored. Our model can be readily extended to
allow interactions between two domains of the same protein
(manifested as self-loops in the interaction graph). Models
in which the primitive elements are domains within proteins,
rather than entire proteins, may be of value. We have used a
dense subgraph model that tends to find clique-like patterns
of interaction; variations of the model oriented towards other
kinds of interaction patterns are also of interest. Protocols
such as the two-hybrid system detect directed interactions
between proteins, suggesting the use of a directed or mixed
interaction graph instead of the current undirected model.
In order to find complexes conserved in k species, where
k > 2, our models should be extended to k-species orthol-
ogy graphs, in which each node specifies a protein from each
of k species; the scoring of such nodes is an open question.
Negative data, indicating the absence of protein-protein in-
teractions, should be used to supplement the positive data
presently used. Co-expression of genes, as measured in mi-

croarray experiments, can also provide indirect evidence for
the interaction between the corresponding proteins. Finally,
the current protein-protein interaction data is sparse and
unreliable; as the abundance and quality of the data im-
prove, the predictive power of our methods and their future
refinements will be greatly enhanced.
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APPENDIX

A. MODEL PARAMETERS
In the following we detail the parameters that we used as

input to our probabilistic model:

• The probability of observing an interaction in a com-
plex model was set both in yeast and bacteria to β =
0.95.

• The prior probability for true orthology among yeast
and bacterial proteins, whose evaluation procedure is
described in Section 4.1, was set to Pr(h) = 0.001611.

• The prior probability of observing some interaction for
a given pair of vertices was set according to the number
of interactions and proteins in our data: Pr(Oy

y1,y2 �=
∅) = 0.00135 and Pr(Op

p1,p2 �= ∅) = 0.00524.

• The prior probability for a true interaction, whose esti-
mation procedure is described in Section 4.1, was set to
0.001, for both species. The probability of observing a
true interaction was estimated by the ratio of expected
number of true interactions that were observed and the
number of true interactions.

• The reliability of the interactions in H. pylori was es-
timated at 0.53, which was the reliability assigned by
Deng et al. [7] to the yeast two-hybrid experiment of
Uetz et al. [23], and was supported by the estimations
given in [17].


