
A FULLY DYNAMIC ALGORITHM FOR RECOGNIZING AND
REPRESENTING PROPER INTERVAL GRAPHS∗

PAVOL HELL† , RON SHAMIR‡ , AND RODED SHARAN‡

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 289–305

Abstract. In this paper we study the problem of recognizing and representing dynamically
changing proper interval graphs. The input to the problem consists of a series of modifications to
be performed on a graph, where a modification can be a deletion or an addition of a vertex or an
edge. The objective is to maintain a representation of the graph as long as it remains a proper
interval graph, and to detect when it ceases to be so. The representation should enable one to
efficiently construct a realization of the graph by an inclusion-free family of intervals. This problem
has important applications in physical mapping of DNA.

We give a near-optimal fully dynamic algorithm for this problem. It operates in O(logn) worst-
case time per edge insertion or deletion. We prove a close lower bound of Ω(log n/(log logn +
log b)) amortized time per operation in the cell probe model with word-size b. We also construct
optimal incremental and decremental algorithms for the problem, which handle each edge operation
in O(1) time. As a byproduct of our algorithm, we solve in O(logn) worst-case time the problem of
maintaining connectivity in a dynamically changing proper interval graph.

Key words. fully dynamic algorithms, graph algorithms, proper interval graphs, lower bounds

AMS subject classifications. 68Q25, 05C85, 68W40

PII. S0097539700372216

1. Introduction. A graph G is called an interval graph if its vertices can be
assigned to intervals on the real line so that two vertices are adjacent in G if and only
if their assigned intervals intersect. The set of intervals assigned to the vertices of G
is called a realization of G. If the set of intervals can be chosen to be inclusion-free,
then G is called a proper interval graph. Proper interval graphs have been studied
extensively in the literature (cf. [7, 16]), and several linear-time algorithms are known
for their recognition and realization [3, 4].

This paper deals with the problem of recognizing and representing dynamically
changing proper interval graphs. The input is a series of operations to be performed
on a graph, where an operation is any of the following: adding a vertex (along with
the edges incident to it), deleting a vertex (and the edges incident to it), adding
an edge and deleting an edge. The objective is to maintain a representation of the
dynamic graph as long as it is a proper interval graph, and to detect when it ceases
to be so. The representation should enable one to efficiently construct a realization
of the graph. In the incremental version of the problem, only addition operations
are permitted, i.e., the set of operations includes only the addition of a vertex and
the addition of an edge. In the decremental version of the problem only deletion
operations are allowed.

∗Received by the editors May 18, 2000; accepted for publication (in revised form) November 28,
2000; published electronically July 31, 2001. Portions of this paper appeared in the Proceedings of
the Seventh Annual European Symposium on Algorithms [8].

http://www.siam.org/journals/sicomp/31-1/37221.html
†School of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A1S6

(pavol@cs.sfu.ca). The research of this author was supported by the NSERC.
‡School of Computer Science, Tel Aviv University, Tel Aviv, Israel (rshamir@post.tau.ac.il,

roded@post.tau.ac.il). The research of the second author was supported in part by grants from
the Ministry of Science, Israel, and by the Israeli Science Foundation of the Israeli Academy for the
Sciences and the Arts. The research of the third author was supported by an Eshkol fellowship from
the Ministry of Science, Israel.

289

290 PAVOL HELL, RON SHAMIR, AND RODED SHARAN

The motivation for this problem comes from its application to physical mapping
of DNA [1]. Physical mapping is the process of reconstructing the relative position
of DNA fragments, called clones, along the target DNA molecule, prior to their se-
quencing, based on information about their pairwise overlaps. In some biological
frameworks the set of clones is virtually inclusion-free—for example, when all clones
have similar lengths. (This is the case for instance for cosmid clones.) In this case,
the physical mapping problem can be modeled using proper interval graphs as follows.
A graph G is built according to the biological data. Each clone is represented by a
vertex and two vertices are adjacent if and only if their corresponding clones overlap.
The physical mapping problem then translates to the problem of finding a realization
of G, or determining that none exists.

Had the overlap information been accurate, the two problems would have been
equivalent. However, some biological techniques may occasionally lead to an incor-
rect conclusion about whether two clones intersect, and additional experiments may
change the status of an intersection between two clones. The resulting changes to
the corresponding graph are the deletion of an edge, or the addition of an edge. The
set of clones is also subject to changes, such as adding new clones or deleting “bad”
clones (such as chimerics [18]). These translate into addition or deletion of vertices in
the corresponding graph. Thus, we would like to be able to dynamically change our
graph, so as to reflect the changes in the biological data, as long as they allow us to
construct a map, i.e., as long as the graph remains a proper interval graph.

Several authors have studied the problem of dynamically recognizing and repre-
senting various graph families. Hsu [11] has given an O(m+n log n)-time incremental
algorithm for recognizing interval graphs. (Throughout, we denote the number of ver-
tices and edges in a graph by n and m, respectively.) Deng, Hell, and Huang [4] have
given a linear-time incremental algorithm for recognizing and representing connected
proper interval graphs. This algorithm requires that the graph will remain connected
throughout the modifications. In both algorithms [11, 4] only vertex additions are han-
dled. Recently, Ibarra [12] devised a fully dynamic algorithm for recognizing chordal
graphs which handles each edge operation in O(n) time. He also gave an optimal fully
dynamic algorithm for recognizing split graphs, which handles each edge operation in
O(1) time.

Our results are as follows: For the general problem of recognizing and representing
proper interval graphs we give a fully dynamic algorithm which handles each operation
in time O(d+ log n), where d denotes the number of edges involved in the operation.
Thus, in case a vertex is added or deleted, d equals its degree, and in case an edge
is added or deleted, d = 1. Our algorithm builds on the representation of proper
interval graphs given in [4]. We prove a close lower bound of Ω(logn/(log log n +
log b)) amortized time per edge operation in the cell probe model of computation
with word-size b [20]. It follows that our algorithm is nearly optimal (up to a factor
of O(log log n)). We also give a fast O(n) time algorithm for computing a realization
of a proper interval graph given its representation, improving the O(m + n) bound
of [4].

For the incremental version of the problem we give an optimal algorithm (up to
a constant factor) which handles each operation in time O(d). This generalizes the
result of [4] to arbitrary instances. The same bound is achieved for the decremental
problem.

As a part of our general algorithm we give a fully dynamic procedure for main-
taining connectivity in proper interval graphs. The procedure receives as input a

DYNAMIC ALGORITHM FOR PROPER INTERVAL GRAPHS 291

sequence of operations each of which is a vertex addition or deletion, an edge addition
or deletion, or a query whether two vertices are in the same connected component. It
is assumed that the graph remains proper interval throughout the modifications, since
otherwise our main algorithm detects that the graph is no longer a proper interval
graph and halts. We show how to implement this procedure in O(d + log n) worst-
case time per operation involving d edges. In comparison, the best known algorithms
for fully dynamic connectivity in general graphs require O(log n(log log n)3) expected
amortized time per edge operation [17], or O(log2 n) amortized time per edge opera-
tion [10], or O(

√
n) worst-case time per edge operation [5]. Furthermore, we show that

the lower bound of Fredman and Henzinger [9] of Ω(logn/(log log n+log b)) amortized
time per edge operation (in the cell probe model with word-size b) for fully dynamic
connectivity in general graphs applies also to the problem of maintaining connectivity
in proper interval graphs.

The paper is organized as follows: In section 2 we give the basic background and
describe our representation of proper interval graphs and the realization it defines.
In sections 3 and 4 we present the incremental algorithm. In section 5 we extend
the incremental algorithm to a fully dynamic algorithm for proper interval graph
recognition and representation. We also derive an optimal decremental algorithm. In
section 6 we give a fully dynamic algorithm for maintaining connectivity in proper
interval graphs. Finally, in section 7 we prove lower bounds on the amortized time
per edge operation of fully dynamic algorithms for recognizing proper interval graphs
and for maintaining connectivity in proper interval graphs.

2. Preliminaries. Let G = (V,E) be a graph. We denote its set of vertices
also by V (G) and its set of edges also by E(G). For a vertex v ∈ V we define
N(v) ≡ {u ∈ V : (u, v) ∈ E} and N [v] ≡ N(v) ∪ {v}. Similarly, for a set S ⊆ V we
define N(S) ≡ ∪v∈SN(v) and N [S] = N(S)∪ S. Let R be an equivalence relation on
V defined by uRv if and only if N [u] = N [v]. Each equivalence class of R is called
a block of G. Note that every block of G is a complete subgraph of G. The size of a
block is the number of vertices in it. Two blocks A and B are adjacent, or neighbors,
in G if some (and hence all) vertices a ∈ A, b ∈ B, are adjacent in G. A straight
enumeration of G is a linear ordering Φ of the blocks in G, such that for every block,
the block and its neighboring blocks are consecutive in Φ.

Let Φ = B1 < · · · < Bl be a linear ordering of the blocks of G. For any 1 ≤
i < j ≤ l, we say that Bi is ordered to the left of Bj and that Bj is ordered to the
right of Bi in Φ. The out-degree of a block B with respect to Φ, denoted by o(B), is
the number of neighbors of B which are ordered to its right in Φ. A chordless cycle
is an induced cycle of length greater than 3. A claw is an induced K1,3 (a 3-degree
vertex connected to three 1-degree vertices). A graph is called claw-free if it contains
no induced claw. For other definitions in graph theory see, e.g., [7].

We now quote some well-known properties of proper interval graphs that will be
used in what follows.

Theorem 2.1 (see [13]). An interval graph (and in particular a proper interval
graph) contains no chordless cycle.

Theorem 2.2 (see [19]). A graph is a proper interval graph if and only if it is
an interval graph and is claw-free.

Theorem 2.3 (see [4]). A graph is a proper interval graph if and only if it has
a straight enumeration.

Lemma 2.4 (“the umbrella property” [14]). Let Φ be a straight enumeration
of a connected proper interval graph G. If A,B, and C are blocks of G, such that

292 PAVOL HELL, RON SHAMIR, AND RODED SHARAN

B CA

Fig. 2.1. The umbrella property.

A < B < C in Φ and A is adjacent to C, then B is adjacent to A and to C (see
Figure 2.1).

It is shown in [4] that a connected proper interval graph has a unique straight
enumeration up to reversal. This motivates our representation of proper interval
graphs: For each connected component of the dynamic graph we maintain a straight
enumeration. (In fact, for technical reasons we shall maintain both the enumeration
and its reversal.) The details of the data structure containing this information will
be described in section 3.1.

This information implicitly defines a realization of the dynamic graph (cf. [4])
as follows: Assign to each vertex in block Bi the interval [i, i + o(Bi) + 1 − 1

i]. We
show in section 3.1 how to compute a realization of the dynamic graph from our data
structure in time O(n).

3. An incremental algorithm for vertex addition. In the following two sec-
tions we describe an optimal incremental algorithm for recognizing and representing
proper interval graphs. The algorithm receives as input a series of addition operations
to be performed on a graph. Upon each operation the algorithm updates its represen-
tation of the graph and halts if the current graph is no longer a proper interval graph.
The algorithm handles each operation in time O(d), where d denotes the number of
edges involved in the operation. (Thus, d = 1 in case of an edge addition, and d is the
degree in case of a vertex addition.) It is assumed that initially the graph is empty,
or alternatively, that the representation of the initial graph is known. We also show
how to compute in O(n) time a realization of a graph given its representation.

A contig of a connected proper interval graph G is a straight enumeration of G.
The first and the last blocks of a contig are called end-blocks, and their vertices are
called end-vertices. The rest of the blocks are called inner-blocks.

As mentioned above, each connected component of the dynamic graph has ex-
actly two contigs (which are reversals of each other) and both are maintained by the
algorithm. Each operation involves updating the representation. In the following we
concentrate on describing only one of the two contigs for each component. The second
contig is updated in a similar way.

3.1. The data structure. We now describe the details of how we keep our
representation. The following data is kept and updated by the algorithm:

1. For each vertex we keep the name of the block to which it belongs.
2. For each block we keep the following:

(a) The size of the block.
(b) Left and right near pointers, pointing to nearest neighbor blocks on the

left and on the right, respectively.

DYNAMIC ALGORITHM FOR PROPER INTERVAL GRAPHS 293

(c) Left and right far pointers, pointing to farthest neighbor blocks on the
left and on the right, respectively.

(d) Left and right self pointers, pointing to the block itself.
(e) An end pointer which is null if the block is not an end-block of its contig,

and otherwise, points to the other end-block of that contig.

In the following we shall omit details about the obvious updates to the names of
the blocks containing each of the vertices (item 1) and to the block sizes (item 2a).

We introduce self pointers due to the possible need in the course of the algorithm
to update many far pointers pointing to a certain block, so that they point to another
block. In order to be able to do that in O(1) time we use the technique of nested
pointers: We make the far pointers point to a location whose content is the address
of the block to which the far pointers should point. The role of this special location
will be served by our self-pointers. The value of the left and right self-pointers of a
block B is always the address of B. When we say that a certain left (right) far pointer
points to B we mean that it points to a left (right) self-pointer of B. Let A and B
be blocks. In order to change all left (right) far pointers pointing to A so that they
point to B, we require that no left (right) far pointer points to B. If this is the case,
we simply exchange the left (right) self-pointer of A with the left (right) self-pointer
of B. This means that (1) the previous left (right) self-pointer of A is made to point
to B, and the algorithm records it as the new left (right) self-pointer of B; and (2)
the previous left (right) self-pointer of B is made to point to A, and the algorithm
records it as the new left (right) self-pointer of A.

We shall use the following notation: For a block B we denote its address in the
memory by &B. &∅ denotes the null pointer. When we set a far pointer to point to a
left or to a right self-pointer of B we shall abbreviate and set it to &B. We denote the
left and right near pointers of B by Nl(B) and Nr(B), respectively. We denote the
left and right far pointers of B by Fl(B) and Fr(B), respectively. We denote its end
pointer by E(B). In the rest of this paper we often refer to blocks by their addresses.
For example, if A and B are blocks and Nr(A) = &B, we sometimes refer to B by
Nr(A). We define Nr(∅) = Nl(∅) = Fr(∅) = Fl(∅) = &∅. When it is clear from the
context, we also use a name of a block to denote any vertex in that block. Given a
contig Φ we denote its reversal by ΦR. In general when performing an operation, we
denote the graph before the operation is carried out by G, and the graph after the
operation is carried out by G′.

Given this data structure we can compute a realization of a contig C of G as
follows: We first rank the blocks of C, starting with the leftmost block. This is done
by choosing an arbitrary block of C, and marching up the enumeration of blocks of
C using left near pointers, until we reach an end-block. We then set the rank of
this block to 1, and march down the enumeration of blocks using right near pointers,
until we reach the other end-block. We rank all the blocks of C along the way.
Let us denote by r(B) the rank of a block B. Then the out-degree of B is simply
o(B) = r(Fr(B)) − r(B), and the interval that we assign to the vertices of B is
[r(B), r(Fr(B)) + 1 − 1/r(B)]. We conclude with the following theorem.

Theorem 3.1. A realization of a proper interval graph, which is represented
using the data structure described above, can be computed in time O(n).

3.2. The impact of a new vertex. In the following we describe the changes
made to the representation of the graph in case G′ is formed from G by the addition of
a new vertex v of degree d. We also give some necessary and some sufficient conditions
for deciding whether G′ is a proper interval graph.

294 PAVOL HELL, RON SHAMIR, AND RODED SHARAN

Let B be a block of G. We say that v is adjacent to B if v is adjacent to some
vertex in B. We say that v is fully adjacent to B if v is adjacent to every vertex in B.
We say that v is partially adjacent to B if v is adjacent to B but not fully adjacent
to B.

The following lemmas characterize the adjacencies of the new vertex, assuming
that G′ is a proper interval graph.

Lemma 3.2. If G′ is a proper interval graph then v can have neighbors in at most
two connected components of G.

Proof. Suppose to the contrary that x, y, and z are neighbors of v in three distinct
components of G. Then v, x, y, and z induce a claw in G′, a contradiction.

Lemma 3.3 (see [4]). Let C be a connected component of G containing neighbors
of v. Let B1 < · · · < Bk be a contig of C. Suppose that G′ is a proper interval graph
and let 1 ≤ a < b < c ≤ k. Then the following properties are satisfied:

1. If v is adjacent to Ba and to Bc, then v is fully adjacent to Bb.
2. If v is adjacent to Bb and not fully adjacent to Ba and to Bc, then Ba is not

adjacent to Bc.
3. If b = a+ 1, c = b+ 1, and v is adjacent to Bb, then v is fully adjacent to Ba

or to Bc.

One can view a contig Φ of a connected proper interval graph C as a weak linear
order <Φ on the vertices of C, where x <Φ y if and only if the block containing x is
ordered in Φ to the left of the block containing y. We say that Φ′ is a refinement of
Φ if either, for every x, y ∈ V (C), x <Φ y implies x <Φ′ y or, for every x, y ∈ V (C),
x >Φ y implies x <Φ′ y.

Lemma 3.4. If H is a connected induced subgraph of a proper interval graph H ′,
Φ is a contig of H, and Φ′ is a straight enumeration of H ′, then Φ′ is a refinement
of Φ.

Proof. By induction on the number of additional vertices in H ′: If H ′ = H then
the claim is obvious. Let k = |V (H ′) \ V (H)|. By the induction hypothesis, for a
proper interval graph H ′′ which contains H (as an induced subgraph) and is contained
in H ′, and for which |V (H ′′)\V (H)| = k−1, every straight enumeration is a refinement
of Φ. Let C be a connected component of H ′′ for which V (C) ⊇ V (H), and let Φ′′

C

be a contig of C. Let C ′ be a connected component of H ′ for which V (C ′) ⊇ V (H)
(and therefore V (C ′) ⊇ V (C)), and let Φ′

C be a contig of C ′. In [4] it is constructively
shown how Φ′

C is obtained as a refinement of Φ′′
C (see also section 3.3). Since Φ′′

C is
a refinement of Φ, the claim follows.

Note that whenever v is partially adjacent to a block B in G, then the addition
of v will cause B to split into two blocks of G′, namely, B \ N(v) and B ∩ N(v).
Otherwise, if B is a block of G to which v is either fully adjacent or nonadjacent, then
one of B or B ∪ {v} is a block of G′.

Corollary 3.5. If B is a block of G to which v is partially adjacent, then
B \N(v) and B ∩N(v) occur consecutively in a straight enumeration of G′.

Lemma 3.6. Let C be a connected component of G containing neighbors of v.
Let {B1, . . . , Bk} denote the set of blocks in C which are adjacent to v, such that in
a contig of C, B1 < · · · < Bk. If G′ is a proper interval graph, then the following
properties are satisfied:

1. B1, . . . , Bk are consecutive in a contig of C.
2. If k ≥ 3 then v is fully adjacent to B2, . . . , Bk−1.
3. If v is adjacent to a single block B1 in C, then B1 is an end-block.
4. If v is adjacent to more than one block in C and has neighbors in another

DYNAMIC ALGORITHM FOR PROPER INTERVAL GRAPHS 295

component, then B1 is adjacent to Bk, and one of B1 or Bk is an end-block
to which v is fully adjacent, while the other is an inner-block.

Proof. Claims 1 and 2 follow directly from part 1 of Lemma 3.3. Claim 3 follows
from part 3 of Lemma 3.3. To prove the last part of the lemma let us denote the other
component containing neighbors of v by D. Examine the induced connected subgraph
H of G′ whose set of vertices is V (H) = {v} ∪ V (C) ∪ V (D). H is a proper interval
graph since it is an induced subgraph of G′. It is composed of three types of blocks:
blocks whose vertices are from V (C), which we will henceforth call C-blocks; blocks
whose vertices are from V (D), which we will henceforth call D-blocks; and {v}, which
is a block of H, since H \ {v} is not connected. All blocks of C remain intact in H,
except B1 and Bk, each of which may split into Bj \N(v) and Bj ∩N(v), j = 1, k.

Surely, in a contig of H all C-blocks must be ordered completely before or com-
pletely after all D-blocks. Let Φ denote a contig of H, in which C-blocks are ordered
before D-blocks. Let X denote the rightmost C-block in Φ. By the umbrella prop-
erty, X < {v}, and moreover, X is adjacent to v. By Lemma 3.4, Φ is a refinement
of a contig of C. Hence, X ⊆ B1 or X ⊆ Bk (more precisely, X = B1 ∩ N(v) or
X = Bk ∩N(v)). Therefore, one of B1 or Bk is an end-block.

Without loss of generality, X ⊆ Bk. Suppose to the contrary that v is not fully
adjacent to Bk. Then by Lemma 3.4 we have Bk−1 ∩ N(v) < Bk \ N(v) < {v} in
Φ (note that these blocks are not consecutive), contradicting the umbrella property.
We conclude that v is fully adjacent to Bk. Furthermore, B1 must be adjacent to Bk,
or else G′ contains a claw consisting of v and one vertex from each of B1, Bk, and
V (D) ∩ N(v). It remains to show that B1 is an inner-block in C. Suppose it is an
end-block. Since B1 and Bk are adjacent, C consists of a single block, a contradiction.
Thus, claim 4 is proved.

3.3. The DHH algorithm. In our algorithm we rely on the incremental algo-
rithm of Deng, Hell, and Huang (DHH) [4]. This algorithm handles the insertion of a
new vertex into a connected proper interval graph in O(d) time, changing its straight
enumeration appropriately or determining that the new graph is not a proper interval
graph. We describe it briefly below. For simplicity, we assume throughout that the
modified graph is a proper interval graph.

Let H be a connected proper interval graph, and let v be a vertex to be added,
which is adjacent to d vertices in H. Let Φ = B1 < · · · < Bp denote a contig of H. By
Lemma 3.6, the blocks to which v is fully adjacent occur consecutively in Φ. Assume
that v is fully adjacent to Bl, . . . , Br, and for clarity we shall consider only the case
where 1 < l < r < p. Let a = l − 1 and c = r + 1. By Lemma 3.3(2), Ba and Bc are
nonadjacent. Let b > a be the largest index such that Bb is adjacent to Ba, and let
d < c be the smallest integer such that Bd is adjacent to Bc. It is shown in [4] that
a < b < d < c.

In order to construct a straight enumeration of the new graph we have to distin-
guish between two cases:

1. If v is adjacent either to Ba or to Bc, then a straight enumeration of the new
graph can be obtained as follows: If v is adjacent to Ba, we split Ba into
Ba \ N(v), Ba ∩ N(v), list them in this order, and add {v} as a block just
after Bb. If v is adjacent to Bc, we split Bc into Bc ∩N(v), Bc \N(v) in this
order, and add {v} as a block just before Bd. In case v is adjacent to both
Ba and Bc then these two instructions coincide, as shown in [4].

2. If v is adjacent neither to Ba nor to Bc then there are two possibilities: If
there exists a block Bj , b < j < d, such that Bj is adjacent to both Bl and

296 PAVOL HELL, RON SHAMIR, AND RODED SHARAN

Br, then a straight enumeration is obtained by adding v to Bj . Otherwise,
let u be the least integer greater than b such that Bu is adjacent to Br. Then
a straight enumeration is obtained by inserting a new block {v} just before
Bu.

In section 3.4 we show how to find the sequence of blocks Bl, . . . , Br from our data
structure in O(d) time. Using near and far pointers we can find, in O(1) time, Ba =
Nl(Bl), Bc = Nr(Br), Bb = Fr(Ba), and Bd = Fl(Bc). If v is adjacent to Ba or to Bc

then updating the straight enumeration can be done in O(1) time. Otherwise, finding
Bj (if such exists) can be done in O(d) time, and alternatively, finding Bu = Fl(Br)
can be done in O(1) time. Again in this case we can update the straight enumeration
in O(1) time. Hence, our data structure supports the insertion of a vertex of degree
d in O(d) time, when all its neighbors are in the same connected component.

3.4. Our algorithm. We perform the following upon a request for adding a new
vertex v: We make two passes over the neighbors of v. In the first pass we discover
all blocks adjacent to v, and for each such block we allocate a counter and initialize
it to zero. In the second pass, for each neighbor u of v we add one to the counter
of the block containing u. We call a block full if its counter equals its size, empty if
its counter equals zero, and partial otherwise. In order to find a set of consecutive
blocks which contain neighbors of v, we pick arbitrarily a neighbor of v and march
up the enumeration of blocks to the left using the left near pointers. We continue
till we hit an empty block or till we reach the end of the contig. We do the same to
the right and this way we discover a maximal sequence of nonempty blocks in that
component which contain neighbors of v. We call this maximal sequence a segment.
Only the two extreme blocks of the segment are allowed to be partial, or else we fail
(by Lemma 3.6(2)).

If the segment we found contains all the neighbors of v then we can use the DHH
algorithm in order to insert v into G, updating our internal data structure accordingly.
Otherwise, by Lemmas 3.2 and 3.6(1) there could be only one more segment which
contains neighbors of v. In that case, exactly one extreme block in each segment
is an end-block to which v is fully adjacent (if the segment contains more than one
block), and the two extreme blocks in each segment are adjacent, or else we fail (by
Lemma 3.6(3, 4)).

We proceed as above to find a second segment containing neighbors of v. We
can make sure that the two segments are from two different contigs by checking that
their end-blocks do not point to each other. We also check that conditions 3 and 4
in Lemma 3.6 are satisfied for both segments. If the two segments do not cover all
neighbors of v, we fail.

If v is adjacent to vertices in two distinct components C and D, then we should
merge their contigs. Let Φ = B1 < · · · < Bk and ΦR be the two contigs of C. Let
Ψ = B′

1 < · · · < B′
l and ΨR be the two contigs of D. The way the merge is performed

depends on the identity of the end-blocks to which v is adjacent in each segment. If v
is adjacent to Bk and B′

1, then by the umbrella property the two new contigs (up to
refinements described below) are Φ < {v} < Ψ and ΨR < {v} < ΦR. In the following
we describe the necessary changes to our internal data structure in case these are the
new contigs. The three other cases (e.g., v is adjacent to B1 and B′

1, etc.) are handled
similarly.

• Block enumeration: We merge the two enumerations of blocks and put a new
block {v} in-between the two contigs. Let the leftmost block which is adjacent
to v in the new ordering Φ < {v} < Ψ be Bi, and let the rightmost block

DYNAMIC ALGORITHM FOR PROPER INTERVAL GRAPHS 297

adjacent to v be B′
j . If Bi is partial we split it into two blocks B̂i = Bi \N(v)

and Bi = Bi ∩N(v) in this order. If B′
j is partial we split it into two blocks

B′
j = B′

j ∩N(v) and B̂′
j = B′

j \N(v) in this order.
• End pointers: We set E(B1) = E(B′

1) and E(B′
l) = E(Bk). We then nullify

the end pointers of Bk and B′
1.

• Near pointers: We update Nl({v}) = &Bk, Nr({v}) = &B′
1, Nr(Bk) = &{v},

and Nl(B
′
1) = &{v}. Let B0 = ∅. If Bi was split we set Nr(B̂i) =

&Bi, Nl(Bi) = &B̂i, Nl(B̂i) = &Bi−1, and Nr(Bi−1) = &B̂i. Analogous
updates are made to the near pointers of B′

j , B̂
′
j , and B′

j+1, in case B′
j was

split.
• Far pointers: If Bi was split we set Fl(B̂i) = Fl(Bi), Fr(B̂i) = &Bk, and

exchange the left self-pointer of Bi with the left self-pointer of B̂i. If B′
j was

split we set Fr(B̂
′
j) = Fr(B

′
j), Fl(B̂

′
j) = &B′

1 and exchange the right self-

pointer of B′
j with the right self-pointer of B̂′

j . In addition, we set all right
far pointers of Bi, Bi+1, . . . , Bk and all left far pointers of B′

1, . . . , B
′
j−1, B

′
j

to &{v} (in O(d) time). Finally, we set Fl({v}) = &Bi and Fr({v}) = &B′
j .

The algorithm is summarized in Figure 3.1.

Input: A representation of the current graph G and a list of neighbors in G of a
new vertex v.
Output: A representation of G ∪ {v} or a False value indicating that G ∪ {v} is
not a proper interval graph.

1. Find the number s of segments of blocks which are adjacent to v.
2. If s ≥ 3 then return False.
3. If s = 1 then apply the DHH algorithm.
4. Otherwise, proceed as follows (s = 2):

(a) Check that exactly one extreme block in each segment is an end-block
to which v is fully adjacent, and that the two extreme blocks in each
segment are adjacent. Otherwise, return False.

(b) Check that the two segments are in distinct contigs. Otherwise, return
False.

(c) Update the representation of the graph as described above.

Fig. 3.1. An incremental algorithm for vertex addition.

4. An incremental algorithm for edge addition. In this section we show
how to handle the addition of a new edge (u, v) in O(1) time. We characterize the
cases for which G′ = G∪{(u, v)} is a proper interval graph and show how to efficiently
detect them and how to update our representation of the graph.

Lemma 4.1. If u and v are in distinct connected components in G, then G′ is a
proper interval graph if and only if u and v are end-vertices in a straight enumeration
of G.

Proof. To prove the “only if” part let us examine the graph H = G′\{u} = G\{u}.
H is a proper interval graph as it is an induced subgraph of G. If G′ is also a
proper interval graph, then by Lemma 3.6(3) v must be an end-vertex in a straight
enumeration of G, since u is not adjacent to any other vertex in the component
containing v. The same argument applies to u.

To prove the “if” part we give a straight enumeration of the new connected
component containing u and v in G′. Denote by C and D the components containing

298 PAVOL HELL, RON SHAMIR, AND RODED SHARAN

u and v, respectively.

Let B1 < · · · < Bk be a contig of C, such that u ∈ Bk. Let B′
1 < · · · < B′

l be a
contig of D, such that v ∈ B′

1. Then B1 < · · · < Bk \ {u} < {u} < {v} < B′
1 \ {v} <

. . . < B′
l is the required straight enumeration.

By the previous lemma if u and v are in distinct components in G, and G′ is a
proper interval graph, then they must reside in end-blocks of distinct contigs. We can
check that in O(1) time. In case u and v are end-vertices of two distinct contigs, we
update our internal data structure as follows:

• Block enumeration: Given in the proof of Lemma 4.1.
• End pointers: We set E(B1) = E(B′

1) and E(B′
l) = E(Bk). We then nullify

the end-pointers of Bk and B′
1.

• Notation: Let B0 = ∅ and B′
l+1 = ∅. Let Bk = Bk \ {u} and B′

1 = B′
1 \ {v}.

If Bk �= ∅, let x = k, and otherwise, let x = k − 1. If B′
1 �= ∅ let y = 1, and

otherwise, let y = 2.
• Near pointers: We set Nr({u}) = &{v}, Nl({u}) = &Bx, Nl({v}) = &{u},

and Nr({v}) = &B′
y. We also update Nr(Bx) = &{u} and Nl(B

′
y) = &{v}.

• Far pointers: We set Fl({u}) = Fl(Bk) and Fr({v}) = Fr(B
′
1). We exchange

the right self-pointer of Bk with the right self-pointer of {u}, and the left self-
pointer of B′

1 with the left self-pointer of {v}. Finally, we set Fr({u}) = &{v}
and Fl({v}) = &{u}.

It remains to handle the case where u and v are in the same connected component
C in G. If N(u) = N(v), then by the umbrella property it follows that C contains only
three blocks which are merged into a single block in G′. In this case G′ is a proper
interval graph and updates to the internal data structure are trivial. The remaining
case is analyzed in the following lemma.

Lemma 4.2. Let B1 < · · · < Bk be a contig of C, such that u ∈ Bi and v ∈ Bj

for some 1 ≤ i < j ≤ k. Assume that N(u) �= N(v). Then G′ is a proper interval
graph if and only if Fr(Bi) = Bj−1 and Fl(Bj) = Bi+1 in G.

Proof. Let G′ be a proper interval graph. Since Bi and Bj are nonadjacent,
Fr(Bi) ≤ Bj−1 and Fl(Bj) ≥ Bi+1. Suppose to the contrary that Fr(Bi) < Bj−1. Let
z ∈ Bj−1. If in addition Fl(Bj) = Bi+1, then by the umbrella property N [v] ⊃ N [z].
(This is a strict containment.) As v and z are in distinct blocks, there exists a vertex
b ∈ N [v] \N [z]. But then v, b, z, and u induce a claw in G′, a contradiction. Hence,
Fl(Bj) > Bi+1 and therefore Fr(Bi+1) < Bj . Let x ∈ Bi+1 and let y ∈ Fr(Bi+1).
As u and x are in distinct blocks, we have either (u, y) �∈ E(G) or there exists a
vertex a ∈ N [u] \ N [x] (or both). In the first case, v, u, x, y, and the vertices on a
shortest path from y to v induce a chordless cycle in G′. In the second case u, a, x,
and v induce a claw in G′. Hence, in both cases we arrive at a contradiction. By a
symmetric argument we deduce that Fl(Bj) = Bi+1.

To prove the “if” part we provide a straight enumeration of C ∪ {(u, v)}. If
Bi = {u}, Fr(Bj−1) = Fr(Bj), and Fl(Bj−1) = Bi (i.e., N [v] = N [Bj−1] in G′), we
move v from Bj to Bj−1. Similarly, if Bj contained only v, Fl(Bi+1) = Fl(Bi) and
Fr(Bi+1) = Bj (i.e., N [u] = N [Bi+1] in G′), we move u from Bi to Bi+1. If u was
not moved and Bi contained vertices other than u, we split Bi into Bi = Bi \{u}, {u}
in this order. If v was not moved and Bj contained vertices other than v, we split
Bj into {v}, Bj = Bj \ {v} in this order. It is easy to see that the result is a straight
enumeration of C ∪ {(u, v)}.

If u and v are neither end-vertices of distinct contigs nor end-vertices of a three-
block contig, then, assuming that G′ is a proper interval graph, the condition of

DYNAMIC ALGORITHM FOR PROPER INTERVAL GRAPHS 299

Lemma 4.2 must hold. We can check that in time O(1), and if it is the case, change
our data structure so as to reflect the new straight enumeration of blocks given in the
proof of Lemma 4.2. We describe below the changes to our data structure.

• Block enumeration: Given in the proof of Lemma 4.2.
• Near pointers: Let Bk+1 = ∅. If u was moved into Bi+1, then no change is

necessary with respect to u. If Bi ⊃ {u}, u forms a new block and we set
Nl({u}) = &Bi, Nr(Bi) = &{u}, Nr({u}) = &Bi+1, and Nl(Bi+1) = &{u}.
Analogous updates are made with respect to v.

• Far pointers: If u was moved into Bi+1, then no change is necessary with
respect to u. If Bi ⊃ {u}, we exchange the right self-pointer of Bi with the
right self-pointer of (the new block) {u}. Let B denote the block containing v
in G′. We also set Fl({u}) = Fl(Bi) and Fr({u}) = &B. Analogous updates
are made with respect to v.

The following theorem summarizes the results of sections 3 and 4.

Theorem 4.3. The incremental proper interval graph representation problem is
solvable in O(1) time per added edge.

5. The fully dynamic algorithm. In this section we give a fully dynamic
algorithm for recognizing and representing proper interval graphs. The algorithm
performs an operation involving d edges in O(d + log n) time. It supports four types
of operations: adding a vertex, adding an edge, deleting a vertex, and deleting an
edge. It is based on the incremental algorithm. The main difficulty in extending the
incremental algorithm to handle all types of operations is updating the end pointers
of blocks when both insertions and deletions are allowed. To bypass this problem we
(implicitly) keep the identity of each block as an end/inner-block but do not keep
end pointers at all. Instead, we maintain the connected components of G and use
this information in our algorithm. In the next section we provide a fully dynamic
algorithm for maintaining the connected components of a proper interval graph. This
algorithm handles a modification request involving d edges in O(d + log n) time and
determines whether two blocks are in the same connected component in O(log n) time.
We describe below how each operation is handled by the fully dynamic proper interval
graph representation algorithm.

5.1. The addition of a vertex. This operation is handled in essentially the
same way as done by the incremental algorithm. However, in order to check if the
end-blocks of two distinct segments are in distinct components, we query our data
structure of connected components (in O(log n) time), rather than checking if the end
pointers of these blocks do not point to each other.

5.2. The addition of an edge. Again, handling this operation is similar to its
handling by the incremental algorithm, with the exception that in order to check if
the endpoints of an edge are in distinct components, we query our data structure of
connected components (in O(log n) time).

5.3. The deletion of a vertex. We show next how to update the contigs of G
after deleting a vertex v of degree d. Note, that in this case G′ is an induced subgraph
of G, and hence, also a proper interval graph.

Denote by X the block containing v. If X contains vertices other than v then the
data structure is simply updated by deleting v. Hence, we concentrate on the case
that X = {v}. In time O(d) we can find the segment of blocks which includes X and
all its neighbors. Let the contig containing X be B1 < · · · < Bk, and let the blocks

300 PAVOL HELL, RON SHAMIR, AND RODED SHARAN

of the segment be Bi < · · · < Bj , where X = Bl for some 1 ≤ i ≤ l ≤ j ≤ k. The
following updates should be performed:

• Block enumeration: If 1 < i < l, we check whether Bi can be merged with
Bi−1. If Fl(Bi) = Fl(Bi−1), Fr(Bi) = Bl, and Fr(Bi−1) = Bl−1, we merge
these blocks by moving all vertices from Bi to Bi−1 (in O(d) time) and delet-
ing Bi. If l < j < k we deal similarly with Bj and Bj+1.
Finally, we delete Bl. If 1 < l < k and Bl−1, Bl+1 are nonadjacent, then by
the umbrella property they are no longer in the same connected component,
and the contig should be split into two contigs, one ending at Bl−1 and the
other beginning at Bl+1.

• Near pointers: Let B0 = ∅, Bk+1 = ∅. If Bi and Bi−1 were merged, we
update Nr(Bi−1) = &Bi+1 and Nl(Bi+1) = &Bi−1. Similar updates are
made with respect to Bj−1 and Bj+1 in case Bj and Bj+1 were merged. If
the contig is split, we nullify Nr(Bl−1) and Nl(Bl+1). Otherwise, we update
Nr(Bl−1) = &Bl+1 and Nl(Bl+1) = &Bl−1.

• Far pointers: If Bi and Bi−1 were merged, we exchange the right self-pointer
of Bi with the right self-pointer of Bi−1. Similar changes should be made
with respect to Bj and Bj+1. We also set all right far pointers, previously
pointing to Bl, to &Bl−1 and all left far pointers, previously pointing to Bl,
to &Bl+1 (in O(d) time).

Note that these updates take O(d) time and require no knowledge about the
connected components of G.

5.4. The deletion of an edge. Let (u, v) be an edge of G to be deleted. Let C
be the connected component of G containing u and v. Let Bi and Bj be the blocks
containing u and v, respectively, in a contig B1 < · · · < Bk of C. If i = j = k = 1,
then B1 is split into {u}, B1 \ {u, v}, and {v}, in this order, resulting in a straight
enumeration of G′. Updates are trivial in this case. Henceforth we assume that k > 1.
We first observe that i �= j, i.e., N [u] �= N [v].

Lemma 5.1. If N [u] = N [v] then G′ is a proper interval graph if and only if C
is a clique.

Proof. To prove the “only if” part, we first show that every vertex x ∈ C \ {u, v}
is adjacent to both u and v. Suppose to the contrary that there exists a vertex
x ∈ C \ {u, v} which is not adjacent to u. Let x = x1, . . . , xk = u be a path in C from
x to u. Let xi be the first vertex on the path which is adjacent to u (and therefore
also to v). Then {xi, xi−1, u, v} induce a claw in G′, a contradiction. Finally, if a and
b are two nonadjacent vertices in C \ {u, v}, then {a, u, b, v} induce a chordless cycle
in G′, a contradiction.

To prove the “if” part, notice that since C is a clique, it is a block in G, and
therefore, {u}, C \ {u, v}, {v} is a straight enumeration of C \ {(u, v)}.

Since by our assumptions k > 1, we conclude that N [u] �= N [v], and therefore,
N(u) �= N(v). Without loss of generality, i < j. The updates to the straight enumer-
ation of C \ {(u, v)} are derived from the following lemma.

Lemma 5.2. Let B1 < · · · < Bk be a contig of C, such that u ∈ Bi and v ∈ Bj

for some 1 ≤ i < j ≤ k. Then G′ is a proper interval graph if and only if Fr(Bi) = Bj

and Fl(Bj) = Bi in G.
Proof. Suppose that G′ is a proper interval graph. We prove that Fr(Bi) = Bj .

A symmetric argument shows that Fl(Bj) = Bi. Since Bi and Bj are adjacent in G,
Fr(Bi) ≥ Bj . Suppose to the contrary that Fr(Bi) > Bj . Let x ∈ Fr(Bi). By the
umbrella property (x, v) ∈ E(G). Since x and v are in distinct blocks in G, either

DYNAMIC ALGORITHM FOR PROPER INTERVAL GRAPHS 301

there exists a vertex a ∈ N [v]\N [x] or there exists a vertex b ∈ N [x]\N [v] (or both).
In the first case, by the umbrella property (a, u) ∈ E(G). Therefore, u, x, v, and a
induce a chordless cycle in G′. In the second case, x, b, u, and v induce a claw in G′.
Hence in both cases we arrive at a contradiction.

To prove the converse implication we give a straight enumeration of C \ {(u, v)}.
If Bi = {u}, Bj = {v}, and j = i+1, we have to split the contig into two contigs, one
ending at Bi and the other beginning at Bj . If Bj = {v}, Fl(Bi−1) = Fl(Bi), and
Fr(Bi−1) = Bj−1 (i.e., N [u] = N [Bi−1] in G′), we move u into Bi−1. If Bi contained
only u, Fr(Bj+1) = Fr(Bj) and Fl(Bj+1) = Bi+1 (i.e., N [v] = N [Bj+1] in G′), we
move v into Bj+1. If u was not moved and Bi contains vertices other than u, then
Bi is split into {u}, Bi = Bi \ {u} in this order. If v was not moved and Bj contains
vertices other than v, then Bj is split into Bj = Bj \{v}, {v} in this order. The result
is a straight enumeration of C \ {(u, v)}.

If the conditions of Lemma 5.2 are fulfilled, then the following updates should be
made:

• Block enumeration: Given in the proof of Lemma 5.2.
• Near pointers: Let B0 = ∅, Bk+1 = ∅. If Bi = {u}, Bj = {v}, and j = i + 1,

we nullify Nr(u). If Bi was split, we set Nr({u}) = &Bi, Nl(Bi) = &{u},
Nl({u}) = &Bi−1 and Nr(Bi−1) = &{u}. If Bi contained only u, and u was
moved into Bi−1, we update Nr(Bi−1) = &Bi+1 and Nl(Bi+1) = &Bi−1.
Analogous updates are made with respect to v.

• Far pointers: If Bi = {u}, Bj = {v}, and j = i + 1, we nullify Fr(u). If Bi

was split, we exchange the left self-pointer of Bi with the left self-pointer of
{u}. We also set Fl({u}) = Fl(Bi) and Fr({u}) = &By, where y = j in case
v is no longer in Bj (that is, v was moved into Bj+1 or Bj was split), and
otherwise, y = j − 1. If Bi contained only u, and u was moved into Bi−1, we
exchange the right self-pointer of Bi with the right self-pointers of Bi−1, and
delete Bi. Analogous updates are made with respect to v.

Note that these updates take O(1) time and require no knowledge about the
connected components of G. Hence, from sections 5.3 and 5.4 there follows an optimal
algorithm for the decremental proper interval graph representation problem. The
following theorem summarizes this result.

Theorem 5.3. The decremental proper interval graph representation problem is
solvable in O(1) time per removed edge.

6. Maintaining the connected components. In this section we describe a
fully dynamic algorithm for maintaining connectivity in a proper interval graph G in
O(d + log n) time per operation involving d edges. In section 7 we shall establish a
lower bound of Ω(logn/(log log n + log b)) amortized time per edge operation (in the
cell probe model of computation with word-size b) for this problem.

The algorithm receives as input a series of operations to be performed on a graph,
which can be any of the following: Adding a vertex, adding an edge, deleting a vertex,
deleting an edge, or querying if two vertices are in the same connected component.
It operates on the blocks of the graph rather than on its vertices. The algorithm
depends on a data structure which includes the blocks and the contigs of the graph. It
hence interacts with the proper interval graph representation algorithm. In response
to an update request, changes are made to the representation of the graph based
on the structure of its connected components prior to the update. Only then are
the connected components of the graph updated. We provide a data structure of
connected components which performs each operation in O(log n) time.

302 PAVOL HELL, RON SHAMIR, AND RODED SHARAN

Let us denote by B(G) the block graph of G, that is, a graph in which each
vertex corresponds to a block of G and two vertices are adjacent if and only if their
corresponding blocks are adjacent in G. The algorithm maintains a spanning forest
F of B(G). When a modification in the graph occurs, the spanning forest is updated
accordingly. In order to decide if two blocks are in the same connected component,
the algorithm checks if they belong to the same tree in F .

The key idea is to design F so that it can be efficiently updated upon a modi-
fication in G. We define the edges of F as follows: For every two vertices u and v
in B(G), (u, v) ∈ E(F) if and only if their corresponding blocks are consecutive in a
contig of G (or equivalently, if the near pointers of these blocks point to each other
in our representation). Consequently, each tree in F is a path representing a contig.
The crucial observation about F is that an addition or a deletion of a vertex or an
edge in G induces O(1) modifications to the vertices and edges of F . This can be seen
by noting that each modification of G induces O(1) updates to near pointers in our
representation of G.

It remains to show a data structure for storing F that allows us to query for each
vertex to which path it belongs, and that enables splitting a path upon a deletion of
an edge in F , and linking two paths upon an addition of an edge to F . If we store
the vertices of each path of F in a balanced binary tree, then each of these operations
can be supported in O(log n) time (cf. [2]).

We are now ready to state our main result.
Theorem 6.1. The fully dynamic proper interval graph representation problem

is solvable in O(d + log n) time per modification involving d edges.
We note, that the performance of our representation algorithm depends on the

performance of a data structure of connected components of a graph, which is a
union of disjoint paths, that supports the following operations: linking two paths,
splitting a path, and querying if two vertices belong to the same path. Given such
a data structure which supports each operation in O(f(n)) time, for some function
f , our representation algorithm can be implemented to run in O(d + f(n)) time per
modification involving d edges.

7. The lower bounds. In this section we prove a lower bound of Ω(logn/(log log n+
log b)) amortized time per edge operation for fully dynamic proper interval graph
recognition in the cell probe model of computation with word-size b (see [20] for de-
tails about the model). Furthermore, we prove the same lower bound also for the
problem of fully dynamic connectivity maintenance of a proper interval graph.

Fredman and Henzinger [9] have shown a lower bound of Ω(logn/(log log n+log b))
amortized time per operation (in the cell probe model of computation with word-size
b) for fully dynamic connectivity, by reduction from the helpful parity prefix sum
(HPPS) problem, which is defined below. We use similar constructions in our lower
bound proofs.

The HPPS problem is a modified parity prefix sum problem (see [6] for definition
of the latter problem). Its lower bound of Ω(logn/(log log n + log b)) amortized time
per operation follows from the work of Fredman and Saks [6]. It is defined as follows:
Given an array A[0], . . . , A[n + 1] of zeros and ones such that initially all A[i] are 0,
except A[0] and A[n + 1] which are 1, execute an arbitrary sequence of the following
operations:

Add(t, i, j): If 0 ≤ i < t < j ≤ n + 1, A[i] > 0, A[j] > 0, and A[k] = 0 for all
i < k < j, then A[t] = A[t] + 1. Otherwise, do nothing.

Sum(t): Return (
∑t

i=1 A[i]) mod 2.

DYNAMIC ALGORITHM FOR PROPER INTERVAL GRAPHS 303

Theorem 7.1. Fully dynamic proper interval graph recognition takes amortized
time Ω(log n/(log log n + log b)) per edge operation in the cell probe model of compu-
tation with word-size b.

Proof. Given an instance of the HPPS problem (i.e., a sequence of Add and Sum
operations) we construct an instance of the dynamic proper interval graph recognition
problem, such that each Add operation corresponds to O(1) edge modifications in the
dynamic proper interval graph instance, and each Sum operation corresponds to O(1)
temporary modifications in the dynamic graph: Depending on whether the modifica-
tions generate a proper interval graph we answer the Sum query and then reverse the
modification. Thus, the lower bound for the HPPS problem shows that there exists
a sequence of m operations for the dynamic proper interval recognition problem that
takes Ω(m log n/(log log n + log b)) time in the cell probe model of computation with
word-size b.

Let S−1 = 0 and let S0 = 1. Given an instance of the HPPS problem, define
St ≡ (

∑t
i=1 A[i]) mod 2 for 1 ≤ t ≤ n. The reduction is as follows: We construct

a graph G = (V,E) with n + 2 vertices labeled −1, 0, 1, . . . , n, where each vertex v
represents Sv. If St = i for i = 0, 1, and t′ < t is the largest index such that St′ = i,
then G contains the edge (t′, t). In other words, vertices t for which St = 1 are
connected in a chain, which we henceforth call the odd chain, and all other vertices
are connected in a chain, which we henceforth call the even chain. Note that the
vertex labeled −1 lies on the even chain, and the vertex labeled 0 lies on the odd
chain.

To answer a Sum(t) query (1 ≤ t ≤ n) we do the following:

1. If (0, t) ∈ E or (0, t′), (t′, t) ∈ E for some vertex t′ ∈ V , we output 1.
2. Otherwise, let t′ be a vertex such that t′ > t and (t, t′) ∈ E. If such a vertex

exists, define H ≡ G \ {(t, t′)} ∪ {(0, t)}. Otherwise, let H ≡ G ∪ {(0, t)}.
If t is on the odd chain then this modification forms a chordless cycle. If t
is on the even chain then the new graph is a single path or a union of two
disjoint paths. Hence, H is a proper interval graph if and only if Sum(t) = 0.
Thus, if H is a proper interval graph we output 0, and otherwise, we output
1. Note, that G is not modified in this case.

To perform an Add(t, i, j) operation we do the following:

1. Let iodd (ieven) be the largest vertex on the odd (even) chain with iodd < t
(ieven < t). Let jodd (jeven) be the smallest vertex on the odd (even) chain
with jodd ≥ t (jeven ≥ t), if such a vertex exists.

2. Delete from G the edges (iodd, jodd) and (ieven, jeven).
3. Add to G the edges (iodd, jeven) and (ieven, jodd).

By [9, Lemma 3.1] iodd, jodd, ieven, and jeven can be found by querying Sum(t)
as follows: If Sum(t) = 1, then iodd = t − 1, jodd = t, ieven = i − 1 if i > 1, or
ieven = −1 otherwise; and jeven = j if j <= n, or jeven is undefined otherwise. If
Sum(t) = 0, then iodd = i− 1 if i > 0, or iodd = 0 otherwise; jodd = j if j ≤ n, or jodd
is undefined otherwise; ieven = t− 1 if t > 1, or ieven = −1 otherwise; and jeven = t.
This completes the reduction.

Note, that since the key to the reduction above is the ability to detect cycles,
similar arguments can be used to show that the same lower bound applies also to other
problems, e.g., fully dynamic interval graph recognition and fully dynamic chordal
graph recognition.

Theorem 7.2. There is a lower bound of Ω(log n/(log log n + log b)) amortized
time per edge operation in the cell probe model of computation with word-size b for

304 PAVOL HELL, RON SHAMIR, AND RODED SHARAN

fully dynamic connectivity maintenance of a proper interval graph.

Proof. We use the same reduction as in the proof of Theorem 7.1, with the
exception that in order to answer a Sum(t) query we check whether vertices 0 and
t are connected. If the answer is positive we output 1, and otherwise we output 0.
The reduction is valid, since the graph G, which is constructed in the reduction, is a
union of two disjoint paths and therefore is a proper interval graph.

Note added in proof. After the submission of the manuscript, we found out
that a simpler reduction was given from the parity prefix sum problem to fully dynamic
connectivity by Miltersen et al. [15]. This reduction allows the repeated modification
of A[t] for the same argument t and leads to alternative proofs of Theorems 7.1 and
7.2.

REFERENCES

[1] A. V. Carrano, Establishing the order of human chromosome-specific DNA fragments, in
Biotechnology and the Human Genome, A. D. Woodhead and B. J. Barnhart, eds., Plenum
Press, New York, 1988, pp. 37–50.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[3] D. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague, Simple linear time
recognition of unit interval graphs, Inform. Process. Lett., 55 (1995), pp. 99–104.

[4] X. Deng, P. Hell, and J. Huang, Recognition and representation of proper circular arc
graphs, in Proceedings of the 2nd Integer Programming and Combinatorial Optimization
(IPCO), Carnegie Mellon University, Pittsburgh, PA, 1992, pp. 114–121. Journal version:
Linear-time representation algorithms for proper circular-arc graphs and proper interval
graphs, SIAM J. Comput., 25 (1996), pp. 390–403.

[5] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification—A technique for
speeding up dynamic graph algorithms, in Proceedings of the 33rd Symposium on Founda-
tions of Computer Science, IEEE, Piscataway, NJ, 1992, pp. 60–69.

[6] M. Fredman and M. Saks, The cell probe complexity of dynamic data structures, in Proceed-
ings of the Nineteenth Annual ACM Symposium on Theory of Computing, ACM, New
York, 1989, pp. 345–354.

[7] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[8] P. Hell, R. Shamir, and R. Sharan, A fully dynamic algorithm for recognizing and represent-
ing proper interval graphs, in Proceedings of the Seventh Annual European Symposium on
Algorithms (ESA ’99), Lecture Notes in Comput. Sci. 1643, Springer-Verlag, New York,
1999, pp. 527–539.

[9] M. Henzinger and M. Fredman, Lower bounds for fully dynamic connectivity problems in
graphs, Algorithmica, 22 (1998), pp. 351–362.

[10] J. Holm, K. de Lichtenberg, and M. Thorup, Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge and biconnectivity, in Pro-
ceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-98), New
York, 1998, ACM Press, New York, pp. 79–89.

[11] W.-L. Hsu, A simple test for interval graphs, in Proceedings of the 18th International Workshop
(WG ’92), Wiesbaden-Naurod, Germany, Graph-Theoretic Concepts in Computer Science,
W.-L. Hsu and R. C. T. Lee, eds., Springer-Verlag, Berlin, 1992, pp. 11–16.

[12] L. Ibarra, Fully dynamic algorithms for chordal graphs, in Proceedings of the 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’99), SIAM, Philadelphia, 1999,
pp. 923–924.

[13] C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math., 51 (1962), pp. 45–64.

[14] P. Looges and S. Olariu, Optimal greedy algorithms for indifference graphs, Comput. Math.
Appl., 25 (1993), pp. 15–25.

[15] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia, Complexity models for
incremental computation, Theoret. Comput. Sci., 130 (1994), pp. 203–236.

[16] F. S. Roberts, Indifference graphs, in Proof Techniques in Graph Theory, F. Harary, ed.,
Academic Press, New York, 1969, pp. 139–146.

DYNAMIC ALGORITHM FOR PROPER INTERVAL GRAPHS 305

[17] M. Thorup, Near-optimal fully-dynamic graph connectivity, in Proceedings of the 32th Annual
ACM Symposium on Theory of Computing (STOC’00), 2000, pp. 343–350.

[18] J. Watson, M. Gilman, J. Witkowski, and M. Zoller, Recombinant DNA, 2nd ed., W. H.
Freeman, New York, 1992.

[19] G. Wegner, Eigenschaften der nerven homologische einfacher familien in Rn, Ph.D. thesis,
University of Göttingen, Göttingen, Germany, 1967.

[20] A. Yao, Should tables be sorted?, J. ACM, 28 (1981), pp. 615–628.

