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Abstract. In the minimum fill-in problem, one wishes to find a set of edges of smallest size,
whose addition to a given graph will make it chordal. The problem has important applications in
numerical algebra and has been studied intensively since the 1970s. We give the first polynomial
approximation algorithm for the problem. Our algorithm constructs a triangulation whose size is
at most eight times the optimum size squared. The algorithm builds on the recent parameterized
algorithm of Kaplan, Shamir, and Tarjan for the same problem.

For bounded degree graphs we give a polynomial approximation algorithm with a polylogarithmic
approximation ratio. We also improve the parameterized algorithm.
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1. Introduction. A chord in a cycle is an edge between nonconsecutive vertices
on the cycle. A chordless cycle is a cycle of length greater than 3 that contains no
chord. A graph is called chordal or triangulated if it contains no chordless cycle. If
G = (V,E) is not chordal and F is a set of edges such that (V,E∪F ) is chordal, then F
is called a fill-in or a triangulation of G. If |F | ≤ k, then F is called a k-triangulation
of G. We denote by Φ(G) the size of the smallest fill-in of G.

The minimum fill-in problem is to find a minimum triangulation (fill-in) of a
given graph. The importance of the problem stems from its applications to numerical
algebra. In many fields, including VLSI simulation, solution of linear programs, signal
processing, and others (cf. [7]), one has to perform a Gaussian elimination on a sparse
symmetric positive-definite matrix. During the elimination process zero entries may
become nonzeros. Different elimination orders may introduce different sets of new
nonzero elements into the matrix. The time of the computation and its storage needs
are dependent on the sparseness of the matrix. It is therefore desirable to find an
elimination order such that a minimum number of zero entries is filled in with nonzeros
(even temporarily). Rose [21] proved that the problem of finding an elimination order
for a symmetric positive-definite matrix M , such that fewest new nonzero elements
are introduced, is equivalent to the minimum fill-in problem on a graph whose vertices
correspond to the rows of M and in which (i, j) is an edge if and only if Mi,j �= 0.

In 1979, Garey and Johnson [9] posed the complexity of the minimum fill-in
problem as a major open problem. Yannakakis subsequently proved that the minimum
fill-in problem is NP-complete [23]. Due to its importance the problem has been
studied intensively [2, 11, 13, 22], and many heuristics have been developed for it
[5, 12, 20, 21]. None of those gives a performance guarantee with respect to the size
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of the fill-in introduced. Note that in contrast, the minimal fill-in problem (finding a
triangulation of G which is minimal with respect to inclusion) is polynomial [19].

Approximation attempts succeeded only for the related minimum triangulated
supergraph problem (MTS). In MTS the goal is to add edges to the input graph
in order to obtain a chordal graph with minimum total number of edges. While
as optimization problems MTS and minimum fill-in are equivalent, they may differ
drastically as approximation problems. For example, if the input graph has Ω(n2)
edges and fill-in of size o(n2), then one can trivially achieve a constant approximation
ratio for MTS by making the graph an n-clique (a complete graph), while no such
approximation guarantee exists for the minimum fill-in problem. (Throughout we
use n and m to denote the number of vertices and edges, respectively, in a graph.)
The approximation results regarding MTS use the nested dissection heuristic first
proposed by George [10] (see [13] for details). Gilbert [14] showed that for a graph
with maximum degree d there exists a balanced separator decomposition such that a
nested dissection ordering based on that decomposition yields a chordal supergraph,
in which the number of edges is within a factor of O(d log n) of optimal. The result
was not constructive as one has yet to find such a decomposition. Leighton and
Rao [17] gave a polynomial approximation algorithm for finding a balanced separator
in a graph of size within a factor of O(log n) of optimal. Agrawal, Klein, and Ravi [1],
using Gilbert’s ideas and the result of [17], obtained a polynomial approximation
algorithm with ratio O(

√
d log4 n) for MTS on graphs with maximum degree d. They

also gave a polynomial approximation algorithm for MTS on general graphs, which
generates for an input graph G a chordal supergraph with total number of edges
O((m + Φ(G))3/4

√
m log3.5 n).

In the parametric fill-in problem the input is a graph G and a parameter k. The
goal is to find a k-triangulation of G, or to determine that none exists. Clearly this
can be done in nO(k) time by enumeration. For fixed k and growing n, an algorithm
with complexity 2O(k)nO(1) is superior. Parameterized complexity theory, initiated by
Downey and Fellows (cf. [6]), studies the complexity of such problems. Parameterized
problems that have algorithms of complexity O(f(k)nα) (with α a constant) are called
fixed parameter tractable. Kaplan, Shamir, and Tarjan [16] and later independently
Cai [3] proved that the minimum fill-in problem is fixed parameter tractable, by giving
an algorithm of complexity 2O(k)m for the problem. Both used the same algorithm,
with the time bound in [3] being slightly tighter. Kaplan, Shamir, and Tarjan also
gave a more efficient 2O(k)+O(k2nm)-time algorithm (henceforth, the KST algorithm)
for the problem.

In this paper we give the first polynomial approximation algorithm for the mini-
mum fill-in problem. Our algorithm builds on ideas from [16]. For an input graph G
with minimum fill-in of size k, our algorithm produces a triangulation of size at most
8k2, i.e., within a factor of 8k of optimal. The approximation is achieved by identify-
ing in G a kernel set of vertices A of size at most 4k, such that one can triangulate G
by adding edges only between vertices of A. Our algorithm produces the triangulation
without prior knowledge of k. Let M(n) denote the number of operations needed to
multiply two integer matrices of order n × n. (The current upper bound on M(n)
is O(n2.376) [4].) The algorithm works in time O(knm + min{n2M(k)/k, nM(n)}),
which makes it potentially suitable for practical use.

Our algorithm is particularly attractive for small fill-in values. Note that if k =
Ω(n), then our algorithm guarantees only the trivial bound of fill-in size O(n2), but if,
for example, the fill-in size is constant, then the approximation guarantee is a constant.
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This type of approximation result is uncommon. It opens the question of obtaining
polynomial approximation algorithms with performance guarantees depending on the
optimal value for other important problems, even in the presence of hardness-of-
approximation results.

We also obtain better approximation results for bounded degree graphs. For
graphs with maximum degree d we give a polynomial algorithm which achieves an
approximation ratio of O(d2.5 log4(kd)). Since k = O(n2), this approximation ratio is
polylogarithmic in the input size.

In order to compare our results to the approximation results regarding MTS,
we translate the latter to approximation ratios in terms of the fill-in obtained. We
assume throughout that m > n. For general graphs the algorithm in [1] guar-
antees that the number of edges in the chordal supergraph obtained is O((m +
k)3/4

√
m log3.5 n). In terms of the fill-in obtained, the approximation ratio achieved

is O(m1.25 log3.5 n/k +
√
m log3.5 n/k1/4). We obtain a better approximation ratio

whenever k = O(m5/8 log1.75 n). For graphs with maximum degree d, the algorithm
in [1] achieves an approximation ratio of O(((nd + k)

√
d log4 n)/k). We provide a

better ratio when k = O(n/d). When any of these upper bounds on k is satisfied, our
algorithm also achieves a better approximation ratio than [1] for the MTS problem.

Kaplan, Shamir, and Tarjan posed in [16] an open problem of obtaining an
algorithm for the parametric fill-in problem with time 2O(k) + O(km). The moti-
vation is to match the performance of the 2O(k)m algorithm for all k. We make
some progress towards solving that problem by providing a faster 2O(k) + O(knm +
min{n2M(k)/k, nM(n)})-time implementation of their algorithm. We also give a
variant of the algorithm which produces a smaller kernel. Finally, we apply our ap-
proximation algorithm to the chain completion problem and obtain an approximation
ratio of 8k, where k denotes the size of an optimum solution.

The paper is organized as follows. Section 2 contains a description of the KST
algorithm and some background. Section 3 improves the complexity of the KST
algorithm and reduces the size of the kernel produced. Section 4 describes our ap-
proximation algorithm for general graphs. Section 5 gives an approximation algorithm
for graphs with bounded degree. Section 6 gives further reduction of the kernel size,
and section 7 gives an approximation algorithm for the chain completion problem.

2. Preliminaries. Let G = (V,E) be a graph. We denote its set V of vertices
also by V (G) and its set E of edges also by E(G). For U ⊆ V we denote by GU the
subgraph induced by the vertices in U . For a vertex v ∈ V we denote by N(v) the set
containing all neighbors of v in G. We let N [v] = N(v) ∪ {v}. A path with l edges is
called an l-path and its length is l. A single vertex is considered a 0-path. We call a
cycle with l edges an l-cycle.

Our polynomial approximation algorithm for the minimum fill-in problem builds
on the KST algorithm [16]. In the following we describe this algorithm. Our presenta-
tion generalizes that in [16] in order to allow succinct description of the approximation
algorithm in section 4.

Fact 2.1. A minimal triangulation of a chordless l-cycle consists of l−3 edges.
Lemma 2.2 (see [16, Lemma 2.5]). Let C be a chordless cycle and let p be an

l-path on C, 1 ≤ l ≤ |C|−2. If l = |C|−2, then in every minimal triangulation of C
there are at least l−1 chords incident with vertices of p. If l < |C|−2, then in every
minimal triangulation of C there are at least l chords incident with vertices of p.

Let 〈G = (V,E), k〉 be the input to the parametric fill-in problem. The algorithm
has two main stages. In the first stage, which is polynomial in n,m, and k, the
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algorithm produces a partition A,B of V and a set F of nonedges in GA, such that
|A| = O(k3) and no chordless cycle in G′ = (V,E ∪F ) intersects B. We shall call this
stage the partition algorithm.

In the second stage, which is exponential in k, an exhaustive search is applied
to find a minimum triangulation F ′ of G′

A. F ∪ F ′ is then proved to be a minimum
triangulation of G. The search procedure can be viewed as traversing part of a search
tree T , which is defined as follows. Each tree node v corresponds to a supergraph
G(v) of G. For the root r, G(r) = G. Each leaf of T corresponds to a chordal
supergraph of G. At an internal node v, a chordless cycle C in G(v) is identified.
For each minimal triangulation FC of C, a node u is added as a child of v, and its
corresponding graph G(u) is obtained by adding FC to G(v). The algorithm visits
only nodes v of T for which |E(G(v))\E| ≤ k. If such a node is a leaf, then the search
terminates successfully. Otherwise, no k-triangulation exists for G.

The partition algorithm applies sequentially the following three procedures. All
three maintain a partition A,B of V and a lower bound cc on the minimum number
of edges needed to triangulate G. Initially A=∅, B=V , and cc=0.

(i) Procedure P1(k). Extracting independent chordless cycles. Search repeatedly
for chordless cycles in GB and move their vertices from B to A. For each chordless
l-cycle found, increment cc by l − 3. If at any time cc > k, stop and declare that the
graph admits no k-triangulation.

(ii) Procedure P2(k). Extracting related chordless cycles with independent paths.
Search repeatedly for chordless cycles in G containing at least two consecutive vertices
from B. Let C be such a cycle, |C| = l. If l > k + 3, stop with a negative answer.
Otherwise, suppose that C contains j ≥ 1 disjoint maximal subpaths in GB , each of
length at least 1. Move the vertices of those subpaths from B to A. Denote their
lengths in nonincreasing order by l1, . . . , lj . If j = 1, we increase cc either by l1−1 if

l1 = l−2, or by l1 if l1 <l−2. Otherwise, cc is increased by max{ 1
2

∑j
i=1 li, l1}. If at

any time cc > k, stop and declare that the graph admits no k-triangulation.

Definition 2.3. For every x, y ∈ A such that (x, y) �∈ E, denote by Ax,y the set
of all vertices b ∈ B such that x, b, y occur consecutively on some chordless cycle in
G. If |Ax,y| > 2k, then (x, y) is called a k-essential edge.

(iii) Procedure P3(k). Adding k-essential edges in GA. For every x, y ∈ A such
that (x, y) �∈ E compute the set Ax,y. If (x, y) is k-essential, then add it to G.
Otherwise, move all vertices in Ax,y from B to A.

Denote by Ai, Bi the partition obtained after procedure Pi is completed for i =
1, 2, 3. We shall omit the index i when it is clear from the context. Denote by cci the
value of cc after procedure Pi is completed for i = 1, 2. The size of A2 is at most 4k
since k ≥ cc2 = cc1 + (cc2 − cc1) ≥ 1

4 |A1| + 1
2 |A2 \ A1| ≥ 1

4 |A2|. The size of A3 is
O(k3) since there are O(k2) nonedges in GA2 and the number of vertices moved to A
due to any such nonedge is at most 2k.

The partition algorithm is summarized in Figure 2.1. Let G′ denote the graph
obtained after the execution of procedure P3. Kaplan, Shamir, and Tarjan prove

Execute procedure P1(k).
Execute procedure P2(k).
Execute procedure P3(k).

Fig. 2.1. The KST partition algorithm.
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that every k-essential edge must appear in any k-triangulation of G [16, Lemma 2.7],
and that in G′ no chordless cycle intersects B [16, Theorem 2.10]. Therefore, by the
following theorem it suffices to search for a minimum triangulation of G′

A.

Theorem 2.4 (see [16, Theorem 2.13]). Let A,B be a partition of the vertex set
of a graph G, such that the vertices of every chordless cycle in G are contained in
A. A set of edges F is a minimal triangulation of G if and only if F is a minimal
triangulation of GA.

The complexity of the partition algorithm is O(k2nm) [16]. The complexity of

finding a minimum triangulation of a given graph is O( 4k

(k+1)3/2m) [3]. Since G′
A

contains O(k6) edges, a minimum triangulation of G′
A can be found in O(k4.54k)

time. Hence, the complexity of the KST algorithm is O(k2nm + k4.54k).

3. Improvements to the partition algorithm. In this section we show
some improvements to the KST partition algorithm. We assume throughout that
the input is 〈G = (V,E), k〉. We first show how to implement procedure P3 in
O(nm + min{n2M(k)/k, nM(n)})-time. We then prove that the size of A3 is only
O(k2). These results imply that the KST algorithm can be implemented in O(knm+
min{n2M(k)/k, nM(n)} + k2.54k)-time.

Lemma 3.1. There is an O(nm+min{n2M(k)/k, nM(n)})-time implementation
of procedure P3.

Proof. Let S = {(x, y) �∈ E : x, y ∈ A2}. The bottleneck in the complexity of P3

is computing the sets Ax,y for every (x, y) ∈ S. To this end, we find for every b ∈ B
all pairs (x, y) ∈ S such that b ∈ Ax,y. We then construct the sets Ax,y. This is done
as follows.

Fix b ∈ B. Compute the connected components of Gb = G \ N [b]. This takes
O(m) time. Denote the connected components of Gb by Cb

1, . . . , C
b
l . For each x ∈

A2 ∩N(b) compute a binary vector �vx = (vx1 , . . . , v
x
l ) such that vxj = 1 if and only if

Cb
j contains a neighbor of x, 1 ≤ j ≤ l. Each vector can be computed in O(n)-time.

Let k′ = |A2 ∩N(b)|, and number the vertices in A2 ∩N(b) arbitrarily according to
some 1-1 mapping σ : {1, . . . , k′} → A2 ∩ N(b). Define a k′ × l boolean matrix M
whose ith row is the vector �vσ(i), 1 ≤ i ≤ k′. Note that k′ = O(k) and l ≤ n. Let
M∗ = MMT . It can be seen that for every pair (i, j) such that 1 ≤ i < j ≤ k′ and
(σ(i), σ(j)) ∈ S, M∗

i,j ≥ 1 if and only if b ∈ Aσ(i),σ(j). Since k′, l ≤ n we can compute
M∗ in O(M(n))-time. If k = o(n), then we can compute M∗ in O(nM(k)/k)-time by
partitioning M and MT into �n/k′� submatrices of order at most k′× k′, multiplying
corresponding pairs of submatrices, and summing the results. Hence, the computation
of M∗ takes O(min{nM(k)/k,M(n)}) time.

After the above calculations are performed for every b ∈ B, it remains to compute
the sets Ax,y. We can do that in O(min{k2n, n3})-time. The total time is therefore
O(nm + min{n2M(k)/k, nM(n)}).

Observation 3.2. Let x, y ∈ A2, (x, y) �∈ E. If Ax,y �= ∅, then for any triangula-
tion F of G, either (x, y) ∈ F , or for every b ∈ Ax,y, F contains an edge incident on
b.

Lemma 3.3. Assume that G admits a k-triangulation and that in procedure P3

all sets Ax,y moved into A are of size at most d. Then |A3 \ A2| ≤ Mk, where
M = max{d, 2}.

Proof. Let the nonedges in GA2 be (x1, y1), . . . , (xl, yl). We process the sets
Ax1,y1 , . . . , Axl,yl

in this order. Let A(0) = A2. Let A(i) be the set A right after Axi,yi

was processed, and let Δi = Axi,yi \A(i−1) for 1 ≤ i ≤ l.
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Let t be a lower bound on the minimum number of edges needed to triangulate G.
Initially P3 starts with t = 0. Let ti be the value of t right after Axi,yi

was processed
(t0 = 0). If Δi �= ∅, then by Observation 3.2, t should increase by min{1, |Δi|/2}. We
must maintain t ≤ k. If ti−ti−1 =0, then |Δi| = 0. If ti−ti−1 =1/2, then |Δi| = 1. If
ti−ti−1≥1, then |Δi| ≤ d. Therefore for all 1 ≤ i ≤ l, |Δi| ≤ M(ti − ti−1). Now,

|A3 \A2| = |A(l) \A(0)| =

l∑

i=1

|A(i) \A(i−1)|

=

l∑

i=1

|Δi| ≤ M

l∑

i=1

(ti − ti−1) = M(t− t0) ≤ Mk .

Corollary 3.4. If G has a k-triangulation, then the partition algorithm termi-
nates with |A| ≤ 2k(k + 2).

Proof. Let us assume that all k-essential edges were added to G, and denote the
new set of edges of G by E′. For all x, y ∈ A2, (x, y) �∈ E′, we know that |Ax,y| ≤ 2k.
By Lemma 3.3, |A3 \A2| ≤ 2k2. Since |A2| ≤ 4k, the corollary follows.

Theorem 3.5. There is an O(knm + min{n2M(k)/k, nM(n)} + k2.54k)-time
implementation of the KST algorithm.

Proof. By the analysis in [16], P1 takes O(km) time, and P2 takes O(knm)
time. By Lemma 3.1, the complexity of P3 is O(nm + min{n2M(k)/k, nM(n)}). By
Corollary 3.4, if G admits a k-triangulation, then the size of A3 is O(k2). Hence, a
minimum triangulation of G′

A can be found in O(k2.54k)-time [3]. The complexity
follows.

4. The approximation algorithm. Let G = (V,E) be the input graph. Let
kopt = Φ(G). The key idea in our approximation algorithm is to find a set of vertices
A ⊆ V , such that |A| = O(kopt) and, moreover, one can triangulate G by adding
edges only between vertices of A. Since there are O(k2

opt) nonedges in GA, we achieve
an approximation ratio of O(kopt).

In order to find such a set A we use ideas from the partition algorithm. If we knew
kopt, we could execute the partition algorithm and obtain a set A, with |A| = O(k2

opt)
(by Corollary 3.4), such that G can be triangulated by adding edges only in GA. This
would already give an O(k3

opt) approximation ratio.
Before describing our algorithm we analyze the role of the parameter k given to

the partition algorithm. If k<kopt, then the algorithm might stop during P1 or P2 and
declare that no k-triangulation exists. Moreover, k-essential edges are not necessarily
kopt-essential. If k>kopt, then the size of A may be ω(k2

opt). The algorithm is shown
in Figure 4.1.

Procedures P ′
1 and P ′

2 execute P1 and P2, respectively, without bounding the size
of the triangulation implied. Procedure P ′

3 takes advantage of the fact that we no

Algorithm APPROX
Procedure P ′

1: Execute P1(∞).
Procedure P ′

2: Execute P2(∞).
Procedure P ′

3: Execute P3(0).
Let G′ be the resulting graph.
Procedure P ′

4: Find a minimal triangulation of G′
A.

Fig. 4.1. The approximation algorithm.
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longer seek a minimum triangulation but rather a minimal one. In order to obtain our
approximation result we want to keep A as small as possible. Hence, instead of moving
new vertices to A we add new 0-essential edges accommodating for those vertices. By
the same arguments as in [16] and section 2, the size of A after the execution of P ′

2

is at most 4kopt. Since P ′
3 does not add new vertices to A, its size remains at most

4kopt throughout. The size of the triangulation found by the algorithm is therefore
at most 8k2

opt. The correctness of Algorithm APPROX is established in what follows.
We need the following lemma which is implied by the proof of [16, Lemma 2.9]. The
subsequent theorem is a generalization of [16, Theorem 2.10].

Lemma 4.1. Let G = (V,E) be a graph and let v ∈ V . Let F be a set of nonedges
in G \ {v}, such that each e = (x, y) ∈ F is a chord in a chordless cycle Ce =
(x, ze, y, . . . , x) in G, where ze is not an endpoint of any edge in F . Let G′ = (V,E ∪
F ). If there exists a chordless cycle C in G′ with v1, v, v2 occurring consecutively on
C for some v1, v2 ∈ N(v), then either there exists a chordless cycle in G on which
v1, v, v2 occur consecutively, or there exists a chordless cycle in G, on which v and ze
occur consecutively for some e ∈ F .

Theorem 4.2. Let G = (V,E) be a graph. Let A,B be a partition of V such
that no chordless cycle in G contains two consecutive vertices from B. Let S =
{(x, y) �∈ E : x, y ∈ A,Ax,y �= ∅}. Then for any choice of F ⊆ S no chordless cycle in
G′ = (V,E ∪ F ) intersects B′ = B \ (

⋃
(x,y)∈S\F Ax,y).

Proof. Suppose to the contrary that C is a chordless cycle in G′ intersecting B′.
Let v ∈ C ∩ B′. Let v1 and v2 be the neighbors of v on C. Since v ∈ B′, it is not
an endpoint of any edge in F . Every edge e = (x, y) ∈ F is a chord in a chordless
cycle Ce = (x, ze, y, . . . , x) of G, where ze ∈ B. Applying Lemma 4.1, we find that
two cases are possible.

1. There exists a chordless cycle in G on which v1, v, v2 occur consecutively. If
v1 ∈ B or v2 ∈ B, we arrive at a contradiction. Hence, v1, v2 ∈ A and v ∈ Av1,v2 . We
conclude that either (v1, v2) ∈ F or v �∈ B′, a contradiction.

2. There exists a chordless cycle in G on which v and ze occur consecutively
(for some e ∈ F ), a contradiction.

Theorem 4.3. Let G be a graph and let kopt = Φ(G). The algorithm finds
a triangulation of G of size at most 8k2

opt and can be implemented to run in time
O(koptnm + min{n2M(kopt)/kopt, nM(n)}).

Proof. Correctness. By Theorems 4.2 and 2.4 a minimal triangulation of G′
A is a

minimal triangulation of G′. Therefore at the end of the algorithm G is triangulated.
Throughout the algorithm the only edges added to G are between vertices of A. Since
|A| ≤ 4kopt, the size of the triangulation is at most 8k2

opt.
Complexity. The complexity analysis of procedures P1 and P2 in [16] implies that

P ′
1 and P ′

2 can be performed in O(koptnm)-time. By Lemma 3.1 the complexity of P ′
3

is O(nm + min{n2M(kopt)/kopt, nM(n)}). Procedure P ′
4 requires finding a minimal

triangulation of G′
A. Since |A| = O(min{kopt, n}) and |E(G′

A)| = O(min{k2
opt, n

2}),
this requires O(min{k3

opt, n
3}) time [19]. Hence, the complexity of the approximation

algorithm is O(koptnm + min{n2M(kopt)/kopt, nM(n)}).
Note that, although our analysis uses an upper bound of

(
t
2

)
for the triangulation

size of a t-vertex graph, replacing G′
A by the complete graph is not guaranteed to

produce a triangulation of G.

5. Bounded degree graphs. In order to improve the approximation ratio for
bounded degree graphs, we improve P ′

4. Instead of simply finding a minimal trian-
gulation of G′

A, we use the triangulation algorithm of Agrawal, Klein, and Ravi [1].
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This alone does not suffice to prove a better approximation ratio, since adding 0-
essential edges (in P ′

3) might not be optimal. In other words, if we denote by F the
set of 0-essential edges added to G by P ′

3, then it might be that |F |+ Φ(G′) > Φ(G).
To overcome this difficulty we use the KST partition algorithm with k = ∞ as its
input parameter, which implies that no new edge will be added to GA by P3. The
approximation algorithm is as follows:

(i) Execute the KST partition algorithm with parameter k = ∞.
(ii) Find a minimal triangulation of GA using the algorithm in [1].

Assume that the input graph G has maximum degree d, and let k = Φ(G). We will
show that the algorithm achieves an approximation ratio of O(d2.5 log4(kd)). Since
k = O(n2), this is in fact a polylogarithmic approximation ratio. It improves over the
O(k) approximation ratio obtained in the previous section, when k/ log4 k = Ω(d2.5).

Theorem 5.1. The algorithm finds a triangulation of G of size within a factor
of O(d2.5 log4(kd)) of optimal.

Proof. Correctness. By the correctness of the KST partition algorithm, we obtain
a partition A,B of V (G) for which no chordless cycle in G intersects B. By Theo-
rem 2.4 a minimal triangulation of GA is a minimal triangulation of G. Therefore,
the algorithm correctly computes a minimal triangulation of G.

Approximation ratio. When executing P3, the size of each set Ax,y is at most d.
By Lemma 3.3, |A3 \A2| = O(kd). Since |A2|=O(k), the size of A when the partition
algorithm terminates is O(kd). Setting the parameter value to ∞ in P3 guarantees
that no new edge is added to GA, and therefore its maximum degree is at most d and
|E(GA)| = O(kd2). Using the algorithm in [1] we can produce a chordal supergraph
of GA with O((kd2 +k)

√
d log4(kd)) edges. The size of the fill-in obtained is therefore

within a factor of O(d2.5 log4(kd)) of optimal.

6. Reducing the kernel size. We now return to the parametric fill-in problem.
Let 〈G = (V,E), k〉 be the input instance. By modifying procedure P3 in the KST
partition algorithm we shall obtain a partition A,B of V and a set of nonedges F ,
such that no chordless cycle in G′ = (V,E ∪ F ) intersects B and |A| = O(k). In fact
we shall obtain at most 2k such pairs (A,F ) and prove that if G has a k-triangulation,
then at least for one of those pairs G′

A admits a (k − |F |)-triangulation. Reducing
the size of A results in improving the complexity of finding a minimum triangulation
of G′

A to O(
√
k4k), although the total time of the algorithm increases, since we have

to handle up to 2k pairs. We include this result, since it gives further insight on the
problem and presents ideas that may help resolve the open problem posed in [16].

As in the original algorithm we start by executing procedures P1(k) and P2(k).
We also compute the sets Ax,y for all x, y ∈ A2, (x, y) �∈ E. If (x, y) is k-essential, we

add it to G. Otherwise, we do nothing. Let Ê be the set of k-essential edges, and let
e = |Ê|. Define P := {(x, y) �∈ E ∪ Ê : x, y ∈ A2, Ax,y �= ∅}, and let p = |P |.

The algorithm now enumerates subsets F ⊆ P . For a given set F , every (x, y) ∈ F
is added as an edge in the triangulation, and for every (x, y) ∈ P \ F , the vertices
in Ax,y are moved from B to A (which was initialized to A2). Instead of directly
enumerating each set F , we branch and bound. We construct these sets incrementally
and stop when a lower bound for the size of the triangulation implied by F exceeds
k.

Specifically, the algorithm considers pairs in P one at a time in an arbitrary order
(x0, y0), . . . , (xp−1, yp−1). For the current pair (xi, yi) it distinguishes between three
cases as follows. Let t = |Axi,yi \ A| with respect to the current A. Let cc denote
a lower bound for the size of the triangulation implied by the set F constructed so
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far (cc is initialized to e). If t = 0, then the algorithm does nothing. If t = 1, it
updates A to A∪Axi,yi

and increases cc by 1/2. Finally, if t ≥ 2, then the algorithm
branches into two cases. In the first case, (xi, yi) is added to the triangulation and cc
is increased by 1. In the second case, the vertices in Axi,yi are moved from B to A,
and cc is increased by t/2. The algorithm is implemented by the recursive procedure
shown in Figure 6.1 and is invoked by calling BRANCH(e, ∅, 0, A2).

Procedure BRANCH(cc, F, r, A)
If cc > k then return.

If r = p then save the pair (A,F ∪ Ê) and return.
Let t = |Axr,yr

\A|.
If t = 0 then

Call BRANCH(cc, F, r + 1, A).
Else if t = 1 then

Call BRANCH(cc + 1/2, F, r + 1, A ∪Axr,yr
).

Else /* t ≥ 2 */
Call BRANCH(cc + 1, F ∪ {(xr, yr)}, r + 1, A).
Call BRANCH(cc + t/2, F, r + 1, A ∪Axr,yr

).
Return.

Fig. 6.1. Algorithm BRANCH.

Lemma 6.1. The algorithm terminates after at most p2k+1 + 1 calls to procedure
BRANCH.

Proof. Denote by T (i, j) the number of recursive calls invoked by BRANCH
when called with parameters cc = i, r = j (including this first call). Since always
i ≥ 0 and 0 ≤ j ≤ p in the following, we consider these ranges only. Clearly,
T (i, j) ≤ 1 + max{T (i, j + 1), T (i + 1/2, j + 1), 2T (i + 1, j + 1)} for all j < p, i. Also,
T (i, j) = 1 for all i > k, j, and T (i, p) = 1 for all i. It follows that T (0, 0) ≥ T (i, j)
for all i, j. Hence, it suffices to compute an upper bound for T (0, 0).

We prove that T (i, j) ≤ (p− j)2k+1−i + 1 by induction on i, j. For i > k or j = p
the claim is true. Suppose the claim holds for all i, where i′ ≤ i ≤ k + 1, and for all
j, where j′ < j ≤ p. Then for i = i′ and j = j′ we have

T (i, j) ≤ 1 + max{T (i, j + 1), T (i + 1/2, j + 1), 2T (i + 1, j + 1)}
≤ 2 + max{(p− j − 1)2k+1−i, (p− j − 1)2k+ 1

2−i, (p− j − 1)2k+1−i + 1}
≤ 3 + (p− j − 1)2k+1−i ≤ (p− j)2k+1−i + 1 .

It follows that T (0, 0) ≤ p2k+1 + 1.

Lemma 6.2. The number of pairs saved by the algorithm is at most 2k.

Proof. The proof is analogous to that of Lemma 6.1. Denote by N(i, j) the number
of pairs saved by procedure BRANCH, when invoked with parameters cc = i, r = j.
Since always i ≥ 0 and 0 ≤ j ≤ p, in the following we consider these ranges only.
Clearly, N(i, j) ≤ max{N(i, j + 1), N(i+ 1/2, j + 1), 2N(i+ 1, j + 1)} for all j < p, i.
Also, N(i, j) = 0 for all i > k, j, N(k, j) ≤ 1 for all j, and N(i, p) ≤ 1 for all i. It
follows that N(0, 0) ≥ N(i, j) for all i, j. Thus, it suffices to compute an upper bound
for N(0, 0).
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We prove that N(i, j) ≤ 2k−i by induction on i, j. If i ≥ k or j = p, then the
claim holds. Suppose the claim holds for all i, where i′ ≤ i ≤ k, and for all j, where
j′ < j ≤ p. Then for i = i′ and j = j′ we have

N(i, j) ≤ max{N(i, j + 1), N(i + 1/2, j + 1), 2N(i + 1, j + 1)}
≤ max{2k−i, 2k−

1
2−i, 2k−i}

= 2k−i .

It follows that N(0, 0) ≤ 2k.
As usual, for a set A ⊆ V saved by the algorithm, B denotes V \A. The following

two claims establish the correctness of our partition algorithm.
Lemma 6.3. For every pair (A,F ) saved by the algorithm, |A| ≤ 6k, and no

chordless cycle in G′ = (V,E ∪ F ) intersects B.
Proof. Whenever a partition is saved, cc ≤ k. By definition of BRANCH, 1

2 |A \
A2| ≤ cc. Hence, at most 2k new vertices were added to A2 in any partition obtained.
Since |A2| ≤ 4k, we conclude that |A| ≤ 6k. By Theorem 4.2 no chordless cycle in G′

intersects B.
Definition 6.4. A pair (A,F ) saved by BRANCH is called good if Φ(G) =

Φ(G′) + |F |, where G′ = (V,E ∪ F ).
Proposition 6.5. If Φ(G) ≤ k, then at least one pair saved by the algorithm is

good.
Proof. Let T be the tree of recursive calls of BRANCH. The nodes of T correspond

to invocations of BRANCH. The root of T corresponds to the first invocation of
BRANCH. The leaves of T correspond to invocations of BRANCH in which either a
pair was saved, or cc was found to exceed k. In nodes at level i of T , 0 ≤ i < p, the
pair (xi, yi) ∈ P is processed. Let ccv, Fv, rv, and Av denote the parameters of the
invocation of BRANCH which correspond to node v of T .

Let F ∗ denote a minimum triangulation of G. The proof will identify a root-leaf
path in T which corresponds to F ∗, and trace the changes to cc, A, and F along that
path. We use the following notation:

Pv := {(x0, y0), . . . , (xrv−1, yrv−1)} ,

F ∗
v := Pv ∩ F ∗,

A∗
v := A2 ∪

⋃

(x,y)∈Pv\F∗
v

Ax,y ,

cc∗v := e + |F ∗
v | +

1

2
|A∗

v \A2| .

Lemma 6.6. For every node v of T , cc∗v ≤ k.
Proof. Let v be any node of T . Let cc∗ = e + |P ∩ F ∗| + 1

2 |
⋃

(x,y)∈P\F∗ Ax,y|.
Since Pv ⊆ P , it follows that cc∗v ≤ cc∗. By Observation 3.2, for every pair (x, y) ∈ P ,
either (x, y) ∈ F ∗, or for every b ∈ Ax,y, F

∗ contains an edge incident on b. Hence,
cc∗ ≤ |F ∗| ≤ k, where the last inequality follows from the fact that F ∗ is a k-
triangulation.

We now return to the proof of Proposition 6.5. We shall prove that T has a leaf
in which a good pair is saved. To this end, we show that for every 0 ≤ i ≤ p, T
contains some vertex v at level i for which Fv ⊆ F ∗

v and ccv ≤ cc∗v. In particular, this
claim implies that T has a leaf z at level p for which Fz ⊆ F ∗

z and ccz ≤ cc∗z. By
Lemma 6.6, ccz ≤ cc∗z ≤ k. Hence, the pair (Az, Fz ∪ Ê) is saved at z. By [16, Lemma
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2.7], Ê ⊆ F ∗. In addition, Fz ⊆ F ∗
z ⊆ F ∗. Therefore (Az, Fz ∪ Ê) is a good pair,

since Fz ∪ Ê ⊆ F ∗ and, by definition, F ∗ \ (Fz ∪ Ê) triangulates G′ = (V,E ∪Fz ∪ Ê).
We prove the claim by induction on i. The base of the induction is obvious, and

as for the root r at level 0, Fr = ∅ and ccr = e. We assume that the claim is true for
level i− 1 (i > 0) and prove its correctness for level i. By the induction hypothesis T
contains a node v at level i− 1 < p for which Fv ⊆ F ∗

v and ccv ≤ cc∗v. By Lemma 6.6
ccv ≤ cc∗v ≤ k, and therefore v is not a leaf. Thus, v has either one or two children in
T . There are two cases to examine.

1. Suppose that (xi, yi) ∈ F ∗. Then for any child w of v, cc∗w = cc∗v+1 ≥ ccv+1.
If v has a single child w, then Fw = Fv ⊆ F ∗

v ⊂ F ∗
w and ccw ≤ ccv + 1/2 < cc∗w.

Otherwise, let w be the child of v for which (xi, yi) ∈ Fw. Then clearly Fw ⊆ F ∗
w and

ccw = ccv + 1 ≤ cc∗w.
2. Suppose that (xi, yi) �∈ F ∗. Since Fv ⊆ F ∗

v and Av = A2 ∪⋃
(x,y)∈Pv\Fv

Ax,y,

it follows that A∗
v ⊆ Av. Let w be the child of v for which (xi, yi) �∈ Fw. Then

Fw = Fv ⊆ F ∗
v = F ∗

w and

ccw = ccv +
1

2
|Axi,yi \Av| ≤ cc∗v +

1

2
|Axi,yi \A∗

v| = cc∗w .

Theorem 6.7. If Φ(G) ≤ k, then the new partition algorithm produces at least
one pair (A,F ) for which |A| ≤ 6k and Φ(G) = Φ(G′

A) + |F |, where G′ = (V,E ∪F ).
The complexity of the algorithm is O(knm + min{n2M(k)/k, nM(n)} + k32k).

Proof. Correctness. By Lemma 6.3 for each pair (A,F ) saved by the algorithm,
|A| ≤ 6k and no chordless cycle in G′ intersects B. Therefore, by Theorem 2.4 for
each such pair Φ(G′) = Φ(G′

A). Since Φ(G) ≤ k, by Proposition 6.5 the algorithm
saves some pair (A,F ) for which Φ(G) = Φ(G′) + |F |. Correctness follows.

Complexity. By [16] P1 and P2 take O(knm) time. By Lemma 3.1, computing
the sets Ax,y for all x, y ∈ A2, (x, y) �∈ E takes O(nm + min{n2M(k)/k, nM(n)})
time. By Lemma 6.1 and the fact that |P | = O(k2), the number of calls to BRANCH
is O(k22k). By Lemma 6.3 and since Φ(G) ≤ k, the parameters A and F to each
invocation of BRANCH satisfy |A| = O(k) and |F | ≤ k. Also, for all (x, y) ∈ P ,
|Ax,y| ≤ 2k. Thus, each call can be carried out in O(k) time. The total work done by
BRANCH is therefore O(k32k).

7. An approximation algorithm for the chain completion problem. A
bipartite graph G = (P,Q,E) is called a chain graph if there exists an ordering π of P ,
π : P → {1, . . . , |P |}, such that N(π−1(1)) ⊆ N(π−1(2)) ⊆ · · · ⊆ N(π−1(|P |)). This
class of graphs was introduced by Yannakakis [23], and independently by Golumbic
(cf. [15, page 260]). The chain completion problem is defined as follows: Given
a bipartite graph G = (P,Q,E), find a minimum set of nonedges F such that
(P,Q,E ∪ F ) is a chain graph. We call |F | the chain fill-in. Yannakakis proved
that the chain completion problem is NP-complete and used this result to show that
the minimum fill-in problem is NP-complete [23]. Chain graphs have been also inves-
tigated in [8], where a similar graph modification problem arises.

Theorem 7.1. There exists a polynomial approximation algorithm for the chain
completion problem, achieving an approximation ratio of 8k, where k denotes the
minimum chain fill-in. The complexity of the algorithm is O(kn3).

Proof. Let G = (U, V,E) be an input bipartite graph with chain fill-in k. We
apply the following reduction given by Yannakakis [23] from the chain completion
problem to the minimum fill-in problem. Build a graph G′ = (U ∪ V,E′), where
E′ = E ∪ {(u, v) : u, v ∈ U} ∪ {(u, v) : u, v ∈ V }. Observe that G is a chain graph
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if and only if G′ is chordal. Hence, a set of edges F triangulates G′ if and only if
(U, V,E ∪ F ) is a chain graph.

Approximation ratio. By the above argument, k equals Φ(G′). Using our approx-
imation algorithm for the minimum fill-in problem, we can find a triangulation of G′

of size at most 8k2. Adding these edges to G produces a chain graph. The number of
new edges is within a factor of 8k of optimal.

Complexity. G′ can be computed in O(n2) time. Due to the reduction, |E(G′)| =
Θ(n2). Therefore the complexity of the approximation algorithm is O(kn3).
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