
Complexity Classification of Some
Edge Modification Problems

Assaf Natanzon�, Ron Shamir�, and Roded Sharan�

Department of Computer Science, Tel Aviv University, Tel-Aviv, Israel.
fnatanzon,shamir,rodedg@math.tau.ac.il.

Abstract. In an edge modification problem one has to change the edge set of
a given graph as little as possible so as to satisfy a certain property. We prove
in this paper the NP-hardness of a variety of edge modification problems with
respect to some well-studied classes of graphs. These include perfect, chordal,
chain, comparability, split and asteroidal triple free. We show that some of these
problems become polynomial when the input graph has bounded degree. We also
give a general constant factor approximation algorithm for deletion and editing
problems on bounded degree graphs with respect to properties that can be char-
acterized by a finite set of forbidden induced subgraphs.

1 Introduction

Problem Definition: Edge modification problems call for making small changes
to the edge set of an input graph in order to obtain a graph with a desired property.
These include completion, deletion and editing problems. Let � be a family of
graphs. In the �-Editing problem the input is a graph G � �V� E�, and the goal
is to find a minimum set F � V � V such that G� � �V� E�F � � � , where
E�F denotes the symmetric difference between E and F . In the �-Deletion
problem only edge deletions are permitted, i.e., F � E. The problem is equiva-
lent to finding a maximum subgraph of G with property� . In the�-Completion
problem one is only allowed to add edges, i.e., F � E � �. Equivalently, we
seek a minimum supergraph of G with property � . In this paper we study edge
modification problems with respect to some well-studied graph properties.
Motivation: Graph modification problems are fundamental in graph theory. Al-
ready in 1979, Garey and Johnson mentioned 18 different types of vertex and
edgemodification problems [11, Section A1.2]. Edge modification problems have
applications in several fields, including molecular biology and numerical algebra.
In many application areas a graph is used to model experimental data, and then
edge modifications correspond to correcting errors in the data: Adding an edge
corrects a false negative error, and deleting an edge corrects a false positive error.
We summarize below some of these applications. Definitions of the graph classes
are given in Section 3.
Interval modification problems have important applications in physical mapping
of DNA (see [5, 8, 12, 14]). Depending on the biotechnology used and the kind
of experimental errors, completion, deletion and editing problem arise, both for
interval graphs and for unit interval graphs.
The chordal completion problem, which is also called the minimum fill-in prob-
lem, arises when numerically performing a Gaussian elimination on a sparse sym-
metric positive-definite matrix [30].

Chordal deletion problems occur when trying to solve the CLIQUE problem.
Some heuristics for finding a large clique (see, e.g., [33]) aim to find a maximum
chordal subgraph of the input graph, on which a maximum clique can be found
in polynomial time.
Previous Results: Strong negative results are known for vertex deletion prob-
lems: Lewis and Yannakakis [24] showed that for any property which is non-
trivial and hereditary, the maximum induced subgraph problem is NP-complete.
Furthermore Lund and Yannakakis [26] proved that for any such property, and for
every � � �, the maximum induced subgraph problem cannot be approximated

with ratio �log
����� n in quasi-polynomial time, unless �P � �NP . (Throughout

we use n and m to denote the number of vertices and edges, respectively, in a
graph).
For edge modification problems no such general results are known, although
some attempts have been made to go beyond specific graph properties [3, 10,
2]. Most of the results obtained so far concerning edge modification problems
are NP-hardness ones. (For simplicity we shall often refer to the decision ver-
sion of the optimization problems). Chain Completion and Chordal Completion
were shown to be NP-complete in [34]. As noted in [12], the NP-completeness
of Interval Completion and Unit Interval Completion also follows from [34]. In-
terval Completion was directly shown to be NP-complete in [11, problem GT35]
and [23]. Deletion problems on interval graphs and unit interval graphs were
proven to be NP-complete in [12]. Cograph Completion and Cograph Deletion
were shown to be NP-complete in [10]. Threshold Completion and Threshold
Deletion were shown to be NP-complete in [27]. Comparability Completion was
shown to be NP-complete in [17] and Comparability Deletion was shown to be
NP-complete in [35].
Much fewer results are known for editing problems: Chordal Editing was proven
to be NP-complete in [4]. The connected bipartite interval (caterpillar) editing
problem was proven to be NP-complete in [8]. Split Editing was shown to be
polynomial in [19].
Several authors studied variants of the completion problem, motivated by DNA
mapping, in which the input graph is pre-colored and the required supergraph
also obeys the coloring (see [5] and references thereof). Other biologically moti-
vated problems, called sandwich problems, seek a supergraph satisfying a given
property which does not include (pre-defined) forbidden edges. Polynomial al-
gorithms or NP-hardness results are known for many sandwich problems [16,
15, 18, 21]. Several results on the parametric complexity of completion problems
were also obtained [22, 7].
Approximation algorithms exist for several problems. In [28] an �k approxima-
tion algorithm is given for the minimum fill-in problem, where k denotes the size
of an optimum solution. In [1] an O�m��� log��� n� approximation algorithm is
given for the minimum chordal supergraph problem (where one wishes to mini-
mize the total number of edges in the resulting graph) For the minimum interval
supergraph problem an O�log� n� approximation algorithm was given in [29].
In [8] it was shown that the minimum number of edge editions needed in order to
convert a graph into a caterpillar cannot be approximated in polynomial time to
within an additive term of O�n����, for � � � � �, unless P=NP.
Contribution of this paper: In this paper we study the complexity of edge modi-
fication problems on some well-studied classes of graphs. We show, among other
results, that deletion problems are NP-hard for perfect, chain, chordal, split and

asteroidal triple free graphs; and that editing problems are NP-hard for perfect and
comparability graphs. We also show that it is NP-hard to approximate compara-
bility modification problems to within a factor of ����	. The reader is referred to
Figure 1 which summarizes the complexity results for the (decision version of)
modification problems that we considered.
Positive complexity results are given for bounded degree input graphs: We give
a simple, general constant factor approximation algorithm for the deletion and
editing problems w.r.t. any hereditary property that is characterized by a finite set
of forbidden induced subgraphs. We also show that Chain Deletion and Editing,
Split Deletion and Threshold Deletion and Editing become polynomial when the
input degrees are bounded.
Organization of the paper: Section 2 contains simple basic results that show
connections between the complexity of related modification problems. Section 3
contains the main hardness results. Section 4 gives the positive results on bounded
degree graphs. For lack of space, some proofs are omitted and many corollaries
are only alluded to in Figure 1.

2 Basic Results

In this section we summarize some easy observations on modification problems,
which will help us deduce complexity results from results on related graph fami-
lies, and concentrate on those modification problems which are meaningful.
Definitions and Notation: All graphs in this paper are simple and contain no
self-loops. Let G � �V� E� be a graph. We denote its set V of vertices also by
V �G�. We denote by G the complement graph of G, i.e., G � �V�
E�, where

E � �V � V � n E. (Throughout, we abuse notation for the sake of brevity,
and for a set S we use S � S to denote f�s�� s�� � s�� s� � S� s� �� s�g.) If
G � �U�V�E� is bipartite then its bipartite complement is the bipartite graph
G � �U�V�
E�, where
E � �U � V � n E. For a subset A � V we denote by
GA the subgraph induced on the vertices of A. For a vertex v � V we denote
by N�v� the set of vertices adjacent to v in G. For a vertex v �� V we denote by
G 	 v the graph obtained by adding v to G as an isolated vertex. We denote by
G � v the graph obtained from G by adding v and connecting it to every other
vertex of G. For a graph property � the notation G � � implies that G satisfied
� . For basic definitions of graph properties and much more on the graph classes
discussed here see, e.g., [13, 6].
Let� be a graph property. If F is a set of non-edges such thatG � � �V� E	F � �
� and jF j
 k, then F is called a k-completion set w.r.t. � . k-deletion set and
k-editing set are similarly defined.
Basic Results: A graph property � is called hereditary if when a graph G sat-
isfies � every induced subgraph of G satisfies � . � is called hereditary on
subgraphs if when G satisfies � , every subgraph of G satisfies � . � is called
ancestral if whenG satisfies� , every supergraph of G satisfies� .

Proposition 1. If property � is hereditary on subgraphs then �-Deletion and
�-Editing are polynomially equivalent, and�-Completion is not meaningful.

Proposition 2. If � is an ancestral graph property then �-Completion and �-
Editing are polynomially equivalent, and�-Deletion is not meaningful.

++
++
++

++
++
++

++
++
++

++

++

++

++

++

++

++

++

++

++
+

+

++

++

+
+
*

++

++

++

chordal comparabilityco-chordal

interval
unit

threshold

cograph

permutation

interval

co-
comparability

proper
circ-arc

circ-arc
unit

 arc
circular

perfect

+
+

splitP

+

+

+

+

+

+

+

+

bipartite

chain
co-interval

AT-free

Fig. 1. The complexity status of edge modification problems for some graph classes.
A�B indicates that class A contains class B. The box to the left of each class contains
the status of the completion (top), editing (middle) and deletion (bottom) problems. �:
NP-hard, previously known; ��: NP-hard, new result; P: polynomial; �: not meaningful.

Proposition 3. If � and � � are graph properties such that for every graph G
and a vertex v �� V �G�, G satisfies� iff G 	 v satisfies� �, then �-Deletion is
polynomially reducible to � �-Deletion. If in addition, �� is a property such that
G � � � implies G 	 v � ��, then �-Completion (�-Editing) is polynomially
reducible to � �-Completion (��-Editing).

Proposition 4. If � and � � are graph properties such that for every graph G
and a vertex v �� V �G�, G satisfies� iff G� v satisfies� �, then�-Completion
is polynomially reducible to � �-Completion. If in addition,�� is a property such
that G � �� implies G� v � ��, then�-Deletion (�-Editing) is polynomially
reducible to � �-Deletion (��-Editing).

For a graph property� , we define the complementaryproperty� as follows: For
every graph G, G satisfies � iff G satisfies � . Some well known examples are
co-chordality and co-comparability.

Proposition 5. For every graph property� , �-Deletion and�-Completion are
polynomially equivalent.

Proposition 6. For every graph property� , �-Editing and�-Editing are poly-
nomially equivalent.

3 NP-Hard Modification Problems

3.1 Chain Graphs

A bipartite graphG � �P�Q� E� is called a chain graph if there is an ordering �
of the vertices in P , � � f�� � � � � jP jg � P , such that N������ � N������ �
� � � � N���jP j��. Yannakakis introduced this class of graphs and proved that
Chain Completion is NP-complete [34]. He also showed that G is a chain graph
iff it does not contain an independent pair of edges (an induced �K �). In this
section we prove that Chain Deletion is NP-complete. This result will be the
starting point to many of our subsequent reductions.

Lemma 1. The bipartite complement of a chain graph is a chain graph.

Proof. The claim follows from the observation that the ordering of containment
is reversed for the bipartite complement of a chain graph.

Corollary 1. Chain Deletion is NP-complete.

3.2 Perfect Graphs

A graph G � �V�E� is called perfect if for any induced subgraph H of G,
	�H� �
�H�, where 	�H� denotes the chromatic number of H , and
�H�
denotes the size of a maximum clique in H . It is easy to see that a perfect graph
contains no induced cycle of odd length.

Theorem 1. Perfect Completion is NP-hard.

Proof: Reduction from Chain Completion. Let � G � �P�Q�E�� k � be an
instanceof Chain Completion. Since Chain Completion is NP-hard even when the
input graph is connected [34], we can assume that the partition �P�Q� is known.
We build the following instance� P �G� � �N�E��� k � of Perfect Completion:
DefineN � P 	Q 	C , where

C � fv�q��q� �i� v
�
q��q��i� v

�
q��q� �i � �q�� q�� � Q�Q� �
 i
 k� �g �

andE � � E 	 �P � P � 	E�, where

E� � f �q�� v
�
q��q� �i�� �v

�
q��q� �i� v

�
q��q��i�� �v

�
q��q� �i� v

�
q��q� �i�� �v

�
q��q� �i� q�� �

�q�� q�� � Q�Q� �
 i
 k � �g �

We now prove the validity of the reduction.

 Suppose that F is a chaink-completion set forG, that isG� � �P�Q�E	F �

is a chain graph. We claim thatF is also a perfect k-completion set for P �G�.
Let K � �N�E� 	 F � and let H � �VH � EH� be any induced subgraph of
K . We have to show that
�H� � 	�H�. If EH � � then H is trivially
perfect, since 	�H� �
�H� � �. We therefore assume that EH �� �. Let
V� � P � VH and let V� � VH n V� . If jV�j � � we can color H with two
colors and
�H� � 	�H�. Otherwise, there are two cases to examine:

1. Suppose there is a vertex in V� which is adjacent to all vertices in V� .
Then w�H� � jV�j � �. We can color H with jV�j � � colors in the
following way:
(a) Color the vertices of V� with jV�j colors.
(b) Color the vertices of Q with color number jV�j� �.
(c) Color all vertices of type v�q��q� �i with color number jV�j� �.
(d) Color all vertices of types v�q��q� �i and v�q��q� �i with color number

jV�j.
Hence, 	�H�

�H� and the claim follows (since always
�H�

	�H�).

2. If no vertex in V� is adjacent to all vertices in V� , then w�H� � jV�j
and since G� is a chain graph there is a vertex p � V� , such that no
vertex in V� � Q is adjacent to p. We can color the vertices of H using
jV�j colors as follows:
(a) Color the vertices of V� with jV�j colors.
(b) Color the vertices of V� �Q with the color of p.
(c) Color the vertices of type v�q��q� �i with the color of p.
(d) Color the vertices of types v�q��q� �i and v�q� �q��i with any other color.
If jV�j � � we used jV�j colors. If jV�j � � we used two colors. In any
case, 	�H� �
�H�.

� Suppose that F is a perfect k-completion set. LetF � � F��P�Q�. We will
show thatG� � �P�Q�E	F �� is a chain graph. Suppose to the contrary that
G� contains a pair of independent edges �p�� q��� �p�� q�� such that p�� p� �
P and q�� q� � Q. Since jF j
 k, there exists some �
 i
 k�� such that
the five edges �q�� v

�
q��q� �i�� �q�� v

�
q��q� �i�� �v

�
q��q� �i� v

�
q��q� �i�� �v

�
q��q� �i� q��

and �v�q��q� �i� q�� are not in F . Hence, �N�E�	F � contains an induced cycle
of odd length: If �q�� q�� � F then fq�� v�q��q� �i ,v

�
q��q� �i ,v

�
q��q� �i ,q�g induce

a cycle of length 5. Otherwise, fp�� q� ,v�q��q� �i,v
�
q� �q� �i,v

�
q� �q� �i, q�� p�g in-

duce a cycle of length 7. In any case we arrive at a contradiction.

The perfect graph theorem by Lovasz [25] states that the complement of a perfect
graph is perfect. Hence, we conclude that Perfect Deletion is also NP-hard.

Theorem 2. Perfect Editing is NP-hard.

Proof. Reduction from Chain Completion. Let � G � �P�Q� E�� k � be an
instance of Chain Completion. We build the following instance � P �G� �
�N�E��� k � of Perfect Editing: DefineN � P 	Q 	C 	D, where

C � fv�q��q� �i� v
�
q��q��i� v

�
q��q� �i � �q�� q�� � Q�Q� �
 i
 k� �g �

D � fw�
p�q�i� w

�
p�q�i� w

�
p�q�i � �p� q� � �P � P � 	E� �
 i
 k � �g �

andE � � E 	 �P � P � 	E� 	E� , where

E� � f �q�� v
�
q��q� �i�� �v

�
q��q� �i� v

�
q��q��i�� �v

�
q��q� �i� v

�
q��q� �i�� �v

�
q��q� �i� q�� �

�q�� q�� � Q�Q� �
 i
 k � �g �

E� � f �p�w�
p�q�i�� �q�w

�
p�q�i�� �p�w

�
p�q�i�� �w

�
p�q�i� w

�
p�q�i�� �w

�
p�q�i� q� �

�p� q� � E 	 �P � P �� �
 i
 k � �g �

The validity proof is similar to that of Theorem 1 and is omitted. The additional
edges of E� “protect” the edges in E 	 �P � P � and prevent their removal.

3.3 Chordal Graphs

A graph is called chordal if it contains no induced cycle of length greater than 3.
We show in this section that Chordal Deletion is NP-complete.

Theorem 3. Chordal Deletion is NP-complete.

Proof: The problem is in NP since chordal graphs can be recognized in linear
time [31]. We prove NP-hardness by reduction from Chain Deletion. Let � G �
�P�Q� E�� k � be an instance of Chain Deletion. Build the following instance
� C�G� � �V �� E��� k � of Chordal Deletion: Define V � � P 	Q	 VP 	VQ ,
where VP � fv�� � � � � vkg and VQ � fvk��� � � � � v�kg. DefineE� � E 	 �P �
P � 	 �Q � Q� 	 �P � VP � 	 �Q � VQ�. We show that the Chordal Deletion
instance has a solution iff the Chain Deletion instance has a solution.

 Suppose that F is a chain k-deletion set. We claim that F is also a chordal

k-deletion set. Let H � �V �� E� n F �. Suppose to the contrary that H is not
chordal, and let C be an induced cycle of length greater than 3 in H . If C
contains any vertex v � VP then it must contain at least two vertices from
P , a contradiction. The same holds for VQ . Hence,C � VP � C � VQ � �.
Since P and Q are cliques, C must be of the form fp�� p�� q�� q�g, where
p�� p� � P and q�� q� � Q. But then �p�� q�� and �p�� q�� are independent
edges in �P�Q�E n F �, a contradiction.

� Suppose that F is a chordal k-deletion set. We will prove that F � E is a
chain k-deletion set. Let G� � �P�Q�E nF �. If G� is not a chain graph then
it contains a pair of independent edges �p�� q��� �p�� q��, where p�� p� � P
and q�� q� � Q. In C�G�, p�� p� and also q�� q� were connected by an edge
and k edge-disjoint paths of length 2. Hence, both pairs are still connected
in H � �V �� E� nF � and p�� q�� q� and p� are on an induced cycle of length
at least 4 in H , a contradiction.

3.4 Split graphs

A graphG is called a split graph if there is a partition �K�I� of V �G�, so that K
induces a clique and I induces an independent set. We prove that Split Deletion
is NP-complete. Since the complement of a split graph is a split graph, this result
implies that Split Completion is also NP-complete.

Theorem 4. Split Deletion is NP-complete.

Proof. Membership in NP is trivial. We prove NP-hardness by reduction from
CLIQUE. Let � G � �V� E�� k � be an instance of CLIQUE. Build the fol-
lowing instance � G� � �V �� E��� k� � n��n � k � �� � � � of Split
Deletion: Define V � � V 	 W , where W � fw�� � � � � wn���g, and define
E� � E 	 �V � W �. If G has a clique K of size at least k, then denote
K � � K 	 fw�g and partition V � into �K�� V � n K ��. The number of edges
that should be deleted from G� so that it becomes a split graph w.r.t. this partition
is at most n��n�k��

�
n�k
�

�
� n��n�k���. On the other hand, suppose that

G� has a k�-deletion set, resulting in a split partition �K�I�. If jK �V j � k then
at least n��n� �k � ��� � k� edges in �V nK�� �W nK� should have been
deleted from G�, a contradiction.

3.5 AT-Free Graphs

An asteroidal triple is a set of three independent vertices such that there is a
path between every pair of vertices which avoids the neighborhood of the third
vertex. G is called Asteroidal Triple free, or AT-free, if G contains no asteroidal
triple. Several families of graphs are asteroidal triple free, e.g., interval and co-
comparability graphs. For characterizations of AT-free graphs see cf. [9]. We
prove here that AT-free Deletion is NP-complete.

Theorem 5. AT-free Deletion is NP-complete.

Proof. The problem is clearly in NP. The hardness proof is by reduction from
Chain Deletion. Let � G � �U�V� E�� k � be an instance of Chain Deletion.
Build the following instance� �V �� E��� k � of AT-free Deletion: Define V � �
U 	 V 	 Vq 	 Vw 	 Vz , where Vq � fq�� � � � � qkg� Vw � fw�� � � � � wk��g and
Vz � fz�� � � � � zk��g. Define E� � E 	 �U � U� 	 �U � Vq� 	 �U � Vw� 	
��Vw 	 Vz�� �Vw 	 Vz��. The validity proof is omitted.

3.6 Comparability graphs

A graph is called a comparability graph if it has a transitive orientation of its
edges, that is, an orientation F for which �a� b�� �b� c� � F implies �a� c� � F .
We show below that Comparability Editing is NP-complete. We also prove that
it is NP-hard to approximate comparability modification problems to within a
factor of ����	.

Theorem 6. Comparability Editing is NP-complete.

Proof: Membership in NP is trivial. The hardness proof is by reduction from
MAX-CUT. Given a MAX-CUT instance� G � �V�E�� k � we build a Com-
parability Editing instance � C�G� � �N�E��� k� � jEj � k � as follows:
DefineN � V 	fe�u�v� e

�
u�v � �u� v� � Eg 	W , whereW � fwv

i � v � V� �

i
 �k� � �g. Also defineE � � E� 	E� , where

E� � f�v�wv
i � � v � V� w

v
i � Wg �

E� � f�v� e�v�w�� �e
�
v�w� e

�
v�w�� �e

�
v�w� w� � �v�w� � Eg �

(for each �v�w� � E the choice of which vertex to connect to e�v�w is arbitrary).
In other words, we attach �k� � � private neighbors to each original vertex, and
replace each edge by a path of length three. The validity proof follows.

 Suppose that �V�� V�� is a cut of weight at least k inG, i.e., jE��V��V��j �

k. For each edge e � �v�w� � ��V�� V��	 �V�� V����E we remove the
edge �e�v�w� e

�
v�w� from its corresponding path in C�G�. In total, we remove

k� edges. We now give a transitive orientation to the resulting graph, thus
proving that it is a comparability graph. Orient each edge incident on v � V�
out of v, and each edge incident on v � V� into v. For each edge �v�w� �
�V� � V�� �E, orient �e�v�w� e

�
v�w� from e�v�w to e�v�w .

� Suppose that F is a solution to the comparability instance, and let H �
�N�E��F � be the modified comparability graph. Let R be a transitive ori-
entation of H . For each vertex v � V its private neighbors in N�v� �W
ensure that either all edges incident on v are directed in R into v, or they
are all directed out of v. Define a partition �V�� V�� of V , in which v � V�
iff all edges incident on v are directed into v. We shall prove that the weight
of this cut is at least k. Since we modified at most jEj � k edges, there are
at least k paths in H of the form fv� e�v�w� e

�
v�w� wg, for some �v�w� � E,

such that no edge in F is incident on any of those paths. For each such path,
its corresponding edge must be across the cut, as otherwiseR could not have
been transitive.

A slight modification of the above reduction shows that if Comparability Editing
can be approximated with ratio �� � then MAX-CUT can be approximated with
ratio ���� � ��. In [32, 20] it is shown that approximating MAX-CUT to within
a factor of �	��
 is NP-hard. We conclude:

Corollary 2. It is NP-hard to approximate Comparability Editing to within a
factor of ����	.

We comment that our reduction from MAX-CUT applies also to Comparability
Completion and Comparability Deletion. Hence, it is also NP-hard to approxi-
mate the completion and deletion problems to within a factor of ����	.

4 Positive Results On Bounded Degree Graphs

We present below a constant factor approximation algorithm for the deletion and
editing problems on bounded degree graphs. The result applies to any hereditary
family which can be characterized by a finite set of forbidden induced subgraphs.
Examples include cographs and claw-free graphs. An analogous result for vertex
deletion problems was given by Yannakakis and Lund [26]. We also show that for

boundeddegree graphs Chain Deletion and Editing, Split Deletion and Threshold
Deletion and Editing are polynomial.
Let � be an hereditary graph property that can be characterized by a finite set F
of forbidden induced subgraphs. Let G � �V� E� be the input graph. We assume
that each forbidden subgraph contains at most t vertices and thatG has maximum
degree d. In the following we further assume that no forbidden subgraph contains
an isolated vertex. The approximation algorithm follows.

1) A� �
2) While GV nA contains an induced subgraphH isomorphic to some F � F , do:

A� A 	 V �H�.
3) Remove all edges f�v�w� � E � v � A�w � V g from G.

The algorithm is clearly polynomial since finding a forbidden induced subgraph
with at most t vertices can be done in O�nt� time.

Theorem 7. The algorithm approximates�-Deletion and�-Editing to within a
factor of td.

Proof. Correctness: After Step 2 is completed, GV nA contains no forbidden
induced subgraph. After Step 3 is completed, all vertices in A become isolated.
Since no forbidden induced subgraph contains an isolated vertex, at the end of
the algorithm G � � .
Approximation ratio: Let F be an optimum solution of size k. For any forbidden
induced subgraph H found at Step 2 of the algorithm, F must contain an edge
incident on H . Hence, at the end of the algorithm jAj
 kt, and at most ktd
edges are deleted from G.

It can be shown that our result extends for all hereditary properties that can be
characterized by a finite set of forbidden induced subgraphs.
In the following we give some polynomial results for edge modification problems
on bounded degree graphs. These results are derived by observing that for the
properties in question the search space becomes bounded when the problem is
restricted to bounded degree graphs.

Theorem 8. Chain Deletion and Chain Editing are polynomially solvable on
bounded degree graphs.

Theorem 9. Split Deletion is polynomially solvable on bounded degree graphs.

Theorem 10. Threshold Deletion and Threshold Editing are polynomially solv-
able on bounded degree graphs.

5 Concluding Remarks

Most of the results obtained here and previously on edge modification problems
are hardness results. Proving a general hardness result similar to that obtained for
vertex deletion problems [24], is a challenging open problem.
The study of bounded-degree edge modification problems is still very prelim-
inary. Such restriction is motivated by some real applications (see, e.g., [21]).

Other realistic restrictions may be appropriate for particular problems. Studying
the parameterized complexity of the NP-hard problems is also of interest.
Like every attempt to organize a body of results into a table or a diagram, Figure 1
immediately identifies numerous open problems. Many of those have not been
investigated yet, and we are in the process of studying some of them.

References

1. A. Aggarwal, P. Klein, and R. Ravi. Cutting down on fill using nested dissec-
tion: provably good elimination orderings. In A. George, J. R. Gilbert, and
J. W. H. Liu, editors, Graph Theory and Sparse Matrix Computation, pages
31–55. Springer, 1993.

2. T. Asano. An application of duality to edge-deletion problems. SIAM Journal
on Computing, 16(2):312–331, 1987.

3. T. Asano and T. Hirata. Edge-deletion and edge-contraction problems. In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Com-
puting, pages 245–254, San Francisco, California, 5–7 May 1982.

4. A. Ben-Dor. Private communication, 1996.
5. H. Bodlaender and B. de Fluiter. On intervalizing k-colored graphs for DNA

physical mapping. Discrete Applied Math., 71:55–77, 1996.
6. A. Brandst�adt and J. Spinrad. Graph classes - a survey. manuscript, 1997.
7. L. Cai. Fixed-parameter tractability of graph modification problems for

hereditary properties. Information Processing Letters, 58:171–176, 1996.
8. K. Cirino, S. Muthukrishnan, N. Narayanaswamy, and H. Ramesh. Graph

editing to bipartite interval graphs: exact and asymptotic bounds. Technical
report, Bell Laboratories Innovations, Lucent Technologies, 1996.

9. D. G. Corneil, S. Olariu, and L. Stewart. The linear structure of graphs:
asteroidal triple-free graphs. In Proc. 19th Int. Workshop (WG ’93), Graph-
Theoretic Concepts in Computer Science, pages 211–224. Springer-Verlag,
1994. LNCS 790.

10. El-Mallah and Colbourn. The complexity of some edge deletion prob-
lems. IEEETCS: IEEE Transactions on Circuits and Systems, 35(3):354–
362, 1988.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco,
1979.

12. P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes
against physical mapping of DNA. Journal of Computational Biology,
2(1):139–152, 1995.

13. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

14. M. C. Golumbic, H. Kaplan, and R. Shamir. On the complexity of DNA
physical mapping. Advances in Applied Mathematics, 15:251–261, 1994.

15. M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems.
Journal of Algorithms, 19:449–473, 1995.

16. M. C. Golumbic and R. Shamir. Complexity and algorithms for reasoning
about time: A graph-theoretic approach. J. ACM, 40:1108–1133, 1993.

17. S. L. Hakiri and N. R. Young. Orienting graphs to optimize reachability.
Information Proc. Letters, 1997.

18. P. L. Hammer, T. Ibaraki, and U. N. Peled. Threshold numbers and threshold
completions. In P. Hansen, editor, Studies on Graphs and Discrete Program-
ming, pages 125–145. North-Holland, 1981.

19. P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica,
1:275–284, 1981.

20. J. Håstad. Some optimal inapproximability results. In Proc. 29th STOC,
pages 1–10, 1997. Full version: E-CCC Report number TR97-037.

21. H. Kaplan and R. Shamir. Physical maps and interval sandwich problems:
Bounded degrees help. In Proc. ISTCS, pages 195–201, 1996.

22. H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized com-
pletion problems on chordal and interval graphs: Minimum fill-in and physi-
cal mapping. In Proceedingsof the 35th Symposium on Foundations of Com-
puter Science, pages 780–791. IEEE Computer Science Press, Los Alamitos,
California, 1994. to appear in SIAM J. Computing.

23. T. Kashiwabara and T. Fujisawa. An NP-complete problem on interval
graphs. In IEEE International Symposium on Circuits and Systems (12th),
pages 82–83, 1979.

24. J. Lewis and M. Yannakakis. The node deletion problem for hereditary prop-
erties is NP-complete. J. Comput. Sys. Sci., 20:219–230, 1980.

25. L. Lovás. A characterization of perfect graphs. J. Combin. Theory, pages
95–98, 1972.

26. C. Lund and M. Yannakakis. The approximation of maximum subgraph
problems. In A. Lingas, R. Karlsson, and S. Carlsson, editors, Proceed-
ings of International Conferenceon Automata, Languagesand Programming
(ICALP ’91), pages 40–51, Berlin, Germany, 1993. Springer. LNCS 700.

27. F. Margot. Some complexity results about threshold graphs. DAMATH:
Discrete Applied Mathematics and Combinatorial Operations Research and
Computer Science, 49, 1994.

28. A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algo-
rithm for the minimum fill-in problem. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC’98), pages 41–47, New
York, May 23–26 1998. ACM Press.

29. R. Ravi, A. Agrawal, and P. Klein. Ordering problems approximated: single
processor scheduling and interval graph completion. In Proc. ICALP 1991,
pages 751–762. Springer, 1991. LNCS 510.

30. J. D. Rose. A graph-theoretic study of the numerical solution of sparse posi-
tive definite systems of linear equations. In R. C. Reed, editor, Graph Theory
and Computing, pages 183–217. Academic Press, N.Y., 1972.

31. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, text acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J. Computing, 13:566–579, 1984.

32. L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson. Gadgets, approxima-
tion, and linear programming. In Proc. IEEE Symposium on Foundations of
Computer Science (FOCS’96), pages 617–626, 1996.

33. J. Xue. Edge-maximal triangulated subgraph and heuristics for the maximum
clique problem. Technical report, Graduate School of Management, Clark
University, Worcester, MA, July 1993.

34. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.
Alg. Disc. Meth., 2, 1981.

35. M. Yannakakis. Edge deletion problems. SIAM J. Computing, 10(2):297–
309, 1981.

