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Abstract. In an edge modification problem one has to change the edge set of
a given graph as little as possible so as to satisfy a certain property. We prove
in this paper the NP-hardness of a variety of edge modification problems with
respect to some well-studied classes of graphs. These include perfect, chordal,
chain, comparability, split and asteroidal triple free. We show that some of these
problems become polynomial when theinput graph has bounded degree. We also
give a general constant factor approximation algorithm for deletion and editing
problems on bounded degree graphs with respect to properties that can be char-
acterized by afinite set of forbidden induced subgraphs.

1 Introduction

Problem Definition: Edge modification problemscall for making small changes
to the edge set of aninput graph in order to obtain agraph with adesired property.
These include completion, deletion and editing problems. Let IT be a family of
graphs. In the IT-Editing problem theinput isagraph G = (V, E), and the goal
istofindaminimumset F C V x V suchthat G' = (V, EAF) € II, where
EAF denotes the symmetric difference between E and F. In the IT-Deletion
problem only edge deletions are permitted, i.e., F C E. The problem is equiva-
lent to finding a maximum subgraph of G with property II. In the IT-Completion
problem one is only allowed to add edges, i.e., F N E = 0. Equivalently, we
seek a minimum supergraph of G with property II. In this paper we study edge
modification problemswith respect to some well-studied graph properties.
Motivation: Graph modification problems are fundamental in graph theory. Al-
ready in 1979, Garey and Johnson mentioned 18 different types of vertex and
edgemodification problems[11, Section A1.2]. Edge modification problemshave
applicationsin several fields, including molecul ar biology and numerical algebra.
In many application areas a graph is used to model experimental data, and then
edge modifications correspond to correcting errors in the data: Adding an edge
corrects afal se negative error, and deleting an edge corrects afalse positive error.
We summarize below some of these applications. Definitions of the graph classes
are givenin Section 3.

Interval modification problems have important applications in physical mapping
of DNA (see [5, 8, 12, 14]). Depending on the biotechnology used and the kind
of experimental errors, completion, deletion and editing problem arise, both for
interval graphsand for unit interval graphs.

The chordal completion problem, which is also called the minimum fill-in prob-
lem, ariseswhen numerically performing a Gaussian elimination on asparse sym-
metric positive-definite matrix [30].



Chordal deletion problems occur when trying to solve the CLIQUE problem.
Some heuristicsfor finding alarge clique (see, e.g., [33]) aim to find a maximum
chordal subgraph of the input graph, on which a maximum clique can be found
in polynomial time.

Previous Results: Strong negative results are known for vertex deletion prob-
lems: Lewis and Yannakakis [24] showed that for any property which is non-
trivial and hereditary, the maximum induced subgraph problem is NP-compl ete.
Furthermore L und and Yannakakis[26] proved that for any such property, and for
every e > 0, the maximum induced subgraph problem cannot be approximated
with ratio 2°°&*/*~° ™ in quasi-polynomial time, unless P = NP. (Throughout
we use n and m to denote the number of vertices and edges, respectively, in a
graph).

For edge modification problems no such general results are known, although
some attempts have been made to go beyond specific graph properties [3, 10,
2]. Most of the results obtained so far concerning edge modification problems
are NP-hardness ones. (For simplicity we shall often refer to the decision ver-
sion of the optimization problems). Chain Completion and Chordal Completion
were shown to be NP-complete in [34]. As noted in [12], the NP-completeness
of Interval Completion and Unit Interval Completion also follows from [34]. In-
terval Completion wasdirectly shown to be NP-completein [11, problem GT35]
and [23]. Deletion problems on interval graphs and unit interval graphs were
proven to be NP-complete in [12]. Cograph Completion and Cograph Deletion
were shown to be NP-complete in [10]. Threshold Completion and Threshold
Deletion were shown to be NP-complete in [27]. Comparability Completion was
shown to be NP-complete in [17] and Comparability Deletion was shown to be
NP-completein [35].

Much fewer results are known for editing problems: Chordal Editing was proven
to be NP-complete in [4]. The connected bipartite interval (caterpillar) editing
problem was proven to be NP-complete in [8]. Split Editing was shown to be
polynomial in [19].

Several authors studied variants of the completion problem, motivated by DNA
mapping, in which the input graph is pre-colored and the required supergraph
also obeysthe coloring (see[5] and referencesthereof). Other biologically moti-
vated problems, called sandwich problems, seek a supergraph satisfying a given
property which does not include (pre-defined) forbidden edges. Polynomial al-
gorithms or NP-hardness results are known for many sandwich problems [16,
15, 18, 21]. Several results on the parametric complexity of completion problems
were also obtained [22, 7].

Approximation algorithms exist for several problems. In [28] an 8% approxima-
tion algorithm is given for the minimum fill-in problem, where & denotesthe size
of an optimum solution. In [1] an O(m!/* log®*® n) approximation algorithm is
given for the minimum chordal supergraph problem (where one wishes to mini-
mize the total number of edgesin the resulting graph) For the minimum interval
supergraph problem an O(log? n) approximation algorithm was given in [29].
In[8] it was shown that the minimum number of edge editions needed in order to
convert agraph into a caterpillar cannot be approximated in polynomial time to
within an additive term of O(n'~¢), for 0 < € < 1, unlessP=NP,

Contribution of thispaper: In this paper we study the complexity of edgemodi-
fication problems on somewell-studied classesof graphs. We show, among other
results, that deletion problems are NP-hard for perfect, chain, chordal, split and



asteroidal triple free graphs; and that editing problemsare NP-hard for perfect and
comparability graphs. We also show that it is NP-hard to approximate compara-
bility modification problemsto within afactor of 18/17. Thereader isreferred to
Figure 1 which summarizes the complexity results for the (decision version of)
modification problems that we considered.

Positive complexity results are given for bounded degree input graphs: We give
asimple, general constant factor approximation algorithm for the deletion and
editing problemsw.r.t. any hereditary property that is characterized by afinite set
of forbidden induced subgraphs. We also show that Chain Deletion and Editing,
Split Deletion and Threshold Deletion and Editing become polynomial when the
input degrees are bounded.

Organization of the paper: Section 2 contains simple basic results that show
connections between the complexity of related modification problems. Section 3
containsthe main hardnessresults. Section 4 givesthe positive results on bounded
degree graphs. For lack of space, some proofs are omitted and many corollaries
areonly aluded toin Figure 1.

2 Basic Results

In this section we summarize some easy observations on modification problems,
which will help us deduce complexity results from results on related graph fami-
lies, and concentrate on those modification problems which are meaningful.
Definitions and Notation: All graphs in this paper are simple and contain no
self-loops. Let G = (V, E) be agraph. We denoteits set V' of vertices also by
V(G). We denote by G the complement graph of G, i.e, G = (V, E), where
E = (V x V) \ E. (Throughout, we abuse notation for the sake of brevity,
and for aset S weuse S x S to denote {(s1,s2) : 51,82 € 5,81 # s2}.) If
G = (U,V, E) is bipartite then its bipartite complement is the bipartite graph
G = (U, V,E),where E = (U x V) \ E. For asubset A C V we denote by
G 4 the subgraph induced on the vertices of A. For avertex v € V we denote
by N(v) the set of verticesadjacent tov in G. For avertex v ¢ V' we denote by
G U v the graph obtained by adding v to G as an isolated vertex. We denote by
G + v the graph obtained from G by adding » and connecting it to every other
vertex of G. For agraph property IT thenotation G € IT impliesthat G satisfied
I1. For basic definitions of graph properties and much more on the graph classes
discussed here see, e.g., [13, 6].

Let IT beagraph property. If F isaset of non-edgessuchthat G’ = (V, EUF) €
IT and |F| < k, then F iscalled ak-completion set w.r.t. IT. k-deletion set and
k-editing set are similarly defined.

Basic Results: A graph property IT is caled hereditary if when a graph G sat-
isfies IT every induced subgraph of G satisfies IT. IT is called hereditary on
subgraphsif when G satisfies I, every subgraph of G satisfies IT. IT is called
ancestral if when G satisfies IT, every supergraph of G satisfies I1.

Proposition 1. If property II is hereditary on subgraphs then I7-Deletion and
IT-Editing are polynomially equivalent, and IT-Completion is not meaningful.

Proposition 2. If IT is an ancestral graph property then IT-Completion and II-
Editing are polynomially equivalent, and IT-Deletion is not meaningful.
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Fig. 1. The complexity status of edge modification problems for some graph classes.
A—B indicates that class A contains class B. The box to the left of each class contains
the status of the completion (top), editing (middle) and deletion (bottom) problems. +:
NP-hard, previously known; ++: NP-hard, new result; P: polynomial; : not meaningful.



Proposition 3. If IT and IT' are graph properties such that for every graph G

andavertexv € V(G), G satisfies IT iff G U v satisfies IT’, then IT-Deletion is
polynomially reducibleto IT’-Deletion. If in addition, II' is a property such that
G € II' impliesG U v € IT', then IT-Completion (IT-Editing) is polynomially
reducibleto IT*-Completion (I'-Editing).

Proposition 4. If IT and IT’ are graph properties such that for every graph G

andavertexv € V(QG), G satisfies IT iff G + v satisfies IT', then IT-Completion
ispolynomially reducibleto I7'-Completion. If in addition, IT' isa property such
that G € II' impliesG + v € IT’, then IT-Deletion (II-Editing) is polynomially
reducibleto IT'-Deletion (II'-Editing).

For agraph property 11, we definethe complementary property IT asfollows: For
every graph G, G satisfies IT iff G satisfies IT. Some well known examples are
co-chordality and co-comparability.

Proposition 5. For every graph property IT, IT-Deletion and IT-Completion are
polynomially equivalent.

Proposition 6. For every graph property IT, IT-Editing and IT-Editing are poly-
nomially equivalent.

3 NP-Hard Modification Problems

3.1 Chain Graphs

A bipartite graph G = (P, Q, E) iscalled achain graphif thereisan ordering =
of theverticesin P, « : {1,...,|P|} — P, suchthat N(=(1)) C N(n(2)) C
... € N(=(]P|)). Yannakakis introduced this class of graphs and proved that
Chain Completion is NP-complete [34]. He also showed that G is a chain graph
iff it does not contain an independent pair of edges (an induced 2K ;). In this
section we prove that Chain Deletion is NP-complete. This result will be the
starting point to many of our subsequent reductions.

Lemmal. The bipartite complement of a chain graphisa chain graph.

Proof. The claim follows from the observation that the ordering of containment
isreversed for the bipartite complement of achain graph.m

Corollary 1. Chain Deletion is NP-complete.

3.2 Perfect Graphs

A graph G = (V, E) is called perfect if for any induced subgraph H of G,
x(H) = w(H), where x(H) denotes the chromatic number of H, and w(H)
denotesthe size of amaximum cliquein H. It is easy to seethat a perfect graph
containsno induced cycle of odd length.

Theorem 1. Perfect Completionis NP-hard.



Proof:  Reduction from Chain Completion. Let < G = (P,Q, E),k > bean
instanceof Chain Completion. Since Chain CompletionisNP-hard even when the
input graph is connected [34], we can assume that the partition (P, Q) isknown.
Webuild thefollowing instance < P(G) = (N, E'), k > of Perfect Completion:
DefineN = P U Q U C, where

C= {’U;1192:i"U§1:Q2:i’v31192:i : (q17q2) €EQ@xQ,1<ilk+ 1} ’

andE' = EU (P x P)U Ey, where

1 1 2 2 3 3
E, = { (ql 1Vq1,92 :i)7 (v<11,<12 i1l v411:<12,i)7 (v<11,<12 i1 Vg1,92 ,i)7 (v<11:<12 ks QZ) :

(1, 02) EQxQ,1<i<k+1}.

We now prove the validity of the reduction.

= Supposethat F isachaink-completion setfor G, thatisG' = (P,Q, EUF)
isachaingraph. Weclaimthat F' isalsoaperfect k-completion set for P(G).
Let K = (N,E'U F) andlet H = (Vi, Ex) be any induced subgraph of
K. We have to show that w(H) = x(H). If Ex = 0 then H is trividly
perfect, sincex(H) = w(H) = 1. We therefore assumethat Ex # 0. Let
Vi = PNnVgandlet V3 = Vg \ V1. If |V1] = 0 we cancolor H with two
colorsand w(H) = x(H). Otherwise, there are two casesto examine:

1. Supposethereisavertex in Va which is adjacent to al verticesin V3.
Thenw(H) > |Vi| + 1. Wecan color H with |V1| + 1 colorsin the
following way:

(a) Color the vertices of V4 with |V;| colors.
(b) Color the vertices of @ with color number |V1| + 1.

(c) Color al vertices of typev?, ,, ; With color number [V | + 1.

(d) Color all vertices of typesvg, 4, ; and v3, 4, ; With color number
[Val.

Hence, x(H) < w(H) and the claim follows (since always w(H) <

x(H))-

2. If no vertex in V2 is adjacent to all verticesin Vi, then w(H) > |V1|
and since G' is a chain graph there is a vertex p € V;, such that no
vertex in V2 N @ isadjacent to p. We can color the vertices of H using
|V1]| colors asfollows:

(8 Color the vertices of V1 with |V colors.
(b) Color the vertices of V2 N @ with the color of p.
(c) Color the vertices of type v? ; with the color of p.

491,92,
(d) Color theverticesof typesvy, o, ; andw’, ., ; withany other color.

q1.92,%
If V1| > 1 weused |V1]| colors. If |[V;| = 1 we used two colors. In any

case, x(H) = w(H).
< Supposethat F isaperfect k-completion set. Let F' = FN(Px Q). Wewill
showthat G’ = (P, @, EUF') isachain graph. Supposeto the contrary that
G’ containsa pair of independent edges(p1,4q1), (p2,g2) suchthat p1,p2 €

Pandgi, g2 € Q.Since|F| < k, thereexistssomel < ¢ < k + 1 suchthat
the five edgas (ql ’ ’U§1192 :i)’ (ql ’ U31192 :i)’ (v<111:<12 ks U31192 :i)’ (v<111:<12 kL qz)

and (v2, 4,.:,q2) @enotin F. Hence, (N, E'UF) containsan induced cycle
of odd length: If (q1,42) € .F then {‘117"’14111,412 i ""221:412 i ’U31192 g2} indgce
acycle of length 5. Otherwise, {p1, 1,0, g5 ,iV2, 1g2.iVay sa,i» 92+ P2} iN-
duceacycleof length 7. In any case we arrive at a contradiction. m



The perfect graph theorem by Lovasz [25] states that the complement of aperfect
graphis perfect. Hence, we concludethat Perfect Deletion is also NP-hard.

Theorem 2. Perfect Editing is NP-hard.

Proof. Reduction from Chain Completion. Let < G = (P,Q, E),k > bean
instance of Chain Completion. We build the following instance < P(G) =
(N, E'),k > of Perfect Editing: DefineN = P UQ U C U D, where

C= {”4111,q2,i’”21.412,1"”21,412,1' : (q17q2) €EQ@xQ,1<ilk+ 1} ’

D= {w;,q,i’w;,q,i’w;,q,i :(p,g) €E(PXxP)UE,1<i<k+1},
and E' = EU (P x P)U E; U Ez, where

1 1 2 2 3 3
Er ={ (41,94,,02,) (V41,021 Y21,92,i) s (V41,0261 Va1,02.,3) (Va1 105,69 22)

(q1,qz)€Q><Q,1§i§k+1},
B ={ (p, w;,q,i)’ (a, w;,q,i)’ (p, wzznq,i)’ (wzznq,i’ w;,q,i)’ (w;,q,i’ q):

(p,g) e EU(Px P),1 <i<k+1}.

The validity proof is similar to that of Theorem 1 and is omitted. The additional
edgesof E; “protect” the edgesin E U (P x P) and prevent their removal.m

3.3 Chordal Graphs

A graphiscalled chordal if it contains no induced cycle of length greater than 3.
We show in this section that Chordal Deletion is NP-complete.

Theorem 3. Chordal Deletion is NP-complete.

Proof: The problemisin NP since chordal graphs can be recognized in linear

time[31]. We prove NP-hardnessby reduction from Chain Deletion. Let < G =

(P,Q, E),k > beaninstance of Chain Deletion. Build the following instance

< C(G) = (V',E'),k > of Chordal Deletion: DefineV' = PUQU Ve UV,

where Ve = {v1,...,vx} and Vg = {vr41,...,v2x}. DefineE' = E U (P x

PYU(Q x @)U (P x Vp)U(Q x Vg). We show that the Chordal Deletion

instance has asolution iff the Chain Deletion instance has a solution.

= Supposethat F is achain k-deletion set. We claim that F is also a chordal
k-deletionset. Let H = (V', E' \ F). Supposeto the contrary that H is not
chordal, and let C be an induced cycle of length greater than 3 in H. If C
contains any vertex v € Vp then it must contain at least two vertices from
P, acontradiction. Thesameholdsfor V. Hence, CNVp = CN Vg = 0.
Since P and @ are cliques, C must be of the form {p1,p2,¢1,q2}, where
p1,p2 € Pandqi,g: € Q. Butthen (p1,g2) and (pz2,q:) are independent
edgesin (P, Q, E \ F), acontradiction.

< Supposethat F is achorda k-deletion set. We will provethat F N E isa
chaink-deletionset. Let G' = (P, @, E\ F). If G' isnot achain graph then
it containsa pair of independent edges (p1,q1), (p2,492), wherep, ,p2 € P
andgi,q2 € Q. InC(G), p1,p2 and aso g1, g2 Were connected by an edge
and k edge-digoint paths of length 2. Hence, both pairs are still connected
inH = (V',E'\ F) andp1, g1, g2 and p; are on aninduced cycle of length
atleast 4in H, acontradiction. m



3.4 Split graphs

A graph G iscalled asplit graph if thereisapartition (K, I) of V(G), sothat K
inducesa clique and I induces an independent set. We prove that Split Deletion
is NP-complete. Since the complement of a split graphisasplit graph, thisresult
impliesthat Split Completion is also NP-complete.

Theorem 4. Split Deletion is NP-complete.

Proof. Membership in NP is trivial. We prove NP-hardness by reduction from
CLIQUE. Let < G = (V, E),k > beaninstance of CLIQUE. Build the fol-
lowing instance < G' = (V',E'), k2 = n®(n —k + 1) — 1 > of Split
Deletion: Define V! = V U W, where W = {w1,...,w,2,,}, and define
E' = EU(V x W). If G hasaclique K of size at least k, then dencte
K' = K U {w;} and partition V' into (K', V' \ K'). The number of edges
that should be deleted from G* so that it becomesasplit graph w.r.t. this partition
isat mostn®(n— k) + (";*) < n®(n—k+1). Ontheother hand, supposethat
G’ hasak;-deletion set, resulting in asplit partition (K, I). If |[K NV| < k then
aleastn®(n — (k — 1)) > k2 edgesin (V \ K) x (W \ K should have been
deleted from G', acontradiction.m

3.5 AT-Free Graphs

An asteroidal triple is a set of three independent vertices such that there is a
path between every pair of vertices which avoids the neighborhood of the third
vertex. G is called Asteroidal Triple free, or AT-free, if G contains no asteroidal
triple. Several families of graphs are asteroidal triple free, e.g., interval and co-
comparability graphs. For characterizations of AT-free graphs see cf. [9]. We
prove here that AT-free Deletion is NP-complete.

Theorem 5. AT-free Deletion is NP-complete.

Proof. The problem is clearly in NP. The hardness proof is by reduction from
Chain Deletion. Let < G = (U, V, E),k > be an instance of Chain Deletion.
Build the following instance < (V', E'), k > of AT-free Deletion: Define V' =
UUVUVqUVw UV,,Wherqu = {ql,...,qk},Vw = {wl,...,wk+1} and
Ve ={z1,...,ze41}. DefineE' = EU(U xU)U (U x V) U (U x Vo) U
(Ve U VZ) x (Vo U V2)). Thevalidity proof is omittedm

3.6 Comparability graphs

A graph is called a comparability graph if it has a transitive orientation of its
edges, that is, an orientation F for which (a, b), (b,c) € F implies(a,c) € F.
We show below that Comparability Editing is NP-complete. We also prove that
it is NP-hard to approximate comparability modification problems to within a
factor of 18/17.

Theorem 6. Comparability Editing is NP-complete.



Proof: Membership in NP is trivial. The hardness proof is by reduction from
MAX-CUT. Given aMAX-CUT instance< G = (V, E), k > webuild aCom-
parability Editing instance < C(G) = (N,E'), k2 = |E| — k > asfollows:
Define N = VU{e,lt',,,ei',, : (u,v) € E}YUW,whereW = {w] :v € V,1<
i < 2ka + 1}. Alsodefine E' = E; U E,, where

E, = {(v,wi):veV,w] e W},
EZ = {(U76111,w)7(6111,w76121,w)7(etzl,w7w) : (U7w) € E} .

(for each (v, w) € E the choice of which vertex to connectto e, ,, is arbitrary).

In other words, we attach 2k, + 1 private neighborsto each original vertex, and

replace each edge by a path of length three. The validity proof follows.

= Supposethat (V1, Vz) isacutof weightatleastk in G, i.e, |[EN(V1 xV2)| >
k. Foreachedgee = (v,w) € ((V1 x V1) U(Vz x V2)) N E weremove the
edge (ep ., €2 4 ) from its corresponding path in C(G). In total, we remove
k2 edges. We now give a transitive orientation to the resulting graph, thus
proving that it isacomparability graph. Orient each edgeincidentonv € V;
out of v, and each edge incident on v € V> into ». For each edge (v, w) €
(Vi x V2) N E, orient (e o, €2 ,,) frome3 ,, to ey .

< Suppose that F is a solution to the comparability instance, and let H =
(N, E' AF) be the modified comparability graph. Let R be atransitive ori-
entation of H. For each vertex v € V its private neighborsin N(v) N W
ensure that either al edgesincident on v are directed in R into v, or they
are all directed out of v. Definea partition (V1, Vz) of V, inwhichv € \;
iff al edgesincident on v are directed into ». We shall prove that the weight
of thiscut is at least k. Since we modified at most |E| — k edges, there are
at least k pathsin H of the form {v, e} ,,, €3 .,, w}, for some (v, w) € E,
such that no edgein F isincident on any of those paths. For each such path,
its corresponding edge must be acrossthe cut, asotherwise R could not have
been transitive. m

A slight modification of the above reduction showsthat if Comparability Editing
can be approximated with ratio 1 + 8 then MAX-CUT can be approximated with
ratio 1/(1 — 6). In [32, 20] it is shown that approximating MAX-CUT to within
afactor of 17/16 is NP-hard. We conclude:

Corollary 2. It is NP-hard to approximate Comparability Editing to within a
factor of 18/17.

We comment that our reduction from MAX-CUT applies also to Comparability
Completion and Comparability Deletion. Hence, it is also NP-hard to approxi-
mate the completion and deletion problemsto within afactor of 18/17.

4 Positive Results On Bounded Degree Graphs

We present below a constant factor approximation algorithm for the deletion and
editing problems on bounded degree graphs. The result applies to any hereditary
family which can be characterized by afinite set of forbidden induced subgraphs.
Examplesinclude cographsand claw-free graphs. An anal ogousresult for vertex
deletion problemswas given by Yannakakisand Lund [26]. We also show that for



bounded degree graphs Chain Del etion and Editing, Split Deletion and Threshold
Deletion and Editing are polynomial.

Let IT be an hereditary graph property that can be characterized by afinite set 7
of forbidden induced subgraphs. Let G = (V, E) bethe input graph. We assume
that each forbidden subgraph containsat most ¢ verticesand that G has maximum
degreed. Inthe following we further assumethat no forbidden subgraph contains
an isolated vertex. The approximation agorithm follows.

DAD

2) While Gy 4 contains an induced subgraph H isomorphic to some F € F, do:
A« AUV(H).

3) Removeall edges{(v,w) € E :v € A,w € V} fromG.

The algorithm is clearly polynomia since finding a forbidden induced subgraph
with at most ¢ vertices can be donein O(n*) time.

Theorem 7. Thealgorithmapproximates IT-Deletion and I7-Editing to within a
factor of ¢d.

Proof. Correctness: After Step 2 is completed, Gy 4 contains no forbidden
induced subgraph. After Step 3 is completed, all verticesin A become isolated.
Since no forbidden induced subgraph contains an isolated vertex, at the end of
theagorithm G € I1.

Approximation ratio: Let F' be an optimum solution of sizek. For any forbidden
induced subgraph H found at Step 2 of the algorithm, F must contain an edge
incident on H. Hence, at the end of the algorithm |A| < k¢, and a most ktd
edgesare deleted from G.m

It can be shown that our result extends for all hereditary properties that can be
characterized by afinite set of forbidden induced subgraphs.

In thefollowing we give some polynomial resultsfor edge modification problems
on bounded degree graphs. These results are derived by observing that for the
properties in question the search space becomes bounded when the problem is
restricted to bounded degree graphs.

Theorem 8. Chain Deletion and Chain Editing are polynomially solvable on
bounded degreegraphs.

Theorem 9. Split Deletion is polynomially solvable on bounded degree graphs.

Theorem 10. Threshold Deletion and Threshold Editing are polynomially solv-
able on bounded degreegraphs.

5 Concluding Remarks

Most of the results obtained here and previously on edge modification problems
are hardnessresults. Proving ageneral hardnessresult similar to that obtained for
vertex deletion problems[24], is a challenging open problem.

The study of bounded-degree edge modification problems is still very prelim-
inary. Such restriction is motivated by some real applications (see, e.g., [21]).



Other realistic restrictions may be appropriate for particular problems. Studying
the parameterized complexity of the NP-hard problemsis also of interest.
Likeevery attempt to organize abody of resultsinto atableor adiagram, Figure 1
immediately identifies numerous open problems. Many of those have not been
investigated yet, and we are in the process of studying some of them.
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