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ABSTRACT
Transcriptional regulation is mediated by the coordinated
binding of transcription factors to the upstream region of
genes. In higher eukaryotes, the binding sites of cooperat-
ing transcription factors are organized into short sequence
units, called cis-regulatory modules. In this paper we pro-
pose a method for identifying modules of transcription fac-
tor binding sites in a set of co-regulated genes, using only
the raw sequence data as input. Our method is based on
a novel probabilistic model that describes the mechanism
of cis-regulation, including the binding sites of cooperat-
ing transcription factors, the organization of these binding
sites into short sequence modules, and the regulation of a
gene by its modules. We show that our method is success-
ful in discovering planted modules in simulated data and
known modules in yeast. More importantly, we applied
our method to a large collection of human gene sets, and
found 83 significant cis-regulatory modules, which included
36 known motifs and many novel ones. Thus, our results
provide one of the first comprehensive compendiums of pu-
tative cis-regulatory modules in human.
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1. INTRODUCTION
Many of the functions carried out by a living cell require

the coordination of gene expression, to ensure that genes
are expressed when they are needed. To understand bi-
ological processes, it is thus necessary to understand this
transcriptional network. Much of the information that de-
termines when and where genes are expressed is encoded in
an organism’s genome sequence. Although we now have se-
quences for many organisms, our understanding of how this
cis-regulatory information is encoded is very limited.

In higher eukaryotes, cis-regulatory information is orga-
nized into modular units, called cis-regulatory modules (CRMs),
where each CRM consists of a few hundred base pairs, and
contains multiple binding sites for multiple transcription fac-
tors (TFs) [22, 9, 7]. Methods for identifying CRMs and
their component TFs can thus reveal the organization of
the transcriptional network in the cell.

In principle, one could use a two-phase approach for iden-
tifying CRMs in a set of upstream regions of co-regulated
genes. The first phase would scan for single motifs that are
enriched in the upstream regions (see, e.g., [2, 13]). The sec-
ond phase would then try to find correlations between these
enriched motifs. Such an approach is suitable for discovering
some types of CRMs, like the one depicted in Figure 1(a).
However, since each motif is considered in isolation, this ap-
proach will fail to discover more subtle CRMs, in which no
single motif is enriched, as exemplified in Figure 1(b). CRMs
of the latter type can be found by approaches that look for
combinations of motifs that exhibit functional synergism, or
tend to co-occur in sequences of interest [20, 12, 19, 15].
However, since these methods do not constrain the occur-
rences of motifs in each combination to be close together
within the upstream region, they will fail to discover CRMs
of the type shown in Figure 1(c). Recently, several meth-
ods have been suggested to identify occurrences of known
CRMs [3, 5] and to find novel CRMs of known motifs [16],
but these methods do not identify novel motifs and require
an annotated list of binding sites.

In this paper we propose a novel model for transcriptional
regulation, based on probabilistic graphical models [10], and
an algorithm to learn this model automatically from data.
Our input consists of a set of putatively co-regulated genes
and their raw sequence data. The model has three compo-
nents. The first is a motif model that describes the prob-
ability that a gene contains a binding site for some mo-
tif given the upstream region sequence of the gene. In the
second component, we consider sequence windows of a pre-
scribed length along the gene’s upstream region. For each
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window, we model the probability that it contains a CRM
that involves k specific motifs, given the binding site oc-
currences of these motifs. The third component models the
probability that a gene contains a CRM given the CRM oc-
currences in each of the considered windows. We propose
an iterative algorithm, based on the expectation maximiza-
tion (EM) algorithm, for learning the model parameters,
and a cross-validation procedure to test the significance of
the learned CRMs. Our unified framework generalizes ex-
isting approaches for finding CRMs, by integrating both a
model for TF binding sites and a model for their organiza-
tion into modular units. In particular, our method learns
motifs de-novo and is suitable for identifying all types of
CRMs depicted in Figure 1.

A key property of our model is that it is discriminative
[15, 17]: Given a set of upstream regions of co-regulated
genes, and a background set of upstream regions, the model
only attempts to find combinations of motifs that discrimi-
nate between the two sets. This is in contrast to the com-
mon generative approaches, that try to build a model of the
upstream region sequences, and train the parameters such
that the model gives the given sequences a high probabil-
ity. These approaches can often be confused by repetitive
motifs that occur in many upstream regions. These motifs
have to be filtered out by using an appropriate background
distribution [18]. As we show, our discriminative model al-
lows us to avoid the problem of learning these background
distributions, and focus on the classification task at hand.

We evaluated the performance of our method on simulated
and real data. On simulated data, our method outperformed
extant approaches, and recovered planted CRMs with high
accuracy. On real yeast data, we identified significant CRMs
in 12 out of 25 tested gene sets that are putatively regulated
by two cooperating TFs. In the majority of cases in which
the motifs for the corresponding TFs were known (7 out of
11), our method recovered them correctly. Finally, we ap-
plied our method to a large collection of human gene sets,
derived from the GO process categorization [1]. Overall, we
identified 83 significant CRMs, that spanned a diverse set
of functional annotations. Many of these CRMs consisted
of motifs that were known in the literature, providing addi-
tional support that our learned CRMs indeed correspond to
true cis-regulatory signals in human.

2. THE PROBABILISTIC MODEL
In this section we present our model of cis-regulation. We

model a CRM that consists of k distinct binding site mo-
tifs for k TFs, in the upstream region sequences of a set of
genes G, where each gene is either regulated by the CRM
or not. Thus, we associate a binary Regulation attribute R
and an upstream region sequence attribute S with each gene.
Since we expect a CRM to span a relatively short region, we
partition the upstream region S into n shorter overlapping
sequence windows, where each window has length L. The
model then considers CRM occurrences only within these
windows.

Our model has three components. The first is a motif
model, which represents the motif binding sites that are
bound by each of the k TFs. We use the motif model to
define n binary attributes for each TF i, g.Mi1 . . . g.Min, in-
dicating whether each of the n windows contains a binding
site for the TF. The second component is a module model,
which represents a CRM as a combination of individual mo-

tifs. We use the module model to define n binary attributes,
g.W1, . . . g.Wn, corresponding to whether the CRM appears
in each of the n sequence windows. The last component is a
regulation model, that models the regulation of a gene, g.R,
by the CRM, as a function of the CRM occurrences in the
n different windows. The full model is shown in Figure 2.
In the following we describe each of the model components
in detail.

2.1 Motif Model
The first component in our model is a set of variables that

represent the binding site motifs for each of k transcription
factors. For each gene g, we have a set of binary-valued Mo-
tif variables, M = {g.M11 . . . g.Mkn}, where g.Mij takes the
value true iff motif i appears in the j-th sequence window
of g. Thus, we allow the motif to play a regulatory role in
controlling the expression of gene g, by being a part of the
CRM in some windows. We model each motif using the stan-
dard position specific scoring matrix (PSSM) representation
[2, 13], which assumes independence between positions in a
binding site. This model assigns a weight to each position in
the motif and each nucleotide � ∈ {A, C, G, T}, representing
the extent to which the nucleotide’s presence in this position
is associated with the motif.

When learning PSSMs, our goal is to estimate the proba-
bility that a transcription factor binds a certain gene given
its upstream region. Hence, we adapt the discriminative
motif model of Segal et al. [14], which is well suited for this
purpose. This model is specified using a logistic function
with p position-specific weights wi[�], one for each position i
and each letter � ∈ {A, C, G, T}, and a threshold w0. For a
window sequence of length L, we assume that binding occurs
once, and with equal probability at each of the L−p+1 pos-
sible positions in the sequence. The probability of binding
given the sequence is then specified as:

P (g.M = true | g.S1, . . . , g.SL) =

logit

 
log

 
w0

L − p + 1

L−p+1X
j=1

exp{
pX

i=1

wi[g.Si+j−1]}
!!

,

where logit(x) = 1
1+e−x is the logistic function. We refer the

reader to [14] for additional details.

2.2 Module Model
The second component in our model describes the com-

position of a CRM in terms of its component motifs. To
capture the notion that some motifs may be more impor-
tant for a particular CRM than others, we model a CRM
as a weighted combination of individual motifs. Specifically,
we use the logistic function for representing the probabil-
ity that a sequence window contains the CRM, given the
occurrences of the individual motifs in the sequence:

P (g.Wj = true | g.M1j , . . . , g.Mkj) =

logit(v0 +
kX

i=1

vi · g.Mij)

where g.Wj is a binary variable representing whether the
j-th sequence window contains the CRM, g.Mij is a binary
variable representing whether the motif bound by transcrip-
tion factor i is present in the j-th window, and vi is a weight
that specifies the extent to which motif i plays a regulatory
role in the CRM. As the probability that a window contains
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Figure 1: Comparison of the ability of different methods to detect different types of CRMs. In all cases,
shown are the gene upstream regions and the locations of binding sites within them, where genes in the
“Cluster” contain the CRM, and genes in the background do not. (a) CRM consisting of a single motif. (b)
CRM consisting of a combination of two motifs. (c) CRM consisting of a combination of two motifs that are
spatially close to each other. (d) Methods that search for a single motif can only find CRMs of type (a).
Methods that search for motif combinations but disregard their spatial relationships cannot find CRMs of
type (c). Our proposed method can find CRMs of all types shown.

the CRM depends on
Pk

i=1 vi · g.Mij , the higher vi is, the
more it contributes to this probability. For interpretability
considerations, we restrict the motif weights to be positive
(except for v0). Intuitively, this means that a CRM can only
depend on the presence of certain motifs and not on the ab-
sence of motifs. We use the CRM model to define n binary
window variables for each gene, g.W1, . . . g.Wn, where the
variable for the j-th window, g.Wj, depends on the mo-
tif occurrences in the j-th window, g.M1j , . . . , g.Mkj . Note
that the same logistic model is shared across all genes and
all windows.

2.3 Regulation Model
The last component in our model combines the informa-

tion from each window to specify whether the gene is indeed
regulated by the CRM. This model follows our intuition that
the probability that a gene is regulated by a CRM increases
with the number of windows in its upstream region that con-
tain the CRM. The model describes this regulation proba-
bility using a logistic function:

P (g.R = true | g.W1, . . . , g.Wn) =

logit(p0 +

kX
i=1

pi · g.Mi),

where g.Wi corresponds to whether window i contains the
CRM, and pi specifies the extent to which the presence of
the CRM in window i contributes to the overall probability
that the gene is regulated. If we expect a priori that certain
sequence windows are more likely to contain the CRM than
others, then we can assign a higher weight to those windows.
For example, when searching for CRMs in human, we might
assign a higher weight to those sequence windows that are
more conserved between human and mouse. In our setting,
we assume that all windows are equally likely to contain the
CRM and, thus, use the same weight for all windows. As
we show later, this assumption leads to significant compu-
tational advantages.

2.4 Unified Model
We combine the above three components into a unified

probabilistic graphical model, shown in Figure 2. The model
defines the following joint distribution:

P (g.R, g.W, g.M | g.S) = P (g.R | g.W) (1)

·
nY

j=1

 
P (g.Wj | g.M1j , . . . , g.Mkj)

kY
i=1

P (g.Mij | g.Sj)

!
,

where g.Sj is the sequence of window j, and each of the
above conditional probability distributions is parameterized
as described in the previous sections. Given a model param-
eterization, we can compute the probability that a gene is
regulated by the CRM given the sequence:

P (g.R = true | g.S)

=
X

w̄∈W

P (g.R = true | g.W = w̄)

·
X

m̄∈M

P (g.W = w̄ | g.M = m̄)P (g.M = m̄ | g.S)

=
X

w̄∈W

P (g.R = true | g.W = w̄)

·
nY

j=1

X
m̄∈M[j]

P (g.Wj = w̄[j] | g.M[j] = m̄)

·
kY

i=1

P (g.Mij = m̄[i] | g.S)

where w̄ is a vector that ranges over all possible assignments
to each of the n window variables, m̄ is a vector that ranges
over all possible assignments to each of the k · n motif vari-
ables, and M[j] corresponds to the set of motif variables for
window j, M1j , . . . , Mkj .
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Figure 2: Illustration of our unified model, for a simple example with upstream regions of length eight,
windows of length four with two base-pair overlaps, and two motifs. The model contains a total of four
distinct CPDs (shown). The CPDs for the first motif are the same and hence P (g.M1 | S) = P (g.M11 | S) =
P (g.M12 | S) = P (g.M13 | S). Similarly, the CPDs for the second motif are the same and hence P (g.M2 | S) =
P (g.M21 | S) = P (g.M22 | S) = P (g.M23 | S). Finally, the same CPD is shared across all windows and hence
P (W | M1, M2) = P (W1 | M1, M2) = P (W2 | M1, M2) = P (W3 | M1, M2).

3. LEARNING THE MODEL
In the previous section we presented our probabilistic model.

We now turn to the task of learning this model from data.
Our training data set D consists of a set of genes G, where
for each gene g we are given its upstream region sequence g.S
and the value of g.R, indicating whether g is regulated by the
CRM or not. In learning the models, we need to estimate
the model parameters, which include: the weights of the
k PSSMs; the weights of the logistic distribution v0, . . . , vk

for the module model P (g.W | g.M); and the weights of
the logistic distribution p0, . . . , pn for the regulation model
P (g.R | g.W).

We follow the standard approach of maximum likelihood
estimation: Find the parameters θ that maximize P (D | θ).
Our learning task is made considerably more difficult by
the fact that both the Motif variables g.M and the Win-
dow variables g.W are unobserved in the training data. In
this case, the likelihood function has multiple local maxima,
and no general method exists for finding the global maxi-
mum. We thus use the Expectation Maximization (EM) al-
gorithm [4], which provides an approach for finding a local
maximum of the likelihood function. Starting from an initial
guess θ(0) for the parameters, EM iterates the following two
steps. The E-step computes the distribution over the un-
observed variables given the observed data and the current
estimate of the parameters. The M-step then re-estimates
the parameters by maximizing the likelihood with respect
to the distribution computed in the E-step. This estimation
task differs for the different parts of the model.

3.1 E-step: Inferring Modules and Regulation
Our task in the E-step is to compute the distribution over

the unobserved data, which in our setting means comput-
ing P (g.W, g.M | g.S, g.R). As genes are assumed to be

independent, this computation can be done separately for
each gene, by performing inference in the Bayesian network
of Figure 2. Moreover, since the sequences variables g.S
are always observed, the network in which we need to per-
form inference is effectively a tree. Hence, inference can be
performed efficiently using the clique tree algorithm [10].

In general, the computations carried out by the clique
tree algorithm are exponential in the number of parents of
each node in the network. In our case, this means that
the E-step will be exponential in the number of Motif and
Window variables. As the number of motifs k in a CRM is
typically small (k ≤ 5), our main computational concern is
with the number of windows. In a typical setting, we might
search for CRMs in upstream regions of length 1000bp, using
windows of length 200bp with an overlap of 100bp between
windows. In this case, we have 9 windows and the E-step can
be computed efficiently. However, there might be settings
in which we wish to search for CRMs in longer upstream
regions, or using more overlap between windows. In these
settings, exact inference is infeasible.

When the number of windows is prohibitively large, we
propose to use the hard assignment version of the EM algo-
rithm. In this version, the E-step computes the most likely
assignment to the hidden variables, and the M-step then re-
estimates the parameters by maximizing the likelihood with
respect to the assignment computed in the E-step. Under
the assumption that all sequence windows are equally likely
to contain the CRM, it turns out that we can find the most
likely assignment to the hidden variables in time that is lin-
ear in the number of windows. The algorithm is based on
the observation that if the weights pi in the logistic function
P (g.R | g.W) are the same for all windows, then the value
of the first term in Equation 1 is a function of the number t
of window variables whose assignment is true, and does not
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depend on which window variables are actually set to true.
Hence, under the constraint that exactly t of the window
variables are assigned to true, the problem of finding the
most likely assignment can be reduced to finding:

{w̄, m̄} = argmaxw̄′,m̄′P (g.W = w̄′ | g.M = m̄′)

·P (g.M = m̄′ | g.S)

= argmaxw̄′,m̄′

nY
j=1

P (g.Wj = w̄′[j] | g.M[j] = m̄′[j])

·P (g.M[j] = m̄′[j] | g.S)

where w̄ and m̄ range over all possible assignments to the
Window and Motif variables, respectively. Thus, the com-
putation decomposes by windows, and the most likely as-
signment under this constraint is to assign to true the t
window variables with the highest value of maxm′ P (g.W =
true | g.M = m′)P (g.M = m′ | g.S)/P (g.W = false |
g.M = m′)P (g.M = m′ | g.S). Finally, we choose t as the
integer 0 ≤ t ≤ n, which yields the assignment with the
highest probability.

3.2 M-step: Estimating Model Parameters
In the M-step, our goal is to estimate the parameters for

the distribution of each component of the model so as to
maximize the conditional log probability of that component.
For the motif model, this means estimating the parameters
P (g.Mi | g.S) for each motif i of the k motifs, that maxi-
mize

P
g∈G

Pn
j=1

P
m∈Mij E[Mij = m] log P (g.Mij = m |

g.S), where m ranges over the possible assignments to Mij ,
{false, true}, and E[Mij = m] is computed in the E-step and
is equal to the probability P (g.Mij = m | g.S, g.R). Un-
fortunately, this optimization problem has no closed form
solution, and there are many local maxima. We therefore
use a conjugate gradient ascent to find a local optimum in
the parameter space.

For the module model, we need to estimate the logis-
tic weights of each motif, w0, . . . , wk, in the distribution
P (g.W | g.M) that maximize

P
g∈G

Pn
j=1

P
m∈Mj

P
w∈Wj

E[Wj = w,Mj = m] log P (g.Wj = w | g.Mj = m), where
Mj = {M1j , . . . , Mkj}, m and w range over the possible as-
signments to Mj and Wj , respectively, and E[Wj = w,Mj =
m] is computed in the E-step and is equal to the probabil-
ity P (g.Wj = w, g.Mj = m | g.S, g.R). Each weight is
also constrained to be positive (see Section 2.2). Although
there is no closed for this constrained optimization problem,
the target function is convex, allowing us to find the opti-
mal parameter estimates using gradient ascent on the target
function.

Finally, we need to estimate the window weight parame-
ters of the distribution P (g.R | g.W) that maximizeP

g∈G

P
w∈W E[R = r,W = w] log P (g.R = r | g.W = w),

where w ranges over the possible assignments to W, r in-
dicates whether g is regulated, and E[R = r,W = w]
is computed in the E-step and is equal to the probability
P (g.R = r, g.W = w | g.S). This is a similar optimization
problem as in the module model case, and we thus apply
gradient ascent to find the optimal parameter setting.

3.3 Model Initialization
In the previous sections we showed how to apply the EM

algorithm to improve the quality of the model in every it-
eration, and converge to a local maximum of the likelihood

function. However, the EM algorithm requires an initial
model parameterization, which we need to provide. As for
all applications of EM, the quality of the starting point has
a large impact on the quality of the local optimum found by
the algorithm. This is in particular true for the parameters
of the motif model (for each motif).

We devised a two-phase scheme for the initialization of
the motif parameters. In the first phase, we efficiently gen-
erate motif seeds of fixed length (e.g., 6-9), that are abun-
dant in the upstream regions of the regulated genes. We use
the identified seeds to initialize motifs by considering occur-
rences of these seeds with at most one mismatch. These
occurrences allow us to initialize a PSSM for each seed and
also to possibly extend it in each end by positions whose in-
formation content exceeds a threshold. In the second phase,
we score combinations of up to k motif seeds, using the
hypergeometric significance test, allowing us to find motif
combinations that discriminate between the regulated genes
non-regulated ones. Thus, even in this initialization step,
we search for combinations of motifs rather than individual
motifs, as this initialization is more suited for the types of
CRMs we wish to find.

4. EXPERIMENTAL RESULTS
We applied our module identification method to simulated

and real data. The goal in the simulations was to test the
ability of the algorithm to recover planted CRMs. In real
data we wished to evaluate the performance of the algo-
rithm in recovering known modules in yeast, and to apply it
to discover novel modules in human. In all cases, the only
input to our program was a set of upstream regions, the
window length L, and the list of regulated genes for which
g.R = true, whose upstream regions is expected to contain
the CRM. We designed all models such that a gene is regu-
lated even if only one of its sequence windows contains the
CRM, by fixing the weights, pi, of all windows in the reg-
ulation model of Section 2.3 to 12, and setting p0 = −6.
By fixing these weights, the learning algorithm tries to find
CRMs that do not occur in windows of background genes
and occur at least once in the sequence windows of the regu-
lated genes. While this results in more interpretable models,
it brings up a practical consideration, which is that most of
the sequence window variables, and consequently most of
the motif variables, will be set to false, leading to an unbal-
anced optimization problem when updating the weights of
each motif. Thus, in practice, we balance this optimization
problem by only considering the window with the highest
posterior for each gene.

4.1 Simulated Data
As a basic test of our procedure in a controlled setting, we

generated random upstream region sequences of length 400
for 50 regulated and 50 non-regulated genes, and planted
CRMs consisting of two motifs of length 8 in a varying frac-
tion of the regulated genes. This gives a known ground
truth to which we can compare the learned models. To make
the data realistic, we also planted both motifs in 25 of the
non-regulated genes, but unlike the motif occurrences in the
regulated genes, that were constrained to appear in prox-
imity within the upstream regions, we randomly distributed
the two motifs of these 25 non-regulated genes within the
upstream regions. Our setting is thus designed such that
algorithms that search for a single motif, or algorithms that
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Figure 3: Performance on simulated data, shown as ROC curves, where the x -axis is the false positive rate,
FP/(FP + TN), and the y-axis is the true positive rate, TP/(TP + FN). In all cases, both motifs were planted
in 25 of the non-regulated genes. (a) Comparison of different methods when the motifs were planted in all
50 regulated genes and sampled from PSSMs with 1.5 bits of information per each of the 8 positions. (b)
Performance as a function of binding specificity. In each dataset the motifs were planted in all 50 regulated
genes, but were sampled from motifs with varying bits of information per position. (c) Performance as a
function of the fraction of regulated genes in which the motifs were planted, where the planted motifs were
sampled from a PSSM with 1.5 information bits per position.

search for motif combinations but ignore the spatial loca-
tions of motifs, will not succeed. Indeed, our algorithm re-
covered the planted motifs with high accuracy, whereas the
above methods did not, as shown in the comparison of the
ROC curves of Figure 3(a). These curves compare the false
positive rate to the true positive rate, when changing the
probability threshold at which the Regulates variable, g.R,
is considered to contain the CRM. As transcription factors
vary greatly in their binding specificity, it is important that
our method can recover CRMs whose motifs exhibit varia-
tion in their actual instances. To test this ability, we gener-
ated six different data sets, where in each case we varied the
information per bit in the PSSM from which we sampled the
planted motifs. The results of applying our method to each
of these datasets are shown in Figure 3(b), indicating that
most of the planted motifs are recovered even when there is
large variation in their instances. The input to our method
includes a set of co-regulated genes that are expected to
share a CRM. As this input set may contain errors, it is
important that we recover CRMs even when only a frac-
tion of the input regulated genes contain it. To test this,
we applied our method to six different datasets that varied
in the fraction of regulated genes in which we planted the
CRM. Our results, in Figure 3(c), show very good perfor-
mance even when the CRM was planted in only 30 of the 50
co-regulated genes, slightly more than the 25 confounding
occurrences of the motifs in the non-regulated genes.

4.2 Cis-Regulatory Modules in Yeast
To evaluate the performance of our method in a more

realistic setting, we tested its ability to detect putative cis-
regulatory modules in yeast. As the collection of CRMs in
the literature is limited, we used the genome-wide location
data of Lee et al. [8] to compile a collection of gene sets for
which strong experimental evidence suggests that the genes
in each set are regulated by the same two transcription fac-
tors. We hypothesized that the genes in each such set should
thus contain a CRM consisting of the binding sites for the
two TFs. Specifically, the location data contains genome-

wide Chromatin-Immunoprecipitation experiments for 106
yeast TFs, where each experiment measured the relative oc-
cupancy of the upstream regions of all yeast genes by the
TF. We considered measurements with p < 0.001 as indi-
cating that the TF binds the upstream region of the corre-
sponding gene. Thus, with each TF we associated a set of
target genes to which the TF binds in-vivo. To obtain gene
sets that are regulated by two TFs, we computed the inter-
section of the targets of every pair of TFs, and kept only
those intersections with at least 25 genes, such that the size
of the intersection was greater than would be expected by
chance (scored using a hypergeometric distribution). Alto-
gether, we found 25 such gene sets. We hypothesized that
each such set contains a CRM corresponding to the two TFs,
and applied our method to each set using 100bp and 200bp
windows, and 500bp upstream regions for each gene. In each
case, we took the genes in the intersection set to be regu-
lated (g.R = true), and selected 100 random genes for which
we assumed regulation does not take place (g.R = false).

To evaluate the quality of the CRMs we learned, we tested
whether they captured some characteristics that are specific
to the regulated genes. To this end, we performed leave-
one-out experiments, where in each experiment we learned
a CRM using all the genes except for one, and then used
the learned CRM model to compute the probability that
the held out gene is regulated by the CRM. If the CRM is
indeed specific to the regulated genes, then regulated genes
that are held out should receive a higher probability for be-
ing regulated than the held out genes that were selected
at random. We measured this by computing the classifi-
cation margin: The largest difference between the fraction
of held out regulated genes whose regulation probability is
above some threshold t, and the fraction of held out non-
regulated genes whose regulation probability is above t, for
different values of t. To evaluate the significance of the mar-
gins we obtained, we compared them to those obtained on
100 datasets, in which random yeast genes were assigned
random labels (50 regulated and 50 not regulated).

We detected significant CRMs in 12 out of our 25 sets
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TF pair Margin Known motifs Predicted motifs %Correct
FHL1, YAP5 0.688 - ATGTAAGG, CCGTACAT -
FHL1, RAP1 0.687 ACACCCATACATTT (RAP1) AATGTATG, CCATACAT (RAP1) 1/1
SWI4, SWI6 0.592 TTTTCGCG (SWI4), ACGCGT (SWI6) TTTTCCCG (SWI4), AACGCGAA (SWI6) 2/2
MBP1, SWI6 0.538 ACGCGTnA (MBP1), ACGCGT (SWI6) GACGCGTA (MBP1), CGACGCGA (SWI6) 2/2
ACE2, SWI5 0.518 GCTGGT (ACE2), KCGTGR (SWI5) ACACACACACA 0/2
GAT3, RGM1 0.484 - GGGTGTGT, CGCCCCCCA -
FKH2, MCM1 0.46 TTGTTTACST (FKH2) CCCTTTTC (MCM1), AGTAAACA 1/2

TTWCCCnWWWRGGAAA (MCM1)
RAP1, YAP5 0.448 - ATTTATGG, TCCATCAC -
NDD1, SWI4 0.447 TTTTCGCG (SWI4) TGTGCGTG, CACTCACAC 0/1
GAT3, YAP5 0.428 - CTCAACTA, CTATCTGA -
GAT3, PDR1 0.423 CCGCGG (PDR1) AAGCGGCTGA (PDR1), TCGTTGCTC 1/1
NRG1, YAP6 0.414 - ATACGAAA, GATAGGCA -

Table 1: Significant CRMs discovered in yeast (p < 0.01). For each module, shown are the two TFs that
putatively regulate the genes in each input set; their consensus; the consensus of the learned motifs; and
the correspondence between the known motifs and learned ones. We considered two consensus sequences as
matching, if one was a subsequence of the other with at most two mismatches.

(p < 0.01). These CRMs are summarized in Table 4.1. Since
each input gene set is the intersection of the targets of two
TFs, we expect the CRM to consist of the binding sites
for the corresponding TFs. Thus, we further validated our
learned CRMs by comparing the consensus sequence of their
motifs to their consensus according to Kellis et al. [6]. Our
learned motifs matched the known ones very well, recover-
ing 7 out of the 11 known motifs. For 13 sets we did not
discover a significant CRM. This may be explained by the
small size of the gene sets (most sizes ranged between 25
and 30) and by the fact that multi-factorial regulation does
not necessarily involve modular structures. Overall, the re-
sults on the location dataset demonstrate the ability of our
method to detect true signals in real data.

4.3 Cis-Regulatory Modules in Human
Discovering cis-regulatory information in human is hard

compared to yeast, as genes are typically regulated by a com-
bination of several TFs and the sequence regions involved in
the regulation are often farther from the transcription start
site. We tested whether our method, which is designed for
discovering these more complex regulatory signatures, can
detect true CRMs in human. As the input gene sets, we used
sets of genes that are known to be involved in the same pro-
cess according to the GO database [1]. We hypothesized that
such sets are likely to be regulated by several TFs and thus
their upstream regions might contain a CRM. Specifically,
we extracted all GO annotations with at least 25 genes, but
less than 150 genes, and applied our method to each of the
381 such annotations, using 200bp windows with 100bp over-
lap between windows, and 1000bp upstream region for each
gene1. For each GO process category, we treated its mem-
ber genes as regulated by a common CRM (g.R = true),
and selected 100 random genes to serve as a negative set
(g.R = false).

As few CRMs are known in human, we evaluated the
quality of the CRMs that we learned using the leave-one-
out procedure described above. For each CRM, we mea-
sured the classification margin of its leave-one-out experi-
ment, and compared it to the classification margin obtained
on 100 sets of random human genes. Overall, we found 83

1We experimented several parameter settings. The choice
of 200bp windows with 100bp overlap gave the best results,
though other similar settings yielded similar results.

significant CRMs, spanning 71 GO categories (p < 0.01),
where 46 of these CRMs consisted of two motifs, and 37 con-
sisted of three motifs, for a total of 203 motif instances. We
matched this list of motifs against a list of 414 known motifs
from Wingender et al. [21], using the comparison method of
Pietrokovski et al. [11]. Out of the 203 motif instances that
we learned, 54 corresponded to known motifs, spanning 36
distinct motifs. The leave-one-experiments, combined with
the recovery of known motifs, provide strong evidence that
our method indeed detected a large number of putatively
true CRMs in human. A summary of all of the significant
CRMs that we found, including the GO category that was
used as input and the known motifs that were recovered, is
shown in Figure 4.

A more detailed inspection of our results showed many GO
classes for which at least one of the motifs that we learned
was known in the literature to be bound by a TF that regu-
lates the genes associated with that class. For example, we
learned a significant CRM for protein folding genes, in which
one of the motifs was the binding site for HSF (Heat Shock
Factor), a known activator of protein folding genes under
stress and heat shock conditions. As another example, one
of the motifs we learned for the CRM of mitochondrial mem-
brane genes was the binding site for the GATA TF, which
is known to induce mitochondrial membrane genes. We also
inspected the learned CRMs visually, and found that they
indeed consisted of motifs whose occurrences were close to
each other in the upstream region of the regulated genes,
whereas these motifs did not occur very often in the non-
regulated genes. An example is shown in Figure 5 for the
CRM learned from the “regulation of CDK activity” class.
As can be seen, for this category, 13 of the 28 genes contain
the CRM. In contrast, this CRM appears in only 4 of the
100 non-regulated genes (data not shown). As further sup-
port for this CRM, one of the motifs composing this CRM
was the binding site for NKX, a regulator of insulin biosyn-
thesis, which also has some known role in regulating cyclin
dependent kinase (CDK) genes.

5. DISCUSSION
In this paper we presented a novel model of the mecha-

nism of cis-regulation, which captures many aspects of this
process, including the presence of multiple binding sites for
multiple transcription factors in short DNA sequences. We
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Figure 4: Summary of all 83 significant CRMs (p < 0.01) that we learned in human, sorted by the classification
margin (y-axis) obtained for each CRM in leave-one-out experiments. The x-axis indicates the GO category
that was used as the input gene set when learning the CRM. In cases where one or more of the motifs that
we learned for the CRM was known, we listed it above the classification margin of the corresponding CRM.
The dashed black line indicates the best classification margin obtained from applying our method to 100 sets
of random human genes, and thus corresponds to p = 0.01.

presented an algorithm to learn this model from data, which
allows us to predict cis-regulatory modules and their com-
ponent motifs using only the raw sequence data as input.
Our results demonstrated the ability of our method to find
known signals in simulated data and in yeast, and showed its
utility for detecting an extensive list of significant modules
in human.

There are several directions for refining and extending our
approach. First, our model requires a specification of the
sequence windows in which we expect to find the CRM. We
are now working on modifications to the model that will
treat the entire upstream region as one sequence, but still
bias the search towards finding motifs whose occurrences
are next to each other. Second, we are exploring the use
of our approach as part of a richer probabilistic framework
that combines gene expression measurements [15]. Finally,
in some cases we did not detect significant CRMs. While
some of these may be due to limitations of our approach,
understanding the reasons for failing in the other cases may
reveal novel characteristics of cis-regulation.
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