
A new NC Algorithm for Perfect Matching
in Bipartite Cubic Graphs

Roded Sharan Avi Wigderson �

Institute of Computer Science, Hebrew University of Jerusalem, Israel.
E-mail: roded@math.tau.ac.il, avi@cs.huji.ac.il

Abstract

The purpose of this paper is to introduce a new approach
to the problem of computing perfect matchings in fast de-
terministic parallel time. In particular, this approach yields
a new algorithm which finds a perfect matching in bipar-
tite cubic graphs in time O�log2 n� and O�n��n�� logn�
processors in the arbitrary CRCW PRAM model.

1. Introduction

Given a graphG � �V�E� withn vertices andm edges, a
Matching is a set of edgesM � E, such that no two edges of
M are adjacent in G. A Maximum Matching is a matching
of maximum cardinality in G and a Perfect Matching is
a matching which is incident to all vertices of G. The
Perfect Matching Decision Problem is to determine if G
has a perfect matching. The Search Problem is to exhibit a
perfect matching, if such exists. The Maximum Matching
Problem is to find a matching of maximum cardinality inG.

The first sequential polynomial algorithm for the max-
imum matching problem was given by Edmonds [4], re-
quiring O�n4� time. This algorithm as many others fol-
lowing it, solves the problem by finding a partial matching
and augmenting it to a maximum matching. The best al-
gorithms currently known for this problem, by Micali and
Vazirani [13, 20] and by Blum [1] work in O�m

p
n� time.

The methods used to solve the maximum matching prob-
lem for the sequential case, do not seem to parallelize. Even
the problem of finding a single augmenting path is not known
to be in NC. New techniques, using tools from linear al-
gebra, were developed to cope with the problem. All these
methods are based on a theorem by Tutte [18] which reduces
the perfect matching decision problem to deciding if a cer-
tain Tutte-matrix of the input graph is non-singular. This
also leads to an RNC algorithm for solving the decision
problem (see [11]).

�This work was supported by USA-Israel BSF grant 92-00106 and by a
Wolfeson research award administered by the Israeli Academyof Sciences.

The first parallelRNC algorithm for constructing a maxi-
mum matching was given by Karp, Upfal and Wigderson [9].
Another algorithm was later given by Mulmuley, Vazirani
and Vazirani [15], and a Las-Vegas extension of both algo-
rithms was given by Karloff [7].

DeterministicNC algorithms, even for the decision prob-
lem, are not known, although special cases of the perfect
matching search problem turned out to be in NC. Vazi-
rani [19] gave an NC algorithm to count the number of per-
fect matchings in K3�3-free graphs. Grigoriev and Karpin-
ski [5] solved the search problem for the case that the graph
has only polynomially many perfect matchings, and Lev,
Pippenger and Valiant [10] gave an NC algorithm to find
a perfect matching in bipartite d-regular graphs. The last
algorithm works in O�log2 n logd� time using O�m� pro-
cessors.

In this work, we present a new approach towards the
perfect matching problem. This approach yields a new
NC algorithm to solve the perfect matching search prob-
lem for bipartite cubic graphs. The algorithm works in
O�log2 n� time using O�n��n�� logn� processors in the
arbitrary CRCW PRAM model, improving the processor
bound in [10], which requires (for bipartite cubic graphs)
O�log2 n� time and O�n� processors. The methods we use
seem to be of general nature and some stages of our algo-
rithm are shown for general graphs as well.

Let G � �V�E� be the input graph, jV j � n. Our Al-
gorithm starts with a Pseudo Perfect Matching of G, which
is a subgraph of G with every vertex having odd degree in
it. We show how find one and how to efficiently augment it
until a perfect matching is produced.

The augmentation is done by finding certain cycles in G
and by xoring them to the pseudo perfect matching, reducing
the number of edges in it and increasing its number of con-
nected components. In other words the approach we take
is augmenting by decreasing the number of edges, rather
than augmenting by increasing as done in most sequential
algorithms for the problem.

In total O�logn� phases are carried out. The input to
each phase is a pseudo perfect matching and the output of



each phase is a new pseudo perfect matching, with number
of 3-degree vertices in it, reduced by a constant factor. At
the end, a perfect matching is obtained.

We also show a sequential implementation of our algo-
rithm working in O�n logn� sequential time.

2. Preliminaries

Let G � �V�E� be an undirected simple graph.

Definition 2.1 A Pseudo Perfect Matching of G is a sub-
graph M , with every vertex having odd degree in it.

Definition 2.2 A 3-vertex of a pseudo perfect matchingM ,
is a vertex of degree 3 in M .

Definition 2.3 The Complement in G of a pseudo perfect
matching M , is the graph G�M , where isolated vertices
are excluded.

The Cycle Space of G is a vector space over GF �2�,
containing all incidence vectors representing cycles in G,
and closed with respect to the xor operation. A vector in the
cycle space is called a Cycle Vector.

Definition 2.4 An Augmenting Cycle of G with respect to
a subgraph H, is a cycle vector C in G, such that H � C
has less edges thanH.

Definition 2.5 A Good Cycle ofG, with respect to a pseudo
perfect matching M , is a cycle vector C, such thatC �M
is a matching.

Dahlhaus and Karpinski show in [3] that the perfect
matching problem for general graphs is NC-equivalent to
the perfect matching problem restricted to graphs of maxi-
mum degree 3 and this reduction preserves bipartiteness.

We will adopt this reduction and from now on restrict
ourselves to graphs of maximum degree 3.

3. High-level description of the algorithm

A pseudo perfect matching is basically a spanning sub-
graph ofG, which we will use as a starting point to construct-
ing a perfect matching of G. Our algorithm for finding a
perfect matching is based on finding a pseudo perfect match-
ing and constantly “improving” it until a perfect matching
is obtained.

The way we “improve” our pseudo perfect matching is
using augmenting cycles. Each time we xor an augment-
ing cycle to the pseudo perfect matching we get closer to
a perfect matching, since its number of edges decreases by
at least one. Note that if the input graph has maximum

degree 3, then the number of edges decreased when aug-
menting, equals the number of 3-vertices decreased. The
following theorem shows that a good augmenting cycle ex-
ists whenever the pseudo perfect matching is not yet a perfect
matching.

Theorem 3.1 LetG be an undirected graph with maximum
degree 3 having a perfect matching. Let M be a pseudo
perfect matching ofG. If M is not a perfect matching, then
there exists a good augmenting cycle in G.

Proof: Let N be a perfect matching of G. Examine
M � N . This graph, excluding the isolated vertices, is
a collection of vertex-disjoint cycles. Since jM j � jN j
there exists a cycle with more edges from M than from N .
This cycle is an augmenting one. It is moreover a good
augmenting cycle, since N is a matching.

We present below a high-level description of our NC
algorithm for the perfect matching search problem on bipar-
tite cubic graphs. Such graphs are known to have a perfect
matching (See [12]).

Sections 4, 5, 6 and 7 describe the different stages of
the algorithm. All stages, but the last one (section 7), can
be applied to general graphs as well using the previously
mentioned reduction to graphs with maximum degree 3.

Notation 3.2 LetG be a graph with maximum degree 3. Let
M be a pseudo perfect matching of G. We denote by n�M �
the number of 3-vertices in M .

Perfect matching algorithm:
Input: A bipartite 3-regular graph G.
Output: A perfect matching M of G.

begin
/* Section 4 */
Construct a pseudo perfect matching of G
and denote it by M .
/* Section 5 */
Convert M to a forest inG.
/* Section 6 */
Convert M to an induced forest in G.
/* Section 7 */
while M is not a matching do:
begin

Find a perfect matching N
in the complement of M .
Find an augmenting cycle L in M �N ,
such that n�M � L� � �1� c�n�M �,
for a constant c � 0.
M � M � L.

end
end



4. Constructing a pseudo perfect matching

This section describes the first stage of our algorithm,
namely constructing a pseudo perfect matching of a given
graph. Note that if the input graph is 3-regular (as in our
case), we can take the whole graph as our initial pseudo
perfect matching.

Let G � �V�E� be a graph with n vertices and m edges.
We define below a system of equations over GF �2�, whose
solution is a pseudo perfect matching of G.

Let us assign for each edge e � E a variableXe � f0� 1g.
The set of equations is as follows:

�v � V : �fe:v�egXe � 1

Lemma 4.1 Let �X be a solution to this system of n equa-
tions. DefineM � �X� � fe � E j �Xe � 1g, thenM � �X� is a
pseudo perfect matching ofG.

Theorem 4.2 Let G be a graph with n vertices, m edges
and maximum degree 3. IfG has a pseudo perfect matching,
then there is an NC algorithm to find one, working in time
O�log2 n� usingO�n5�5� processors.

Proof: Correctness: By our assumptions a solution to
this linear system of equations exists, since a pseudo perfect
matching solves it and G has one. By the previous lemma
any solution is a pseudo perfect matching, and correctness
follows.

Complexity: The complexity of this algorithm is es-
sentially the complexity of solving a linear system of n
equations with m variables over GF �2�. This can be done
using Mulmuley’s algorithm for rank computation [14] in
O�log2 n� time usingO�n5�5� processors (see [8]).

5. Converting a pseudo perfect matching into a
forest

This section and the next one deal with the problem of
converting a pseudo perfect matching of a graphG into one
which is also an induced forest in G. The motivation for
this transformation is to simplify the structure of the pseudo
perfect matching as much as possible.

Definition 5.1 An Odd Forest of a graph G, is a pseudo
perfect matching which is a forest in G.

Definition 5.2 An Odd Induced Forest of a graph G, is a
pseudo perfect matching which is an induced forest inG.

Our algorithm to convert a pseudo perfect matching into
an odd forest relies on the following lemma.

Lemma 5.3 Let K be a graph. Let S denote a set of fun-
damental cycles of K with respect to some spanning forest
of K. Define K� � K � ��c�Sc�, thenK� is cycle free.

Proof: Every non-forest edge lies in a unique fundamental
cycle of S. When we xor the set of fundamental cycles toK
all non-forest edges vanish and only maybe some tree edges
remain. It follows that K � is cycle-free.

Notation 5.4 Let G be a graph. Let T be a spanning forest
of G. For an edge e � E�G� denote by P �e� T�G� the
parity of the number of fundamental cycles with respect to
T , which include e. For a vertex v � V �G� denote by p�v�
the parity of the number of non-forest edges incident on v.

Notation 5.5 Let T be a rooted tree. For an edge e �
�u� v� � E�T �, v being the child of u, denote by T �e� the
set of vertices in the subtree rooted at v.

Algorithm for constructing an odd forest:
Input: A graph G with n vertices and maximum degree 3;

A pseudo perfect matching M of G.
Output: An odd forest M of G.

begin
Find a spanning forest T of G.
/* Xor toM a set of fundamental cycles of G */
In parallel for every edge e � E do:

If P �e� T�G� � 1 then
M � M � e

end

Lemma 5.6 Let G be a graph, and let T be a spanning
forest of G. If e � E�T � then

P �e� T�G� � �w�T �e�p�w�

Proof: Let e � �u� v� � E�T �, v being the child of
u in T . P �e� T�G� is actually equal to the parity of the
number of edges with one end vertex in T �e� and the other
in V �T � � T �e�, i.e. edges going out of the subtree rooted
at v. The lemma now follows, since edges with both end
vertices in T �e� do not contribute to the right hand-side
exclusive-or.

Theorem 5.7 There is anNC algorithm to convert a pseudo
perfect matching into an odd forest in O�logn� time using
O�n� processors.

Proof: Correctness: Applying the algorithm is equiva-
lent to computing a set of fundamental cycles of G with
respect to T and xoring them to M . By lemma 5.3, the
graph obtained this way is cycle-free. Since xoring cycles



to a pseudo perfect matching preserves its structure, the
result is an odd forest.

Complexity: An arbitrary spanning forest of G can be
computed inO�logn� time usingO�n� processors (see [6]).

It remains to show how to compute for a graphG, a span-
ning forest T and an edge e � E�G�, the value P �e� T�G�
efficiently. If e is a non-forest edge then P �e� T�G� � 1.
Otherwise, by the previous lemma if e � �u� v�, v being
the child of u, then P �e� T�G� equals the xor over all ver-
tices in the subtree rooted at v, of the parity of non-forest
edges incident on those vertices. This computation can be
made using a tree contraction algorithm in O�logn� time
and O�n� logn� processors (see [6]).

The overall time of the algorithm is therefore O�logn�
usingO�n� processors.

6. Converting an odd forest into an induced one

LetM be an odd forest of a graphG. We describe below
an algorithm to convert M into an odd induced forest.

Definition 6.1 Let T be a rooted tree in M with t � 4
vertices. A 1

3 � 2
3 cut-vertex of T , is a vertex v, such that

v has at least t�1
3 descendants and at most 2t

3 descendants,
including itself. If jV �T �j � 4 define a cut-vertex of T to be
its 3-vertex.

Lemma 6.2 LetT be a tree inM with t�2 vertices. RootT
arbitrarily at a 3-vertex, then T contains a 1

3� 2
3 cut-vertex.

Notation 6.3 Let G � �V�E� be a graph, and let U � V .
Denote byG�U � the graph induced byGon the set of vertices
U . For a vertex v � V denote by S�v� the set of vertices
which includes v and all vertices adjacent to v.

Algorithm for constructing an odd induced forest:
Input: A graph G with n vertices and maximum degree 3;

An odd forestM inG.
Output: An odd induced forest M of G.

Induce(M ):
begin

while M is not induced,
in parallel for every tree T in M
which is not induced do:
begin

Root T arbitrarily at a 3-vertex.
Find a 1

3� 2
3 cut-vertex of T , denote it by v.

Search for a cycle C in G�T �
which includes v.
If such a cycle C exists then
M �M � C

else

begin
I �Induce�T � fvg�
M � �M � T � � I � T �S�v��

end
end

end

Lemma 6.4 The recursion depth of the algorithm is at most
dlog3�2 ne.
Proof: We will show that at each recursive call, the size of
any tree component of M which is not induced, decreases
by at least a factor of 2

3 . Since a tree with two vertices must
be induced, the lemma will follow.

Let T be a tree which is not induced at the beginning
of an iteration. Let v denote a 1

3� 2
3 cut-vertex of T . The

algorithm differentiates between two cases:
Case a) There exists a cycle C in G�T � which passes

throughv. In that case T �C comprises of two or more con-
nected components and the size of each is at most 2

3 jV �T �j,
since v is a 1

3� 2
3 cut-vertex.

Case b) There is no such cycle. In this case, removing
v we get three connected components, each of size at most
2
3 jV �T �j.

At the k’th iteration therefore, all trees which are not
induced are of size at most �2

3 �
kn. The lemma follows.

Theorem 6.5 There is an NC algorithm to convert an
odd forest into an induced one in O�log2 n� time using
O�n��n�� logn� processors.

Proof: Correctness: By the previous lemma the algo-
rithm outputs an induced forest. Since xoring cycles to
M preserves its structure as a pseudo perfect matching, we
obtain an odd induced forest.

Complexity: The algorithm runs at most dlog3�2 ne it-
erations (iteration being a level of recursive call). Each
iteration includes finding the connected components of M
and some tree computations done for every tree in M .

The connected components of M can be found in
O�logn� time using O�n��n�� logn� processors, where
��n� is the inverse Ackermann function (see [2]).

Given a tree T with t vertices, we can use the Euler
tour technique (see [17]) to perform our computations on T .
Rooting T can be done in O�log t� time using O�t� log t�
processors (see [6]). Finding a 1

3 � 2
3 cut vertex of T can

be done by computing for each vertex in T its number of
descendants and then determining a cut vertex. This compu-
tation can be performed in O�log t� time using O�t� log t�
processors (see [6]). Checking if a given vertex is on a cycle
and reconstructing such a cycle requiresO�log t� time using
O�t� log t� processors.

The overall time of the algorithm is therefore O�log2 n�
usingO�n��n�� logn� processors.



7. Computing a perfect matching

This section describes the last stage of our algorithm. We
show how to compute a perfect matching given an odd in-
duced forest. The algorithm consists of O�logn� iterations.
The input to each iteration is an odd induced forest ofG and
the output is a new odd induced forest in which the number
of 3-vertices is only a constant fraction of the original one.
This new forest is obtained by augmenting with a good cy-
cle, passing through a constant fraction of the 3-vertices in
the input forest.

Definition 7.1 Let G be a graph. An open 2-Path in G, is
an open path in which all internal vertices have degree 2
and its end vertices are of degree other than 2.

Algorithm for constructing a perfect matching:
Input: A bipartite 3-regular graph G with n vertices;

An odd induced forest M of G.
Output: A perfect matching M of G.

begin
While M is not a perfect matching do:
begin

Compute a perfect matchingN
in the complement of M .
Let H �M �N .
Compute a spanning forest T ofH.
/* Xor to M a set of fundamental

cycles of H */
In parallel for every edge e � E�T � do

If P �e� T�H� � 1 then
M � M � e.

end
end

The first step in each iteration of the algorithm is comput-
ing a perfect matching in the complement of M . A perfect
matching of the complement exists and is easily found by
the following lemma.

Lemma 7.2 Let G be a bipartite 3-regular graph. Let M
be a pseudo perfect matching of G, then the complement of
M in G is a collection of vertex-disjoint even cycles.

Denote this perfect matching by N . Let H denote the
graph M �N .

Lemma 7.3 Let Q be a 2-path in H. If e� f � Q then
P �e� T�H� � P �f� T�H�.

Corollary 7.4 Let Q be a 2-path inH at a beginning of an
iteration, its two end-vertices being u and v. If e � Q and
P �e� T�H� � 1 then u and v will be removed as 3-vertices
from M at the end of that iteration.

Proof: We will prove for u, the same is valid for v. Let
f � Q be an edge incident on u (maybe e � f). By the
previous lemma P �f� T�H� � 1 since P �e� T�H� � 1. It
follows that f is on an augmenting cycle inH and this cycle
includes u. At the end of the iteration therefore u will be
removed as a 3-vertex from M .

LetS denote a set of fundamental cycles inH with respect
to T . Let L denote the exclusive-or of all these cycles.

Proposition 7.5 LetM � � M �L, then n�M �� � 1
2n�M �.

Proof: Let I be any connected component of H having
2p 3-vertices and 2q vertices of degree 2. The dimension
of its cycle space is 3p � 2q � �2p � 2q� � 1 � p � 1. It
follows that p � 1 non-forest edges of I lie in L.

Let e be such a non-forest edge. If e is incident on two 3-
vertices, then both will be removed when augmenting with a
cycle including e. Otherwise, emust lie in a 2-pathQ ofH.
By corollary 7.4 both end-vertices of Q will be removed as
3-vertices when augmenting with a cycle including Q. We
conclude that L contains at least p�1 3-vertices of I.

The proposition now follows, noting that the last state-
ment is true for every connected component of H, and that
every augmenting cycle in H is a good one (this is simply
because no two adjacent edges from the complement of M
reside in H).

Theorem 7.6 Let G be a bipartite cubic graph. Given an
odd induced forest M in G, there is an NC algorithm to
obtain a perfect matching of G, working in time O�log2 n�
usingO�n��n�� logn� processors.

Proof: Correctness: Each iteration we augment M , us-
ing a good augmenting cycle, at least halving the number of
3-vertices inM by proposition 7.5. The algorithm therefore
terminates after at most dlogne iterations with M being a
perfect matching of G.

Complexity: By proposition 7.5, dlogne iterations suf-
fice to produce a perfect matching. Each iteration consists of
the following: Computing a perfect matching in the comple-
ment; computing a spanning forest T of H; and computing
P �e� T�H�, for every every edge e � E�T �.

Computing a perfect matching in the complement can be
done in time O�logn� using O�n��n�� logn� processors,
by finding its connected components (see [2]) and taking
alternating edges from each of them.

If M has k 3-vertices then Computing a spanning forest
of H and the values of P �e� T� I� for every e � E�T � can
be done, as shown in theorem 5.7, in O�logn� time and
O�k�n� logn� processors. Since the number of 3-vertices
inM decreases by half each iteration, the total work required
for these computations is O�n logn�.



The overall time of the algorithm is therefore O�log2 n�
usingO�n��n�� logn� processors.

Theorem 7.7 There is an NC algorithm for the perfect
matching problem restricted to bipartitecubic graphs, work-
ing in O�log2 n� time andO�n��n�� logn� processors.

Proof: Correctness: We start with the inputgraph (which
is 3-regular) as our initialpseudo perfect matching. Correct-
ness now follows from theorems 5.7, 6.5 and 7.6.

Complexity: By theorems 5.7, 6.5 and 7.6, the overall
time of the algorithm is O�log2 n� using O�n��n�� logn�
processors.

Theorem 7.8 A sequential implementation of our algorithm
runs in O�n logn� time.

Proof: The bottleneck in the complexity of the algorithm
is computing connected components over O�logn� itera-
tions in the algorithms of sections 6 and 7. Since serially
the connected components of a graph with n vertices can be
computed in O�n� time we obtain the stated bound.

8. Concluding remarks

We presented a deterministic algorithm for the perfect
matching problem on bipartite cubic graphs working in
O�log2 n� time using O�n��n�� logn� processors. Some
further results for general graphs are presented in [16]. The
question whether the perfect matching problem is in NC
remains open.

References

[1] N. Blum. A new approach to maximum matching in gen-
eral graphs. In M. Paterson, editor, ICALP 90: Automata,
Languages, and Programming (LNCS 443), pages 586–597,
1990.

[2] R. Cole and U. Vishkin. Approximate parallel scheduling.
Part II: Applications to logarithmic-time optimal graph al-
gorithms. Information and Computation, 92:1–47, 1991.

[3] E. Dahlhaus and M. Karpinski. Perfect matching for regular
graphs is AC0-hard for the general matching problem. J.
Comput. and System Sci., 44(1):94–102, 1992.

[4] J. Edmonds. Paths, trees and flowers. Canada J. Math,
17:449–467, 1965.

[5] D. Grigoriev and M. Karpinski. The matching problem for
bipartite graphs with polynomially boundedpermanents is in
NC. In The 28th Annual IEEE Symposium on Foundations
of Computer Science, pages 166–172, 1987.

[6] J. Ja’Ja’. An introduction to parallel algorithms. Addison-
Wesely Publishing Company, 1992.

[7] H. J. Karloff. A las vegas NC algorithm for maximum
matching. Combinatorica, 6(4):387–391, 1986.

[8] R. M. Karp and R. Ramachandran. A survey of parallel algo-
rithms for shared-memory machines. In J. Van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume A,
chapter 17. MIT Press, Cambridge, Mass., 1990.

[9] R. M. Karp, E. Upfal, and A. Wigderson. Constructing
a maximum matching is in random NC. Combinatorica,
6:35–48, 1986.

[10] A. Lev, N. Pippenger, and L. G. Valiant. A fast parallel
algorithm for routing in permutation networks. IEEE Trans.
on Computers, 30(2):93–100, 1981.

[11] L. Lovasz. On determinants, matchings and random algo-
rithms. In L. Budach, editor, Fundamentals of Computing
Theory. Akademia-Verlag, Berlin, 1979.

[12] L. Lovasz and M. D. Plummer. Matching Theory, pages
122–126. Academic Press, Budapest, Hungary, 1986.

[13] S. Micali and V. V. Vazirani. An O�
p
jV jjEj� algorithm

for finding maximum matching in general graphs. In The
21th Annual IEEE Symposium on Foundations of Computer
Science, pages 17–27, 1980.

[14] K. Mulmuley. A fast parallel algorithm to compute the rank
of a matrix over an arbitrary field. Combinatorica, 7:101–
104, 1987.

[15] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching
is as easy as matrix inversion. Combinatorica, 7:105–113,
1987.

[16] R. Sharan. Perfect matching in parallel computation. Mas-
ter’s thesis, Institute of Computer Science, Hebrew Univer-
sity of Jerusalem, Israel, 1995.

[17] R. E. Tarjan and U. Vishkin. An efficient biconnectivity
algorithm. Siam J. Computing, 14(4):862–874, 1985.

[18] W. T. Tutte. The factorization of linear graphs. J. London
Math Society, 22:107–111, 1947.

[19] V. V. Vazirani. NC algorithms for computing the number of
perfect matchings inK3�3-free graphs and related problems.
J. Information and Computation, 80, 1989.

[20] V. V. Vazirani. A theory of alternating paths and blossoms
for proving correctness of the O�

p
jV jjEj� general graph

maximum matching algorithm. Combinatorica, 14, 1994.


