A new N'C Algorithm for Perfect Matching
in Bipartite Cubic Graphs

Roded Sharan

Avi Wigderson *

Institute of Computer Science, Hebrew University of Jerusalem, Isragl.

E-mail:

Abstract

The purpose of this paper istointroduce a new approach
to the problem of computing perfect matchings in fast de-
terministic parallel time. In particular, thisapproach yields
a new algorithm which finds a perfect matching in bipar-
tite cubic graphs in time O(log®n) and O(na(n)/logn)
processors in the arbitrary CRCW PRAM model.

1. Introduction

Givenagraph G = (V, E) withn verticesand m edges, a
Matchingisaset of edges M C £, such that no two edges of
M are adjacent in G. A Maximum Matching is a matching
of maximum cardinality in ¢ and a Perfect Matching is
a matching which is incident to all vertices of . The
Perfect Matching Decision Problem is to determine if G
has a perfect matching. The Search Problemisto exhibit a
perfect matching, if such exists. The Maximum Matching
Problemisto find a matching of maximum cardinality in .

The first sequential polynomial agorithm for the max-
imum matching problem was given by Edmonds [4], re-
quiring O(n%) time. This agorithm as many others fol-
lowing it, solves the problem by finding a partial matching
and augmenting it to a maximum matching. The best al-
gorithms currently known for this problem, by Micali and
Vazirani [13, 20] and by Blum [1] work in O(m+/n) time.

The methods used to solve the maximum matching prob-
lem for the sequential case, do not seem to parallelize. Even
the problem of finding asingle augmenting pathisnot known
to bein A’C. New techniques, using tools from linear al-
gebra, were developed to cope with the problem. All these
methodsare based on atheorem by Tutte[18] which reduces
the perfect matching decision problem to deciding if a cer-
tain Tutte-matrix of the input graph is non-singular. This
also leads to an RA'C algorithm for solving the decision
problem (see [11]).

*Thiswork was supported by USA-Israel BSF grant 92-00106 and by a
Wolfeson research award administered by thelsraeli Academy of Sciences.

roded@math.tau.ac.il,

aviecs.huji.ac.il

Thefirst parallel RAC algorithmfor constructing amaxi-
mum matching wasgiven by Karp, Upfal and Wigderson[9].
Another algorithm was later given by Mulmuley, Vazirani
and Vazirani [15], and a Las-Vegas extension of both algo-
rithmswas given by Karloff [7].

Deterministic A'C algorithms, even for the decision prob-
lem, are not known, although specia cases of the perfect
matching search problem turned out to be in N'C. Vazi-
rani [19] gave an V' C agorithm to count the number of per-
fect matchings in K3 3-free graphs. Grigoriev and Karpin-
ski [5] solved the search problem for the case that the graph
has only polynomialy many perfect matchings, and Lev,
Pippenger and Valiant [10] gave an N'C agorithm to find
a perfect matching in bipartite d-regular graphs. The last
algorithm works in O(log?n logd) time using O(m) pro-
CEssors.

In this work, we present a new approach towards the
perfect matching problem. This approach yields a new
NC dgorithm to solve the perfect matching search prob-
lem for bipartite cubic graphs. The agorithm works in
O(log?n) time using O(na(n)/logn) processors in the
arbitrary CRCW PRAM model, improving the processor
bound in [10], which requires (for bipartite cubic graphs)
O(log?n) time and O(n) processors. The methods we use
seem to be of general nature and some stages of our algo-
rithm are shown for general graphs as well.

Let G = (V, F) be the input graph, |V| = n. Our Al-
gorithm starts with a Pseudo Perfect Matching of &, which
is a subgraph of G with every vertex having odd degree in
it. We show how find one and how to efficiently augment it
until a perfect matching is produced.

The augmentation is done by finding certain cyclesin G
and by xoringthem to the pseudo perfect matching, reducing
the number of edgesin it and increasing its number of con-
nected components. In other words the approach we take
is augmenting by decreasing the number of edges, rather
than augmenting by increasing as done in most sequential
algorithmsfor the problem.

In total O(logn) phases are carried out. The input to
each phase is a pseudo perfect matching and the output of

each phase is a new pseudo perfect matching, with number
of 3-degree verticesin it, reduced by a constant factor. At
the end, a perfect matching is obtained.

We also show a sequential implementation of our algo-
rithmworkingin O(nlogn) sequential time.

2. Preliminaries

Let G = (V, E') be an undirected simple graph.

Definition 2.1 A Pseudo Perfect Matching of GG isa sub-
graph M, with every vertex having odd degree in it.

Definition 2.2 A 3-vertex of a pseudo perfect matching M,
isavertex of degree 3in M.

Definition 2.3 The Complement in G of a pseudo perfect
matching M, isthe graph G — M, where isolated vertices
are excluded.

The Cycle Space of (i is a vector space over G'F(2),
containing all incidence vectors representing cycles in GG,
and closed with respect to the xor operation. A vector inthe
cycle space is called a Cycle \ector.

Definition 2.4 An Augmenting Cycle of G with respect to
a subgraph H, isa cycle vector C'in GG, suchthat H & C
has less edges than H.

Definition 2.5 A Good Cycleof G, withrespect to a pseudo
perfect matching M, is a cycle vector C', such that C' — M
isa matching.

Dahlhaus and Karpinski show in [3] that the perfect
matching problem for general graphs is N C-equivalent to
the perfect matching problem restricted to graphs of maxi-
mum degree 3 and this reduction preserves bipartiteness.

We will adopt this reduction and from now on restrict
ourselves to graphs of maximum degree 3.

3. High-level description of the algorithm

A pseudo perfect matching is basically a spanning sub-
graph of &, whichwewill use asastarting point to construct-
ing a perfect matching of . Our agorithm for finding a
perfect matching i sbased on finding a pseudo perfect match-
ing and constantly “improving” it until a perfect matching
is obtained.

The way we “improve’ our pseudo perfect matching is
using augmenting cycles. Each time we xor an augment-
ing cycle to the pseudo perfect matching we get closer to
a perfect matching, since its number of edges decreases by
at least one. Note that if the input graph has maximum

degree 3, then the number of edges decreased when aug-
menting, equals the number of 3-vertices decreased. The
following theorem shows that a good augmenting cycle ex-
istswhenever the pseudo perfect matching isnot yet aperfect
matching.

Theorem 3.1 Let G be an undirected graph with maximum
degree 3 having a perfect matching. Let M be a pseudo
perfect matching of G'. If M isnot a perfect matching, then
there exists a good augmenting cyclein G.

Proof: Let N be a perfect matching of G. Examine
M @ N. This graph, excluding the isolated vertices, is
a collection of vertex-digoint cycles. Since |M| > |N|
there exists a cycle with more edges from A/ than from V.
This cycle is an augmenting one. It is moreover a good
augmenting cycle, since N isamatching. m

We present below a high-level description of our A'C
algorithm for the perfect matching search problem on bipar-
tite cubic graphs. Such graphs are known to have a perfect
matching (See[12]).

Sections 4, 5, 6 and 7 describe the different stages of
the algorithm. All stages, but the last one (section 7), can
be applied to general graphs as well using the previously
mentioned reduction to graphs with maximum degree 3.

Notation 3.2 Let G beagraphwithmaximumdegree 3. Let
M be a pseudo perfect matching of G. We denote by n (M)
the number of 3-verticesin M .

Perfect matching algorithm:
Input: A bipartite 3-regular graph 5.
Output: A perfect matching M of G.

begin
[* Section 4 */
Construct a pseudo perfect matching of &G
and denoteit by M.
[* Section 5*/
Convert M toaforestinG.
[* Section 6 */
Convert M to aninduced forestin G.
[* Section 7 */
while M isnot a matching do:
begin
Find a perfect matching NV
in the complement of M.
Find an augmenting cycle L in M U N,
suchthat n(M @& L) < (1— ¢)n(M),
for aconstant ¢ > 0.
M=M®eo L.
end
end

4. Constructing a pseudo perfect matching

This section describes the first stage of our algorithm,
namely constructing a pseudo perfect matching of a given
graph. Note that if the input graph is 3-regular (as in our
case), we can take the whole graph as our initial pseudo
perfect matching.

Let G = (V, V) be agraph with n vertices and m edges.
We define bel ow a system of equationsover G'F'(2), whose
solutionis a pseudo perfect matching of G.

Letusassignfor eachedgee € E avariable X, € {0, 1}.
The set of equationsis as follows:

YveV: @{e;vE€}X€ =1

Lemma4.l Let)g be a solution to this system of » equa-
tions. Define M (X) = {e € EF | X. = 1}, then M (X) isa
pseudo perfect matching of G.

Theorem 4.2 Let (¢ be a graph with n vertices, m edges
and maximumdegree 3. If G hasa pseudo perfect matching,
then there is an A'C algorithmto find one, working in time
O(log? n) using O(n>*®) processors.

Proof: Correctness. By our assumptions a solution to
thislinear system of equationsexists, since a pseudo perfect
matching solves it and GG has one. By the previous lemma
any solution is a pseudo perfect matching, and correctness
follows.

Complexity: The complexity of this agorithm is es-
sentially the complexity of solving a linear system of n
equations with m variables over GF'(2). This can be done
using Mulmuley’s agorithm for rank computation [14] in
O(log? n) time using O(n>5) processors (see [8]). m

5. Converting a pseudo perfect matchingintoa
forest

This section and the next one deal with the problem of
converting a pseudo perfect matching of agraph G into one
which is aso an induced forest in G. The motivation for
thistransformation isto simplify the structure of the pseudo
perfect matching as much as possible.

Definition 5.1 An Odd Forest of a graph &, is a pseudo
perfect matching whichisa forest in G.

Definition 5.2 An Odd Induced Forest of agraph &G, isa
pseudo perfect matching which isan induced forest in G

Our agorithm to convert a pseudo perfect matching into
an odd forest relies on the following lemma.

Lemmab.3 Let K beagraph. Let S denote a set of fun-
damental cycles of K with respect to some spanning forest
of K. Define K/ = K & (©cesc), then K’ iscycle free.

Proof: Every non-forest edgeliesinauniquefundamental
cycle of S. When we xor the set of fundamental cyclesto K
all non-forest edges vanish and only maybe some tree edges
remain. Itfollowsthat K’ iscycle-free. m

Notation 5.4 Let ¢ beagraph. Let 7" be a spanning forest
of . For an edge ¢ € F(G) denote by P(e, T, () the
parity of the number of fundamental cycles with respect to
T, whichincludee. For avertex v € V() denote by p(v)
the parity of the number of non-forest edgesincident on v.

Notation 5.5 Let 7" be a rooted tree. For an edge ¢ =
(u,v) € E(T), v being the child of «, denote by T'(¢) the
set of vertices in the subtree rooted at v.

Algorithm for constructing an odd forest:

Input: A graph G with n vertices and maximum degree 3;
A pseudo perfect matching M of G.

Output: Anodd forest M of G.

begin
Find a spanning forest 7" of G.
/* Xor to M aset of fundamental cycles of G */
Inparalel for every edgee € £ do:
If P(e,T,G) = 1then
M=Mu®e
end

Lemmab.6 Let &G be a graph, and let 7" be a spanning
forestof G. If e € E(T') then

P(ea Ta G) = 69wET(e)p(w)

Proof: Lete = (u,v) € E(T), v being the child of
winT. P(e,T,G) is actualy equa to the parity of the
number of edges with one end vertex in 7'(¢) and the other
inV(T)—1T(e), i.e. edges going out of the subtree rooted
at v. The lemma now follows, since edges with both end
vertices in T'(e) do not contribute to the right hand-side
exclusive-or. m

Theorem 5.7 Thereisan \'C algorithmto convert a pseudo
perfect matching into an odd forest in O(logn) time using
O(n) processors.

Proof: Correctness: Applying the algorithm is equiva-
lent to computing a set of fundamental cycles of G' with
respect to 7' and xoring them to /. By lemma 5.3, the
graph obtained this way is cycle-free. Since xoring cycles

to a pseudo perfect matching preserves its structure, the
result isan odd forest.

Complexity: An arbitrary spanning forest of G can be
computedin O(logn) timeusing O(n) processors (see [6]).

It remainsto show how to computefor agraph &, a span-
ning forest 7" and an edge e € F((), thevalue P(e, T, ()
efficiently. If e is a non-forest edge then P(e, T\,) = 1.
Otherwise, by the previous lemma if e = (u,v), v being
the child of «, then P(e, T, (&) equals the xor over dl ver-
tices in the subtree rooted at v, of the parity of non-forest
edges incident on those vertices. This computation can be
made using a tree contraction algorithm in O(logn) time
and O(n/logn) processors (see[6]).

The overall time of the algorithm is therefore O(logn)
using O(n) processors.

6. Convertingan odd forest into an induced one

Let M bean oddforest of agraph G.. We describe below
an agorithm to convert A into an odd induced forest.

Definition 6.1 Let T' be a rooted tree in M with ¢ > 4
vertices. A% —3 cut-vertex of 7', is a vertex v, such that
v hasat least ‘5t descendants and at most 4 descendants,
includingitself. If |V (T")| = 4 define a cut-vertex of T to be

its 3-vertex.

Lemma6.2 LetT beatreein M witht > 2vertices. RootT"
arbitrarily at a 3-vertex, then 7' containsa 3 —5 cut-vertex.

Notation 6.3 Let G = (V, F) beagraph, andlet U C V.
Denoteby G[U] thegraphinduced by G onthe set of vertices
U. For avertex v € V denote by S(v) the set of vertices
which includes v and all vertices adjacent to .

Algorithm for constructing an odd induced forest:

Input: A graph G with n vertices and maximum degree 3;
Anoddforest M inG.

Output: Anoddinduced forest M of G.

Induce(M):
begin
while M isnot induced,
in parallel for every tree 7' in M
which is not induced do:
begin
Root 7" arbitrarily at a 3-vertex.
Finda - Z cut-vertex of 7', denoteit by v.
Search for acycle C'in G[T]
which includes v.
If such acycle C existsthen
M=MeC
else

begin
I =Induce(T" — {v})
M=M-T) U IUT[S(W)]
end
end
end

Lemma6.4 Therecursion depth of thealgorithmisat most
“093/2 n].

Proof: Wewill show that at each recursive cal, the size of
any tree component of M which is not induced, decreases
by at least a factor of % Since a tree with two vertices must
be induced, the lemma will follow.

Let 7" be a tree which is not induced at the beginning
of an iteration. Let v denote a £ — £ cut-vertex of 7'. The
algorithm differentiates between two cases:

Case a) There exists a cycle C' in G[T] which passes
through v. Inthat case’l"$ C' comprises of two or more con-
nected components and the size of each isat most 5|V/(7')],
sincev isal—2 cut-vertex.

Case b) There is no such cycle. In this case, removing
v we get three connected components, each of size at most
V(1)

At the k’th iteration therefore, all trees which are not
induced are of size at most (3)*n. Thelemmafollows. m

Theorem 6.5 There is an A'C algorithm to convert an
odd forest into an induced one in O(log?n) time using
O(na(n)/logn) processors.

Proof: Correctness: By the previous lemma the algo-
rithm outputs an induced forest. Since xoring cycles to
M preserves its structure as a pseudo perfect matching, we
obtain an odd induced forest.

Complexity: The agorithm runs at most [Iog3/2 n] it-
erations (iteration being a level of recursive call). Each
iteration includes finding the connected components of M
and some tree computations done for every treein M .

The connected components of M can be found in
O(logn) time using O(na(n)/logn) processors, where
a(n) istheinverse Ackermann function (see[2]).

Given a tree 7" with ¢ vertices, we can use the Euler
tour technique (see[17]) to perform our computationson 7.
Rooting 7" can be done in O(logt) time using O(t/ logt)
processors (see [6]). Finding a 2 — 2 cut vertex of 7' can
be done by computing for each vertex in 7" its number of
descendants and then determining acut vertex. Thiscompu-
tation can be performed in O(logt) time using O(t/ logt)
processors (see[6]). Checkingif agivenvertexisonacycle
and reconstructing such acyclerequiresO(logt) timeusing
O(t/logt) processors.

The overall time of the algorithm is therefore O(log? n)
using O(na(n)/logn) processors. m

7. Computing a perfect matching

This section describes the last stage of our algorithm. We
show how to compute a perfect matching given an odd in-
duced forest. The algorithm consists of O(logn) iterations.
Theinput to each iterationis an odd induced forest of G and
the output is a new odd induced forest in which the number
of 3-verticesis only a constant fraction of the original one.
This new forest is obtained by augmenting with a good cy-
cle, passing through a constant fraction of the 3-verticesin
the input forest.

Definition 7.1 Let G be a graph. An open 2-Path in GG, is
an open path in which all internal vertices have degree 2
and its end vertices are of degree other than 2.

Algorithm for constructing a perfect matching:

Input: A bipartite 3-regular graph GG with n vertices,
An odd induced forest M of 5.

Output: A perfect matching M of G.

begin
While M isnot a perfect matching do:
begin
Compute a perfect matching N
in the complement of M.
Let H =M UN.
Compute a spanning forest 7" of H.
/* Xor to M aset of fundamental
cyclesof H */
Inparallel for every edgee € E(T') do
If P(e, T, H) = 1then
M=Mde.
end
end

Thefirst stepin each iteration of the algorithmis comput-
ing a perfect matching in the complement of M. A perfect
matching of the complement exists and is easily found by
the following lemma.

Lemma7.2 Let GG be a bipartite 3-regular graph. Let M
be a pseudo perfect matching of GG, then the complement of
M in G isacollection of vertex-digoint even cycles.

Denote this perfect matching by N. Let H denote the
graph M U N.

Lemma7.3 Let () be a 2-pathin H. Ife, f € @Q then
Ple,T,H)= P(f,T, H).

Corollary 7.4 Let () bea2-pathin H at a beginning of an
iteration, its two end-vertices being v and v. If e € @) and
P(e, T, H) = 1then v and v will be removed as 3-vertices
from M at the end of that iteration.

Proof: We will prove for u, the same isvalid for v. Let
/ € @ bean edge incident on u (maybe e = f). By the
previouslemma P(f,7, H) = 1since P(e, T, H) = 1. It
followsthat f ison anaugmentingcyclein H and thiscycle
includes u. At the end of the iteration therefore u will be
removed as a 3-vertex from M. m

Let S denoteaset of fundamental cyclesin H with respect
toT'. Let . denote the exclusive-or of all these cycles.

Proposition 7.5 Let M’ = M & L, thenn(M’) < 2n(M).

Proof: Let / be any connected component of A having
2p 3-vertices and 2q vertices of degree 2. The dimension
of itscyclespaceis3p+2¢— (2p+2¢)+1=p+ 1. It
followsthat p + 1 non-forest edges of [liein L.

Let e be such anon-forest edge. If e isincident ontwo 3-
vertices, then both will be removed when augmentingwitha
cycleincludinge. Otherwise, e must lieina2-path @ of H.
By corollary 7.4 both end-vertices of) will be removed as
3-vertices when augmenting with a cycle including . We
conclude that L contains at least p+1 3-verticesof I.

The proposition now follows, noting that the last state-
ment is true for every connected component of /, and that
every augmenting cycle in H isagood one (thisis simply
because no two adjacent edges from the complement of M
resdein /). m

Theorem 7.6 Let G be a bipartite cubic graph. Given an
odd induced forest M in G, there is an A'C algorithm to
obtain a perfect matching of G, working in time O(log?n)
using O(na(n)/ logn) processors.

Proof: Correctness: Each iteration we augment M, us-
ing a good augmenting cycle, at least halving the number of
3-verticesin M by proposition7.5. The algorithmtherefore
terminates after at most [logn] iterationswith M being a
perfect matching of G.

Complexity: By proposition 7.5, [logn| iterations suf-
ficeto produceaperfect matching. Each iteration consistsof
thefollowing: Computing aperfect matching inthecomple-
ment; computing a spanning forest 7" of H; and computing
P(e,T,H),forevery every edgee € E(T).

Computing a perfect matching in the complement can be
done in time O(logn) using O(na(n)/logn) processors,
by finding its connected components (see [2]) and taking
alternating edges from each of them.

If M has k 3-vertices then Computing a spanning forest
of H and thevaluesof P(e, T, 1) for every e € E(T') can
be done, as shown in theorem 5.7, in O(logn) time and
O(k+n/logn) processors. Since the number of 3-vertices
in M decreasesby half eachiteration, thetotal work required
for these computationsis O(n logn).

The overall time of the algorithm is therefore O(log? n)
using O(na(n)/logn) processors. m

Theorem 7.7 There is an A'C algorithm for the perfect
matching problemrestricted to bipartitecubic graphs, work-
ingin O(log? n) timeand O(na(n)/ logn) processors.

Proof: Correctness: Westart withtheinputgraph (which
is3-regular) as our initial pseudo perfect matching. Correct-
ness now follows from theorems 5.7, 6.5 and 7.6.

Complexity: By theorems 5.7, 6.5 and 7.6, the overall
time of the algorithm is O(log®n) using O(na(n)/logn)
processors. |

Theorem 7.8 Asequential implementation of our algorithm
runsin O(nlogn) time.

Proof: The bottleneck in the complexity of the algorithm
is computing connected components over O(logn) itera
tions in the algorithms of sections 6 and 7. Since serialy
the connected components of a graph with n vertices can be
computed in O(n) time we obtain the stated bound. m

8. Concludingremarks

We presented a deterministic algorithm for the perfect
matching problem on bipartite cubic graphs working in
O(log?n) time using O(na(n)/ logn) processors. Some
further resultsfor general graphs are presented in [16]. The
question whether the perfect matching problem is in A’'C
remains open.

References

[1] N. Blum. A new approach to maximum matching in gen-
eral graphs. In M. Paterson, editor, ICALP 90: Automata,
Languages, and Programming (LNCS 443), pages 586-597,
1990.

[2] R. Cole and U. Vishkin. Approximate parallel scheduling.
Part I1: Applications to logarithmic-time optimal graph al-
gorithms. Information and Computation, 92:1-47, 1991.

[3] E.Dahlhausand M. Karpinski. Perfect matching for regular
graphs is AC-hard for the general matching problem. J.
Comput. and System ci., 44(1):94-102, 1992.

[4] J. Edmonds. Peths, trees and flowers. Canada J. Math,
17:449-467, 1965.

[5] D. Grigoriev and M. Karpinski. The matching problem for
bipartite graphswith polynomially bounded permanentsisin
NC. In The 28th Annual IEEE Symposium on Foundations
of Computer Science, pages 166172, 1987.

[6] J. JaJa. Anintroduction to parallel algorithms. Addison-
Wesely Publishing Company, 1992.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]
[18]

[19]

[20]

H. J. Karloff. A las vegas A'C dgorithm for maximum
matching. Combinatorica, 6(4):387-391, 1986.

R. M. Karp and R. Ramachandran. A survey of parallel algo-
rithms for shared-memory machines. In J. Van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volumeA,
chapter 17. MIT Press, Cambridge, Mass., 1990.

R. M. Karp, E. Upfal, and A. Wigderson. Constructing
a maximum matching is in random A/C. Combinatorica,
6:35-48, 1986.

A. Lev, N. Pippenger, and L. G. Vdiant. A fast parallel
algorithm for routing in permutation networks. |EEE Trans.
on Computers, 30(2):93-100, 1981.

L. Lovasz. On determinants, matchings and random algo-
rithms. In L. Budach, editor, Fundamentals of Computing
Theory. Akademia-Verlag, Berlin, 1979.

L. Lovasz and M. D. Plummer. Matching Theory, pages
122-126. Academic Press, Budapest, Hungary, 1986.

S. Micali and V. V. Vazirani. An O(,/|V||E|) agorithm
for finding maximum matching in genera graphs. In The
21th Annual |EEE Symposium on Foundations of Computer
Science, pages 1727, 1980.

K. Mulmuley. A fast parallel algorithm to compute the rank
of amatrix over an arbitrary field. Combinatorica, 7:101—
104, 1987.

K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching
is as easy as matrix inversion. Combinatorica, 7:105-113,
1987.

R. Sharan. Perfect matching in parallel computation. Mas-
ter's thesis, Ingtitute of Computer Science, Hebrew Univer-
sity of Jerusalem, Israel, 1995.

R. E. Tarjan and U. Vishkin. An efficient biconnectivity
algorithm. Sam J. Computing, 14(4):862—874, 1985.

W. T. Tutte. The factorization of linear graphs. J. London
Math Society, 22:107-111, 1947.

V. V. Vazirani. N'C agorithmsfor computing the number of
perfect matchingsin K’z s-free graphs and related problems.
J. Information and Computation, 80, 1989.

V. V. Vazirani. A theory of aternating paths and blossoms
for proving correctness of the O(+/|V|| E|) genera graph
maximum matching algorithm. Combinatorica, 14, 1994.

