On the Complexity of
Haplotyping via Perfect Phylogeny

Jens Gramm, Till Nierhoff, Roded Sharan, and Till Tantau

International Computer Science Institute
1947 Center Street, Suite 600, Berkeley, CA 94704.

{gramm,nierhoff,roded,tantau}@icsi.berkeley.edu

Abstract. The problem of haplotyping via perfect phylogeny has re-
ceived a lot of attention lately due to its applicability to real haplotyp-
ing problems and its theoretical elegance. However, two main research
issues remained open: The complexity of haplotyping with missing data,
and whether the problem is linear-time solvable. In this paper we settle
the first question and make progress toward answering the second one.
Specifically, we prove that Perfect Phylogeny Haplotyping with missing
data is NP-complete even when the phylogeny is a path and only one
allele of every polymorphic site is present in the population in its ho-
mozygous state. Our result implies the hardness of several variants of
the missing data problem, including the general Perfect Phylogeny Hap-
lotyping Problem with missing data, and Hypergraph Tree Realization
with missing data. On the positive side, we give a linear-time algorithm
for Perfect Phylogeny Haplotyping when the phylogeny is a path. This
variant is important due to the abundance of yin-yang haplotypes in the
human genome. Our algorithm relies on a reduction of the problem to
that of deciding whether a partially ordered set has width 2.

1 Introduction

Single nucleotide polymorphisms (SNPs) are differences in a single base, across
the population, within an otherwise conserved genomic sequence [10]. SNPs ac-
count for the majority of the variation between DNA sequences of different in-
dividuals. Especially when occurring in coding or otherwise functional regions,
variations in the allelic content of SNPs are linked to medical conditions [18] or
may affect drug response [15]. These examples underline the great clinical, sci-
entific and commercial impact of efficient and accurate methods for SNP typing.

The sequence of alleles in contiguous SNP positions along a chromosomal re-
gion is called a haplotype. For diploid organisms, the genotype specifies for every
SNP position the particular alleles which are present at this site in the two chro-
mosomes. However, the genotype contains information only on the combination
of alleles in a given site but not on the association of each allele with one of
the two chromosomes. Current technology suitable for large-scale polymorphism
screening obtains only the genotype information. The haplotypes for each chro-
mosome can only be obtained at a considerably higher cost [14]. It is therefore
desirable to develop efficient methods for inferring haplotypes from genotypes.

Known approaches for resolving haplotypes from genotype data include par-
simony approaches [4], maximum likelihood methods [6], and statistical meth-
ods [16]. In this paper we address a perfect phylogeny-based technique for hap-
lotype inference. Herein, the central idea is to resolve a given set of genotypes to
haplotypes under the assumption that the haplotypes form a perfect phylogeny.
This concept was introduced in a seminal paper by Gusfield [11]. The theoretical
elegance of the perfect phylogeny approach to haplotyping as well as its efficiency
and good performance in practice [3, 5] has spawned several studies of the prob-
lem and its variants [1, 5, 12]. In particular, quadratic-time algorithms have been
given for the case of complete and error-free input data [1,5]. Much of the cur-
rent research around this problem focuses on two main questions: (1) ‘Are there
polynomial-time algorithms for variants of the problem that allow for missing
data?’; and (2) ‘Is the problem solvable in linear time?’.

In this paper we settle the first question and make progress toward answering
the second one. Specifically, we prove that a restricted version of haplotyping via
perfect phylogeny is NP-complete when missing data is allowed. In this newly
introduced variant of the problem, only one allele of every genotyped SNP can be
observed in its homozygous state; this is motivated by focusing on SNPs for which
one of their alleles is lethal. Our result implies the NP-hardness of many variants
of the missing data problem. Thus, we show the hardness of Perfect Phylogeny
Haplotyping with missing data, both in the directed and in the undirected case,
and even in the case that the phylogeny is a path. Further, we show, for the
case of missing data, the hardness of Graph Realization and of a closely related
problem called Perfect Phylogeny Xor Haplotyping. On the positive side, we give
a linear-time algorithm for Perfect Phylogeny Haplotyping when the phylogeny
is a path. This is the case in the presence of so-called yin-yang haplotypes, i.e.,
the particular haplotype pattern in which two haplotypes have different alleles
at every SNP site. Recently, it has been discovered that yin-yang haplotypes
span large parts of the human genome [19]. Our algorithm relies on a reduction
of the problem to that of deciding whether a partially ordered set has width 2.

2 Preliminaries

A haplotype h is a binary string. A genotype g is a string over the alphabet
{0,1,2}. For a string g let g[i] denote the ith symbol of g. We say that a genotype
g € {0,1,2}™ is compatible with the haplotypes ht, h? € {0,1}™ if for every i the
following two conditions hold: (1) If g[i] = 1 or g[i] = 0 then h'[i] = h*[i] = g[i];
and (2) if g[i] = 2, then h'[i] # h?[i]. Let A be a {0,1,2} genotype matrix
of dimensions 7 X m. A binary matrix B of dimensions 2n x m is said to be
compatible with A if for every i, row ¢ of A is compatible with rows 2i — 1 and
2i of B. For a matrix A let A[i, j] denote the entry in row ¢ and column j.

We say that A admits a perfect phylogeny if there exists a haplotype matrix
B that is compatible with A and a rooted tree T such that:

. Each column of B labels exactly one edge of Tg.

. Every edge of Tg is labeled by at least one column of B.

. Each row of B labels exactly one node of Ts.

. For every row i of B the set of columns with value 1 in this row forms a path
from T’s root to the node labeled by i.

NG JUR N

The basic problem that we study in this paper is the following:

Problem 2.1 (Perfect Phylogeny Haplotyping Problem, PPH).
Input: A genotype matrix A.
Question: Does A admit a perfect phylogeny?

The above problem is more precisely called the directed Perfect Phylogeny
Haplotyping problem. In the directed case, the ancestral state of every SNP site
is assumed to be 0 or, equivalently, the root corresponds to the all-0 haplotype.
In the undirected case the ancestral state of every site can be arbitrary (0 or 1),
and the columns on a path from the root to a node labeled by row i correspond
to positions in which the value at row i differs from the corresponding ancestral
state. We shall restrict attention to the directed case, but note that our hardness
results apply also to the undirected case via a simple reduction that adds an all-0
row to the input matrix.

The definition of matrices A that admit a perfect phylogeny has the disad-
vantage that the properties of the tree are formulated in terms of the (generally
unknown) matrix B, rather than in terms of A itself. A characterization that
directly relates the tree to A can be derived from observations made by Gus-
field [11]. This characterization is summarized in the following theorem.

Theorem 2.2. A matriz A admits a perfect phylogeny iff there exists a rooted
tree T4 such that:

1. Each column of A labels exactly one edge of T4.
2. Every edge of Tx is labeled by at least one column of A.
3. For every row i of A:
(a) The columns with value 1 in this row label a path from the root to some
node u.

(b) The columns with value 2 in this row label a path that visits u and is
contained in the subtree rooted at u.

Proof. For the if-part, suppose that a tree T4 with the above properties exists.
We construct a perfect phylogeny for A, consisting of a tree Ts and a haplotype
matrix B. The topology of Tp is same as the topology of T4. The edge labels are
also the same. We assign node labels to Tg as follows: For each row i of A we
place the labels 2i — 1 and 27 on two specific nodes v and v’: These nodes are the
end points of the path in T's induced by the 2-entries in A in row ¢ (possibly, these
nodes coincide if the path is just the single node w). The haplotype matrix B
can now easily be derived: For each row ¢ in A we have two rows 2i — 1 and 2i
in B. Each of these rows has a 1l-entry exactly at those column positions that
are on the path from the root to the nodes v or v', respectively.

For the only-if-part, suppose that a perfect phylogeny for A, consisting of a
tree Tp and a haplotype matrix B, is given. We claim that the tree Tz, stripped
of the node labels, is the desired tree T'4: Consider any row ¢ of A and the two
nodes v and v’ to which the rows 2i — 1 and 2i of B are attached. The two paths
p and p' leading from the root to v and v are identical up to some node u. Then
they split. Exactly in those columns corresponding to the edges on the path from
the root to u, both row 2i — 1 and row 2 must have a 1-entry. On each column
corresponding to an edge on the paths from u to v and from u to v', exactly one
of the two rows must have the value 1. This shows that the columns in which A
has a 1-entry in row ¢ are the edges on the path from the root to v and that the
columns in which A has a 2-entry in row 7 are the the edges on the path between
v and v'. This path contains u. O

Given a genotype matrix A, we refer to the tree T4 with the labeling as
described in Theorem 2.2 as perfect phylogeny tree for A. The following lemma
is a useful observation that follows easily from the properties of T4.

Lemma 2.3. Let A be a genotype matriz that admits a perfect phylogeny tree T4 .
Consider a path starting at the root of Ta and let A’ be the matriz that consists
of the columns that label this path, in the order in which they appear on the path.
Then each row of A' is of the form (1,...,1,2,...,2,0,...,0). O

We now define several variants of PPH, which we study in the sequel. In
Perfect Phylogeny Path Haplotyping (PPPH) one has to determine if the input
genotype matrix admits a perfect phylogeny that is a path. Such a problem arises
for instances that contain an all-2 row, corresponding to yin-yang haplotypes
which were shown to be common in human populations [19]. For convenience,
we use an equivalent formulation of PPPH:

Problem 2.4 (Perfect Phylogeny Path Haplotyping, PPPH).
Input: A genotype matrix A containing an all-2 row.
Question: Does A admit a perfect phylogeny?

The input matrix may contain missing entries, manifested as question mark
entries. A matrix with missing entries is called incomplete. This leads to the
following problem:

Problem 2.5 (Perfect Phylogeny Haplotyping with missing entries).

Input: An incomplete genotype matrix A.

Question: Is there a completion A’ of the missing entries in A such that the
resulting matrix admits a perfect phylogeny?

Analogously, we can define Perfect Phylogeny Path Haplotyping with missing
entries. In this work, we also consider the following variants of Perfect Phylogeny
(Path) Haplotyping (with missing entries): In one variant, we consider only SNPs
for which one of their alleles (denoted here by 1) is lethal and, therefore, not
observed in its homozygous state in the population. Therefore, the input matrix
(and possible completions thereof) contain only entries 0 and 2. A second variant
is motivated by data in which we only have information on whether a SNP state
is homozygous or heterozygous, i.e., for a homozygous state we do not know
which of the two alleles is present. For complete data, this problem is called
Xor Perfect Phylogeny Haplotyping (XPPH), and was shown to be equivalent to
Hypergraph Tree Realization [2].

Notation. In the following we use a uniform notation for all problem variants
that we consider, indicating in each case the allowed values in the input matrix:
Thus, we use {0,1,2}-PPH ({0, 1,2}-PPPH) to denote the Perfect Phylogeny
(Path) Haplotyping Problem and {0,1,2,7}-PPH ({0,1,2,?}-PPPH) to denote
the corresponding version with missing data.

3 Hardness Results

3.1 Perfect Phylogeny Path Haplotyping with Missing Data

In this section we study the complexity of {0, 2, ?}-PPPH which is the version of
Perfect Phylogeny Path Haplotyping with missing data for which, in the input
matrix and possible completions thereof, only entries 0 and 2 are allowed. We
show NP-hardness of {0,2, 7}-PPPH by giving a reduction from the NP-complete
Not-All-Equal 3SAT (NAE3SAT) [8]. Given a Boolean formula in conjunctive
normal form with three literals per clause, for NAE3SAT we must decide whether
there is an assignment to the variables such that in every clause at least one and
at most two literals are satisfied.

Theorem 3.1. {0,2,7}-PPPH is NP-complete.

Proof. We first outline the reduction and then show its correctness.

Reduction. Let F be a 3-CNF formula over variables vy, vs, ..., v, and clauses
Ci, Cs, ..., Cp. Each clause C; is given as a set of three literals {l;1,1;2,;3},
where each literal [; . is either a variable v; or a negated variable v;.

We map F' to a matrix A with entries from {0,2,?} with 2n 4+ 3m + 2 rows
and 2n + 3m columns. The construction proceeds columnwise. For z € {0,2,7}
and a positive integer i let 2¢ denote a length-i column vector containing only
entries x.

~ O N
[
o N

oo
v o
oo
oo~ © N
o o
oo v

Fig. 1. Illustration of the matrix A from the proof of Theorem 3.1. It is constructed
from a 3-CNF formula with variables vi, va, ..., v, and clauses Ci, C2, ..., Cn,. In
the above example C = {v1, 02, v}

Encoding literals. For each variable v; we define two column vectors (v;) and (7;):

22(i—1) 22(i—1)
(v;) = 2 and (v;) := 9
22(n—i) 22(n—i)

Encoding clauses. For each clause C; = {l;1,l;2,0;3} with j € {1,...,m} we
define the following three column vectors:

{5,1) ({5,2) (l3,3)

03Gi—-1) 03G—1) 03Gi—-1)
(Cja) = 2 (C2) = 9 (Cjs) = ?
?
93(m—3) 23(3—]» 23(3—j)

Resulting matriz. The matrix A is composed of the following columns: For ev-
ery variable v; it contains the two variable columns (éng) and (éznz) For each
clause C; it contains the three clause columns (Cj1), (Cj2), and (C} 3). Below
these columns, we add an all-0 row and an all-2 row to the matrix. The all-0 row
is added to enforce a directed perfect phylogeny, the all-2 row is added to en-
force that the resulting perfect phylogeny takes the form of a path. The resulting
matrix is illustrated in Figure 1.

Correctness. For the correctness of the reduction, we show that a 3-CNF for-
mula F' has a satisfying assignment such that in each clause exactly one or ex-
actly two literals are satisfied iff the matrix A has a completion A’ that admits
a perfect phylogeny.

Only-if-part. Let a satisfying assignment 7: {v1,...,v,} — {0,1} be given. We
extend it to an assignment that assigns values also to the negated literals. We
show how to complete the matrix A to a matrix A’ that admits a perfect phy-
logeny.

First, consider a variable column ¢ corresponding to a literal [with [= v;
or | = ©;. For every variable v, with h # i we replace the question marks in
the positions 4'[2h — 2,¢] and A'[2h — 1,¢] by (?) if 7(I) = 7(vs), and by (3)
otherwise.

Second, consider a clause column ¢ corresponding to a literal /; . in a clause C;.
Let ;- equal v; or v;. Again, for every variable vy, with h # ¢ we replace the ques-
tion marks in the positions A'[2h —2,] and A'[2h —1,c] by (g) if 7(1;,7) = 7(vn),
and by (g) otherwise.

For the completion of the lower part of the clause columns, consider a clause C'.
It contains three literals I, l2, and l3. Exactly two of these must be false under
the assignment 7 or exactly two of them must be true. If [; and Iy are these two
literals, we set the question mark in /;’s column to a 2. If they are l5 and I3,
we set the question mark in l5’s column to a 2. Finally, for I3 and [; we set the
question mark in [3’s column to a 2. All remaining question marks are set to 0.

It remains to show that the resulting matrix A’ has a perfect phylogeny. For
this, we construct a perfect phylogeny tree T4 for A’. Since A’ contains a row
of 2-entries, this tree must, due to Theorem 2.2, actually take the form of a
(rooted) path. We call the subpath of T4s to one side of the root the true side
of T4 and call the subpath to the other side of T4 the false side. Starting from
the root node, the path T4/ is constructed edge by edge as follows: Firstly, in
order of increasing index %, we consider literals v; and v;. If v; evaluates to true
w.r.t. 7, then we add an v;-edge on the true side of T4/, i.e., we add an edge on
the true side and label this edge with the variable column corresponding to v;;
in the same way, we add a @;-edge on the false side of Ty:. If v; evaluates to
false w.r.t. 7, we add an v;-edge on the false side and an v;-edge on the true
side. Secondly, again in order of increasing index ¢, we consider each clause Cj.
Let it contain the three literals [1, I, and [3. For those literals of I, I5, and I3
that evaluate to true w.r.t. 7, we add an edge on the true side of T4 and for
those literals that evaluate to false w.r.t. 7, we add an edge on the false side of
T (in each case labeled by the corresponding clause column). Exactly two of
these three clause columns will be placed on the same side. These two columns
are internally ordered as follows: we maintain the order of [y, [, and I3, except
in the situation when the [;-edge and the [3-edge are added on the same side of
T4:; then, we place the [3-edge closer to the root of T4/ than the l;-edge.

We claim that the resulting path T4 is a perfect phylogeny tree for A’. We
can show this by testing that T'4» with its indicated edge labeling satisfies the
conditions of Theorem 2.2. Since A’ does not contain 1-entries, it remains to test
condition 3(b). We only sketch here how this test is done: First, consider a row
of A’ in the upper part. Then the columns in which this row has value 2 will
form a complete path from the root to one of the ends of T4. Second, consider
any three rows of A’ in the lower part corresponding to a clause C. In all three

rows the set of columns in which this row has value 2 forms a path inside T'4;
this path extends between two clause columns which correspond to two literals
of C' and which are placed on different sides of T4 (including these columns or
stopping just before them).

If-part. Let A’ be a completion of A such that A" admits a perfect phylogeny. Let
T4 be the perfect phylogeny tree for A’. Since A contains an all-2 column, T4
has to take the form of a path. We may assume that each edge is labeled with
exactly one column of A’. Let us say that the path has two sides, namely the
edges leading from the root to one end of the path and the edges leading from
the root to the other end. We extract an assignment 7: {vy,...,v,} — {0,1}
from T4/ as follows: Choose any side of T4» and let E be the set of edges on this
side. Let 7(v) = 1 iff v’s column labels an edge in E. We claim that the resulting
assignment satisfies the formula F' which follows from these observations:

1. The variable columns of a literal v and the literal v must be on different sides
of T4 This follows with Lemma 2.3 from the (2 9) block in these columns.

2. A clause column of a literal [in any clause must be on the same side of T4
as the variable column of /. This follows with Lemma 2.3 from the (29)
block formed by the upper part of I’s clause column and the variable column
corresponding to [. Thus the clause column for [and the variable column for
[must be on different sides and hence, with (1), the clause column for [and
the variable column for [must be on the same side.

3. For any clause C' = {ly,l2,13} the clause columns corresponding to these

literals cannot all be on the same side of T'4-. This is due to the ((3 (.;) %) block,

of A which cannot be completed in such a way that all three columns are on
the same side of T4; this can be shown by trying all possible completions
and using Lemma 2.3. O

3.2 Implications for Perfect Phylogeny Haplotyping Problems

In the previous section we have shown that {0,2,?}-PPPH, a restricted case of
Perfect Phylogeny Haplotyping with missing data, is NP-hard. In the following
we use this result to show the hardness of several related variants of Perfect
Phylogeny Haplotyping with missing data:

Theorem 3.2. {0,2,7}-PPH, {0,1,2,7}-PPPH, and {0, 1,2, 7}-PPH are NP-com-
plete.

Proof. The Perfect Phylogeny Path Haplotyping problem is a subproblem of
Perfect Phylogeny Haplotyping. Therefore the hardness of {0, 2, ?}-PPPH implies
the hardness of {0, 2, 7}-PPH, and the hardness of {0, 1,2, ?}-PPPH implies the
hardness of {0, 1,2, ?}-PPH. Therefore it remains to show that {0, 1,2, 7}-PPPH
is NP-hard. To this end, we use the following reduction from {0,2,7}-PPPH
to {0,1,2,7}-PPPH: Let A be an input instance for {0,2,7}-PPPH. We map it
to an instance A = A for {0,1,2,7}-PPPH. Clearly a solution to A is also a
solution to the {0, 1,2, 7}-PPPH instance. Conversely, let A’ be a completion of

8

A that admits a perfect phylogeny. Let T'; be the perfect phylogeny tree for A
which takes the form of a path due to Theorem 2.2. Consider the matrix C
that is obtained from A’ by replacing every l-entry with a 2-entry and let T¢
be the tree obtained from T'; by replacing the column labels from A with the
corresponding columns in C. Obviously, C is also a completion for A with only
0-entries and 2-entries, T satisfies the conditions of Theorem 2.2, and, thus, C'
admits a perfect phylogeny. O

We note that the NP-completeness of {0,1,2,7}-PPH was independently
shown by Kimmel [13].

3.3 Implications for Hypergraph Realization Problems

Gusfield has shown that Perfect Phylogeny Haplotyping reduces to the classical
Hypergraph Tree Realization Problem [11]. This problem was later shown to be
equivalent to XPPH [2]. In this section we show that Hypergraph Tree Realiza-
tion and restricted variants thereof are NP-hard in the presence of missing data.
In particular, we strengthen a result of Golumbic and Wassermann [9] for hyper-
graphs. In this context, the ‘missing data scenario’ is formulated as a ‘sandwich’
problem of two hypergraphs as follows.

A hypergraph is a pair H = (V| E) consisting of a vertex set V' and a set E of
subsets of V. The elements of E are called hyperedges. For a Hypergraph Sandwich
Problem we are given a pair H* = (V,E') and H?> = (V, E?) of hypergraphs
as input such that E' = {el,...,el,} and E? = {e?,...,e2,} with e} C &7
for all i € {1,...,m}. The goal is to find a hypergraph H = (V, E) that is
‘sandwiched’ between H' and H?, that is, E = {ey,...,e,} with el Ce; C €?
foralli e {1,...,m}.

Problem 3.3 (Interval Hypergraph Sandwich Problem,).

Input: Two hypergraphs H; = (V, Ey), Hy = (V, E»).

Question: Is there a hypergraph H sandwiched between H' and H? and a linear
ordering of V' such that each hyperedge e € E is an interval?

Golumbic and Wassermann have shown that this problem is NP-complete [9].
We prove the following, stronger theorem.

Theorem 3.4. The Interval Hypergraph Sandwich Problem is NP-complete, even
if we require that all hyperedges in E, share a common vertez.

Proof. (Sketch) We describe a reduction from {0,2,7}-PPPH to this problem.
Its correctness is omitted due to lack of space. Let A be an input matrix to
{0,2,7}-PPPH. For each row i of A let e} = {c| A[i,c] =2} and e? = e} U {c |
Ali,¢] =7} The reduction maps A to H' = (V, E') and H? = (V, E?), where V
is the set of columns of A, E' = {e},el,...}, and E? = {e?,¢€3,...}. g

Our hardness result also implies the hardness of the general Hypergraph Tree
Realization Problem with missing data:

Problem 3.5 (Hypergraph Tree Realization Sandwich Problem,).

Input: Two hypergraphs H! = (V, E'), H? = (V, E?).

Question: Are there a hypergraph H sandwiched between H'! and H? and a
tree T whose set of edges is V' such that every hyperedge e € E is a path in T'?

Using the same reduction as in the proof of Theorem 3.4, we conclude:

Theorem 3.6. The Hypergraph Tree Realization Sandwich Problem is NP-com-
plete, even if we require that all hyperedges in E, share a common vertex. O

4 A Linear-Time Algorithm for PPPH

We complement the hardness results given in the previous sections with an
algorithmic result. Several polynomial-time algorithms exist for {0,1,2}-PPH,
but none is linear [1, 5, 11]. The running time of the algorithms is still superlinear
if they are applied ‘as is’ to {0,1,2}-PPPH. In the following, we describe an
algorithm that solves {0,1,2}-PPPH in linear time.

Theorem 4.1. There exists a linear-time algorithm for solving {0,1,2}-PPPH.

Proof. We are given an n x m genotype matrix A as an input for {0, 1, 2}-PPPH.
We describe an algorithm that computes a perfect phylogeny tree T4 for A, if
it exists, and, otherwise, reports that A does not admit a perfect phylogeny.
Preliminaries. Let C be the set of columns of A. We define a partial order > on
C as follows: ¢ dominates ¢’ (c = ¢') iff, for every i, ¢(i) = ¢/ (i), where 1 > 2 > 0.
If A admits a perfect phylogeny tree T4, then each path starting at the root
is, by Lemma 2.3, a chain in (C,*). A perfect phylogeny tree for A has, due
to the all-2 row in A and Theorem 2.2, to take the form of a (rooted) path.
Therefore, (C, =) has a cover by two chains, i.e. has width at most two. Initially,
the algorithm computes for every column of A its leaf count, which is twice the
number of 1-entries plus the number of 2-entries in this column. The following
two phases of the algorithm rely on these leaf counts: In its first phase, the
algorithm computes those edges in T4 that are labeled by a column containing a
1-entry. These edges form a path that is called the initial path of the matrix A
and it was already shown by Gusfield [11] that this initial path can be computed
in linear time. In its second phase, the algorithm expands the initial path to T4
by processing those columns in A that do not contain a 1-entry. Phase 2 is based
on an algorithm by Felsner, Raghavan, and Spinrad [7] for checking in linear
time whether a partially ordered set (poset) has width 2. In the following, we
describe these two phases in more detail.

Phase 1. We consider the columns of A containing a l-entry. Let G = (C, E)
be the graph, where {c,¢'} € E iff there is a row in A which has a l-entry
both in ¢ and ¢'. Assume that A admits a perfect phylogeny and let ¢,¢’ € C.
If {¢,d'} € E, then Theorem 2.2, condition 3(a), implies that ¢ and ¢’ must
be on the same path starting at the root. Otherwise, Lemma 2.3 implies that
they are on different paths. It follows that G consists of one or two cliques. As

10

observed by Gusfield [11], in any perfect phylogeny tree for A the leaf counts are
decreasing on any path down from the root. The algorithm chooses an arbitrary
column ¢ with a 1-entry. Then it computes the set C of ¢ and all its neighbors
in G. We obtain two sets: C; and the set Cy containing the remaining columns
with a l-entry. The algorithm tests whether each set, ordered by the leaf count,
is a chain with respect to >. If not, it is safe to stop and output that A does
not admit a perfect phylogeny. Otherwise, the initial path is given by the two
chains.

Phase 2. Ordering the columns by their leaf count gives a linear extension (for
terminology related to posets see, e.g., the book by Trotter [17]) of the poset
(C,*). Given that linear extension, an algorithm by Felsner, Raghavan, and
Spinrad [7, Thm 3] decides in time O(mn) whether the width of (C,) is at most
two. We use a straightforward modification of their algorithm to produce (in the
same time bound) a Hasse diagram of (C,) of width two, if existent; otherwise,
we terminate with the output that A does not admit a perfect phylogeny. For a
width-2 Hasse diagram, let ¢ and ¢’ be the ends of the initial path. The columns
without 1-entries are entirely below ¢ and ¢’ in the Hasse diagram. We extend the
initial path as follows: We append to ¢ a maximal chain below ¢ (by appending
a path containing one edge for every column in the chain, in the same order as
they appear in the chain). In the same way, we append all remaining columns
(another chain, not necessarily maximal) to ¢’. The resulting rooted path is the
output of the algorithm.

Correctness. Whenever the algorithm reports that A does not admit a per-
fect phylogeny, then this is correct, as argued in the description. Otherwise,
the (rooted) path returned by the algorithm satisfies the properties stated in
Theorem 2.2 and is thus in fact a perfect phylogeny for A.

Running time. Computing the leaf counts can be done in linear time. Likewise
can the column sets C7 and C5 be determined in linear time. Since the leaf counts
range only between 0 and 2n, the set C' can be ordered according to the leaf
count in linear time. Using that order, the initial path can be built out of C4
and C5 in linear time. The Hasse diagram has at most 2m edges. Therefore, the
traversals in Phase 2 can also be done in linear time. O

Acknowledgments. We would like to thank Eran Halperin for insightful dis-
cussions on haplotyping with missing data. J.G., T.N. and T.T. were supported
through a postdoc fellowship by the DAAD (German Academic Exchange Ser-
vice). This research was supported in part by NSF ITR Grant CCR-0121555.

References

1. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phy-
logeny: A direct approach. Technical Report CSE-2002-21, UC Davis, 2002. Aug-
mented version to appear in Journal of Computational Biology.

2. T. Barzuza, J. S. Beckmann, R. Shamir, and I. Pe’er. Xor haplotyping: Resolution
of perfect phylogeny haplotypes from heterozygote/homozygote calls. Manuscript
in preparation, December 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

11

R. H. Chung and D. Gusfield. Empirical exploration of perfect phylogeny haplo-
typing and haplotypers. In Proc. of the 9th COCOON, number 2697 in LNCS,
pages 5-19. Springer, 2003.

A.G. Clark. Inference of haplotypes from PCR-amplified samples of diploid popu-
lations. Journal of Molecular Biology and Evolution, 7(2):111-22, 1990.

E. Eskin, E. Halperin, and R. M. Karp. Efficient reconstruction of haplotype
structure via perfect phylogeny. Journal of Bioinformatics and Computational
Biology, 1(1):1-20, 2003.

L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular hap-
lotype frequencies in a diploid population. Molecular Biology and Ewvolution,
12(5):921-7, 1995.

S. Felsner, V. Raghavan, and J. Spinrad. Recognition algorithms for or-
ders of small width and graphs of small Dilworth number. Technical Re-
port TR-B-99-05, FU Berlin, 1999. Available from http://www.math.tu-
berlin.de/ felsner/Paper/width.ps.gz. To appear in Order.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco, 1979.

M. C. Golumbic and A. Wassermann. Complexity and algorithms for graph and
hypergraph sandwich problems. Graphs and Combinatorics, 14:223-9, 1998.

The International SNP Map Working Group. A map of human genome se-
quence variation containing 1.42 million single nucleotide polymorphisms. Nature,
409:928-33, 2001.

D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions. In Proc. of 6th RECOMB, pages 166-75. ACM Press, 2002.

E. Halperin and R. M. Karp. Perfect phylogeny and haplotype assignment. Tech-
nical Report TR-678-03, Princeton University, October 2003.

G. Kimmel. The incomplete perfect phylogeny haplotype problem. Technical
report, School of Computer Science, Tel-Aviv University, 2003.

N. Patil, A.J. Berno, D.A. Hinds, et al. Blocks of limited haplotype diver-
sity revealed by high-resolution scanning of human chromosome 21. Science,
294(5547):1719-23, 2001.

A.D. Roses. Pharmacogenetics and the practice of medicine. Nature, 405:857—65,
2000.

M. Stephens, N. Smith, and P. Donnelly. A new statistical method for haplo-
type reconstruction from population data. American Journal of Human Genetics,
68(4):978-89, 2001.

W. T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. The
Johns Hopkins University Press, Baltimore, 1992.

Y. Watanabe, A. Fujiyama, Y. Ichiba, M. Hattori, et al. Chromosome-wide assess-
ment of replication timing for human chromosomes 11q and 21q: disease-related
genes in timing-switch regions. Human Molecular Genetics, 11(1):13-21, 2002.

J. Zhang, W. L. Rowe, A. G. Clark, and K. H. Buetow. Genomewide distribu-
tion of high-frequency, completely mismatching SNP haplotype pairs observed to
be common across human populations. American Journal of Human Genetics,
73(5):1073-81, 2003.

