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Abstract. There are very few instances in which positive Darwinian
selection has been convincingly demonstrated at the molecular level. In
this study, we present a novel test for detecting positive selection at the
amino-acid level. In this test, amino-acid replacements are characterized
in terms of chemical distances, i.e., degrees of dissimilarity between the
exchanged residues in a protein. The test identifies statistically signif-
icant deviations of the mean observed chemical distance from its ex-
pectation, either along a phylogenetic lineage or across a subtree. The
mean observed distance is calculated as the average chemical distance
over all possible ancestral sequence reconstructions, weighted by their
likelihood. Our method substantially improves over previous approaches
by taking into account the stochastic process, tree phylogeny, among site
rate variation, and alternative ancestral reconstructions. We provide a
linear time algorithm for applying this test to all branches and all sub-
trees of a given phylogenetic tree. We validate this approach by applying
it to two well-studied datasets, the MHC class I glycoproteins serving
as a positive control, and the house-keeping gene carbonic anhydrase I
serving as a negative control.

1 Introduction

The neutral theory of molecular evolution maintains that the great majority
of evolutionary changes at the molecular level are caused not by Darwinian
selection acting on advantageous mutants, but by random fixation of selectively
neutral or nearly neutral mutants [12]. There are very few cases in which positive
Darwinian selection was convincingly demonstrated at the molecular level [10,
22,34,30,23]. These cases are vital to understanding the link between sequence
variability and adaptive evolution. Indeed, it has been estimated that positive
selection has occurred in only 0.5% of all protein-coding genes [2].

The most widely used method for detecting positive Darwinian selection is
based on comparing synonymous and nonsynonymous substitution rates between
nucleotide sequences [17]. Synonymous substitutions are assumed to be selec-
tively neutral. If only purifying selection operates, then the rate of synonymous
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substitution should be higher than the rate of nonsynonymous substitution. In
the few cases where the opposite pattern was observed, positive selection was
invoked as the likely explanation (see, e.g., [33,14]). One critical shortcoming
of this method is that it requires estimating numbers of synonymous substitu-
tions. Because of saturation, such estimation is virtually impossible when the
sequences under study are evolutionarily distant. The estimation is problem-
atic even if close species are concerned. For example, saturation of substitutions
in the third position is evident even when comparing cytochrome b sequences
among species within the same mammalian order [5].

Another method for detecting positive selection is searching for parallel and
convergent replacements. It is postulated that such molecular changes in different
parts of a phylogenetic tree can only be explained by the same selective pressure
being exerted on different taxa that became exposed to the same conditions [23,
32]. This method is limited to the few cases in which the same type of positive
Darwinian selection occurs in two or more unrelated lineages.

A third method of detecting positive selection is based on comparing con-
servative and radical nonsynonymous differences [9, 7]: Nonsynonymous sites are
divided into conservative sites and radical sites based on physicochemical prop-
erties of the amino-acid side chain, such as volume, hydrophobicity, charge or po-
larity. Radical and conservative sites and radical and conservative replacements
are separately counted, and the number of radical replacements per radical site
is compared to the number of conservative replacements per conservative site. If
the former ratio is significantly higher than the latter, then positive Darwinian
selection is invoked. By using this method, positive selection was inferred for the
antigen binding cleft of class I major-histocompatibility-complex (MHC) gly-
coproteins [9] and rat olfactory proteins [8]. This method for detecting positive
selection has the advantage that distant protein sequences can be compared even
when synonymous substitutions are saturated. Another virtue of this method is
its flexibility with respect to the sequence characteristic tested. For example, if
we suspect that polar replacements might be advantageous, a test can be applied
with radical replacements defined as those occurring between amino-acids with
polar and non-polar residues only. However, this method also has many short-
comings. First, no correction for multiple substitutions is applicable [7]. Second,
each codon in a pair of aligned amino-acid is used twice: Once for estimating the
number of radical and conservative sites, and once for estimating the number of
radical and conservative replacements. Third, the method treats replacements
between different amino-acids as equally probable. Fourth, the method ignores
branch lengths, implicitly assuming independence of the replacement probabil-
ities between the amino acids and the evolutionary distance between the se-
quences under study. Finally, the phylogenetic signal is ignored, i.e., the test is
applied to pairwise sequence comparisons rather than testing hypotheses on a
phylogenetic tree.

The test for positive selection proposed in this study overcomes the short-
comings of the radical-conservative test. Our test incorporates a probabilistic
framework for dealing with radical vs. conservative replacements. It applies a



novel method for averaging over ancestral sequence assignments, weighted by
their likelihood, thus eliminating bias which might result from assuming a spe-
cific ancestral sequence reconstruction. The rationale underlying our proposed
test is that the evolutionary acquisition of a new function requires a significant
change of the biochemical properties of the amino-acid sequence [7]. To quan-
tify this biochemical difference between two amino-acid sequences, we define a
chemical distance measure based on, e.g., Grantham’s matrix [4]. Our test iden-
tifies large deviations of the mean observed chemical distance from the expected
distance along a branch or across a subtree in a phylogenetic tree. If the ob-
served chemical distance between two sequences significantly exceeds the chance
expectation, then it is unlikely that this is the result of random genetic drift,
and positive Darwinian selection should be invoked.

Based on the assumed stochastic process, the tree topology and its branch
lengths, we calculate both the mean observed chemical distance and its un-
derlying distribution for the branch or subtree in question. The mean observed
chemical distance is calculated as the average chemical distance over all ancestral
sequence reconstructions, weighted by their likelihood, thus, eliminating possi-
ble bias in a calculation based on a particular ancestral sequence reconstruction.
The underlying distribution of this random variable is calculated using the JTT
stochastic model [11], the tree topology and branch lengths, taking into account
among site rate variation. We provide a linear time algorithm to perform this
test for all branches and subtrees of a phylogenetic tree with n leaves.

In order to validate our approach, we applied it to two control datasets:
Class I major-histocompatibility-complex (MHC) glycoproteins, and carbonic
anhydrase I. These datasets were chosen since they were already used as standard
positive control (MHC) and negative control (carbonic anhydrase) for positive
selection [24]. For the MHC class I dataset, as reported in [9], we observe positive
selection which favors charge replacements only when applying the test to the
subsequences of the binding cleft (P < 0.01). In addition we observe positive
selection which favors polarity replacements when using Grantham’s polarity
indices [4] (P < 0.01). When applying the test to the carbonic anhydrase dataset,
no positive selection is observed.

The paper is organized as follows: Section 2 contains the notations and ter-
minology used in the paper. Section 3 presents the new test for positive Dar-
winian selection. Section 4 describes the application of this test to the two control
datasets. Finally, Section 5 contains a summary and a discussion of our approach.

2 Preliminaries

Let A be the set of 20 amino-acids. We assume that sequence evolution follows
the JTT probabilistic reversible model [11]. For amino-acid sequences this model
is described by a 20 x 20 matrix M, indicating the relative replacement rates
of amino-acids, and a vector (Pg, ..., Py) of amino-acid frequencies. For each
branch of length ¢ and amino-acids ¢ and j, the « — j replacement probability,
denoted by P;;(t), can be calculated from the eigenvalue decomposition of M [13].



(In practice, an approximation to P;;(t) is used to speedup the computation [19].)
We denote by f;;(t) = P; - P;j(t) = P; - Pji(t) the probability of observing ¢ and
j in the same position in two aligned sequences of evolutionary distance ¢.

Let s be an amino-acid sequence. The amino-acid at position ¢ in s is de-
noted by s;. For two amino-acids a,b € A, we denote their chemical distance
by d(i, 7). We assume we have a table of chemical distances between every pair
of amino-acids. One such distance is Grantham’s chemical distance [4]. (Other
similar distance measures appear in [27,16].) This chemical distance measures
the difference between two amino-acids in terms of their volume, polarity and
composition of the side chain. The choice of which distance measure to use, re-
flects the type of test we wish to perform. For example, Grantham’s distance is
appropriate when testing whether the replacements between the sequences under
question are more radical with respect to a range of physicochemical properties
(volume, charge and composition of the side chain). For testing whether polarity
differences between sequences are higher than the random expectation, two dis-
tance measures are applicable: The first measure is based on dividing the set of
amino-acids into 2 categories: Polar (C,D,E,H,K,N,Q,R,S,T,W,Y) and non-polar
(the rest). The polarity distance between two amino-acids is then defined as 1
if one is polar and the other is not, and 0 otherwise [9]. The second polarity
distance is defined as the absolute difference between the polarity indices of the
two amino-acids, and yields real values [4]. For testing charge differences 3 cate-
gories of amino-acids are defined: Positive (H,K,R), negative (D,E) and neutral
(all other). The charge distance between two amino-acids is defined as 1 if they
belong to two different categories, and 0 if they belong to the same category [9].

We define the average chemical distance between two sequences s' and s? of
length N as the average of the chemical distances between pairs of amino-acids
occupying the same position in a gapless alignment of s! and s?:

Let 7 be an unrooted phylogenetic tree. For a node v, we denote by N(v)
the set of nodes adjacent to v. For an edge (u,v) € T we denote by t(u,v) the
length of the branch connecting v and v.

3 A Test for Positive Darwinian Selection

In this section we describe a new test for detecting positive Darwinian selection.
The input to the test is a set of gap-free aligned sequences and a phylogenetic
tree for them. We first present a version of our test for a pair of known sequences.
We then extend this method to test positive selection on specific branches of a
phylogenetic tree under study. Finally we generalize the test to subtrees (clades)
and incorporate among site rate variation.



3.1 Testing Two Known Sequences

Let s! and s? be two amino-acid sequences of length N and evolutionary distance
t. The underlying distribution of D(s', s?) is inferred as follows. The expectation
of the chemical distance at position % is:

E(d(s,s?)) = ) d(a,b)fas(t)

a,bc A

Assuming that the distribution of the chemical distance in each position is iden-
tical, we obtain

E(D(s',5")) = Z E(d(s;, 57)) = E(d(s1, s1))
The variance of the chemical distance at position ¢ is:

V(d(s}, s?)) = B(d(si, s])?) — B(d(st, s]))® = Y dla,b)*far(t) — E(d(si, 7))
a,be A

and assuming further that sequence positions are independent, we obtain

V(d(s1,51))

V(D(st, %) = Sk

For practical values of N, D(s!,s?) is approximately normally distributed
with expectation E(D(s!,s?) and standard deviation /V(D(s!,s?)). This al-
lows us to compute for each observed chemical distance d, the probability that
it occurs by chance, i.e., its p-value. If the observed chemical distance is found
above the 0.99 percentile of the normal distribution, we conclude that replace-
ments in these two sequences significantly deviate from the expectation, and
suggest positive selection to explain this phenomenon.

3.2 Testing a Tree Lineage

Here we first describe a general method to apply pairwise tests to a phylogenetic
tree. Suppose that we wish to test a statistical hypothesis on a specific branch of
the phylogenetic tree. Also suppose that we have a procedure to test our hypoth-
esis on a pair of known sequences, like the procedure described above. In order
to test our hypothesis on a specific branch, we could first infer the correspond-
ing ancestral sequences (using, e.g., maximum likelihood estimation [20]) and
then check our hypothesis. Inferring ancestral sequences and then using these
sequences as observations was done in e.g., [31]. This approach, which treats esti-
mated reconstructions as observations may lead to erroneous conclusions due to
bias in the reconstruction. A more robust approach is to average over all possible
reconstructions, weighted by their likelihood. By averaging over all possible an-
cestral assignments, we extend our test to hypothesis testing on a phylogenetic



tree, without possible bias that results from reconstructing particular sequences
at internal tree nodes.

We describe in the following how to apply our test to a specific branch con-
necting nodes # and y in a tree 7. Since we assume that different positions evolve
independently we restrict the subsequent description to a single site.

Each branch (u,v) € T partitions the tree into two subtrees. Let L(u,v,a)
denote the likelihood of the subtree which includes v, given that v is assigned the
amino-acid a. L(u,v,a) can be computed by the following recursion equation:

Liwv,a)=  J[ D Pult(v,w))- L(v,w,b)}

we(N(v)\{u}) beA

For a leaf v at the base of the recursion we have L(u,v,a) = 1, assuming amino-
acid @ in v, and L(u, v, a) = 0 otherwise.

The likelihood of T is thus:

Pr=>" fu(t(u,v))- L(s,v,b) - L(v,u,a)

a,be A

where (u,v) is any branch of 7.

Suppose that the data at the leaves of T is w = (w1,...,w,). The mean
observed chemical distance for a given branch (z,y) € T can be calculated as
follows:

D(z,y) = Z Pr(z = a,y = blw) - d(a,b)
a,bc A

;—T S {d(e,b) - far(t(:)) - L2, 3,8) - L(y, 2, 0)}

a,bc A

It remains to compute the null distribution of this statistic. The expectation
of D(z,y) (with respect to all possible leaf-assignments) is as follows:

E(D(z,y)) = Y_ Pr(z) Y Pr(z=a,y=>b|z) d(a,b)

zeAn a,bc A

Z d(a,b) Z Pr(z)-Pr(z =a,y = b|z)

a,bc A zc An

3 d(a,b)- furlt(a,v))

a,bc A

We conclude that E(D(z,y)) is the same as in the known-sequences case.
For the variance of D(z,y) we have no explicit formula. Instead, we evaluate
V(D(z,y)) using parametric bootstrap [25]. Specifically, we draw at random
many assignments of amino-acids to the leaves of T and compute D(z,y) for
each of them, thereby evaluating its variance. An assignment to the leaves of T
is obtained as follows: We first root 7 at an arbitrary node r. We then draw at



random an amino-acid for r according to the amino-acid frequencies. We next
draw amino-acids for each child of r according to the appropriate replacement
probabilities of our model, and continue in this manner till we reach the leaves.

Finally, since D(z, y) is approximately normally distributed, we can compute

a p-value for the test, which is simply Pr(Z > W) where 7 ~
z7y

Normal(0,1). Note, that if the test is applied to several (or all) branches of the
tree, then the significance level of the test should be corrected in accordance
with the number of tests performed, e.g., using Bonforroni’s correction which
multiplies the p-value by the number of branches tested.

The algorithm for testing the branches of a phylogenetic tree T is summarized
in Figure 1. For each branch (z,y) € T the algorithm outputs the p-value of the
test for that branch. In the actual implementation we used M = 100.

PositiveSelectionTest(7):

Root 7 at an arbitrary node r.

Draw M assignments to the leaves of T using parametric bootstrap.

Traverse 7 bottom-up, computing along the way for every (u,v) € T,a € A
the value of L(u,v,a), where u is the parent of v.

Traverse 7 top-down, computing along the way for every (u,v) € T,a € A
the value of L(v,u,a), where u is the parent of v.

For every (z,y) € T do:
Calculate D(z,y) and E(D(z,y)).
Evaluate V(D(z,y)).
Output the p-value for the branch (z,y).

Fig. 1. An algorithm for testing the branches of a phylogenetic tree T .

Theorem 1. For a given phylogenetic tree T with n leaves, the algorithm tests

all branches of T in O(n) time.

Proof. Given L(u,v,a) for every (u,v) € T and every a € A, it is straightfor-
ward to compute D(u,v) for all (u,v) € T in linear time. The computation of
E(D(u,v)) and V(D(u,v)) is clearly linear. The complexity follows.

3.3 Testing a Subtree

In this section we present an extension of our method to test subtrees of a given
phylogenetic tree 7. This is motivated by the consideration that if a clade of
contemporary sequences has undergone positive Darwinian selection, we cannot
necessarily assume that this selection occurred solely along the branch leading
to that clade. A reasonable scenario is that the selection was continuous and
occurred along several or all branches of the subtree corresponding to this clade.
In such a case, the test we have just described may not detect any significant



positive selection along any specific branch. Hence, we are interested at testing
for positive selection across subtrees as well.

For a subtree 7' of T, we define the mean observed chemical distance D(7”)
as the average observed distance along its branches (i.e., the sum of the observed
distance for each branch divided by the number of branches in 7”). Clearly, the
expectation of D(7") is equal to the average expectation of the branches of 7.
The variance of D(7"') can be evaluated using parametric bootstrap. We then
use the normal approximation to compute a p-value for this test. We conclude:

Theorem 2. For o given phylogenetic tree T with n leaves, the complexity of
testing all its subtrees is O(n).

3.4 Introducing Among Site Rate Variation

The rate of evolution is not constant among amino-acid sites [28]. Consider two
sequences of length N. Suppose that there are on average ! replacements per site
between these sequences. This means that we expect [N replacements altogether.
How many replacements should we expect at each particular site? Naive models
assume that the variation of mutation rate among sites is zero, 1.e., that all sites
have the same replacement probability. Models that take this Among Site Rate
Variation (ASRV) into account assume that at the j-th position the average
number of replacement is Ir7[j], where each r = r[j] is a rate parameter drawn
from some probability distribution. Since the mean rate over all sites is [, the
mean of r is equal to 1. Yang suggested the gamma distribution with parameters
a and B as the distribution for r, and since the mean of the gamma distribution
a /B, must be equal to 1, a = 8 [28], that is:

f(r;a,,B) — %C_("Ta_l

Maximum likelihood models incorporating ASRV are statistically superior to
those assuming among site rate homogeneity [28]. They also help avoiding the
severe underestimation of long branch lengths that can occur with the homoge-
neous models [15].

In this study we use the discrete gamma model with k categories whose
means are rq,...,7; to approximate the continuous gamma distribution [29].
The categories are selected so that the probabilities of r falling into each category
are equal. We thus assume that Pr(r = r;) = 1/k.

The incorporation of the discrete gamma model in our test is straightforward.
For each rate category i we calculate both the expected and observed chemical
distance, given that the rate is r;. This is equivalent to making the computation
in the homogeneous case, where all branch lengths are multiplied by the factor r;.
The observed and expected chemical distance for each branch are then averaged
over all rate categories.



4 Biological Results

In order to validate our approach, we applied it to two control datasets: Class
I major-histocompatibility-complex (MHC) glycoproteins, and carbonic anhy-
drase I. We have chosen to analyze these datasets since they were already used
as standard positive control (MHC) and negative control (carbonic anhydrase)
for positive selection tests [24].

The datasets contain aligned sequences (all sequences are of the same length,
and the best alignment is gapless). Phylogenetic trees were constructed using the
MOLPHY software [1], with the neighbor-joining method [21] for MHC class I,
and with the maximum likelihood method for carbonic anhydrase I. The reason
for the use of two tree construction methods is that in the MHC case we are
dealing with 42 sequences and, therefore, an exhaustive maximum likelihood ap-
proach is impractical. Branch lengths for each topology were estimated using the
maximum likelihood method [3] with the JTT stochastic model [11], assuming
that the rate is discrete gamma distributed among sites with 4 rate categories.

4.1 MHC Class I

The primary immunological function of MHC class I glycoproteins is to bind and
“present” antigenic peptides on the surface of cells, for recognition by antigen-
specific T cell receptors. MHC class I glycoproteins are expressed on the surface
of most cells and are recognized by CD8-positive cytotoxic T cells, an essential
step for initiating the elimination of virally infected cells by T-cell mediated
lysis. These molecules are very polymorphic, and it was claimed that this poly-
morphism is the result of positive Darwinian selection that operates on the
antigen-binding cleft [9]. Using pairwise comparisons of sequences, it was shown
that the proportion of nonsynonymous differences in the antigen-binding cleft
that cause charge changes was significantly higher than the proportion that con-
serve charge. This suggests that peptide binding is at the basis of the positive
selection acting on these loci [7].

Following [9] we analyzed 42 human MHC class I sequences from three allelic
groups: HLA-A, -B, and -C loci. Most of these sequences are not available in
Genbank, and were copied from Parham et al. [18]. The length of each MHC
class I sequence is 274 amino acids. The binding site is a subsequence of 29
residues [18]. The phylogenetic tree for MHC class I sequences is given in Fig-
ure 2. The a parameter found for this tree was 0.24. When our clade-based test
was applied to the whole tree, no indication for positive selection was found. The
respective z-scores are shown in Table 1.

When we applied our test to the binding site only, positive selection was
found with very high confidence (P < 0.001). The respective z-scores are shown
in Table 1. However, it might be argued, that when only the binding site part of
the sequence is analyzed, the branch lengths estimated for the whole sequences
are irrelevant. Since it is known that the rate of evolution in the binding site is
faster relative to the rest of the sequence, the branch lengths estimated from the
whole sequences are underestimated. This underestimation can result in a false



Dataset/Distance Grantham|Charge Polarity
Grantham|Hughes et al. [9]

Whole -1.30 0.01 -1.25 1.10
Cleft 9.38 9.32 13.23 5.79
Cleft & cleft-based lengths 1.08 3.14 2.78 0.01

Table 1. A list of z-scores for each of the tests performed on the MHC class I dataset.
The first row contains scores with respect to whole sequences. The second row contains
results with respect to the binding cleft subsequences, with branch lengths as for the
whole sequences. The third row contains results with respect to the binding cleft subse-
quences, with branch lengths reestimated on this part of the sequence only. Significant
z-scores (p-value< 0.01) appear in bold-face.

positive conclusion of positive selection, since we expect in this case an excess of
radical replacements. To overcome this problem, branch lengths were reestimated
on the binding site part of the sequence only. Significant excess of polar and
charge replacements were found also with these new estimates (P < 0.01). The
corresponding z-scores are shown in Table 1. We note, that using the 0-1 polarity
distance of [9], we found no evidence for positive selection. On the other hand,
when we used Grantham’s polarity indices [4], significant deviations from the
random expectations were observed (see Table 1). The latter distance measure
is clearly more accurate since it is not restricted to 0-1 values. We conclude that
there is a significant excess in both charge and polar replacements, and not only
in charge replacements, as reported in [9].

Finally, we tested specific branches in the tree to find those branches which
contribute the most to the excess of charge replacements. Branches whose cor-
responding p-value was found to be smaller than 0.01 appear in bold-face in
Figure 2. We note, that since we have no prior knowledge of which branches are
expected to show excess of charge replacements, these p-values should be scaled
according to the number of branches tested. Nevertheless, these high scoring
branches lie all in the subtrees corresponding to the A and B alleles, match-
ing the findings of Hughes et al. who report positive selection for these alleles

only [9].

4.2 Carbonic anhydrase I

This dataset comprises of 6 sequences of the carbonic anhydrase I house-keeping
gene, for which there is no evidence of positive selection [24]. The carbonic anhy-
drase I sequences were the same as in [24], except that amino-acid sequences were
used instead of nucleotide sequences. Sequence accession numbers are: JN0835
(Pan troglodytes), JIN0836 (Gorilla gorilla), P00915 (Homo sapiens), P35217
(Macaca nemestrina), P48282 (Ovis aries) and P13634 (Mus musculus). The
maximum likelihood estimate of the o parameter for this dataset was 0.52.
When analyzing carbonic anhydrase I sequences, no evidence for positive
selection was found. This was true, irrespective of the distance measures we



used: Grantham (z-score= 0.01), Grantham’s polarity (z-score=—1.04), Hughes
et al. polarity (z-score= —0.49), and charge (z-score= —1.73).

5 Discussion

Natural selection may act to favor amino acid replacements that change cer-
tain properties of amino acids [7]. Here we propose a method to test for such
selection. Our method takes into account the stochastic model of amino-acid re-
placements, among site rate variation and the phylogenetic relationship among
the sequences under study. The method is based on identifying large deviations
of the mean observed chemical distance between two proteins from the expected
distance. Our test can be applied to a specific branch of a phylogenetic tree, to a
clade in the tree or, alternatively, over all branches of the phylogenetic tree. The
calculation of the mean observed chemical distance is based on a novel procedure
for averaging the chemical distance over all possible ancestral sequence recon-
structions weighted by their likelihood. This results in an unbiased estimate of
the chemical distance along a branch of a phylogenetic tree. The underlying dis-
tribution of this random variable is calculated using the JTT model, taking into
account among site rate variation. We give a linear time algorithm to perform
this test for all branches and subtrees of a given phylogenetic tree.

Two variants of the test are presented: The first is a statistical test of a single
branch in a phylogenetic tree. Positive selection along a tree lineage can be the
result of a specific adaptation of one taxon to some special environment. In this
case, the branch in question is known a priori, and the branch-specific test should
be used. Alternatively, if the selection constraints are continuous, as for example,
the selection that promotes diversity among alleles of the MHC class I, the test
should be applied to all the sequences under the assumed selection pressure - a
clade-based test.

We validated our method on two datasets: Carbonic anhydrase I sequences
served as a negative control, and the cleft of MHC class I sequences as a posi-
tive control. MHC class I sequences were previously shown to be under positive
selection pressure, acting to favor amino-acid replacements that are radical with
respect to charge.

There are, however, some limitations to our method. The method relies heav-
ily on an assumed stochastic model of evolution. If this model underestimates
branch lengths, one might get false positive results. It is for this reason that
it is important to estimate branch lengths under realistic models, taking into
account among site rate variation. Furthermore, if the test is applied to specific
parts of the protein, such as an alpha helix, a replacement matrix that is specific
for this part might be preferable over the more general JTT model used in this
study (see [26]). One might claim that if excess of, say, polar replacements is
found, it should not be interpreted as indicative of positive selection, but rather,
as an indication that a more sequence-specific amino-acid replacement model is
required. In MHC class I glycoproteins, however, other lines of evidence [9,24]
suggest positive Darwinian selection.



In the future, we plan to make the test more robust by accommodating uncer-
tainties in branch lengths and topology. This can be achieved by Markov-Chain
Monte-Carlo methods [6]. The sensitivity of our test to different assumptions
regarding the stochastic process and the phylogenetic tree will be better under-
stood when more datasets are analyzed.
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Fig. 2. A phylogenetic tree for MHC class I sequences. Species labels are as in [9]. The
tree topology was estimated by using whole sequences. Branch lengths were estimated
for the cleft subsequences only. Each branch was subjected to the positive selection
test on the cleft subsequences. Branches in bold-face indicate p-value< 0.01.



