RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC
NETWORKS

I. GAT-VIKS, R. SHAMIR
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
{iritg,rshamir} @tau.ac.il.

R. M. KARP, R. SHARAN
International Computer Science Institute, 1947 Center St., Berkeley CA 94704.
{karp,roded} @icsi.berkeley.edu.

Abstract

Deciphering the mechanisms that control gene expression in the cell
is a fundamental question in molecular biology. This task is complicated
by the large number of possible regulation relations in the cell, and the
relatively small amount of available experimental data. Recently, a new
class of regulation functions called chain functions was suggested. Many
signal transduction pathways can be accurately modeled by chain func-
tions, and the restriction to chain functions greatly reduces the vast
search space of regulation relations. In this paper we study the com-
putational problem of reconstructing a chain function using a minimum
number of experiments, in each of which only few genes are perturbed.
We give optimal reconstruction schemes for several scenarios and show
their application in reconstructing the regulation of galactose utilization
in yeast.

1 Introduction

The regulation of mRNA transcription is key to cellular function. High
throughput genomic technologies, such as DNA microarrays, enable a
global view of the transcriptome, and provide the means to reconstruct-
ing regulatory relations among genes, that is, inferring the set of genes
that cooperate in the regulation of a given gene and the particular logi-
cal function by which this regulation is determined. This paper studies
the number and complexity of biological experiments that are needed in
order to infer certain regulatory relations.

An ezperiment involves knocking out or over-expressing certain genes,
and measuring the expression levels of all other genes. The order of an
experiment is the number of genes that are perturbed. A key obstacle in
the inference of regulation relations is the large number of possible solu-
tions and, consequently, the unrealistically large amount of data needed
to identify the right one. Akutsu et al.' showed that even for a boolean

network model, the number of experiments that are needed for recon-
structing a network of N genes is prohibitive: The lower and upper
bounds on the number of experiments of order N — 1 that are needed,
are Q(2Y7!) and O(N - 2V71), respectively. Even with no more than d
regulators for each regulated gene, the number of required experiments
of order d is still Q(N?) and O(N??), respectively .

The inherent complexity of genetic network inference led researchers
to seek ways around this problem. Ideker et al. 2 studied how to dynam-
ically design experiments so as to maximize the amount of information
extracted. Friedman et al. 3 used Bayesian networks to reveal parts of
the genetic network that are strongly supported by the data. Tanay and
Shamir * suggested a method of expanding a known network core using
expression data. Several studies used prior knowledge about the network
structure, or restrictive models of the structure, in order to identify rel-
evant processes in gene expression data 5,6,7.8

Recently, a biologically motivated model of regulation relations based
on chain functions, was suggested in order to cope with the problem of
genetic network inference °. In a chain function, the state of the reg-
ulated gene depends on the influence of its direct regulator, whose ac-
tivity may in turn depend on the influence of another regulator, and so
on, in a chain of dependencies (we defer formal definitions till later).
The chain model further assumes that variable states are boolean. The
latter assumption is a drastic simplification of real biology, yet it cap-
tures important features of biological systems and was frequently used
in previous studies >. The class of chain functions has several impor-
tant advantages®: These functions reflect common biological regulation
behavior, so many real biological regulatory relations can be elucidated
using them (examples include the SOS response mechanism in E. coli°
and galactose utilization in yeast !*). Moreover, by restricting consider-
ation to chain functions, the number of candidate functions drops from
double exponential to single exponential only.

In this paper we study the computational problems arising when
wishing to reconstruct chain functions using a minimum number of ex-
periments of the smallest possible order. We address both the question
of finding the set of regulators of a chain function, which is typically
much smaller than the entire set of genes, and the question of recon-
structing the function given its regulators. We give optimal reconstruc-
tion schemes for several scenarios and show their application on real
data. Our analysis focuses on the theoretical complexity of reconstruct-
ing regulation relations (number and order of experiments), assuming
that experiments provide accurate results, and that the target function
can be studied in isolation from the rest of the genetic network.

The paper is organized as follows: Section 2 contains basic definitions
related to chain functions. In Section 3 we give worst-case and average-

case analyses of the number of experiments needed in order to reconstruct
a chain function. Both low-order and high-order experimental settings
are considered. In Section 4 we study the reconstruction of composite
regulation functions that combine several chains. Finally, in Section 5
we describe a biological application of our analysis to reconstruct the
regulation mechanism of galactose utilization in yeast. For lack of space,
some proofs are shortened or omitted.

2 Chain Functions

Chain functions were introduced by Gat-Viks and Shamir®. In the fol-
lowing we define these functions and describe their main properties. Our
presentation differs from the original one, to allow succinct description
of the reconstruction schemes in later sections.

Let U denote the set of all variables in a network, where |U| = N.
These variables correspond to genes, mRNAs, proteins or metabolites.
Each variable may attain one of two states: 1 or 0. The state of gene
g, denoted by state(g), indicates the discretized expression level of the
gene. The intended interpretation is that state(g) is 1 if gene g is capable
of being activated in a given environment, and 0 otherwise. A variable
normally exists in its wild-type state, but perturbations such as gene
knockouts may change its state. Let go € U be regulated by a set S of
n variables. In that case we say that S is the regulator set of go, and go
is called the regulatee. A candidate regulation function for the regulatee
go has the form f9° : {0,1}" — {0,1}. In other words, the state of go is
a function of the states of its regulators.

The chain function model assumes that the functional relations are
deterministic. The chain function f9° on the regulators gn,...,g1 de-
termines the state of the regulatee go. The order of the regulators is
important, as it reflects the order of influence among them. We call g;
the predecessor of g; for ¢ > j, and the successor of gi for ¢ < k. Each
regulator may activate or repress its successor, and this chain of events
enables a signal to propagate from g, to go, in a manner described below.

Associated with each regulator g; is a fixed value y; which dictates
the regulatory influence of g; on g;—i. If y; = 0 then g; is an activator;
otherwise g; is a repressor. The value y; represents an intrinsic property
of the chain and is not subject to change. The control pattern of f9° is
the binary vector (yn,...,¥1). The function f9° can be defined using two
n-long boolean vectors attributing activity and influence to each g;. The
definitions of the activity and influence are recursive. Let a(g;) denote
the activity of g;, and infl(g;) denote the influence of g; on g;—1. The
influence on g, is always 1. g; is activated (a(g;) = 1) iff it is capable
of being activated and it receives a positive activation signal from its
predecessor. The activation signal infl(g;), transmitted from g; to gi—1

is 1 if g; is an activator and is itself activated, or if ¢; is a repressor and
is not activated (so that it fails to repress g;—1). Formally,

a(gi) = 1 iff (infl(gi+1) = 1 and state(g;) = 1) (1)

infl(gi) = yi ® a(g:) ()
Finally, the state of the regulatee go is simply the influence of g;. We
define the output of f9° to be state(go). A chain function is uniquely
determined by its set of regulators, their order and the control pattern.
Any control pattern may be separated into blocks of consecutive reg-
ulators by truncating the control pattern after each 1. The first block
(rightmost, ending at g1) has two possible forms: 0...0 or 0...01. All
other blocks are of the form 0...01.

3 Reconstruction of Chain Functions

In this section we study the question of uniquely determining the chain
function which operates on a known regulatee, using a minimum number
of experiments. We assume throughout that all variable states in wild-
type are known (or, else, these could be measured). We further assume
that all regulator states in wild type are 1, except possibly ¢g,. The
latter assumption is motivated by the observation that in many biological
examples, all regulators are expressed in wild type and the state of the
regulatee is determined by the presence or absence of a metabolite g,.
(Examples include the Trp, lac and araBAD operons in E. Coli 10 and
the regulation of galactose utilization in yeast !'. See Section 6 for a
discussion of the situation when this assumption does not hold.)

An ezperiment is defined by a set of variables that are externally
perturbed (knocked-out or over-expressed). The states of the perturbed
variables are thus fixed, and the states of all non-perturbed regulators
are assumed to remain at the wild-type values, with the exception of the
regulatee. Its state is determined by the chain function. The order of an
experiment is the number of externally perturbed variables in it.

Our reconstruction algorithms are based on performing various ex-
periments and observing their influence on the state of the regulatee.
The algorithms implicitly assume that the regulation function is indeed
a chain function and do not explicitly test this property.

We now devise a simple set of equations that characterize the output
of a chain function as a function of the control pattern and the states
of the regulators, both in the wild-type state and in states produced by
perturbing some regulators. These equations are the foundation of all
the subsequent reconstruction schemes:

Proposition 1 Let f be a chain function on gn,...,g91. If state(g;) =1
for 1 < i < n then state(go) = state(gn) ® (®i—1y:). For any other

state vector, if the least indez of a state-0 regulator is j < n then
£9(gny ey g1) = ®i_1¥i-

Proof: By definition, a(g.) = state(gn). For i < n, state(g;) = 1 im-
plies that a(g;) = a(gi+1) ®yi+1. It follows by induction that state(go) =
state(gn) ® (P7—1yi). Similarly, if state(g;) = 0 and state(g;) = 1 for all
1 < j, it follows by induction that f9°(gy,...,g1) = @{:lyi. [

3.1 Types and Blocks

A perturbation is an experiment that changes the state of a variable to
the opposite of its state in wild-type. By our assumption on the regulator
states in wild-type, the perturbation of a regulator in {gn—1,...,91} is a
knockout. For S C U, an S-perturbation is an experiment in which the
states of all the variables in S are perturbed.

Let w be state(go) in wild-type. Let @ be the opposite state. For
the reconstruction, we first classify the variables in U into two types: W
and W. A variable is in W (W) if its perturbation produces output
w (w). Naturally, the majority of the genes have type W, since in
particular all the genes that are not part of the chain function are such.
By Proposition 1 we have g, € W. We call a gene that belongs to
W (W) a W-gene (W -gene). W -successor, W -successor of a gene and
W -regulator , W -regulator are similarly defined.

The type of a single gene can be determined by a single perturbation
of the gene. Such an experiment will be referred as a typing ezperiment
throughout.

Corollary 2 Given an ordered set of regulators gn,...,g1, their control
pattern can be reconstructed using n typing erperiments.

Consider now the block partition of the regulators. The right bound-
ary of a block corresponds to a regulator g; with y; = 1 (unless j = 1,
in which case y1 = 0 is also possible), and any other regulator g; in the
block has y; = 0.

Lemma 3 FEach block contains regulators of a single type, and two ad-
jacent blocks contain regulators of opposite types.

The proof follows from the fact that the type of g; differs from the
type (lf gi—1 iff y; = 1. Thus, we can refer to a block as either a W -block
or a W -block, and the two types of blocks alternate.

3.2 Reconstructing the Regulator Set and the Function

Consider a chain function with control pattern (yn, ..., y1) and let gj,...,g:

be a block. Then infl(g:) = [infl(gj+1) A (A\},_; state(gn))] @ yi. Thus,

the behavior of the chain is determined by the boolean variable in fl(g;+1),
by the control pattern, and by the conjunction of the states of its regula-
tors. Since this conjunction is independent of the order of occurrence of
these genes, no experiment based on perturbing the states of the genes
can determine the order of the genes within the block. In view of this
limitation, our goal is to reconstruct the control pattern, the set of genes
within each block (but not the order of their occurrence) and the order-
ing of the blocks. Correspondingly, in the following we will use the term
successor of a gene to denote a regulator that succeeds that gene in the
chain and is not a member of its block. For convenience, we shall refer
to W-genes that are not regulators of go as predecessors of gn.

The above discussion implies that once we have typed each gene, it
remains to determine, for each pair consisting of a W-gene and a W-
gene, which of these genes precedes the other in the chain. Let kw ks
denote the number of regulators of types W,W, respectively. Note that
kw + kw =n < N, and in fact, typically, n < N, as kw < |W/|.

Suppose we perform a {i, k}-perturbation with g; € W and g, € W.
If the result is w, then gp precedes g;. Otherwise, g; precedes gi. A
2-order experiment for determining the relative order of a W-gene and
a W-gene will be called a comparison throughout.

Proposition 4 Given the set of requlators of a chain function and their
types, kw kv, comparisons are necessary and sufficient to reconstruct the
function.

Proof: The upper bound follows by comparing every W-regulator
with every W-regulator. The lower bound follows from the fact that, in
the special case where every W-regulator precedes every W-regulator,
no set of comparisons can determine the relative order of a given pair
consisting of a W-regulator and a W-regulator, unless it includes a direct
comparison between the pair. Therefore, all such comparisons must be
performed. m

We now turn to the question of reconstructing a chain function with-
out prior knowledge of the identity of its regulators. The discussion
above suggests a way to solve the problem: First, we find the gene types
using N typing experiments. Next, we reconstruct the block structure
by performing all possible comparisons between a W-gene and a W -gene.

A more efficient reconstruction is possible when g, is known. This
is common in functions in which g, stimulates the response. If g, is
known, then, since g, € W, all W-regulators can be identified by com-
paring every W-gene with g, for a total of N — k3, comparisons. Since
any W-gene is a regulator, these experiments are sufficient to identify
all the regulators, and we can apply Proposition 4 to complete the re-
construction.

Proposition 5 A chain function can be reconstructed using at most N
typing ezperiments and ki X (N — ky,) comparisons. Given gn, a chain
function can be reconstructed using at most N — 1 typing experiments
and N —n + kwky, comparisons.

Propositions 4 and 5 were a worst case analysis. Next, we describe
another reconstruction algorithm, whose ezpected number of required
experiments is lower. The algorithm is based on identifying g, efficiently
and using it for the reconstruction. Denote by Dy the set of W-successors
of g€ Win f.

Proposition 6 A chain function can be reconstructed using N typing
ezperiments and an ezpected number of O(N log kyw, + kwky) compar-
isons.

Proof: Algorithm: We perform N typing experiments. Next, we
apply a randomized scheme to identify g, and reconstruct the chain:
Each time we pick a gene g € W at random, find its successors and their
order, and remove g and all its successors from further consideration. We
stop when no W genes are left, identifying g, as the last picked gene.
In order to find the successors of g, we first identify the members of Dy
using at most N — k3 comparisons. Using Dy, we then reconstruct the
part of the chain that spans g and its successors by at most |Dgy|(kw —1)
comparisons, as in Proposition 4.

Complexity: The set of comparisons can be divided into two parts:
Those that are required to identify the sets Dy, and those required to
reconstruct the chain parts induced by these sets. For the latter, kw ky
comparisons are needed in total, since every pair consisting of a W-
regulator and a W-regulator is compared exactly once. Thus, it suf-
fices to compute the expectation of the first part. Let T'(z) be this
expectation, given that the current W set contains z elements, where
T(0) = 0. Then T'(z) < %EZZI(N + T(z — q)) for £ > 1. By induc-
tion T'(z) < 2N logz + N. Substituting z = ky, we obtain the required
bound. m

3.8 Using High-Order Ezperiments

In this section we show how to improve the above results when using
experiments of order ¢ > 2. The results in this section are mainly of
theoretical interest, since high-order experiments may not be practical.

Proposition 7 Given the set of n regulators of a chain function, the
2

function can be reconstructed using O(n + %g—q) ezperiments of order

at most q. This is optimal up to constant factors for ¢ = ©(n).

Proof: The number of possible chain functions with n regulators is
O((log, €)™ n!) °. Since each experiment provides one bit of informa-
tion, the information lower bound is Q(nlogn) experiments.

We give the upper bound proof for ¢ = n. The proof for other values
of ¢ follows by appropriately choosing subsets of regulators of cardinality
g, and reconstructing their sub-chains using the method we give next,
thereby inferring the entire chain.

Let n; be the number of regulators in block ¢, where blocks are in-
dexed in right-to-left order. Our reconstruction algorithm is as follows:
First, we perform n typing experiments. Next, we identify the type of
the first block using one experiment of order n, in which all regulators
are perturbed. We proceed to reconstruct the blocks one by one, ac-
cording to their order along the chain. Note that the type of each block
is now known, since the two types alternate. Suppose we have already
reconstructed blocks 1,...,¢ — 1. For reconstructing the i-th block we
only consider the set of regulators that do not belong to the first ¢ — 1
blocks. Out of this set, let A be the subset of regulators that have the
same type as block i, and let B be the the subset of regulators of the
opposite type. We use standard binary search on the set A to identify
the members of the i-th block, including in the perturbations also all
regulators in B. This requires O(n; log n) experiments. Thus, altogether
we perform O(nlogn) experiments. m

4 Combining Several Chains

In this section we extend the notion of a chain function to cover common
biological examples in which the regulatee state is a boolean function of
several chains. Frequently, a combination of several signals influences
the transcription of a single regulatee via several pathways that carry
these signals to the nucleus, and a regulation function that combines
them together. Here, we formalize this situation by modeling each signal
transduction pathway by a chain function, and letting the outputs of
these paths enter a boolean gate.

Define a k-chain function f as a boolean function which is composed
of k chain functions over disjoint sets of regulators, that enter a boolean
gate G(f). Let f* be the i-th chain function and let g; denote the j-th
regulator in f*. The output of the function is G(infl(gi),. .., infl(g¥)).

In the following we present several biological examples for k-chain
functions that arise in transcriptional regulation in different organisms:
The lac operon *° codes for lactose utilization enzymes in E. Coli. It is
under both negative and positive transcriptional control. In the absence
of lactose, lac-repressor protein binds to the promoter of the lac operon
and inhibits transcription. In the absence of glucose, the level of cAMP

in the cell rises, which leads to the activation of CAP, which in turn
promotes transcription of the lac operon. In our formalism, the lac
operon is controlled by a 2-chain function with an AND gate. The chains
are: f'(g3,91) = f'(lactose, lac-repressor), with control pattern 11,
and (g2, 92, 9%) = f*(glucose, CAMP, CAP), with control pattern 100.
Other examples of 2-chains with AND gates are the regulation of arginine
metabolism and galactose utilization in yeast*!. A 2-chain with an OR
gate regulates lysine biosynthesis pathway enzymes in yeast !1.

These examples motivate us to restrict attention to gates that are
either OR or AND. We first show that we can distinguish between OR
and AND gates. We then show how to reconstruct k-chain functions in
the case of OR and later extend our method to handle AND gates.

Denote the output of f* by O;. If O; = 1 in wild-type, we call f* a
1-chain and, otherwise, a 0-chain. A regulator g]’: is called a 0-regulator
(1-regulator) if its perturbation produces O; = 0 (O; = 1). Let ko (k1)
be the number of 0-regulators (1-regulators) in f. A block is called a
0-block (1-block), if it consists of 0-regulators (1-regulators).

Lemma 8 Given a k-chain function f with gate G(f) which is either
AND or OR, k > 2, we can determine, using O(N?) experiments of
order at most 2, if G(f) is an AND gate or an OR gate.

Proof: We perform N typing experiments. If w = 0 and W = 0 then
G(f) is an AND gate. If w = 1 and W = (then G(f) is an OR. gate.
Otherwise, W # (. In this situation the cases of w = 0 and w = 1 are
similarly analyzed. We describe only the former.

If w = 0 we have to differentiate between the case of an OR gate,
whose inputs are all 0-chains, and the case of an AND gate, whose in-
puts are one 0-chain and (k — 1) 1-chains. To this end we perform all
comparisons of a W-gene and a W-gene. Let T be the set of genes g such
that the result of a {g, g'}-perturbation is w for every ¢' € W. Then
T # 0 iff G(f) is an AND gate. m

We now study the reconstruction of an OR gate. Let S be the (pos-
sibly empty) set of regulators that reside in one of the first blocks (i.e.,
blocks containing gi), that are also 1-blocks. We observe that a perturba-
tion of any regulator in S results in state(go) = 1 regardless of any other
simultaneous perturbations we may perform. Hence, our reconstruction
will be unique up to the ordering within blocks and the assignments of
the regulators in S to their chains. The next lemma handles the case
w = 0. The subsequent lemma treats the case w = 1.

Lemma 9 Given a k-chain function f with an OR gate and assuming
that w = 0, we can reconstruct f using N typing ezperiments and (N —
k1)k1 comparisons.

Proof: We perform N typing experiments. Then, for each 1-regulator
b, we perform all possible comparisons, thereby identifying all 0-regulators
that succeed b in its chain. This completes the reconstruction. m

Lemma 10 Let f be a k-chain function with an OR gate. Assume that
w =1, and let r be the number of 1-chains entering the OR gate. Then
f can be reconstructed using O(N" + Nko") ezperiments of order at most
min{k + 1,7 + 2}.

Proof: First, we determine r, the minimum order of an experiment
that will produce output 0 for f. For successive values ¢ we perform all
possible i-order experiments; r is determined as the smallest ¢ for which
we obtain output 0. In total we perform O(N") experiments. We call the
set of perturbed genes in an r-order experiment which results in output
0, a reset combination.

Next, we identify all 1-regulators. This is done by performing O(Nko")
experiments of order (r + 1) as follows: For each reset combination dis-
covered, we perturb in addition each other gene, one at a time, and
record those that produce output 1 as l-regulators. Each reset combi-
nation identifies a set of 1-regulators. These sets form a partial order
under set inclusion. Let M be a reset combination corresponding to a
minimal set in the partial order of 1-regulator sets. The genes in this
minimal set will be exactly the 1-regulators in the 0-chains and the 1-
regulators in S. By perturbing all r regulators in M, we deactivate the
1-chains, thereby reducing the problem of reconstructing the 0-chains
to that of reconstructing a (k — r)-chain function with an OR gate and
w = 0. This is done by applying the reconstruction method of Lemma 9
using experiments of order at most min{k + 1,7 + 2}. The assignment
of 1-regulators in S will remain uncertain.

The 1-chains can be now computationally inferred as follows: Pick
an arbitrary reset combination and consider in turn each of its subsets
of cardinality » — 1. Fixing a subset, consider all reset combinations that
contain it. The variable O-regulators in these combinations correspond
to the 0-regulators of a particular 1-chain. For each of these variable 0-
regulators our experiments determine a set consisting of the 1-regulators
in its chain that succeed it, plus the 1l-regulators in S and in the 0-
chains, which have been identified by the reset combination M, and
can be removed from consideration. Performing this computation for all
combinations and subsets, we will have determined, for each 1-chain, its
0-regulators, its 1-regulators and the ordering relations between them. m

Note that for £ = 1 the above algorithms will reconstruct a single
chain. Further note that these algorithms may be used for the recon-
struction of an AND gate as well, exchanging the roles of 0 and 1 in the
above description. This gives rise to the following result:

Theorem 11 A k-chain function with an OR or an AND gate can be
reconstructed using O(N*) ezperiments of order at most k + 1.

5 A Biological Application

The methods we presented above can be applied to reconstruct chain
functions from biological data. We describe in detail one such recon-
struction of the yeast galactose chain function, for which some of the
required perturbations have been performed. We show that one addi-
tional experiment suffices to fully reconstruct the regulation function.

The galactose utilization in the yeast S. cerevisiae '' occurs in a
biochemical pathway that converts galactose into glucose-6-phosphate.
The transporter gene gal2 encodes a protein that transports galactose
into the cell. A group of enzymatic genes, gall, gal7, gall0, gal5 and
gal6, encode the proteins responsible for galactose conversion. The reg-
ulators galdp, gal3p and gal80p control the transporter, the enzymes,
and to some extent each other (Xp denotes the protein product of gene
X). In the following, we describe the regulatory mechanism, assuming
that glucose is absent in the medium. galdp is a DNA binding factor
that activates transcription. In the absence of galactose, gal80p binds
galdp and inhibits its activity. In the presence of galactose in the cell,
gal80p binds gal3p. This association releases galdp, promoting tran-
scription. This mechanism can be viewed as a chain function, where
Y (ga, 93, 92,91) = f(galactose,gal3, gal80, gal4), and the correspond-
ing control pattern is 0110. The gal7, gall0 and gall regulatees are also
negatively controlled by another chain f? containing MIG1 and glucose.
The two chains are combined by an AND gate. We focus here on the
reconstruction of f', since the other chain has no influence in the exper-
iments that we describe below (as those were conducted in the presence
of glucose). f! conmsists of 3 blocks, where in wild-type (in the presence
of glucose and galactose) gal3, gal80 and gald are in state 1 (using the
same discretization procedure employed by Ideker et al.?).

Assuming we know the group of four regulators, we need according to
Proposition 4 a total of 4 typing experiments and 3 comparisons (since
only gal80 is of type W) to reconstruct the chain. Notably, all 4 typings
and 2 of the 3 comparisons were performed by Ideker et al. '?, yielding
the correct results. The missing experiment is a comparison of gal80 and
gal3. A correct result of this experiment will lead to full reconstruction
of the chain function.

6 Concluding Remarks

In this paper we studied the computational problems arising when wish-
ing to reconstruct regulation relations using a minimum number of ex-

periments, assuming that the experiments provide correct results. We re-
stricted attention to common biological relations, called chain functions,
and exploited their special structure in the reconstruction. We also sug-
gested an extension of that model, that combines several chain functions,
and studied the implied reconstruction questions. On the practical side,
we have shown an application of our reconstruction scheme for inferring
the regulation of galactose utilization in yeast.

The task of designing optimal experimental settings is fundamental in
meeting the great challenge of regulatory network reconstruction. While
this task entails coping with complex interacting regulation functions, we
chose here to focus on the reconstruction of a single regulation relation
of a single regulatee. We also made two strong assumptions that simplify
the analysis considerably: (1) The function can be studied in isolation.
Hence, upon any perturbation, none of the other regulators change their
states; (2) the wild type state of all regulators (except possibly g,) is
1. Our study could serve as a component in a more general scheme for
dealing with entire networks, whose regulation relations possibly interact
with one another.

Acknowledgments

R. M. Karp and R. Shamir were supported by a grant from the US-
Israel Binational Science Foundation (BSF). R. Sharan was supported
by a Fulbright grant. I. Gat-Viks was supported by a Colton fellowship.

References

1. T. Akutsu et al. Theor. Comp. Sci., 298:235-251, 2003.

2. T. Ideker, V. Thorsson, and R.M. Karp. In Proc. of the Pacific

Symposium in Biocomputing, pages 305-316, 2000.

N. Friedman et al. J. Comp. Biol., 7:601-620, 2000.

A. Tanay and R. Shamir. Bioinformatics, 17, Supplement 1:270—

278, 2001.

D. Hanisch et al. Bioinformatics, 18, Supplement 1:145-154, 2002.

T. Ideker et al. Bioinformatics, 18, Supplement 1:233-240, 2002.

E. Segal et al. Bioinformatics, 17, Supplement 1:243-252, 2001.

D. Pe’er, A. Regev, and A. Tanay. Bioinformatics, 18, Supplement

1:258-267, 2002.

9. I. Gat-Viks and R. Shamir. Bioinformatics, 19, Supplement 1:108—
117, 2003.

10. F. C. Neidhardt, editor. ASM Press, 1996.

11. E. W. Jones, J. R. Pringle, and J. R. Broach, editors. Cold Spring
Harbor Laboratory Press, 1992.

12. T. Ideker et al. Science, 292:929-933, 2001.

- w

PN

