Incomplete Directed Perfect Phylogeny

I. Pe’er!, R. Shamir!, and R. Sharan?!

Department of Computer Science,
Tel-Aviv University, Tel-Aviv, Israel
{izik,shamir,roded}@math.tau.ac.il

Abstract. Perfect phylogeny is one of the fundamental models for study-
ing evolution. We investigate the following generalization of the problem:
The input is a species-characters matrix. The characters are binary and
directed, i.e., a species can only gain characters. The difference from
standard perfect phylogeny is that for some species the state of some
characters is unknown. The question is whether one can complete the
missing states in a way admitting a perfect phylogeny. The problem
arises in classical phylogenetic studies, when some states are missing or
undetermined. Quite recently, studies that infer phylogenies using in-
serted repeat elements in DNA gave rise to the same problem. The best
known algorithm for the problem requires O(nzm) time for m characters
and n species. We provide a near optimal é(nm)-time algorithm for the
problem.

1 Introduction

When studying evolution, the divergence patterns leading from a single ancestor
species to its contemporary descendants are usually modeled by a tree structure.
Extant species correspond to the tree leaves, while their common progenitor
corresponds to the root of this phylogenetic tree. Internal nodes correspond to
hypothetical ancient species, which putatively split up and evolved into distinct
species. Tree branches model changes through time of the hypothetical ancestor
species. The common case is that one has information regarding the leaves, from
which the phylogenetic tree is to be inferred. This task, called phylogenetic re-
construction (cf. [7]), was one of the first algorithmic challenges posed by biology,
and the computational community has been dealing with problems of this flavor
for over three decades (see, e.g., [12]).

In the character-based approach to tree reconstruction, contemporary species
are described by their attributes or characters. Each character takes on one of
several possible states. The input is represented by a matrix A where a;; is the
state of character j in species %, and the i-th row is the character vector of species
1. The output sought is a hypothesis regarding evolution, i.e., a phylogenetic tree
along with the suggested character-vectors of the internal nodes. This output
must satisfy properties specified by the problem variant.

One important variant of the phylogenetic reconstruction problem is finding
a perfect phylogeny. In this variant, the phylogenetic tree is required to have

the property that for each state of a character, the set of all nodes that have
that state induces a connected subtree. The general perfect phylogeny problem
is NP-hard [4,20]. When considering the number of possible states per charac-
ter as a parameter, the problem is fixed parameter tractable [1,15]. For binary
characters, having only two states, perfect phylogeny is linear-time solvable [11].

Another common variant of phylogenetic reconstruction is the parsimony
problem, which calls for a solution with fewest state changes altogether. A change
is counted whenever the state of a character changes between a species and an
offspring species. This problem is known to be NP-hard [8]. A special case intro-
duced by Camin and Sokal [5] assumes that characters are binary and direcied,
namely, only 0 — 1 changes may occur. Noting by 1 and 0 the presence and
absence, respectively, of the character, this means that characters can only be
gained during evolution. Another related binary variant is Dollo parsimony [6,
19], which assumes that the change 0 — 1 may happen only once, i.e., a charac-
ter can be gained once, but it can be lost several times. Both of these variants
are polynomially solvable (cf. [7]). When no perfect phylogeny is possible, one
can seek a largest subset of the characters which admits a perfect phylogeny.
Characters in such a subset are said to be compatible. Compatibility problems
have been studied extensively (see, e.g., [17]).

In this paper, we discuss a generalization of binary perfect phylogeny which
combines the assumptions of both Camin-Sokal parsimony and Dollo parsimony.
The setup is as follows: The characters are binary and directed. As in perfect
phylogeny, the input is a matrix of character vectors, with the difference that
some character states are missing. The question is whether one can complete
the missing states in a way admitting a perfect phylogeny. We call this problem
Incomplete Directed Perfect phylogeny (IDP).

The problem of handling incomplete phylogenetic data arises whenever some
of the data is missing. It is also encountered in the context of morphological
characters, where for some species it may be impossible to reliably assign a state
to a character. The popular PAUP software package [21] provides an exponential
solution to the problem by exhaustively searching the space of missing states.
Indeed, the problem of determining whether a set of incomplete undirected char-
acters is compatible was shown to be NP-complete, even in the case of binary
characters [20].

Quite recently, a novel kind of genomic data has given rise to the same prob-
lem: Nikaido et al. [18] use inserted repetitive genomic elements, particularly
SINEs, as a source of evolutionary information. SINEs are short DNA sequences
that were copied and randomly reinserted into various genomic loci during evo-
lution. The specific insertion events are identifiable by the flanking sequences
on both sides of the insertion site. These insertions are assumed to be unique
events in evolution, because the odds of having separate insertion events at the
very same locus are negligible. Furthermore, a SINE insertion is assumed to be
irreversible, i.e., once a SINE sequence has been inserted somewhere along the
genome, it is practically impossible for the exact, complete SINE to leave that
specific locus. However, the site and its flanking sequences may be lost when a

large genomic region, which includes them, is deleted. In that case we do not
know whether an insertion had occurred in the missing site. One can model such
data by assigning to each locus a character, whose state is '1’ if the SINE oc-
curred in that locus, 0’ if the locus is present but does not contain the SINE,
and ’?’ if the locus is missing. The resulting reconstruction problem is precisely
Incomplete Directed Perfect phylogeny.

The incomplete perfect phylogeny problem becomes polynomial when the
characters are directed: Benham et al. [3] studied the compatibility problem on
generalized characters. Their work implies an O(n?m)-time algorithm for IDP,
where n and m denote the number of species and characters, respectively. A
problem related to IDP is the consensus tree problem [2, 13]. This problem calls
for constructing a consensus tree from homeomorphic binary subtrees, and is
solvable in polynomial time. One can reduce IDP to the latter problem, but the
reduction may take £2(n?m) time.

Our approach to the IDP problem is graph theoretic. We first provide sev-
eral graph and matrix characterizations for solvable instances of binary directed
perfect phylogeny. We then reformulate IDP as a graph sandwich problem: The
input data is recast into two graphs, and solving IDP is shown to be equiva-
lent to finding a graph of a particular type "sandwiched” between them. This
formulation allows us to devise a polynomial algorithm for IDP. The determin-
istic complexity of the algorithm is shown to be O(nm + klog®(n 4+ m)), for an
instance with k 1l-entries in the matrix. Alternatively, we give a randomized ver-
sion of the algorithm which takes O(nm+klog(i?/k)+1(log!) loglog!l) expected
time, where I = n + m. Since an f2(nm) lower bound was shown by Gusfield
for directed binary perfect phylogeny [11], our algorithm has near optimal time
complexity.

The paper is organized as follows: In Section 2 we provide some preliminaries.
Section 3 gives the characterizations and the graph sandwich formulation. In
Section 4 we present the polynomial algorithm. For lack of space, some proofs
are shortened or omitted.

2 Problem Formulation

We first specify some terminology and notation. We reserve the terms nodes and
branches for trees, and will use the terms vertices and edges for other graphs.
Matrices are denoted by an upper-case letter, while their elements are denoted
by the corresponding lower-case letter.

Let G = (V, E) be a graph. We denote its set of vertices also by V(G), and
its set of edges also by E(G). For a vertex v € V we define its degree to a subset
R C V to be the number of edges connecting v to vertices in R. The length of a
path in G is the number of edges along it.

Let 7 be a rooted tree over a leaf set S with branches directed from the root
towards the leaves. For a node z in T we denote the leaf set of the subtree rooted
at z by L(z). L(z) is called a clade of T. For consistency, we consider §§ to be a
clade of T as well, and call it the empty clade. S, and all singletons are called

trivial clades. We denote by triv(S) the collection of all trivial clades. Two sets
are said to be compatible if they are either disjoint, or one of them contains the
other.

Observation 1. A collection S of subsets of a set S is the set of clades of some
tree over S iff S contains triv(S) and its subsets are pairwise compatible.

A tree is uniquely characterized by the set of its clades. The transformation
between a branch-node representation of a tree and a list of its clades is straight-
forward. Hereafter, we identify a tree 7 with the set {S’ : S’ is a clade of T}.
Let S be a subset of the leaves of 7. Then the subtree of 7" induced on § is the
collection {§NS": §' € T} (which defines a tree).

Throughout the paper we denote by S = {s1,...,sn} the set of all species
and by C = {ec1,...,cm} the set of all (binary) characters. For a graph K, we
define C(K) = CNV(K) and S(K) = SNV(K). Let Byxm be a binary matrix
whose rows correspond to species, each row being the character-vector of the
corresponding species. That is, b;; = 1 iff the species s; has the character ¢;.
A phylogenetic tree for B is a rooted tree 7 with n leaves corresponding to the
n species of G, such that each character ¢; is associated with a clade S’ of T,
satisfying:

(1) s; €8 iff bi]' =1.

(2) Every non-trivial clade of T is associated with at least one character.

For a character ¢, the node z of 7, whose clade L(z) is associated with ¢, is
called the origin of ¢ w.r.t. T.

Let Anpxm be a {0,1,?} matrix in which a;; = 1 if 5; has ¢j, aj; = 0 if s;
lacks ¢, and a;; =7 if it is not known whether s; has ¢;. A is called incomplete
if it contains at least one ’?’. For a character ¢; and a value z € {0, 7,1}, the
z-set of ¢; in A is the set of species ¢;(A, 2) = {s; : a;; = z}. ¢; is called a null
character if its 1-set is empty.

A binary matrix B is called a completion of A if a;; € {b;j, ?} for all 7, j. Thus,
a completion replaces all the ?-s in A by zeroes and ones. If B has a phylogenetic
tree T, we say that T is a phylogenetic tree for A as well. We also say that
T ezplains A vie B, and that A is ezplainable. An example of an incomplete
matrix A, a completion of A, and a phylogenetic tree which explains A, is given
in Figure 1.

The following lemma, closely related to Observation 1, has been proven in-
dependently by several authors:

Lemma 1. A binary matriz B has o phylogenetic tree iff the 1-sets of every two
characters are compatible.

An analogous lemma holds for undirected characters (cf. [11]). In contrast,
for incomplete matrices, even if every pair of columns has a phylogenetic tree,
the full matrix might not have one. Such an example was provided by [7] for
undirected characters. We provide a simpler example for directed characters in
Figure 2.

Characters a b c d e a
1 72001 ri{1 00 01
e
Species [7 7 0 1 0 s/ 1 1010
70177 t]1 0 1 01
b,d c
s r t

Fig. 1. Left to right: An incomplete matrix A, a completion B of A, and a phylogenetic
tree that explains A via B. A character z to the right of a vertex v means that v is the
origin of z.

Characters

1 0 0

1 1 0
Species

? 1 1

0 ? 1

Fig.2. An incomplete matrix which has no phylogenetic tree although every pair of
its columns has one.

We are now ready to state the IDP problem:
Incomplete Directed Perfect Phylogeny (IDP):
Instance: An incomplete matrix A.
Goal: Find a tree which explains A, or determine that no such tree exists.

3 Characterizations of Explainable Binary Matrices

3.1 Forbidden Subgraph Characterization

Let B be a species-characters binary matrix of order n x m. Construct the bipar-
tite graph G(B) = (S, C, E) with E = {(si,¢;) : b;j = 1}. For a subset §' C S of
species, we say that a character c is S'-universal in B, if S’ C ¢(B, 1).

An induced path of length four in G(B) is called a X' subgraph if it starts
(and therefore ends) at a vertex corresponding to a species (see Figure 3). A
graph with no induced X subgraph is said to be X-free.

Proposition 1. If G(B) is connected and X-free, then there exists a character
which is S-universal in B.

Proof. Suppose to the contrary that G(B) has no S-universal character. Consider
the collection of all 1-sets of characters in B. Let ¢ be a character whose 1-set
is maximal w.r.t. inclusion in this collection. Let s’ be a species which lacks c.

Characters Species

c S
s’
C’ S”

Fig. 3. The X subgraph.

Since ¢ has a non-empty 1-set and G(B) is connected, there exists a path from
s to ¢ in G(B). Consider the shortest such path P. Since G(B) is bipartite, the
length of P is odd. P cannot be of length 1, by the choice of s”. Furthermore,
if P is of length greater than 3, then its first 5 vertices induce a X subgraph, a
contradiction. Thus P = (s”, ¢/, s', c) must be of length 3. By maximality of the
1-set of c, it is not contained in the 1-set of ¢’'. Hence, there exists a species s
which has the character ¢ but lacks ¢’. Together with the vertices of P, s induces
a X subgraph, as depicted in Figure 3, a contradiction.

The following theorem restates Lemma 1 in terms of graph theory.
Theorem 1. B has a phylogenetic tree iff G(B) is X-free.

Corollary 1. Let A be a submatriz_of A. If A is explainable, then so is A.
Furthermore, if T ezplains A, then A is explained by the subiree of T induced
on its rows.

Let ¥ be a graph property. In the ¥ sandwich problem one is given a vertex
set V and a partition of (V x V) \ {(v,v) : v € V} into three subsets: Eg -
the forbidden edges, E; - the mandatory edges, and E- - the optional edges.
The objective is to find a supergraph of (V, E1) which satisfies ¥ and contains
no forbidden edges. For the property of having no induced X subgraphs, the
problem is formally defined as follows:

X -free-sandwich:

Instance: A vertex set V, and two disjoint edge sets Ey, E; over V.
Question: Is there a set F' of edges such that F D E;, FN Ey — @, and the
graph (V, F) satisfies ¥?

Proposition 2. X-free-sandwich is equivalent to IDP.

Hence, the required graph (V, F) must be “sandwiched” between (V, F;) and
(V, E1U E?). The reader is referred to [10, 9] for a discussion of various sandwich
problems.

Theorem 1 motivates looking at the IDP problem with input .A as an instance
((S,C), EZ, E§4, E{) of the X-free sandwich problem. Here, EX = {(si,¢5) :
a;j = ¢}, for = 0,7, 1. In the sequel, we omit the superscript .4 when it is clear
from the context.

Note, that there is an obvious 1-1 correspondence between completions of A
and possible solutions of ((S,C), Eo, E+, E1). Hence, in the sequel we refer to
matrices and their corresponding sandwich instances interchangeably.

3.2 Forbidden Submatrix Characterizations

A binary matrix B is called canonical if it can be decomposed as follows:

(1) Its ko > 0 left columns are all zero.

(2) Its next k; > 0 columns are all one.

(3) There exist canonical matrices By, ..., B, such that the rest (0 or more) of
the columns of B form the block-structure illustrated in Figure 4.

We say that a matrix B avoids a matrix X, if no submatrix of B is identical

to X.

Theorem 2. Let B be a binary matriz. The following are equivalent:

1. B has a phylogenetic tree.
2. G(B) is X-free.
3. Every matriz obtained by permuting the rows and columns of B avoids the
following matriz:
11
Z=110
01
4. There exists an ordering of the rows and columns of B which yields a canon-
tcal matriz.
5. There exists an ordering of the rows and columns of B so that the resulting
matric avoids the following matrices:
01 01 11 L
X]_:|:10:|,X2:|:11:|,X3:|:01:|,X4: (])-
Proof.
1<2 Theorem 1.
2<3 Trivial.
1=4 Suppose T is a tree that explains B. Assign to each node of 7 an index which
equals its position in a preorder visit of 7. Sort all characters according to
the preorder indices of their origin nodes (letting null characters come first).
Sort all species according to the preorder indices of their corresponding leaves
in 7. The result is a canonical matrix.
4=5 Easily verifiable from the definition of canonical matrices.
5=3 Suppose to the contrary that B has an ordering of its rows and columns, so

that rows %1, 2,23 and columns j;, j2 of the resulting matrix compose the
submatrix Z. Consider the permutations 6,y , 8.01 of the rows and columns
of B, respectively, which yield a matrix avoiding A7, . .., X4. In this ordering,
TOW Oroy (%1) necessarily lies between rows 6,4y (32) and 8rey (33), or else,
the submatrix X4 occurs. Suppose that Opoy (12) < Orow(i3) and O.0(j1) <
Bco1(j2), then X5 occurs, a contradiction. The remaining cases are similar.

I
I
I
I
I
:
0.1
I
I
I
I
I
I
I
L

r--=-4--n1

! 1By i 0
: L_g+___|
I I I
: B |
I I I
! L__J
I

I

I

I

I

I

Fig. 4. Recursive definition of canonical matrices. Each B; is constructed in the same
manner.

Note, that a matrix which avoids X4 has the consecutive ones property in
columns. Gusfield [11, Theorem 3] has proven that a matrix which has a phyloge-
netic tree can be reordered so as to satisfy that property. In fact, the reordering
used by Gusfield’s proof generates an essentially canonical matrix.

Klinz et al. [16] study and review numerous problems of permuting matrices
to avoid forbidden submatrices.

4 The Algorithm

Let A be the input matrix. Define G*(A) = (8, C, E2) for z =?, 1. For a subset
0 £ 8 C S, we say that a character is §'-semi-universal in A if its 0-set does
not intersect S’.

We now present an algorithm for solving IDP. The algorithm outputs a tree
T which explains A, or outputs False if no such tree exists.

1. G+ G'(A),T + triv(S).
2. Remove all S-semi-universal and all null characters from G.
3. While E(G) # 0 do:
(a) For each connected component K of G such that |[E(K)| > 1 do:
i. Let § + S(K).
ii. Compute the set U of all characters in K which are S-semi-universal
in A.
iii. If U = @ then output False and halt.
iv. Otherwise, remove U from @ and update 7 « 7 U {S}.
4. Output 7.

Theorem 3. The above algorithm correctly solves IDP.

Proof. Suppose that the algorithm returns False. Then there exists an iteration
of the ’while’ loop at which some connected component K contained no S(K)-
semi-universal character. Suppose to the contrary that some F* solves A, and let

G* = (S,C, F*). Let H* be the subgraph of G* induced by V(K). By definition,

H~ is connected and by Theorem 1, it is also X-free. Therefore, by Proposition 1
it has an S(K)-universal character. That character must be S(K)-semi-universal
in A, a contradiction.

On the other hand, suppose that the algorithm returns a collection 7T of
sets. We shall prove that 7 is a tree which explains A. We first prove that the
collection 7 of sets is pairwise compatible, implying, by Observation 1, that T
is a tree. Let S1, S2 be two subsets in 7. Let ¢; denote the iteration of the *while’
loop at which S; was added to T, for 2 = 1,2. If t; = ¢ then S; and S, are
clearly disjoint. Otherwise, suppose w.l.o.g., that t; < 3 and S1NSy # 0. Let K;
denote the connected component containing S; at iteration ¢; of the algorithm.
The edge set of G at iteration #; contains the one at iteration ¢;. Therefore, K;
contains the vertices in S3. It follows that 51 O Ss.

It remains to show that the resulting tree is a phylogenetic tree for .A. Suppose
that a character ¢ was removed from G as a part of some set U in Step 3(a)iv.
Associate with ¢ the clade S’, which was added to 7 at that same step. Observe,
that each non-trivial clade § € 7T is associated with at least one character.
Associate with each S-semi-universal character the clade S. Associate with each
null character the empty clade. Finally, define a binary matrix By, s, with b, = 1
iff s belongs to the clade S, associated with ¢. Since a,. # 1 for all s € S, and
asc 7 0 for all s € S¢, B is a completion of A. The claim follows.

The algorithm can be naively implemented in O(hnm) time, where A <
min{m, n} denotes the height of the reconstructed tree. This can be seen by
noting that each iteration of the 'while’ loop increases the height of the output
tree by one. We give a better bound in the following theorem.

Theorem 4. The complezity of the algorithm is O(nm+|E | log® (n+m)) deter-
ministic time. Alternatively, there exists a randomized algorithm that solves IDP
in O(nm + |E1|log(I2/|E1]) + I(logl)® loglogl) ezpected time, where | = n+ m.

Proof. Each iteration of the ’while’ loop splits the (potential) clades added in
the previous one. Thus, the algorithm performs an iteration per level of the
tree returned, and at most h iterations. The connected components of G can
be initialized in O(|E1| + n 4+ m) time, and maintained using a dynamic data
structure for graph connectivity. Using the dynamic algorithm of [14] the con-
nected components of G can be maintained during |E1| edge deletions at a cost of
O(|E4| log® (n+m)) time spent in Step 3(a)iv. Alternatively, using the Las-Vegas
type randomized algorithm for decremental dynamic connectivity [22], the edge
deletions can be supported in O(|E1|log(l?/|E1|) + l(logl)3loglogl) expected
time.

The connected components of G must be explicitly recomputed from the
dynamic data structure for each iteration. This takes O(h(m + n)) = O(nm)
time in total. Since each set added to 7 in Step 3(a)iv corresponds to at least
one character, and each character is associated with exactly one set, updating
T requires in total O(nm) time.

It remains to show how semi-universal characters can be efficiently found in
Step 3(a)ii. Let G(t) denote the graph G at iteration ¢ of the ’while’ loop. For

a character c, denote by dl(¢) its degree in G(t), and by d’(t) the degree of ¢
in G*(A) to its connected component K. in G(t). Given d1(¢),d%(¢), one can
check in O(1) time whether ¢ is S(K.)-semi-universal. d.(¢) remains unchanged
throughout, and equals d1(1). d%(¢) can be maintained as follows. d:(1) is initial-
ized in O(|E-|) time (given the connected components of G(1)). At the beginning
of iteration ¢, d’(¢ + 1) is initialized to d’(¢). Each time a connected component
K. of G(t) is split into sub-components K1, ..., K; due to the removal of char-
acters in Step 3(a)iv, we update d’(¢+ 1) as follows: For ¢ € C(K), we decrease
di(t+ 1) by [{(s,c) € E7 : s € S(Kp),p # j}|. This takes O(|E:|) time for all
¢, t. Finally, finding the semi-universal characters over all iterations costs O(hm)
time. The complexity follows.

We remark, that an £2(mn) time lower bound for (undirected) binary perfect
phylogeny was proven by Gusfield [11]. A closer look at Gusfield’s proof reveals
that it applies, as is, also to the directed case. As IDP generalizes directed binary
perfect phylogeny, any algorithm for this problem would require £2(mn) time.

5 Concluding Remarks

We have given a polynomial algorithm for reconstructing a phylogeny from in-
complete binary directed data, using a graph theoretic reformulation of the prob-
lem. The algorithm is near optimal and takes O(nm) time.

An interesting question regarding IDP is whether one can identify if there
exists a “most general” solution, so that all others are obtained from it by
refinements (additional clades). We have proven that in case a “most general”
solution exists, the algorithm described here provides that solution. The full
version of this manuscript will include this proof, along with a more general
polynomial time algorithm, that also determines if such a solution exists.

Acknowledgments

We thank Dan Graur and Tal Pupko for drawing our attention to this phy-
logenetic problem, and for helpful discussions. We thank Joe Felsenstein, Dan
Gusfield, Haim Kaplan, Mike Steel, and an anonymous CPM ’00 referee for
referring us to helpful literature.

The first author was supported by the Clore foundation scholarship. The
second author was supported in part by the Israel Science Foundation formed by
the Israel Academy of Sciences and Humanities. The third author was supported
by an Eshkol fellowship from the Ministry of Science, Israel.

References

1. R. Agarwala and D. Fernandez-Baca. A polynomial-time algorithm for the perfect
phylogeny problem when the number of character states is fixed. SIAM Journal
on Computing, 23(6):1216-1224, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from
lowest common ancestors with an application to the optimization of relational
expressions. STAM Journal on Computing, 10(3):405-421, 1981.

C. Benham, S. Kannan, M. Paterson, and T.J. Warnow. Hen’s teeth and whale’s
feet: generalized characters and their compatibility. Journal of Computational
Biology, 2(4):515-525, 1995.

H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against perfect
phylogeny. In W. Kuich, editor, Proc. 19th ICALP, pages 273-283, Berlin, 1992.
Springer. Lecture Notes in Computer Science, Vol. 623.

J. H. Camin and R. R. Sokal. A method for deducing branching sequences in
phylogeny. Evolution, 19:409-414, 1965.

L. Dollo. Le lois de 1’évolution. Bulletin de la Societé Belge de Géologie de
Paléontologie et d’Hydrologie, 7:164-167, 1893.

J. Felsenstein. Inferring Phylogenies. Sinaur Associates, Sunderland, Mas-
sachusetts, 2000. In press.

. L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete.

Advances in Applied Mathematics, 3:43-49, 1982.

. M. C. Golumbic. Matrix sandwich problems. Linear algebra and its applications,

277:239-251, 1998.

M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Journal
of Algorithms, 19:449-473, 1995.

D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19—
28, 1991.

D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

M. Henzinger, V. King, and T.J. Warnow. Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica,
24:1-13, 1999.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge and biconnec-
tivity. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
(STOC-98), pages 79-89, New York, May 23-26 1998. ACM Press.

S. Kannan and T. Warnow. A fast algorithm for the computation and enumeration
of perfect phylogenies. SIAM Journal on Computing, 26(6):1749-1763, 1997.

B. Klinz, R. Rudolf, and G. J. Woeginger. Permuting matrices to avoid forbidden
submatrices. Discrete applied mathematics, 60:223-248, 1995.

C. A. Meecham and G. F. Estabrook. Compatibility methods in systematics.
Annual Review of Ecology and Systematics, 16:431-446, 1985.

M. Nikaido, A. P. Rooney, and N. Okada. Phylogenetic relationships among
cetartiodactyls based on insertions of short and long interspersed elements: Hip-
popotamuses are the closest extant relatives of whales. Proceedings of the National
Academy of Science USA, 96:10261-10266, 1999.

W. J. Le Quesne. The uniquely evolved character concept and its cladistic appli-
cation. Systematic Zoology, 23:513-517, 1974.

M. A. Steel. The complexity of reconstructing trees from qualitative characters
and subtrees. Journal of Classification, 9:91-116, 1992.

D. L. Swofford. PAUP, Phylogenetic Analysis Using Parsimony (and Other Meth-
ods). Sinaur Associates, Sunderland, Massachusetts, 1998. Version 4.

M. Thorup. Decremental dynamic connectivity. Journal of Algorithms, 33:229-243,
1999.

