
On the Generality of Phylogenies from

Incomplete Directed Characters

Itsik Pe’er1, Ron Shamir1, and Roded Sharan1

School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978 Israel,
{izik,rshamir,roded}@post.tau.ac.il

Abstract. We study a problem that arises in computational biology,
when wishing to reconstruct the phylogeny of a set of species. In Incom-
plete Directed Perfect Phylogeny (IDP), the characters are binary and
directed (i.e., species can only gain characters), and the states of some
characters are unknown. The goal is to complete the missing states in a
way consistent with a perfect phylogenetic tree. This problem arises in
classical phylogenetic studies, when some states are missing or undeter-
mined, and in recent phylogenetic studies based on repeat elements in
DNA. The problem was recently shown to be polynomial. As different
completions induce different trees, it is desirable to find a general solu-
tion tree. Such a solution is consistent with the data, and every other
consistent solution can be obtained from it by node splitting. Unlike the
situation for complete datasets, a general solution may not exist for IDP
instances. We provide a polynomial algorithm to find a general solution
for an IDP instance, or determine that none exists.

1 Introduction

A phylogenetic tree describes the divergence patterns leading from a single ances-
tor species to its contemporary descendants. The task of phylogenetic reconstruc-
tion is to infer a phylogenetic tree from information regarding the contemporary
species (see, e.g., [2]).

The character-based approach to tree reconstruction describes contemporary
species by their attributes or characters. Each character takes on one of several
possible discrete states. The input is represented by a matrix A where aij is the
state of character j in species i, and the i-th row is the character vector of species
i. The output sought is a phylogenetic tree along with the suggested character
vectors of the internal nodes. This output must satisfy properties specified by
the problem variant.

In this paper, we discuss a phylogenetic reconstruction problem called Incom-
plete Directed Perfect Phylogeny (IDP) [6]. It is assumed that each character is
binary, where its absence or presence is denoted by 0 or 1, respectively. A char-
acter may be gained at most once (across the phylogenetic tree), but may never
be lost. The input is a matrix of character vectors, where some character states
are missing. The question is whether one can complete the missing states so that
the resulting matrix admits a tree satisfying the above assumptions.

The problem of handling incomplete phylogenetic data arises whenever some
of the data is missing or ambiguous. Quite recently, a novel kind of genomic
data has given rise to the same problem: Nikaido et al. [5] use inserted repetitive
genomic elements, particularly SINEs (Short Interspersed Nuclear Elements),
as a source of evolutionary information. SINEs are short DNA sequences that
were copied and randomly reinserted into various genomic loci during evolution.
The distinct insertion loci are identifiable by the flanking sequences on both
sides of the insertion site. These insertions are assumed to be unique events in
evolution. Furthermore, a SINE insertion is assumed to be irreversible, i.e., once
a SINE sequence has been inserted somewhere along the genome, it is practically
impossible for the exact, complete SINE to leave that specific locus. However,
the inserted segment along with its flanking sequences may be lost when a large
genomic region, which includes them, is deleted. In that case we do not know
whether a SINE insertion had occurred in the missing site prior to its deletion.
One can model such data by assigning to each locus a character, whose state is
’1’ if the SINE occurred in that locus, ’0’ if the locus is present but does not
contain the SINE, and ’?’ if the locus is missing. The resulting reconstruction
problem is precisely Incomplete Directed Perfect phylogeny.

Previous studies of related problems implied Ω(n2m)-time algorithms for
IDP [1, 3], where n and m denote the number of species and characters, respec-
tively. In a recent work [6] we provided near optimal O(nm ·polylog(n+m))-time
algorithms for the problem.

In this paper we tackle a different aspect of IDP. Often there is more than
one tree that is consistent with the data. When the input matrix is complete,
there is always a tree T ∗ that is general, i.e., it is a solution, and every other tree
consistent with the data can be obtained from T ∗ by node splitting. In other
words, T ∗ describes all the definite information in the data, and ambiguities
(nodes with three or more children) can be resolved by additional information.
This is not always the case if the data matrix is incomplete: There may or may
not be a general solution tree. In the latter case, any particular solution tree
we choose may be ruled out by additional information, while this information is
still consistent with an alternative solution tree. It is thus desirable to decide if
a general solution exists and to generate such a solution if the answer is positive.

In this study we provide answers to both questions. We prove that an al-
gorithm from [6], which we call Solve IDP, provides the general solution of a
problem instance, if such exists. We also give an algorithm which determines if
the solution T produced by Solve IDP is indeed general. The complexity of the
latter algorithm is O(nm + kd), where k is the number of 1-entries in the input
matrix, and d denotes the maximum degree of T .

The paper is organized as follows: In Section 2 we provide some preliminaries
and background on the IDP problem. In Section 3 we analyze the generality of
the solution produced by Solve IDP and the complexity of testing generality.
For lack of space some proofs are sketched or omitted.

2 Preliminaries

We first specify some terminology and notation. Matrices are denoted by an
upper-case letter, while their elements are denoted by the corresponding lower-
case letter. Let G = (V, E) be an undirected graph. We denote its set of vertices
V also by V (G). A nonempty set W ⊆ V is connected in G, if there is a path in
G between every pair of vertices in W .

Let T be a rooted tree over a leaf set S. The out-degree of a node x in T
is its number of children, and is denoted by d(x). For a node x in T we denote
the leaf set of the subtree rooted at x by L(x). L(x) is called a clade of T . For
consistency, we consider ∅ to be a clade of T as well, and call it the empty clade.
S, ∅ and all singletons are called trivial clades.

Observation 1 (cf. [4]) A collection C of subsets of a set S is the set of clades
of some tree over S if and only if C contains the trivial clades and for every
intersecting pair of its subsets, one contains the other.

A tree T is uniquely characterized by its set of clades. The transformation
between a branch-node representation of a tree and a list of its clades is straight-
forward. Thus, we hereafter identify a tree with the set of its clades.

Throughout the paper we denote by S = {s1, . . . , sn} the set of all species
and by C = {c1, . . . , cm} the set of all (binary) characters. For a graph K, we
define S(K) ≡ S∩V (K). Let Bn×m be a binary matrix whose rows and columns
correspond to species and characters, respectively, and bij = 1 if and only if
the species si has the character cj . A phylogenetic tree for B is a rooted tree T
with n leaves corresponding to the n species of S, such that each character is
associated with a clade of T , and the following properties are satisfied:
(1) If cj is associated with a clade S′ then si ∈ S′ if and only if bij = 1.
(2) Every non-trivial clade of T is associated with at least one character.

A {0, 1, ?} matrix is called incomplete. For convenience, we also consider
binary matrices as incomplete. Let An×m be an incomplete matrix in which
aij = 1 if si has cj , aij = 0 if si lacks cj , and aij =? if it is not known whether si

has cj . For two subsets S′ ⊆ S and C′ ⊆ C we denote by A|S′,C′ the submatrix
of A induced on S′ × C′. For a character cj and a state x ∈ {0, 1, ?}, the x-set
of cj in A is the set of species {si ∈ S : aij = x}. cj is called a null character if
its 1-set is empty. We denote EA

x = {(si, cj) : aij = x}, for x = 0, 1, ?. (In the
sequel, we omit the superscript A when it is clear from the context.)

A binary matrix B is called a completion of A if EA
1 ⊆ EB

1 ⊆ EA
1 ∪EA

? . Thus,
a completion replaces all the ?-s in A by zeroes and ones. If B has a phylogenetic
tree T , we say that T is a phylogenetic tree for A as well. We also say that T
explains A via B. An example of these definitions is given in Figure 1.

The problem of Incomplete Directed Perfect Phylogeny is defined as follows:
Incomplete Directed Perfect Phylogeny (IDP):
Instance: An incomplete matrix A.
Goal: Find a phylogenetic tree for A, or determine that no such tree exists.

Let B be a species-characters binary matrix of order n × m. Construct the
bipartite graph G(B) = (S, C, E) with E = {(si, cj) : bij = 1}. An induced path

c2c3 c5c4c1

1
0

0
0
0

1
0
1

1
1
0

0
1
1

1
0
1

?
1
0

?
0
0

1
?
1

?
?
?

0

Characters

Species

s2

c2, c4

c5

c1

s1 s3

c3

s2

s1

s3

Fig. 1. Left to right: An incomplete matrix A, a completion B of A, and a phylogenetic
tree that explains A via B. Each character is written to the right of the root of its
associated clade. (Example taken from [6].)

of length four in G(B) is called a Σ subgraph if it starts (and therefore ends)
at a vertex corresponding to a species. A bipartite graph with no induced Σ
subgraph is said to be Σ-free.

We now recite several characterizations of IDP.

Theorem 2 ([6]). B has a phylogenetic tree if and only if G(B) is Σ-free.

In [6] we used Theorem 2 to reformulate IDP as a graph sandwich problem.
Finding a completion of an input matrix A was shown to be equivalent to finding
a Σ-free supergraph of G(A) whose set of edges does not intersect EA

0 .

Corollary 1. Let Ŝ ⊆ S and Ĉ ⊆ C be subsets of the species and characters,
respectively. If A has a phylogenetic tree, then so does A|Ŝ,Ĉ .

Corollary 2. Let A be a matrix explained by a tree T and let Ŝ = L(x) be a
clade in T . Then A|Ŝ×C is explained by the subtree of T rooted at x.

For a subset S′ ⊆ S of species, we say that a character c is S′-universal in
B, if its 1-set contains S′ (i.e., every species in S′ has that character).

Proposition 1 ([6]). If G(B) is connected and Σ-free, then there exists a char-
acter which is S-universal in B.

2.1 An Algorithm for IDP

In this section we briefly describe an algorithm for IDP, given in [6]. Let A be
the input matrix. We denote by B(A) the binary matrix of A’s dimension with
?-s replaced by zeros. Define G(A) ≡ G(B(A)) = (S, C, EA

1). For a nonempty
subset S′ ⊆ S, we say that a character is S′-semi-universal in A if its 0-set does
not intersect S′.

The algorithm for solving IDP is described in Figure 2. It outputs the set
of non-empty clades of a tree explaining A, or False if no such tree exists.
The algorithm is recursive and is initially called with Solve IDP(A). It was
shown in [6] that Solve IDP has a deterministic implementation which takes
O(nm+ |E1| log2 l) time, and a randomized implementation which takes O(nm+
|E1| log(l2/|E1|) + l(log l)3 log log l) expected time, where l = n + m.

Solve IDP(A):

1. If |S| > 1 then do:
(a) Remove all S-semi-universal characters and all null characters from G(A).
(b) If the resulting graph G′ is connected then output False and halt.
(c) Otherwise, let K1, . . . , Kr be the connected components of G′, and let

A1, . . . ,Ar be the corresponding sub-matrices of A.
(d) For i = 1, . . . , r do: Solve IDP(Ai).

2. Output S.

Fig. 2. An algorithm for solving IDP [6].

3 Determining the Generality of the Solution

A ’yes’ instance of IDP may have several distinct phylogenetic trees as solutions.
These trees may be related in the following way: We say that a tree T generalizes
a tree T ′, and write T ⊆ T ′, if every clade of T is a clade of T ′, i.e., the
evolutionary hypothesis expressed by T ′ includes all the details of the hypothesis
expressed by T , and possibly more. Therefore, T ′ represents a more specific
hypothesis, and T represents a more general one. We say that a tree T is the
general solution of an instance A, if T explains A, and generalizes every other
tree which explains A. Figure 3 demonstrates the definitions, and also gives an
example of an instance which has no general solution.

s1 s1 s2 s3s1 s2 s3s2 s3

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

c1

c2

s1
s2

s5

s3
s4

s1c1

s2

s3c2

Characters Species

c1 c2 c1 c2

c1

c2

T2

c2

c1

T1

c1 c2

T

Fig. 3. Top left: An IDP instance which has a general solution. Dashed lines denote
E?-edges, while solid lines denote E1-edges. Top-right: T , T1 and T2 are the possible
solutions. T generalizes T1 and T2 (which are obtained by splitting the root node of
T), and is the general solution. Bottom left: An IDP instance which has no general
solution. Bottom middle and bottom right: Two possible solutions. The only tree which
generalizes both solutions is the tree comprised of the trivial clades only, but this tree
is not a solution.

3.1 Finding a General Solution

We prove in this section that whenever a general solution exists, Solve IDP finds
it. We use the following notation: Let A be an incomplete matrix and let Ŝ ⊆ S.
We denote by WA(Ŝ) the set of Ŝ-semi-universal characters in A. Note that
if A is binary, then WA(Ŝ) is its set of Ŝ-universal characters. We define the
operator ˜ on incomplete matrices: We denote by ˜A the submatrix A|S,C\WA(S)

of A. In particular, G(˜A) is the graph produced from G(A) by removing its set
of S-semi-universal vertices.

Lemma 1. Let T be the general solution for an instance A of IDP. Let S′ =
L(x) be a clade of T , corresponding to some node x. Let T ′ be the subtree of T
rooted at x, and let A′ be the instance induced on S′ ∪C. Then T ′ is the general
solution for A′.

Proof. By Corollary 2, T ′ explains A′. Suppose that T ′′ also explains A′ and
T ′ �⊆ T ′′. Then T̂ = (T \ T ′) ∪ T ′′ explains A, and T �⊆ T̂ , a contradiction. 	

A nonempty clade of a tree is called maximal if the only clade that properly
contains it is S.

Lemma 2. Let T be a phylogenetic tree for a binary matrix B. A non-empty
clade S′ of T is maximal if and only if S′ is the species set of some connected
component of G(˜B).

Proof. Suppose that S′ is a maximal clade of T . We claim that S′ is contained in
some connected component K of G(˜B). If |S′| = 1 this trivially holds. Otherwise,
the character c associated with S′ connects all its species, and c �∈ WB(S),
proving the claim. Proposition 1 implies that S is disconnected in G(˜B) and,
therefore, S′ ⊆ S(K) ⊂ S. Suppose to the contrary that S(K) properly contains
S′. In particular, |S(K)| > 1. By Proposition 1, there exists a character c′ in
G(˜B) whose 1-set is S(K). Hence, S(K) must be a clade of T which is associated
with c′, contradicting the maximality of S′.

To prove the converse, let S′ be the species set of some connected component
K of G(˜B). We first claim that S′ is a clade. If |S′| = 1, S′ is a trivial clade.
Otherwise, by Proposition 1, there exists an S′-universal character c′ in G(˜B).
Since K is a connected component, c′ has no neighbors in S \ S′. Hence, S′

must be a clade in T . Suppose to the contrary that S′ is not maximal, then it
is properly contained in a maximal clade S′′, which by the previous direction is
the species set of K, a contradiction. 	

Theorem 3. Solve IDP produces the general solution for every IDP instance
that has one.

Proof. Let A be an instance of IDP for which there exists a general solution T ∗.
Let Talg be the solution tree produced by Solve IDP. By definition T ∗ ⊆ Talg.
Suppose to the contrary that T ∗ �= Talg. Let S′ be the largest clade in Talg \ T ∗

(S′ must be non-trivial), and let S′′ be the smallest clade in Talg which properly
contains it. Let A′ be the instance induced on S′′ ∪ C. By Corollary 2, A′ is
explained by the corresponding subtrees T ′

alg of Talg and T ′∗ of T ∗. By Lemma 1,
T ′∗ is the general solution of A′. Due to the recursive nature of Solve IDP, it
produces T ′

alg when invoked with input A′. Thus, w.l.o.g., one can assume that
S′′ = S and S′ is a maximal clade of Talg.

Suppose that T ∗ explains A via a completion B∗, and let G∗ = G(B∗). Since
S′ is a maximal clade, it is reported during a second level call of Solve IDP(·) (the
call at the first level reports the trivial clade S). Hence, it must be the species
set of some connected component K in G(˜A). Since every S-universal character
in G∗ is S-semi-universal in A, S′ is contained in some connected component K∗

of G(˜B∗). Denote S∗ ≡ S(K∗). By Lemma 2, S∗ is a maximal clade of T ∗. Since
S′ �∈ T ∗, we have S′ �= S∗, and therefore, S∗ ⊃ S′. But T ∗ ⊆ Talg, implying
that S∗ is also a non-trivial clade of Talg, in contradiction to the maximality of
S′. 	

3.2 Determining the Existence of a General Solution

We give in this section a characterization of IDP instances that admit a general
solution. We also provide an algorithm to determine whether the solution tree
T returned by Solve IDP is general. The complexity of the latter algorithm is
shown to be O(mn + |E1|d), where d is the maximum out-degree of T .

Let A be a ’yes’ instance of IDP. Consider a recursive call Solve IDP(A′)
nested within Solve IDP(A), where A′ = A|C′,S′ . Let K1, . . . , Kr be the con-
nected components of G(˜A′) computed in Step 1c. Observe that S(K1), . . . , S(Kr)
are clades to be reported by recursive calls launched during Solve IDP(A′). A
set U of characters is said to be (Ki, Kj)-critical if: (1) Characters in U are
both S(Ki)-semi-universal and S(Kj)-semi-universal in A′; and (2) removing U

from G(˜A′) disconnects S(Ki). Note that by definition of U , U ⊆ WA′(S(Ki)),
and a′

sc =? for all c ∈ U, s ∈ S(Kj). A clade S(Ki) is called optional with
respect to A, if r ≥ 3 and there exists a (Ki, Kj)-critical set for some index
j �= i. Otherwise, we say that S(Ki) is supported. In the example of Figure 3
(bottom), K1 = {s1, s2, c1}, K2 = {s3}, K3 = {s4, s5, c2}. The set U = {c1} is
(K1, K2)-critical, so S(K1) = {s1, s2} is optional.

Theorem 4. Let Talg be a tree produced by Solve IDP on instance A. Then Talg

is the general solution for A if and only if all its clades are supported.

Proof. ⇒ Suppose to the contrary that Talg contains an optional clade with
respect to A. W.l.o.g., assume it is maximal, i.e., during the recursive call
Solve IDP(A), G′ = G(˜A) has r ≥ 3 connected components, K1, . . . , Kr, and
there exists a (Ki, Kj)-critical set U (for some 1 ≤ i �= j ≤ r). Let Ai,Aj

and Aij be the sub-instances induced on Ki, Kj and Ki ∪ Kj , respectively.
Consider the tree T ′ which is produced by a small modification to the ex-
ecution of Solve IDP(A): Instead of recursively invoking Solve IDP(Ai) and

Solve IDP(Aj), call Solve IDP(Aij). Then T ′ is a phylogenetic tree which ex-
plains A, but T ′ includes the clade S(Ki ∪ Kj). Since r ≥ 3, S(Ki ∪ Kj) is
non-trivial and is not a clade of Talg, a contradiction.

⇐ Suppose that Talg is not the general solution for A, i.e., there exists a
solution T ∗ of A such that Talg �⊆ T ∗. We shall prove the existence of an optional
clade with respect to A. (The reader is referred to the example in Figure 4 for
notation and intuition. The example follows the steps of the proof, leading to
the identification of an optional clade.) Let B∗ be a completion of A which is
explained by T ∗, and denote G∗ = G(B∗). Let S′ ∈ Talg \ T ∗ be the largest
clade reported by Solve IDP which is not a clade of T ∗. W.l.o.g. (as argued in
the proof of Theorem 3), S′ is a maximal clade of Talg, and S′ = S(K1), where
K1, . . . , Kr are the connected components of G(˜A).

Let {S∗
i }t

i=1 be the nested set of clades in T ∗ that contain S′: S = S∗
1 ⊃

· · · ⊃ S∗
t ⊃ S′. For each i = 1, . . . , t, let C∗

i be the set of characters in B∗ whose
1-set is non-empty and is properly contained in S∗

i . Denote B∗
i = B∗|S∗

i
,C∗

i
and

let H∗
i = G(B∗

i), i.e., H∗
i is the subgraph of G∗ induced on S∗

i ∪ C∗
i . Let Hi be

the subgraph of G(A) induced on the same vertex set. Since G∗ is a supergraph
of G(A), each H∗

i is a supergraph of Hi.

Claim. S′ is disconnected in H∗
t and, therefore, also in Ht.

Proof. Suppose to the contrary that S′ is contained in some connected compo-
nent K∗ of H∗

t . S(K∗) is thus a clade of the (unique) phylogenetic tree for B∗
t

and, therefore, also a clade of T ∗. It follows that S∗
t ⊃ S(K∗) ⊃ S′, where the

first containment follows from the fact that H∗
t is disconnected, and the second

from the assumption that S′ is not a clade of T ∗. This contradicts the minimal-
ity of S∗

t . 	

We now return to the proof of Theorem 4. Recall that S′ is connected in
H1 = G(˜A). Thus, the previous claim implies that t > 1. Let Kp be a connected
component of G(˜A) such that S(Kp) ⊆ S \ S∗

2 . Such a component exists since
G(˜A) is not connected and S∗

2 is the species set of one of its components. Let
l be the minimal index such that there exists some connected component Ki of
G(˜A) for which S(Ki) is disconnected in Hl. l is properly defined as S(K1) = S′

is disconnected in Ht. l > 1, since otherwise some Ki is disconnected in H1

and, therefore, also in its subgraph G(˜A), in contradiction to the definition of
K1, . . . , Kr. By minimality of l, S∗

l ⊇ S(Ki). Also, S∗
l ⊇ S∗

t ⊃ S′ = S(K1), so
S∗

l �= S(Ki). We now claim that there exists some connected component Kj of
G(˜A), j �= i, such that S(Kj) ⊆ S∗

l . Indeed, if i �= 1 then j = 1. If i = 1 then
l = t (by an argument similar to that in the proof of Claim 3.2), and since S∗

l \S′

is non-empty, it intersects S(Kj) for some j �= i. By minimality of l, S(Kj) is
properly contained in S∗

l \ S′.
Define U ≡ WG∗(S∗

l). By definition all characters in U are S∗
l -universal in

G∗, and are thus both Ki-semi-universal and Kj-semi-universal in A. S(Ki) is
disconnected in Hl = G(A|C∗

l
,S∗

l
). Since Ki is a connected component of G(˜A),

S(Ki) is disconnected in G(A|C∗
l

,S), implying that U is a (Ki, Kj)-critical set.

Also, Ki, Kj and Kp are distinct, implying that r ≥ 3. Hence, U demonstrates
that S(Ki) is optional. 	

Characters Species

s5

s7

s3

s8

s6

s4c2

c3

Talg

c2 c3c1 c4

s1 s2 s3 s4 s5 s6 s7 s8

Kp Kj Ki

S ′

s1 s2 s3 s4 s5 s6 s7 s8

c1 c2 c3

c4

T ∗

S = S∗
1 S∗

2 S∗
3

s8

s6

s4

s2

s1

s5

s7

s3
c2

c3

c4

c1

U

SpeciesCharacters

Fig. 4. An example demonstrating the proof of the ’if’ part of Theorem 4, using the
same notation. Left: A graphical representation of an input instance A. Dashed lines
denote E?-edges, while solid lines denote E1-edges. Top right: The tree Talg produced
by Solve IDP. Bottom middle: A tree T ∗ corresponding to a completion B∗ that uses
all the edges in E?. Bottom right: The graphs H2 (solid edges) and H∗

2 (solid and
dashed edges). Talg �⊆ T ∗, and S′ = {s5, s6}. There are t = 3 clades of T ∗ which
contain S′: S∗

1 = {s1, . . . , s8}, S∗
2 = {s3, . . . , s8}, and S∗

3 = {s5, s6, s7}. The component
Kp = {c1, s1, s2} has its species in S \ S∗

2 . Since WA(S) = WB∗(S) = ∅, H1 = G(A).
Since WB∗(S∗

2) = {c4}, the species set of the connected component Ki = {s7, s8, c4}
is disconnected in H2, implying that l = 2. For a choice of Kj = {s3, s4, c2}, the set
U = {c4} is (Ki, Kj)-critical, demonstrating that S′ is optional.

The characterization of Theorem 4 leads to an efficient algorithm for deter-
mining whether a solution Talg produced by Solve IDP is general.

Theorem 5. There is an O(nm+ |E1|d)-time algorithm to determine if a given
solution Talg is general, where d is the maximum out-degree in Talg.

Proof. The algorithm simply traverses Talg bottom-up, searching for optional
clades. For each internal node x visited, whose children are y1, . . . , yd(x), the
algorithm checks whether any of the clades L(y1), . . . , L(yd(x)) is optional. If an
optional clade is found the algorithm outputs False. Correctness follows from
Theorem 4.

For analyzing the complexity, it suffices to show how to check whether a clade
L(yi) is optional. If d(x) = 2, or yi is a leaf, then certainly L(yi) is supported.

Otherwise, let Ui be the set of characters whose associated clade (in Talg) is
L(yi). Let U i

j denote the set of characters in Ui which are L(yj)-semi-universal,
for j �= i. The computation of U i

j for all i and j takes in total O(nm) time, since
for each character c and species s we check at most once whether (s, c) ∈ EA

? ,
for an input instance A.

It remains to show how to efficiently check whether for some j, U i
j discon-

nects L(yi) in the appropriate subgraph encountered during the execution of
Solve IDP. To this end, we define an auxiliary bipartite graph Hi whose set of
vertices is Wi∪Ui, where Wi = {w1, . . . , wd(yi)} is the set of children of yi in Talg.
We include the edge (wr , cp) in Hi, for wr ∈ Wi, cp ∈ Ui, if (cp, s) ∈ EA

1 for some
species s ∈ L(wr). We construct for each j �= i a subgraph Hi

j of Hi induced on
Wi∪(Ui \U i

j). All we need to report is whether Hi
j is connected. It can be shown

that the overall complexity of the algorithm is O(mn+|EA
1 |·maxv∈Talg

d(v)). 	

Acknowledgments

The first author was supported by the Clore foundation scholarship. The second
author was supported in part by the Israel Science Foundation (grant number
565/99). The third author was supported by an Eshkol fellowship from the Min-
istry of Science, Israel.

References

1. C. Benham, S. Kannan, M. Paterson, and T.J. Warnow. Hen’s teeth and whale’s
feet: generalized characters and their compatibility. Journal of Computational Bi-
ology, 2(4):515–525, 1995.

2. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

3. M. Henzinger, V. King, and T.J. Warnow. Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. Algorithmica,
24:1–13, 1999.

4. C. A. Meecham and G. F. Estabrook. Compatibility methods in systematics. Annual
Review of Ecology and Systematics, 16:431–446, 1985.

5. M. Nikaido, A. P. Rooney, and N. Okada. Phylogenetic relationships among cetartio-
dactyls based on insertions of short and long interspersed elements: Hippopotamuses
are the closest extant relatives of whales. Proceedings of the National Academy of
Science USA, 96:10261–10266, 1999.

6. I. Pe’er, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny. In
Eleventh Annual Symposium on Combinatorial Pattern Matching (CPM’00), pages
143–153, 2000.

